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Abstract

For a given set of observations, we consider the waiting times between successive

returns to extreme values. Our main result is an invariance theorem that says that, as

the size of the data set gets large, the empirical distribution of the waiting time converges

with probability one to a geometric distribution, whenever the observations are i.i.d. or,

more generally, a realization of any exchangeable joint distribution. We also prove a

central limit theorem for these empirical distributions (properly normalized), which leads

in natural way to a Donsker-type theorem on D[0,∞). Our study was motivated by

empirical and simulation results, which indicate the existence of an empirical invariance,

obtained in connection with our investigation on stock price data. In many of the accepted

models for stock prices, our results would apply and suggest such invariance to hold. It

may be pointed out that the empirical invariance from the real stock price data was quite

far away from the theoretical invariance.
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1. Introduction

The investigation here was motivated by an empirical invariance found

in our study of the raw data consisting of the actual trade price of the

intraday transactions data (trades and quotes) of companies in S&P500 list

from 1998 to 2007 and part of 2008 (see [3]).

The temporal evolution of the price of a stock is given by a stochastic

process {St}. For example the Black-Scholes model assumes that {St} fol-

lows a geometric Brownian motion with constant volatility and satisfies the

stochastic differential equation

dSt = rStdt+ σStdWt,

where r and σ are positive constants and {Wt} is standard Brownian motion.

An immediate consequence of this model is that the ’returns’ over disjoint

time intervals of equal duration are independent and identically distributed

normal random variables. More specifically, if S1, S2, . . . , Sn+1 are the prices

of a stock at a set of n + 1 equally spaced time points, then the random

variables (S2 − S1)/S1, (S3 − S2)/S2, . . . , (Sn+1 − Sn)/Sn are i.i.d. normal

random variables.

To allow for possible jumps for stock prices, a more general model is

considered where the rate of return is assumed to follow a general Lévy

process, resulting in the ‘geometric Lévy process’ model for evolution of

stock prices (see [8] for example). However, the returns over disjoint time

intervals of equal duration still remain i.i.d. random variables (though not

necessarily normal).

Suppose now that we have available a large set of data on prices of a

stock at equal intervals of time and calculate the returns. From this set,

say of size n, of return values, suppose we generate a sequence of 0s and

1s that identifies those among the set of return values which constitute the

upper (or lower) ten percent among this set. More specifically, a return

value is dubbed as 0 if it falls in the upper (or lower) ten percentile of the

set of return values and is dubbed as 1 otherwise. This will lead to a n-long

sequence of 0s and 1s with (roughly) 0.1n many 0s and remaining (roughly)

0.9n many 1s. If we now look at the lengths of the successive runs of 1s

in this sequence, including the (possibly empty) runs before the first and

after the last 0s, then how are they expected to behave? We prove that if
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for each n, the successive returns have an exchangeable joint distribution, as

under the Black-Scholes model or geometric Lévy process model, then, in the

limit, these run lengths follow a common geometric distribution. Moreover,

the run-lengths are asymptotically independent. More specifically for any

fixed k, the lengths of first k runs of 1s are asymptotically distributed as k

i.i.d. geometric random variables (Theorem 2.1).

Next, we consider the probability histogram generated by the lengths of

all the runs of 1s. This will be a histogram of a probability on non-negative

integers. We prove a strong law of large numbers (Theorem 2.2) which im-

plies that, under the same hypothesis as in the earlier theorem, this (sample)

histogram will converge, with probability one, to that of a geometric distri-

bution. The convergence holds, with probability one, also in total variation

norm, in Kolmogorov norm and uniformly (Corollary 2.1). Using results

from Chen ([4]), we also obtain an associated central limit theorem (Theo-

rem 2.3) for the (sample) probability histogram. It may be worthwhile to

point out in this connection, that by applying a result of Chen ([4], Theorem

2), one may obtain a limit theorem for our probability histogram. However,

such a limit theorem is substantially weaker than our Theorem 2.2, in the

sense that Chen’s result gives convergence only in probability (which is easy

in our set-up) and assumes additional conditions.

