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Abstract

We study a complex manifold M together with a smooth complex line sub-bundle E

of its (1,0)-cotangent bundle. E is assumed to satisfy a certain integrability condition and

a non-degeneracy condition. We attach to the structure (M,E) an invariant generalized

connection on a principal bundle P over M of adapted coframes. The total space of E

minus its zero section has a natural almost complex structure. We determine when it is

actually a complex structure.

0. Introduction

Let M be an n-dimensional complex manifold, n ≥ 2, having a smooth

complex line sub-bundle E ⊂ T ∗

(1,0)M of its (1,0)-cotangent bundle. We

assume that E is ∂-integrable, and Levi non-degenerate, as described be-

low in the first paragraph of section one. Our goal is to study the (local)

biholomorphic invariants of such (M,E).

Aside from the non-degeneracy condition, (M,E) may be considered as a

complex analogue of the conormal bundle of a real codimension-one foliation

of a real manifold. Our motivation, however, stems from the relation of such

(M,E) to certain fundamental solutions for the ∂-operator [5].

Locally E is spanned by a non-zero (1,0)-form θ, which is determined

up to a non-zero factor, θ → vθ. Coframes (1.2) and their dual frames on M

satisfying (1.5) below are said to be adapted to E. They form a principal

fiber bundle P over M with structure group G (1.9). The main result is the

following theorem, which is proved in Section 2. It solves the biholomorphic
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equivalence problem for such structures (M ,E) in the sense of E. Cartan.

(Greek indices will run from 1 to n− 1 in this work.)

Theorem 0.1. On the bundle P there exist global invariant complex one-

forms θα, θ, φ, ω α
β , which, together with their complex conjugates, span the

complexified cotangent bundle of P . Any biholomorphic map f between two

such structures (M,E) and (M ′, E′) lifts to a diffeomorhism f̃ of the bundles

P , P ′ preserving the corresponding forms.

The theorem may be interpreted as defining a Cartan connection on the

bundle P . We investigate its curvature in section 3.

The differential forms of the theorem, if declared to be of type (1,0)

define an almost complex structure on P , which is non-integrable, in general.

We do not consider its integrability here. Instead, the global forms θα, θ pull

down via local sections to give (1,0) coframes on M . The map π factors

through the principal line bundle Ê associated to E, which is just E with its

zero section deleted. Local sections of P → Ê pull down the forms θα, θ, φ

to forms defining an almost complex structure on Ê. Again, this structure

is non-integrable, in general. We give conditions for it to be integrable in

Corollary 2.1, at the end of Section 2.

The invariant theory of (M ,θ),for a fixed θ, was developed in [5]. The

relation between the geometries, or G-structures, of (M,θ) and (M,E) re-

calls that between Riemannian and conformal geometries [1], [3]; or even

more closely, that between pseudo-hermitian [4] and pseudo-conformal [2]

geometries. However, as as we shall see here, these analogies do not run

too deeply, since the G-structure of (M,E) is of first, not second order, and

hence considerably simpler.

1. Local structure on M

We let the complex line bundle E ⊂ T ∗

(1,0)M be spanned locally by a

non-zero (1,0)-form θ on M . Then E is ∂-integrable if

∂θ = θ ∧ φ′ , (1.1)

for some (1,0)-form φ′ on M . E is Levi non-degenerate, if the (1,1)-form

∂θ is non-degenerate on the complex tangent hyperplane field, {θ = 0} ⊂
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T(1.0)M . These two conditions are easily seen to be invariant under θ 7→ vθ,

so are properties of E.

A well-known example is the line bundle E spanned by the (1,0)-form

θ = ∂ log |z|2 on Cn − {0}. From it we get the Bochner-Martinelli (n,n-

1)-form, θ ∧ (∂θ)n−1 6= 0. The possibility of such a construction for more

general fundamental solutions for the ∂-operator is the motivation for the

present work, as it was for [5].

