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Abstract

Recently Hairer–Pillai [Regularity of Laws and Ergodicity of Hypoelliptic SDEs Driven

by Rough Paths, to appear in Annals of Probability] proposed the notion of θ-roughness of

a path which leads to a deterministic Norris lemma. In the Gubinelli framework (Hölder,

level 2) of rough paths, they were then able to prove a Hörmander type result (SDEs driven

by fractional Brownian motion, H > 1/3). We take a step back and propose a natural

”roughness” condition relative to a given p-rough path in the sense of Lyons; the aim

being a Doob-Meyer result for rough integrals in the sense of Lyons. The interest in our

(weaker) condition is that it is immediately verified for large classes of Gaussian processes,

also in infinite dimensions. We conclude with an application to non-Markovian system

under Hörmander’s condition, in the spirit of Cass–Friz [Densities for rough differential

equations under Hörmander’s condition, Ann. of Math. (2), 171(3):2115–2141, 2010].

1. Introduction

Consider the indefinite stochastic integral I :=
∫ ·

0 θ (t, ω) dB where B

is a multi-dimensional standard Brownian motion. It will be enough here

to consider integrands which are continuous and adapted. Consider also

a process Λ = Λt of bounded variation, say continuously differentiable and

adapted. It is then a well-known fact from stochastic analysis that I+Λ ≡ 0

a.s. implies θ ≡ 0 and Λ ≡ 0 a.s., often referred to as Doob–Meyer decom-

position. In Malliavin’s proof of the Hörmander theorem, i.e. existence of
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(smooth) densities of a given stochastic differential equation, under a Lie

bracket condition on the driving vector fields, cf. [16], this decomposition is

one (among several) key ingredients. It is worth noting that in this applica-

tion θ and Λ̇ are functions of some underlying diffusion path, i.e. of the form

θ (t, ω) = f (Xt (ω)), Λ̇ = g (Xt (ω)). Actually, showing the existence of a

smooth density requires a quantitative version of the Doob–Meyer decompo-

sition, known as Norris lemma [18]. Both results are usually considered as

probabilistic in nature and fundamentally related to martingales, quadratic

variation etc.

Recently, Hairer–Pillai [11] proposed the notion of θ-roughness of a path

which leads to a deterministic Norris lemma1 , valid for (level-2, Hölder)

rough integrals in the sense of Gubinelli; a variation of the rough integral

originally introduced by T. Lyons [13].

It is possible to check that this roughness condition holds for fractional

Brownian motion (fBm); indeed in [11] the author show θ-roughness for any

θ > H whereH denotes the Hurst parameter. (Recall that Brownian motion

corresponds to H = 1/2; in comparison, the regime H < 1/2 is ”rougher”

than Bm.) All this turns out to be a key ingredient in their Hörmander type

result for stochastic differential equations driven by fBm2 , any H > 1/3,

solutions of which are in general non-Markovian.

In the present note we take a step back and propose a natural ”rough-

ness” condition relative to a given p-rough path (of arbitrary level [p] =

1, 2, . . . ) in the sense of Lyons; the aim being a deterministic Doob-Meyer

result for (general) rough integrals in the sense of Lyons. The interest in

our (weaker) condition is that it is immediately verified for large classes of

Gaussian processes, also in infinite dimensions. (In essence one only needs a

Khintchine law of iterated logarithms for 1-dimensional projections.)

We conclude with an application to non-Markovian systems (existence of

densities) under a weak Hörmander’s condition, in the spirit of [2]. Smooth-

ness of densities is subject of forthcoming work by Cass, Hairer, Litterer and

Tindel.

1See also [12] for some recent work in the context of fractional Brownian motion.
2These SDEs are handled with rough path theory and cannot be dealt with by Itô theory.
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2. Truly “Rough” Paths and a Deterministic Doob-Meyer Result

Let V,W be Banach-spaces and L (V,W ) the space of continuous linear

maps from V to W . Let p ≥ 1. Assume X : [0, T ] → V to be a p-rough path

in the sense of T. Lyons [13, 14] controlled by ω.

Recall that such a rough path consists of a underlying path X : [0, T ] →
V , together with higher order information which somewhat prescribes the

iterated integrals
∫ ·

0 dXt1 ⊗ · · · ⊗ dXtk for 1 < k ≤ [p].

Definition 1. For fixed s ∈ [0, T ) we call X “rough at time s” if (convention

0/0 := 0)

(∗) : ∀v∗ ∈ V ∗\ {0} : lim sup
t↓s

|〈v∗,Xs,t〉|
ω (s, t)2/p

= +∞.