Another point needs mention here. Under our hypothesis that the re-

turns (over successive equal lengths of times) are exchangeable, it is obvious

that the lengths successive runs of 1s, as described above, will also have an

exchangeable joint distribution. However, they are not independent, even if

the successive returns are assumed to be so. Our Theorem 2.2 shows that

the finite sample empirical distribution converges almost surely to an ap-

propriate geometric distribution, as if it is the empirical distribution based

on a finite i.i.d. sample from the geometric distribution. While our The-

orem 2.1 shows that the successive run lengths are indeed asymptotically

i.i.d geometric, the convergence of the empirical distribution to geometric

distribution is not automatic by any means. Further, the de-Finetti decom-

position of exchangeable probabilities on infinite product spaces as mixtures

of i.i.d. probabilities does not apply here, because, for each n, we only have

a finite-dimensional exchangeable distribution. A natural option would be
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to try and apply ideas of Diaconis-Freedman for finite exchangeable proba-

bilities (see [7]) where the weak law follows, but our attempts along this line

did not prove fruitful for the strong law.

Although we are not going to present simulation results in this paper,

remarks might be made according to simulations.

We prove a strong law of large numbers with the limit being an in-

variance, a geometric distribution. The associated central limit theorem

(Theorem 2.3) easily leads to a Donsker-type theorem (Theorem 2.4) for the

empirical distribution function on D[0,∞). This, of course, will characterize

the limiting distribution of the corresponding Kolmogorov-Smirnov statis-

tic. As expected, this limiting distribution will not be the usual Kolmogorov

distribution, as was already evidenced by our simulations.

As mentioned in the first paragraph, our raw data consisted of the ac-

tual trade price of the intraday transactions data (trades and quotes) of

companies in S&P500 list from 1998 to 2007 and part of 2008. The return

process was analyzed at five-minute, one-minute, and 30-second intervals

for a whole year (see [3]). We repeated the procedure mentioned in previous

paragraphs and considered the empirical waiting time distributions of hitting

a certain percentile. Closeness of distributions was measured by ROC area

and Kolmogorov distance. The invariance of these empirical distributions

were found across stocks, time units, and years. This empirical invariance

turned out to be different from the geometric distribution (see [3], [10]) .

On the other hand, simulated data points generated from i.i.d. normal

and i.i.d. uniform, regarded as returns, were converted into a sequence of

0s and 1s as above. The histograms generated from the lengths of 1-runs

were matched against the histogram of a geometric distribution with the

parameter corresponding to the width of the percentile. In all cases, there

seemed to be perfect match. Of course, this is only to be expected now, in

view of our Theorem 2.2. We would like to point out, however, that originally

it was this observed invariance in our simulation results that inspired us to

formulate and prove the main theoretical results described in this work.

Our theoretical results when contrasted with our above-mentioned anal-

ysis based on real data on prices of various stocks would raise questions on

the validity of a large class of widely accepted models on stock-prices. In

fact, any model that merely implies exchangeability of successive returns
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would be put to question. In recent times, models that incorporate long

range dependence, have been proposed; these models use fractional Brow-

nian motion instead of Brownian motion (see [11]). Since exchangeability

of successive returns no longer hold for these models (except in two special

cases), our invariance results do not apply. However, simulations indicate

that a law of large numbers holds but with a different limit.

One other point that we like to note here is that, in the above, we have

only described the first layer of coding in what is known as hierarchical seg-

mentation of time-series data (see [10]). The data were coded into a binary

0− 1 sequence identifying times of occurrences of “rare events” (namely, oc-

currence of extreme values). One can now think of the lengths of successive

1-runs (waiting times between occurrence of rare events) as the data, which

is only exchangeable but not i.i.d., and code these further into a “second

layer” of 0 − 1 sequence in exactly the same way as before. An occurrence

of a 0 at this level corresponds to times of very long waiting between rare

events at the earlier level. A long 1-run at this level corresponds to a long

wait between two long waits for extreme events at the earlier level. By as-

suming only exchangeability (instead of i.i.d.) of the underlying random

variables, our results would imply that at every level of coding, the same

limiting result for the histograms generated by the lengths of 1-runs is valid.

For possible applications to finance, one may refer to ([3], [9], [10]).

For example, volatile period may be defined hierarchically up to the third

level using the real data: if the length of runs of 1s falls in say upper ten

percentile, denote that period 0∗, otherwise 1∗; repeat the same procedure

for the length of runs of 1∗s and denote the period in the upper ten percentile

0@. One may regard 0@s as the volatile periods. Using this segmentation,

the dynamics and trading strategy are studied in ([10]).