We study the local geometry of E via (1,0)-coframe fields of the form

θα, 1 ≤ α ≤ n− 1, θn = θ, (1.2)

spanning T ∗

(1,0)M locally. Following the notation set down by Chern-Moser

[2], we let Greek indices run from 1 to n − 1, and use the summation con-

vention. Bars over indices will usually reflect complex conjugation. Thus,

∂θ =
n∑

i,j=1

hijθ
i ∧ θj = χ+ hαnθ

α ∧ θ + θ ∧ φ′′, (1.3)

χ = hαβθ
α ∧ θβ, (1.4)

where φ′′ is a (0,1)-form. The n− 1 by n− 1 matrix (hαβ), a clear analogue

of the Levi form of a real hypersurface, is non-degenerate, but need not have

any symmetry properties.

The admissible change of coframe, θ̃ = θ, θ̃α = θα + θvα, results in

h̃αn = hαn + hαβv
β . Thus, we can choose the vβ uniquely to make h̃αn = 0.

We call such coframes {θα, θ}, and their dual frames {Xα,Xn ≡ X}, with

this additional condition, adapted. This condition, which fixes the direction

of X, may be expressed as

ιX(∂θ) = µθ, (1.5)

for some factor µ. This is clearly independent of the changes θ 7→ vθ.

It is also invariant under biholomorphic maps f , which preserve the

cotangent line field E. For, if f∗θ = λθ, then

ιf∗X(∂θ) = ιf∗X(∂[(f−1)∗(λθ)]) = ιf∗X((f−1)∗(∂(λθ)))

= (f−1)∗[ιX(∂(λθ))] = (f−1)∗[(λµ +Xλ)θ]

= [(λµ+Xλ) ◦ f−1](f−1)∗θ. (1.6)
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But (f−1)∗θ = θ/(λ ◦ f−1), so we get

ιf∗X(∂θ) = µ̃θ, µ̃ = (µ + λ−1Xλ) ◦ f−1. (1.7)

We shall henceforth restrict to such adapted coframes {θα, θ}, so that

∂θ = θ ∧ φ′, ∂θ = χ+ θ ∧ φ′′. (1.8)

The principal bundle, π : P → M of adapted coframes has the structure

group, G = C∗ ×Gl(n − 1,C), reflecting the now admissible changes

θ = θ0v, θα = θβ0U
α
β . (1.9)

The formulae (1.8), together with the integrability of the (almost) com-

plex structure on M , give the following local structure equations on M ,

dθ = χ+ θ ∧ φ, φ = φ′ + φ′′, (1.10)

dθα = θβ ∧ ω α
β + θ ∧ τα, (1.11)

τα = θβA α
β
+ θA α

n . (1.12)

For a fixed adapted coframe {θα, θ}, χ given by (1,4), and the torsion one-

forms τα are uniquely determined. The forms φ, ω α
β are determined up to

changes

φ̃ = φ+ bθ, (1.13)

ω̃ α
β = ω α

β +B α
β γθ

γ , B α
β γ = B α

γ β, (1.14)

as is easily seen from (1.10), (1.11) and Cartan’s lemma.

2. Invariant forms on the bundle P

In passing to the principal bundle π : P → M over M , the coefficients

{v, U α
β } in (1.9) are interpreted as independent fiber coordinates. The forms

{θα0 , θ0} are local forms on P , pulled up from M via the map π, and the

forms {θα, θ} are global, intrinsic forms on P . The latter must be completed

to a basis by finding further global invariant forms on P , which we shall

eventually denote by {φ, ω α
β }.
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With this notation understood, we have equations (1.10), (1.11), (1.12),

for the exterior derivatives of {θα0 , θ0}, with local forms {φ0, ω
α

0β } pulled up

to P . Exterior differentiation of (1.9) shows that, locally on P , we have

forms {φ, ω α
β } satisfying (1.10), (1.11), (1.12), and

φ = φ0 − dv/v, (2.1)

U γ
β ω α

γ = ω γ
0βU

α
γ − dU α

β , (2.2)

vτα = τβ0 U
α
β , χ = vχ0. (2.3)

These formulae make it clear that the forms {θα, θ, φ, ω α
β }, and their complex

conjugates give a local basis for complex one-forms on the manifold P . The

forms {φ, ω α
β } are not yet uniquely determined, as (1.13), (1.14) show. We

proceed to determine them intrinsically. It will then follow that they are

global.