If X is rough on some dense set of [0, T ], we call it truly rough.

Theorem 1. (i) Let f ∈ Lipγ (V,L (V,W )), γ > p − 1 (so that the rough

integral below is well-defined; cf. [15]) and assume X is rough at time s.

Then

∫ t

s
f (X) dX = O

(

ω (s, t)2/p
)

as t ↓ s =⇒ f (Xs) = 0.

(i’) As a consequence, if X is truly rough, then

∫ ·

0
f (X) dX ≡ 0 on [0, T ] =⇒ f (X·) ≡ 0 on [0, T ] .

(i”) As another consequence, assume g ∈ C (V,W ) and |t−s|=O(ω (s, t)2/p),

satisfied e.g. when ω (s, t) ≍ t − s and p ≥ 2 (the “rough” regime of usual

interest) then

∫ ·

0
f (X) dX+

∫ ·

0
g (X) dt ≡ 0 on [0, T ] =⇒ f (X·) , g (X·) ≡ 0 on [0, T ] .

(ii) Assume f ∈ Lipγ (V ⊕W,L (V,W )) and that

Z :=

(

X

Y

)

∈ V ⊕W
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lifts to a p-rough path Z : [0, T ] → V ⊕W and define, somewhat similar to

[4, p.84],

∫

f (X,Y ) dX :=

∫

h (Z) dZ with h (x, y) = (f (x, y) , 0) .

Then the conclusions from (i), (i’) and (i”), with f (X) replaced by f (X,Y ),

remain valid.

Remark 1. Solutions of rough differential equations dY = V (Y ) dX in the

sense of Lyons are understood in the integral sense, based on the integral

defined in (ii) above. This is our interest in this (immediate) extension of

part (i).

Proof. (i) A basic estimate (e.g. [15]) for the W -valued rough integral is

∫ t

s
f (X) dX = f (Xs)Xs,t +O

(

ω (s, t)2/p
)

.

By assumption, for fixed s ∈ [0, T ), we have

0 =
f (Xs)Xs,t

ω (s, t)2/p
+O (1) as t ↓ s

and thus, for any w∗ ∈W ∗,

| 〈v∗,Xs,t〉 |
ω (s, t)2/p

:=

∣

∣

∣

∣

∣

〈

w∗,
f (Xs)Xs,t

ω (s, t)2/p

〉∣

∣

∣

∣

∣

= O (1) as t ↓ s;

where v∗ ∈ V ∗ is given by V ∋ v 7→ 〈w∗, f (Xs) v〉 recalling that f (Xs) ∈
L (V,W ). Unless v∗ = 0, the assumption (∗) implies that, along some se-

quence tn ↓ s, we have the divergent behavior |〈v∗,Xs,tn〉| /ω (s, tn)
2/p → ∞,

which contradicts that the same expression is O (1) as tn ↓ s. We thus con-

clude that v∗ = 0. In other words,

∀w∗ ∈W ∗, v ∈ V : 〈w∗, f (Xs) v〉 = 0.

and this clearly implies f (Xs) = 0. (Indeed, assume otherwise i.e. ∃v : w :=

f (Xs) v 6= 0. Then define 〈w∗, λw〉 := λ and extend, using Hahn-Banach if

necessary, w∗ from span(w) ⊂ W to the entire space, such as to obtain the

contradiction 〈w∗, f (Xs) v〉 = 1.)
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(i”) From the assumptions,
∫ t
s g (Xr) dr ≤ |g|∞ |t− s| = O

(

ω (s, t)2/p
)

.

We may thus use (i) to conclude f (Xs) = 0 on s ∈ [0, T ). It follows that
∫ ·

0 g (Xr) dr ≡ 0 and by differentiation, g (X·) ≡ 0 on [0, T ].

(ii) Note that h ∈ Lipγ (V ⊕W,L (V ⊕W,W )) fits into the framework of

part (i), provided V is replaced by V ⊕W . By definition of
∫

f (X,Y ) dX

∫ t

s
f (X,Y ) dX =

∫ t

s
h (Z) dZ

= h (Zs)Zs,t +O
(

ω (s, t)2/p
)

= h (Xs, Ys)

(

Xs,t

Ys,t

)

+O
(

ω (s, t)2/p
)

= f (Xs, Ys)Xs,t +O
(

ω (s, t)2/p
)

and the identical proof (for (i’), then (i”)) goes through, concluding f (Xs, Ys)

= 0. ���

Remark 2. The reader may wonder about the restriction to p ≥ 2 in (i”) for

Hölder type controls ω (s, t) ≍ t− s. Typically, when p < 2, one uses Young

theory, thereby avoiding the full body of rough path theory. That said, one

can always view a path of finite p-variation, p < 2, as rough path of finite

2-variation (iterated integrals are well-defined as Young integrals). More-

over, by a basic consistency result, the respective integrals (Young, rough)

coincide. In the context of fBm with Hurst parameter H ∈ (1/2, 1) , for

instance, we can take p = 2 and note that in this setting fBm is truly rough

(cf. below for a general argument based on the law of iterated logarithm).