2. Statements of Main Results

Consider n objects arranged in a row. Suppose m of the objects are

selected at random, with each of the
(
n
m

)
possible selections having the same

probability. If we describe a particular selection by dubbing each selected

object as a 0 and each unselected object as a 1, each selection gives an

n-long binary sequence with m many 0s and n − m many 1s. Let now

Y n
1 , . . . , Y n

m+1 denote the lengths of the m+ 1 runs of 1s thus obtained. We
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include the 1-runs, possibly of zero length, before the first 0 and after the

last 0. This gives a sequence of m + 1 non-negative integer valued random

variables, which are clearly not independent, because Y n
1 + · · · + Y n

m+1 =

n −m. Thus, the possible values of the random vector (Y n
1 , . . . , Y n

m+1) are

vectors (l1, . . . , lm+1) of nonnegative integers with l1 + · · · + lm+1 = n −m

and, for each such vector,

P (Y n
1 = l1, . . . , Y

n
m+1 = lm+1) =

1(
n
m

) ,

since the event on the right hand side corresponds precisely to selecting the

(l1 + 1)th, (l1 + l2 + 2)th, . . . , and the (l1 + · · ·+ lm +m)th objects among

the n objects. It is an easy consequence of this that the random variables

Y n
1 , . . . , Y n

m+1 are exchangeable. This is because, for any permutation π on

{1, . . . ,m + 1}, the event {Y n
π(1) = l1, . . . , Y

n
π(m+1) = lm+1} is the same as

{Y n
1 = lπ−1(1), . . . , Y

n
m+1 = lπ−1(m+1)}, and this last event has the same

probability as the event {Y n
1 = l1, . . . , Y

n
m+1 = lm+1}, both equal to 1/

(
n
m

)
.

If now n → ∞, we get a triangular array where each row consists of a finite

sequence of random variables that are exchangeable but not independent.

We show that if n and m both go to infinity in such a way that m/n →
p for some p ∈ (0, 1), then the random variables become asymptotically

independent. Moreover, the limiting common distribution is geometric with

parameter p.

Theorem 2.1. If n → ∞ and m → ∞ in such a way that m/n → p ∈ (0, 1),

then, for any k ≥ 1,

(Y n
1 , . . . , Y n

k )
d−→ (Y1, . . . , Yk),

where Y1, . . . , Yk are independent and identically distributed random variables

having the geometric distribution with parameter p.

d−→ denotes convergence in distribution. A particular consequence of the

above theorem will be that the sequence Y n
k , for each fixed k, converges in

distribution to a geometric random variable with parameter p.

We now consider a slightly different problem. For each n, we consider the

probability histogram generated by the random variables Y n
1 , . . . , Y n

m+1. We
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get a (random) probability distribution on non-negative integers, given by

the probability mass functions

θn(l)(ω) =
1

m+ 1

m+1∑

i=1

1{Y n

i
(ω)=l} , l = 0, 1, . . . .

The next theorem says that, under the same hypothesis as in Theorem 2.1,

these probability distributions converge, with probability 1, to the geomet-

ric distribution with parameter p. In other words, the empirical distribution

from each row of the triangular array converges almost surely to the geo-

metric distribution.

Theorem 2.2. If n → ∞ and m → ∞ in such a way that m/n → p ∈ (0, 1),

then,

P
(

lim
n→∞

θn(l) = p(1− p)l, l = 0, 1, . . .
)
= 1.

Using Scheffé’s Theorem and the fact that all the distributions involved

are discrete probability distributions concentrated on non-negative integers,

it is easy to deduce that if we denoting the empirical distribution generated

by the random variables in the nth row by Pn, then one has

Corollary 2.1. Under the same hypothesis as in Theorem 2.1, the distribu-

tions Pn converge, with probability 1,to the geometric distribution with pa-

rameter p, in total variation as well as in Kolmogorov distance. Moreover,

the convergence θn(l) → p(1−p)l holds uniformly in l with probability 1.

The next result is a central limit theorem for the empirical probability

mass functions θn(l), l = 0, 1, . . .. It says that for distinct non-negative

integers l1, . . . , lk, the vector (θn(l1), . . . , θn(lk)) is asymptotically normal.