We first take the exterior derivative of equation (1.10) to get

0 = dχ+ χ ∧ φ− θ ∧ dφ. (2.4)

To compute dχ, we use equation (1.4) and the covariant differential notation,

Dhαβ = dhαβ − ω γ
α hγβ − hαγω

γ

β
. (2.5)

Then (2.4) becomes

(Dhαβ + hαβφ)∧ θα ∧ θβ = θ ∧ (dφ− hαβτ
α ∧ θβ)− θ ∧ (hαβθ

α ∧ τβ). (2.6)

From this it follows that each one-form (Dhαβ + hαβφ) can have no

component linearly independent from θα, θ, θα, θ. For such a term does not

appear on the right-hand side of (2.6). Also, there can be no term of the

form θ ∧ θα ∧ θβ on the left-hand side of (2.6), due to the form (1.12) of τα.

Hence, we may write

Dhαβ + hαβφ = hαβ,γθ
γ + hαβ,γθ

γ + hαβ,nθ. (2.7)

Substitution into (2.6) gives

hαβ,γ = hγβ,α, hαβ,γ = hαγ,β, (2.8)
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and

hαβ,nθ ∧ θα ∧ θβ = θ ∧ (dφ− hαβτ
α ∧ θβ)− θ ∧ (hαβθ

α ∧ τβ). (2.9)

We rearrange this as

0 = θ ∧ {dφ − hαβA
α
γ θγ ∧ θβ − hαβ,nθ

α ∧ θβ − θ ∧ [hαβ(A
β
n θα +A α

n θβ)]}

−θ ∧ (hαβA
β
γ θα ∧ θγ). (2.10)

Although the two-form dφ is still unkown, it follows that

hαβA
β
γ = hγβA

β
α , (2.11)

and

dφ = hαβA
α
γ θγ∧θβ+hαβ,nθ

α∧θβ+θ∧ [hαβ(A
β
n θα+A α

n θβ)]+θ∧Φ, (2.12)

where Φ is some one-form on P .

Under a substitution (1.13), (1.14) into the (2.5), we get, with obvious

notation

D̃hαβ + hαβ φ̃ = Dhαβ + hαβφ−B γ
α ρθ

ρhγβ − hαγB
γ
ρ σθ

σ + hαβbθ. (2.13)

In terms of the coefficients, this is equivalent to

h̃αβ,ρ = hαβ,ρ −B γ
α ρhγβ , (2.14)

h̃αβ,σ = hαβ,σ − hαγB
γ

β σ
, (2.15)

h̃αβ,n = hαβ,n + hαβb. (2.16)

We multiply (2.16) on the right by the inverse matrix hβα of hαβ , and sum

over α and β, to get

h̃αβ,nh
βα = hαβ,nh

βα + (n− 1)b. (2.17)

Because of the symmetry conditions (2.8), we can choose the functions b,B γ
α β

in (1.13), (1.14) uniquely to achieve

hαβ,σ = 0, hαβ,nh
βα = 0. (2.18)
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Notice that (2.18) implies that the one-forms Dhαβ are of type (1,0), when

pulled down to the principal bundle Ê of E. This finishes the process of

normalization of the forms φ, ω α
β . Together with θα, θ, they will give a

global invariant basis of forms for P .

This completes the proof of theorem (0.1).