By the afore-mentioned consistency, the Doob–Meyer decomposition of (i”)

then becomes a statement about Young integrals. Such a decomposition was

previously used in [1].

Remark 3. The argument is immediately adapted to the Gubinelli setting

of “controlled” paths and would (in that context) yield uniqueness of the

derivative process.

Remark 4. In Definition 1, one could replace the denominator ω (s, t)2/p

by ω (s, t)θ, say for 1/p < θ ≤ 2/p. Unlike [11], where 2/p − θ affects

the quantitative estimates, there seems to be no benefit of such a stronger

condition in the present context.
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3. True Roughness of Stochastic Processes

Fix ρ ∈ [1, 2) and p ∈ (2ρ, 4). We assume that the V -valued stochastic

process X lifts to a random p-rough path. We assume V ∗ separable which

implies separability of the unit sphere in V ∗ and also (by a standard theo-

rem) separability of V . (Separability of the dual unit sphere in the weak-∗
topology, guaranteed when V is assumed to be separable, seems not enough

for our argument below.)

The following 2 conditions should be thought of as a weak form of a

law-of-iterated-logarithm (LIL) lower bound, and a fairly robust form of a

LIL upper bound, respectively. As will be explained below, they are easily

checked for large classes of Gaussian processes, also in infinite dimensions.

Condition 1. Set ψ (h) = h
1
2ρ (ln ln 1/h)1/2. Assume (i) there exists c > 0

such that for every fixed dual unit vector ϕ ∈ V ∗ and s ∈ [0, T )

P

[

lim sup
t↓s

|ϕ (Xs,t)| /ψ (t− s) ≥ c

]

= 1

and (ii) for every fixed s ∈ [0, T ),

P

[

lim sup
t↓s

|Xs,t|V
ψ (t− s)

<∞
]

= 1

Theorem 2. Assume X satisfies the above condition. Then X is a.s. truly

rough.

Proof. Take a dense, countable set of dual unit vectors, say K ⊂ V ∗. Since

K is countable, the set on which condition (i) holds simultaneously for all

ϕ ∈ K has full measure,

P

[

∀ϕ ∈ K : lim sup
t↓s

|ϕ (Xs,t)| /ψ (t− s) ≥ c

]

= 1

On the other hand, every unit dual vector ϕ ∈ V ∗ is the limit of some

(ϕn) ⊂ K. Then

|〈ϕn,Xs,t〉|
ψ (t− s)

≤ |〈ϕ,Xs,t〉|
ψ (t− s)

+ |ϕn − ϕ|V ∗
|Xs,t|V
ψ (t− s)
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so that, using lim (|a|+ |b|) ≤ lim (|a|)+lim (|b|), and restricting to the above

set of full measure,

c ≤ lim
t↓s

|〈ϕn,Xs,t〉|
ψ (t− s)

≤ lim
t↓s

|〈ϕ,Xs,t〉|
ψ (t− s)

+ |ϕn − ϕ|V ∗ lim
t↓s

|Xs,t|V
ψ (t− s)

.

Sending n→ ∞ gives, with probability one,

c ≤ lim
t↓s

|〈ϕ,Xs,t〉|
ψ (t− s)

.

Hence, for a.e. sample X = X (ω) we can pick a sequence (tn) converging

to s such that |〈ϕ,Xs,tn〉| /ψ (tn − s) ≥ c− 1/n. On the other hand, for any

θ ≥ 1/ (2ρ)

|〈ϕ,Xs,tn (ω)〉|
|tn − s|θ

=
|〈ϕ,Xs,tn (ω)〉|
ψ (tn − s)

ψ (tn − s)

|tn − s|θ

≥ (c− 1/n) |tn − s|
1
2ρ
−θ L (tn − s)

→ ∞

since c > 0 and θ ≥ 1/ (2ρ) and slowly varying L (τ) := (ln ln 1/τ)1/2 (in the

extreme case θ = 1/ (2ρ) the divergence is due to the (very slow) divergence

L (τ) → ∞ as τ = tn − s→ 0 .) ���

3.1. Gaussian processes

The conditions put forward here are typical for Gaussian process (so

that the pairing 〈ϕ,X〉 is automatically a scalar Gaussian process). Sufficient

conditions for (i), in fact, a law of iterated logarithm, with equality and c = 1

are e.g. found in [17, Thm 7.2.15]. These conditions cover immediately - and

from general principles - many Gaussian (rough paths) examples, including

fractional Brownian motion (ρ = 1/ (2H), lifted to a rough path [5, 9]) and

the stationary solution to the stochastic heat equation on the torus, viewed

as as Gaussian processes parametrized by x ∈ [0, 2π]; here ρ = 1, the fruitful

lift to a “spatial” Gaussian rough path is due to Hairer [10].