This will easily imply asymptotic normality of all the finite-dimensional dis-

tributions of the empirical distribution function. It would be quite natural

to push this a little more to get weak convergence of the (properly nor-

malized) empirical distribution in D([0,∞)) to a Gaussian process, which

is described later. To state the central limit theorem, it will be conve-

nient to introduce some notations. Let θ(·), µ and σ2 denote respectively

the probability mass function, the mean and the variance of the geomet-

ric distribution with parameter p; thus, θ(l) = p(1 − p)l, l = 0, 1, . . . ,

µ = (1 − p)/p and σ2 = (1 − p)/p2. Since p = µ/(1 + µ), one can also
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think of µ as parameterizing the geometric distribution. For a given set of

distinct non-negative integers l1, . . . , lk, let αj = plj − (1 − p), j = 1, . . . , k

and βij = δijθ(li) − θ(li)θ(lj)[1 + αiαj/(1 − p)], i, j = 1, . . . , k, where δij
denotes the Kronecker delta. The following result can then be derived from

a result due to Chen ([4, Thm. 6]).

Theorem 2.3. If n → ∞ and m → ∞ in such a way that m/n → p ∈ (0, 1),

then the vector
√
m+ 1(θn(l1)− θ(l1), . . . , θn(lk)− θ(lk)) converges in distri-

bution to a zero-mean k-dimensional Gaussian distribution with dispersion

matrix D = ((βij)).

As mentioned, the above central limit theorem easily leads to a Donsker-

type theorem for the empirical distribution function on [0,∞). To be precise,

let Fn(t), t ∈ [0,∞) denote the empirical (cumulative) distribution function

based on the random variables Y n
1 , . . . , Y n

m+1, that is

Fn(t)(ω) =
1

m+ 1

m+1∑

i=1

1{Y n

i
(ω)≤tl} , t ∈ [0, ∞).

Denote the (cumulative) distribution function of the geometric distribution

(with parameter p) by F , that is, F (t) =
∑[t]

l=0 θ(l) = 1 − (1 − p)[t]+1, t ∈
[0,∞). Also, let G denote the function defined by G(t) =

∑[t]
l=0 lθ(l), t ∈

[0,∞). We then have the following result, as an easy consequence of Theorem

2.3 above.

Theorem 2.4. If n → ∞ and m → ∞ in such a way that m/n → p ∈
(0, 1), then the sequence {

√
m+ 1(Fn(t) − F (t)), t ∈ [o,∞)} of D[0,∞)-

valued processes converges weakly in the Skorohod topology, to a zero-mean

Gaussian process with covariance kernel given by

Σ(s, t) = F ([s ∧ t])− F ([s])F ([t]) − (1− p)−1{(1 − p)2F ([s])F ([t])

+p2G([s])G([t]) − p(1− p)(F ([s])G([t]) +G([s])F ([t]))} ,

where, for a real number t, [t] denotes the greatest integer less than or equal

to t.

In the results stated above the basic set up has been that we have a set

of n objects from which m are selected at random (with equal probability

for each selection). We then have some limiting results as n and m become
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large with m ∼ np. We now want to go on to describe how this is connected

with the data on prices of a stock. This is precisely where the hierarchical

segmentation of the stock price time series comes into play. Given prices of

a stock at equal intervals of time, if we consider the times of occurrences

of extreme values for the returns over successive time intervals, we end up

selecting a certain subset of a fixed proportion from the set of all time points.

Our result simply says that if under the assumed model for a stock price, the

returns over successive time intervals have an exchangeable joint distribution,

then all selections are equally likely. This should be obvious. We elaborate

it only for the sake of completeness.

Let α, β ≥ 0 with 0 < α + β < 1. From a data set consisting n points

(x1, x2, . . . , xn), we want to choose those that form the lower 100α-percentile

and those that form the upper 100β-percentile. To avoid trivialities, let us

assume the size n of the data set is strictly larger than n > (1 − α − β)−1.

In case the data points are all distinct, we have an unambiguous choice.