As mentioned in the introduction, the forms θα, θ, φ on P give rise to an

almost complex structure on the principal line bundle Ê of E. When is this

a complex structure? In view of (1.10) and (1.11), we only have to check

that dφ is in the exterior ideal generated by θα, θ, φ. Formula (2.12) gives

the following.

Corollary 2.1. This almost complex structure on Ê is integrable, if and

only if the coefficients of the torsion forms τα satisfy

hαβA
α
γ = hαγA

α
β
, A α

n = 0. (2.19)

3. Curvature

The two-form θ ∧ Φ in equation (2.12), which was derived from the

exterior derivative of (1.10), is a component of curvature. Since dφ = dφ0

locally by (2.1), Φ has the form

Φ = Bαθ
α +Bαθ

α +Bnθ. (3.1)

To derive the remaining curvature forms, we take the exterior derivative of

equation (1.11). This yields the “first Bianchi identity”,

θβ ∧ Ω α
β + θ ∧Dτα = χ ∧ τα, (3.2)

where we have introduced the curvature and covariant differential forms,

Ω α
β = dω α

β − ω γ
β ∧ ω α

γ , (3.3)

Dτα = dτα − τβ ∧ (ω α
β − δ α

β φ). (3.4)

The exterior derivative of (2.2) gives in usual fashion, and obvious notation,

U γ
β Ω α

γ = Ω γ
0β U α

γ . (3.5)
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Since the Ω γ
0β are two-forms from the base, it follows that the Ω α

γ are

two-forms in θα, θ, θα, θ. Modulo θ, θ, we have

Ω α
β ≡ P α

β ρσθ
ρ ∧ θσ +Q α

β ρσθ
ρ ∧ θσ +R α

β ρσθ
ρ ∧ θσ, (3.6)

where the tensors P and Q are anti-symmetric in ρ, σ. Substitution of (3.6)

into (3.2) gives the following Bianchi identies for the coefficients,

0 = P α
β ρσ + P α

ρ σβ + P α
σ βρ, (3.7)

2Q α
β ρσ = hβρA

α
σ − hβσA

α
ρ , (3.8)

R α
β ρσ = R α

ρ βσ. (3.9)

Next we consider equation (2.7), which we write more explicitly as

dhαβ = ω γ
α hγβ + hαγω

γ
α − hαβφ+ hαβ,γθ

γ + hαβ,nθ. (3.10)

We take the exterior derivative of this, and use the equation itself to remove

all dhαβ terms. This straight-forward, though lengthy, process yields the

following, where again we compute modulo θ, θ.

0 ≡ Ω γ
α hγβ + hαγΩ

γ

β
(3.11)

+(Dhαβ,σ + hαβ,σφ) ∧ θσ − hαβhρσA
ρ
γ θγ ∧ θσ (3.12)

+(hαβ,nhρσ − hαβhρσ,n)θ
ρ ∧ θσ. (3.13)

Here we have introduced the covariant differential

Dhαβ,σ = dhαβ,σ − ω γ
α hγβ,σ − ω γ

β
hαγ,σ − ω γ

σ hαβ,γ . (3.14)

As before (2.7) we have

Dhαβ,σ + hαβ,σφ = hαβ,σγθ
γ + hαβ,σnθ + hαβ,σγθ

γ + hαβ,σθ. (3.15)

Comparison of coefficients, mod θ, θ, gives

0 = P γ
α ρσhγβ + hαγQ

γ

β ρσ
+ (1/2)(hαβ,σρ − hαβ,ρσ), (3.16)

0 = Q γ
α ρσhγβ + hαγP

γ

β ρσ
− (1/2)hαβ(hγσA

γ
ρ − hγρA

γ
σ ), (3.17)

0 = R γ
α ρσhγβ − hαγR

γ

β σρ
− hαβ,ρσ + hαβ,nhρσ − hαβhρσ,n. (3.18)
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Notice that by (3.8) and (3.16) or (3.17) the tensors Q and P are already

determined by the torsion τα. Thus, only the tensor R carries additional

information.
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