As for condition (ii), it holds under a very general condition [9, Thm
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A.22]

∃η > 0 : sup
0≤s,t≤T

E exp

(

η
|Xs,t|2V
|t− s|1/ρ

)

<∞.

In presence of some scaling, this condition is immediately verified by Fer-

nique’s theorem.

Example 1. d-dimensional fBm is a.s. truly rough (in fact, H-rough)

In order to apply this in the context of (random) rough integration,

we need to intersect the class of truly rough Gaussian processes with the

classes of Gaussian processes which admit a rough path lift. To this end, we

recall the following standard setup [9]. Consider a continuous d-dimensional

Gaussian process, say X, realized as coordinate process on the (not-too

abstract) Wiener space (E,H, µ) where E = C
(

[0, T ] ,Rd
)

equipped with

µ is a Gaussian measure s.t. X has zero-mean, independent components

and that Vρ-var

(

R, [0, T ]2
)

, the ρ-variation in 2D sense of the covariance R

of X, is finite for ρ ∈ [1, 2). (In the fBm case, this condition translates to

H > 1/4). From [9, Theorem 15.33] it follows that we can lift the sample

paths of X to p-rough paths for any p > 2ρ and we denote this process

by X, called the enhanced Gaussian process. In this context, modulo a

deterministic time-change, condition (ii) will always be satisfied (with the

same ρ). The non-degeneracy condition (i), of course, cannot be expect to

hold true in this generality; but, as already noted, conditions are readily

available [17].

Example 2. Q-Wiener processes are a.s. truly rough. More precisely, con-

sider a separable Hilbert space H with ONB (ek), (λk) ∈ l1, λk > 0 for all k,

and a countable sequence
(

βk
)

of independent standard Brownians. Then

the limit

Xt :=

∞
∑

k=1

λ
1/2
k βkt ek

exists a.s. and in L2, uniformly on compacts and defines a Q-Wiener process,

where Q =
∑

λk 〈ek, ·〉 is symmetric, non-negative and trace-class. (Con-

versely, any such operator Q on H can be written in this form and thus gives

rise to a Q-Wiener process.) By Brownian scaling and Fernique, condition
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(ii) is obvious. As for condition (i), let ϕ be an arbitrary unit dual vector

and note that ϕ (X·) /σϕ is standard Brownian provided we set

σ2ϕ :=
∑

λk 〈ϕ, ek〉2 > 0.

By Khintchine’s law of iterated logarithms for standard Brownian motion,

for fixed ϕ and s, with probability one,

lim sup
t↓s

|ϕ (Xs,t)| /ψ (t− s) ≥
√
2σϕ.

Since ϕ 7→ σ2ϕ is weakly continuous (this follows from (λ) ∈ l1 and dominated

convergence) and compactness of the unit sphere in the weak topology, c :=

inf σϕ > 0, and so condition (ii) is verified.

Let us quickly note that Q-Wiener processes can be naturally enhanced

to rough paths. Indeed, it suffices to define the H⊗H-valued “second level”

increments as

(s, t) 7→ Xs,t :=
∑

i,j

λ
1/2
i λ

1/2
j

(
∫ t

s
βis,· ◦ dβj

)

ei ⊗ ej .

which essentially reduces the construction of the “area-process” to the Lévy

area of a 2-dimensional standard Brownian motion. (Alternatively, one could

use stochastic integration against Q-Wiener processes.) Rough path regu-

larity, |Xs,t|H⊗H = O
(

|t− s|2α
)

for some α ∈ (1/3, 1/2] (in fact: any α <

1/2), is immediate from a suitable Kolmogorov-type (or Garsia-Rodemich-

Rumsey) criterion (e.g. [8, 9]).

Variations of the scheme are possible of course, it is rather immediate

to define Q-Gaussian processes in which
(

βk
)

are replaced by
(

Xk
)

, a se-

quence of independent Gaussian processes, continuous each with covariance

uniformly of finite ρ-variation, ρ < 2.