Indeed, we may arrange the data points in the (strictly) decreasing order as

x(1) < x(2) < · · · < x(n). If now k and l are integers satisfying

k

n
≤ α <

k + 1

n
≤ l − 1

n
< 1− β ≤ l

n
,

then (x(1), . . . , x(k)) will form the lower 100α-percentile and (x(l), . . . , x(n))

will form the upper 100β-percentile. In case the data points are not all

distinct, we may have more than one possible choices for the k among the

n data points that form the lower 100α-percentile or for the n − l + 1 that

form the upper 100β-percentile. In such cases, our prescription is to pick

one among the possible choices with equal probability for each.

Thus, we will always end up selecting exactly k + n − l + 1 from the n

data points with k of them forming the lower 100α-percentile and remaining

n− l+1 forming the upper 100β-percentile. The next theorem considers the

case when the data points consist of n random variables with an exchangeable

joint distribution. This result, which is too obvious to require a formal

proof, provides the required connecting link between stock price data and

the limiting results in the earlier theorems.

Theorem 2.5. If X1, . . . ,Xn are random variables with an exchangeable

joint distribution, then any one of the
(

n
k+n−l+1

)
possible choices can occur
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with equal probability as the set of points constituting the lower 100α- and

upper 100β-percentiles.

3. Proofs

Proof of Theorem 2.1. The proof is straightforward. We have to prove

that, for every choice of k non-negative integers l1, . . . , lk,

P (Y n
1 = l1, . . . , Y

n
k = lk) −→

k∏

i=1

[p(1− p)li ].

The left hand side clearly equals

(
n− l1 − · · · − lk − k

m− k

)/(
n

m

)
. Denoting

s1 = l1+1, s2 = l1+ l2+2, . . . , sk = l1+ · · ·+ lk + k, this last expression can

be written as
k∏

i=1

(
n− si
m− i

)/(
n− si + li + 1

m− i+ 1

)
. It, therefore, suffices for us

to prove that, for each i = 1, 2, . . . , k,

(
n− si
m− i

)/(
n− si + li + 1

m− i+ 1

)
−→ p(1− p)li .

But this follows by using Lemma 3.1 below with ñ = n−si, m̃ = m− i, l̃ = li
and by noting that m/n → p implies (m− i)/(n − si) → p. ���

Lemma 3.1. If m̃ → ∞, ñ → ∞ in such a way that m̃/ñ → p ∈ (0, 1), then

for any l̃ = 0, 1, 2, . . ., one has
(
ñ
m̃

)
/
(
ñ+l̃+1
m̃+1

)
−→ p(1− p)l̃.

Proof of Theorem 3.1. Easy simplification gives

(
ñ

m̃

)/(
ñ+ l̃ + 1

m̃+ 1

)
=

m̃+ 1

ñ+ l̃ + 1
· ñ ! (ñ− m̃+ l̃) !

(ñ− m̃) ! (ñ + l̃) !
.

As n → ∞ (and hence m → ∞), an application of Stirling’s approximations

for all the factorials and simplification gives

ñ ! (ñ− m̃+ l̃) !

(ñ− m̃) ! (ñ + l̃) !
∼ ñ ñ+ 1

2

(ñ + l̃) ñ+
1

2

· (ñ− m̃+ l̃) ñ−m̃+ 1

2

(ñ− m̃) ñ−m̃+ 1

2

· (ñ− m̃+ l̃) l̃

(ñ + l̃) l̃
.

The three factors above converge to e−l̃, el̃ and (1− p)l̃ respectively. These,

together with the fact that
m̃+ 1

ñ+ l̃ + 1
−→ p proves the result. ���
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Before proceeding with the proof of Theorem 2.2, we make a couple of

observations.

First of all, it is enough to prove that for each l = 0, 1, 2 . . . ,

P
(

lim
n→∞

θn(l) = p(1− p)l
)
= 1.

In fact, it is enough to do this only for l = 1, 2, . . . , since the case l = 0 will

then automatically follow.

Secondly, since E(1{Y n

i
=l}) = P (Y n

i = l) −→ p(1− p)l by Theorem 2.1,

it is enough to prove that

1

m+ 1

m+1∑

i=1

[
1{Y n

i
=l} − E(1{Y n

i
=l})

]
−→ 0, with probability 1.

This, of course, is just a strong of large numbers for the triangular array

of random variables {1{Y n

i
=l}, 1 ≤ i ≤ m + 1, n ≥ 1}. Unfortunately, there

does not seem to be a whole lot of literature on strong law of large numbers

for triangular arrays. Teicher ([13]) had the first important paper on almost

sure convergence for double arrays. Andrews ([1]), Davidson ([5]) and De

Jong ([6]) had results on weak law for mixingale sequences, which can be

easily be generalised for triangular arrays. De Jong ([6]) proved a strong law

for mixingale triangular arrays. However, none of these results apply in our

situation. We prove the result directly by showing that, for any ǫ > 0,

(1)
∞∑

n=1

P

(∣∣∣∣∣
1

m+ 1

m+1∑

i=1

[
1{Y n

i
=l} −E(1{Y n

i
=l})

]∣∣∣∣∣ > ǫ

)
< ∞ ,

from which the desired almost sure convergence will follow by using Borel-

Cantelli Lemma.

Proof of Theorem 2.2. To prove the convergence of the series in (1), we

simply prove that

(2)
∞∑

n=1

1

(m+ 1)4
E

∣∣∣∣∣

m+1∑

i=1

[
1{Y n

i
=l} − E(1{Y n

i
=l})

]∣∣∣∣∣

4

< ∞ ,

and then Chebyshev inequality will take care.
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To compute the fourth moments in the summands in (2), we introduce

some notations. Let Zn
i = 1{Y n

i
=l}. Then E(Zn

i ) = P (Y n
i = l), which by the

exchangeability of the random variables {Y n
i , 1 ≤ i ≤ m + 1} is also equal

to P (Y n
1 = l) = p1, say.

Further, exchangeability of {Y n
i , 1 ≤ i ≤ m+1} implies exchangeability

of {Zn
i , 1 ≤ i ≤ m+ 1} as well, from which it is easy to see that

E

∣∣∣∣∣

m+1∑

i=1

[
1{Y n

i
=l} − E(1{Y n

i
=l})

]∣∣∣∣∣

4

= E

∣∣∣∣∣

m+1∑

i=1

(Zn
i − p1)

∣∣∣∣∣

4

= S1+S2+S3+S4 ,

where

S1 = (m+ 1)E(Zn
1 − p1)

4,

S2 = m(m+ 1)E
[
(Zn

1 − p1)
3(Zn

2 − p1)
]

+
m(m+ 1)

2
E
[
(Zn

1 − p1)
2(Zn

2 − p1)
2
]
,

S3 =
m(m− 1)(m+ 1)

2
E
[
(Zn

1 − p1)
2(Zn

2 − p1)(Z
n
3 − p1)

]
,

and

S4 =

(
m+ 1

4

)
E [(Zn

1 − p1)(Z
n
2 − p1)(Z

n
3 − p1)(Z

n
4 − p1)] .

Thus the series in (2) becomes

∞∑

n=1

1

(m+ 1)4
[S1 + S2 + S3 + S4] and we will

have to prove convergence of this.

Noting that |Zn
i − p1| ≤ 1 and m ∼ np with p ∈ (0, 1), it is clear that both

the series
∞∑

n=1

S1

(m+ 1)4
and

∞∑

n=1

S2

(m+ 1)4

are convergent.

To show convergence of the two series

∞∑

n=1

S3

(m+ 1)4
and

∞∑

n=1

S4

(m+ 1)4
,

we introduce some notations. In analogy with the notation p1 = P (Zn
1 =
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1) = p1, let us denote p0 = P (Zn
i = 0) = 1− p1. Similarly, let

p11 = P (Zn
1 = 1, Zn

2 = 1), p10 = P (Zn
1 = 1, Zn

2 = 0),

p01 = P (Zn
1 = 0, Zn

2 = 1), p00 = P (Zn
1 = 0, Zn

2 = 0).

Using exchangeability and elementary properties of probability, one can ex-

press the last three in terms of p1 and p11. Indeed,

p10 = p01 = p1 − p11,

and

p00 = 1− 2p1 + p11.

We can likewise define pijk and pijkh for all i, j, k, h ∈ {0, 1} and express all

the pijk in terms of p1, p11, p111 and all the pijkh in terms of p1, p11, p111, p1111.