Let us insist that the (random) rough integration against Brownian,

or Q-Wiener processes) is well-known to be consistent with Stratonovich

stochastic integration (e.g. [14, 9, 8]). In fact, one can also construct a

rough path lift via Itô-integration, in this case (random) rough integration

(now against a “non-geometric” rough path) coincides with Itô-integration.



82 PETER FRIZ AND ATUL SHEKHAR [March

4. An Application

Let X be a continuous d-dimensional Gaussian process which admits

a rough path lift in the sense described at the end of the previous section.

Assume in addition that the Cameron-Martin space H has complementary

Young regularity in the sense that H embeds continuously in the space of

continuous paths, from [0, T ] to Rd, with finite q-variation for 1
p+

1
q > 1. Note

q ≤ p for µ is supported on the paths of finite p-variation. This is true in great

generality with q = ρ whenever ρ < 3/2 and also for fBm (and variations

thereof) for all H > 1/4. Complementary Young regularity of the Cameron-

Martin space is a natural condition, in particular in the context of Malliavin

calculus and has been the basis of non-Markovian Hörmander theory, the

best results up to date were obtained in [2] (existence of density only, no

drift, general non-degenerate Gaussian driving noise) and then [11] (existence

of a smooth density, with drift, fBm H > 1/3). We give a quick proof of

existence of density, with drift, with general non-degenerate Gaussian driving

noise (including fBm H > 1/4). To this end, consider the rough differential

equation

dY = V0 (Y ) dt+ V (Y ) dX

subject to a weak Hörmander condition at the starting point. (Vector fields,

on R
e, say are assumed to be bounded, with bounded derivatives of all

orders.) In the drift free case, V0 = 0, conditions on the Gaussian driving

signal X where given in [2] which guarantee existence of a density. With

no need of going into full detail here, the proof (by contradiction) follows a

classical pattern which involves a deterministic, non-zero vector z such that3

zTJ
X(ω)
0←· (Vk (Y· (ω))) ≡ 0 on [0,Θ(ω))

,every k ∈ {1, . . . , d} for some a.s. positive random time Θ. Here J

(This follows from a global non-degeneracy condition, which, for in-

stance, rules out Brownian bridge type behavior, and a 0-1 law, see condi-

tions 3,4 in [2]). From this

∫ ·

0
zTJX

0←t ([V, Vk] (Yt)) dX+

∫ ·

0
zTJX

0←t ([V0, Vk] (Yt)) dt ≡ 0

3 J
X(ω)
0←· denotes the Jacobian of the inverse flow; cf. [2, 9].
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on [0,Θ(ω)); here V = (V1, . . . Vd) and V0 denote smooth vector fields on

R
e along which the RDEs under consideration do not explode. Now we

assume the driving (rough) path to be truly rough, at least on a positive

neighborhood of 0. Since Z := (X,Y, J) can be constructed simultaneously

as rough path, say Z, we conclude with Theorem 1, (iii):

zTJX

0←· ([Vl, Vk] (Y·)) ≡ 0 ≡ zTJX

0←· ([V0, Vk] (Yt)) .

Usual iteration of this argument shows that z is orthogonal to V1, . . . , Vd

and then all Lie-brackets (also allowing V0), always at y0. Since the weak-

Hörmander condition asserts precisely that all these vector fields span the

tangent space (at starting point y0) we then find z = 0 which is the desired

contradiction. We note that the true roughness condition on the driving

(rough) path replaces the support type condition put forward in [2]. Let us

also note that this argument allows a pain-free handling of a drift vector field

(not including in [2]); examples include immediately fBm with H > 1/4 but

we have explained above that far more general driving signals can be treated.

In fact, it transpires true roughness of Q-Wiener processes (and then, suit-

able generalizations to Q-Gaussian processes) on a separable Hilbert space

H allows to obtain a Hörmander type result where the Q-process “drives”

countably many vector fields given by V : Re → L (H,Re) .

The Norris type lemma put forward in [11] suggests that the argument

can be made quantitative, at least in finite dimensions, thus allowing for

a Hörmander type theory (existence of smooth densities) for RDE driven

by general non-degenerate Gaussian signals. In [11] the authors obtain this

result for fBm, H > 1/3.

Acknowledgment

P.K. Friz has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP7/2007-

2013) / ERC grant agreement nr. 258237. A. Shekhar is supported by

Berlin Mathematical School (BMS).



84 PETER FRIZ AND ATUL SHEKHAR [March

References

1. F. Baudoin and M. Hairer, A version of Hörmander’s theorem for the fractional Brown-
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