Indeed,

p110 = p101 = p011 = p11 − p111,

p100 = p010 = p001 = p1 − 2p11 + p111,

p000 = 1− 3p1 + 3P11 − p111 ;

and

p1110 = p1101 = p1011 = p0111 = p111 − p1111,

p1100 = p1010 = p1001 = p0011 = p0101 = p0110 = p11 − 2p111 + p1111,

p1000 = p0100 = p0010 = p0001 = p1 − 3p11 + 3p111 − p1111,

p0000 = 1− 4p1 + 6p11 − 4p111 + p1111.

In the expression

E
[
(Zn

1 − p1)
2(Zn

2 − p1)(Z
n
3 − p1)

]
=

∑

i,j,k∈{0,1}

(i− p1)
2(j − p1)(k − p1)pijk,

if one uses the above formulas for the pijk and simplifies, one gets

E
[
(Zn

1 − p1)
2(Zn

2 − p1)(Z
n
3 − p1)

]
= p31−3p41−2p1p11+5p21p11+p111−2p1p111.
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We are now going to use the explicit formula for p1, p11 and p111, namely,

p1 =

(
n− l − 1

m− 1

)/(
n

m

)
,

p11 =

(
n− 2l − 2

m− 2

)/(
n

m

)

and

p111 =

(
n− 3l − 3

m− 3

)/(
n

m

)
.

Writing θn for m/n, we get, after an easy simplification, that

p1 = θn(1− θn)
l(1− an),

p11 = θ2n(1− θn)
2l(1− bn)

and

p111 = θ3n(1− θn)
3l(1− cn),

where

an =

(
l(l − 1)

2(1 − θn)
− l(l + 1)

2

)
1

n
+O(n−2),

bn =

(
2l(2l − 1)

2(1− θn)
− (2l + 1)(2l + 2)

2
+

1

θn

)
1

n
+O(n−2),

and

cn =

(
3l(3l − 1)

2(1− θn)
− (3l + 2)(3l + 3)

2
+

3

θn

)
1

n
+O(n−2).

Using these in the simplified formula for E
[
(Zn

1 − p1)
2(Zn

2 − p1)(Z
n
3 − p1)

]
,

one can easily find that the “leading terms” nicely cancel out and one is left

only with terms that are no bigger than O(n−1). It should be noted in this

connection that, since θn → p ∈ (0, 1), both θn and 1− θn may be assumed

to be bounded away from 0 and are, of course, bounded above by 1. The

upshot of all these is that

E
[
(Zn

1 − p1)
2(Zn

2 − p1)(Z
n
3 − p1)

]
= O(n−1).

Now

∞∑

n=1

S3

(m− 1)4
=

∞∑

n=1

m(m− 1)

2(m+ 1)3
E
[
(Zn

1 − p1)
2(Zn

2 − p1)(Z
n
3 − p1)

]
,
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so that the convergence of this series follows from the above and the fact

that

m(m− 1)

2(m+ 1)3
= O(n−1). (Recall that m ∼ np.)

The argument for convergence of
∑∞

n=1
S4

(m+1)4 is similar but a little more

delicate. Since S4 =

(
m+ 1

4

)
E [(Zn

1 − p1)(Z
n
2 − p1)(Z

n
3 − p1)(Z

n
4 − p1)],

showing merely that E [(Zn
1 − p1)(Z

n
2 − p1)(Z

n
3 − p1)(Z

n
4 − p1)] = O(n−1)

will no longer do.

We will actually show that

E [(Zn
1 − p1)(Z

n
2 − p1)(Z

n
3 − p1)(Z

n
4 − p1)] = O(n−2),

which will, of course, yield the required convergence.

As before, in the expression

E [(Zn
1 − p1)(Z

n
2 − p1)(Z

n
3 − p1)(Z

n
4 − p1)]

=
∑

i,j,k,h∈{0,1}

(i− p1)(j − p1)(k − p1)(h− p1)pijkh,

we use the formula for the pijkh and then simplify to get

E [(Zn
1 −p1)(Z

n
2 −p1)(Z

n
3 −p1)(Z

n
4 −p1)] = −3p41 + 6p21p11 − 4p1p111 + p1111.

We already know

p1 = θn(1− θn)
l(1− an), p11 = θ2n(1− θn)

2l(1− bn)

and

p111 = θ3n(1− θn)
3l(1− cn),

where an, bn and cn are as obtained before. Similar simplification for p1111

gives

p1111 = θ4n(1− θn)
4l(1− dn),

where

dn =

(
4l(4l − 1)

2(1 − θn)
− (4l + 3)(4l + 4)

2
+

6

θn

)
1

n
+O(n−2) .
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Using these in the formula for E [(Zn
1 − p1)(Z

n
2 − p1)(Z

n
3 − p1)(Z

n
4 − p1)],

one can easily see that

E [(Zn
1 −p1)(Z

n
2 −p1)(Z

n
3 −p1)(Z

n
4 −p1)]

= θ4n(1−θn)
4l
[
−3(−4an) + 6(−2an−bn)−4(−an−cn) + (−dn) + O(n−2)

]
.

The interesting thing that happens now is that if one collects all the coeffi-

cients of n−1 from the quantity within the square brackets above, they all

cancel out, thereby leaving only the O(n−2) terms. This shows that

E [(Zn
1 − p1)(Z

n
2 − p1)(Z

n
3 − p1)(Z

n
4 − p1)] = O(n−2),

as was claimed. This completes the proof. ���

Proof of Theorem 2.3. The proof rests on the following simple yet crucial

observation. Let Z1, Z2, . . . be a sequence of i.i.d. random variables having

geometric distribution with parameter p. For integers 0 ≤ m ≤ n, consider

the conditional distribution of (Z1, . . . , Zm+1) given that
∑m+1

i=1 Zi = n−m.

Simple computations show that this conditional distribution is the same as

the joint distribution of (Y n
1 , . . . , Y n

m+1). Once this is observed, the stated

result then follows easily from a general result of Chen ([4], Theorem 6),

using the additional fact that
∑m+1

i=1 Zi is a sufficient statistic for the mean

µ = (1 − p)/p of the geometric distribution and that the variance σ2 =

µ(1 + µ) is a continuous function of µ. ���

Proof of Theorem 2.4. Consider the space R∞ of all real sequences

x = (xl, l = 0, 1, . . .), equipped with the product topology. It is well known

(see [2], p. 19) that weak convergence for probabilities on R∞ is deter-

mined by weak convergence of the finite-dimensional distributions. It thus

follows easily from Theorem 2.3 that the sequence of R∞-valued random

variables Xn = {
√
m+ 1(Fn(l) − F (l)), l = 0, 1, . . .)} converge weakly to

a zero-mean discrete-time Gaussian process X = (X0,X1, . . .) with covari-

ance kernel Σ(l, k), as n → ∞, m → ∞, m/n → p. The transplant of the

weak convergence result from R∞ to D[0,∞) (equipped with the Skorohod

topology) is easily achieved via the continuous mapping theorem (see [2],

p. 30), once one observes that the mapping φ : R∞ → D[0,∞) defined by

φ(x)(t) = x[t], t ∈ [0,∞) is continuous. This last observation follows easily

from the criteria for convergence in D[0,∞) (see [2, p.112]). ���
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Remark. Using the standard quantile transformation (see [12, p.97]) and

the continuous mapping theorem, one can obtain the limiting distribution

of the Kolmogorov-Smirnov statistic supt
√
m+ 1|Fn(t)−F (t)| to be that of

supl≥0 |W 0(1− pl)|, where W 0 denotes the Brownian bridge. Clearly, this is

not the usual Kolmogorov distribution.
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S. I. Resnick), Birkhäuser, (2001), 319–336.



48 L.-B. CHANG, A. GOSWAMI, C.-R. HWANG AND F. HSIEH [March

9. Stuart Geman and Lo-Bin Chang, Stock prices and the peculiar statistics of rare
events, preprint, 2009.

10. Fushing Hsieh, Shu-Chun Chen and Chii-Ruey Hwang, Discovering stock dynamics
through multidimensional volatility-phase, accepted by Quantitative Finance (2009).

11. Y. Hu, B. Oksendal and A. Sulem, Optimal portfolio in a fractional Black & Scholes
Market, Mathematical Physics and Stochastic Analysis: Essays in Honor of Ludwig

Streit, World Scientific, 267-279, 2000.

12. David Pollard, Convergence of Stochastic Processes, Springer Series in Statistics, xiv,
Springer-Verlag, 1984.

13. H. Teicher, Almost certain convergence in double arrays, Z. Wahrsch. Verw. Gebiete

69(1985), 331-345.


	2. Statements of Main Results
	3. Proofs

