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Abstract

We study a tower of coverings of a real four dimensional manifold and its relations

to properties such as complex structures and existence of meromorphic functions. This

allows us revisit the question of existence of a complex structure on an almost complex

surface from a perspective different from the usual one. A consequence is the existence of

an almost complex surface with any prescribed set of Chern numbers c21 and c2 satisfying

the Noether relation but supporting no integrable almost complex structure.

1. Introduction

1.1. A natural question in complex geometry is to understand the differ-

ence between existence of almost complex structures and existence of com-

plex structures on a differentiable manifold of even dimension. It follows

from the well-known work of Van de ven [7] that there exist lots of four

dimensional differentiable manifolds supporting almost complex structure

but carrying no complex structure, which means integrable almost complex

structure in this article. The situation is essentially completely unknown

in higher dimensions. One of the main difficulties dealing with higher di-

mensional varieties is that there may not be any meromorphic functions

and we do not have Kähler conditions in general for a hypothetical complex

structure, which make the usual algebraic geometric or differential geometric

methods difficult to apply.
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The article grows out of a modest attempt to understand such a problem.

We explore some approach different from the usual one to the problem, via

the study of a tower of coverings, which allows us to come up with a sufficient

condition to construct meromorphic functions on complex manifolds, which

by itself is of independent interest. However for the problem related to the

existence of complex structure mentioned above, we have concrete results

only in real dimension four.

Here is a brief summary of our results. We give a new criterion on

existence of non-trivial meromorphic functions in real dimension four. In

particular, we study from the point of view of a tower of coverings, when

they exist. This is stated as Theorem 1. A criterion such as Theorem 1

allows us to produce rather easily examples of almost complex surfaces with

no integrable almost complex structure. In fact, we use the approach to

produce for each pair of admissible numbers (p, q) an almost complex man-

ifold of complex dimension two with c21 = p, c2 = q but carries no integrable

almost complex structure. We refer the readers to Theorem 2 for details and

remarks. Though probably not to be unexpected, to the knowledge of the

author, the result has not been stated before. For a detailed description as

stated in Theorem 2, we need results from classification of surfaces.

1.2. A differentiable manifoldM of even dimension is said to carry an almost

complex structure if the tangent bundle carries a complex structure which

is differentially compatible but may not be holomorphically compatible with

respect to an atlas of coordinate charts. A differentiable manifold of real

dimension 2n is said to carry a complex structure if it can be covered by

differentially compatible local charts which are homeomorphic to an open

sets in C
n and the transition functions are holomorphic with respect to the

local coordinates. The restriction of a complex structure to the tangent

bundle yields naturally an almost complex structure. If an almost complex

structure is the restriction of a complex structure from the manifold, we say

that the almost complex structure is integrable. In such a case, we call the

manifold a complex manifold. A complex manifold is projective algebraic,

or in short, projective, if it can be realized as a complex analytic subvariety

of some projective space PN
C
.

A classifical result of Kodaira (cf. [1]) states that a smooth complex sur-

face M supporting a holomorphic line bundle L with c1(L)
2 > 0 is projective
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algebraic. The first result of this article is to give a somewhat different crite-

rion to conclude positive algebraic dimension for a complex surface different

from the one of Kodaira, in terms of Todd genus and existence of a tower of

coverings of the manifold.

Definition 1. We say that M supports an infinite tower of coverings if

there exists an infinite sequence of finite, non-identity, unramified coverings

· · · → Mi+1 → Mi · · · → M2 → M1 with M1 = M.

Remark.

(1) Note that the definition here is more general than the usual definition of

a tower of coverings as in [9]. We do not assume that the sequence Mi

has to approach to the universal covering M̃ as i tends to infinity.

(2) There are plenty of examples of M supporting an infinite tower of cov-

erings. Here are some explicit ones.

(a) The fundamental group π1(M) is residually finite. In such a case, we

just take the coverings corresponding to an infinite tower of normal

subgroups of π1(M). The intersection of the fundamental groups re-

garded as a group of deck transformations on the universal covering

approaches to the trivial group..

(b) The first Betti number b1(M) > 0. In such a case, there is a non-

trivial homomorphism ρ : π1(M) → Z. We just take normal coverings

corresponding to the kernel of ρi : π1(M) → Z → Zpi , where Zpi

is reduction mod(pi) of a nested sequence of ideals pi, pi+1 ⊂ pi,

i = 1, 2, . . . .

Theorem 1. Let M be a complex surface with Todd genus c21 + c2 6= 0

supporting an infinite tower of coverings. Then the algebraic dimension of

M is positive.

1.3. Theorem 1 allows us to derive some simple criterion to construct exam-

ples of four dimensional manifolds supporting almost complex structure but

no complex structure by attaching one or two standard compact manifolds.

Theorem 2. Let (p, q) be any pair of integers satisfying p+q ≡ 0 (mod 12).

Then there exists a compact connected differentiable four-manifold M sup-

porting an almost complex structure with the first and second Chern numbers

given by p and q respectively, but does not support any complex structure.
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More precisely, M can be chosen as follows. Let Ma,b,c,α = (♯aP
2
C
)♯(♯b(P

2
C)

♯(♯c(P
1
C
×R))♯(♯α[(S

1×S3)♯(P 1
C
×P 1

C
)]) be the direct sum of a copies of P 2

C
, b

copies of P
2
C which as a differentiable manifold is P 2

C
with opposite orienta-

tion, c copies of P 1
C
×R with R a Riemann surface of genus two, and α copies

of (S1 × S3)♯(P 1
C
× P 1

C
). Then for an appropriate choice of positive integers

a > 1, b > 1, c > 2, and α > 1, Ma,b,c,α does not carry any complex structure

but carries some almost complex structure C, so that the Chern numbers of

the resulting almost complex surface Ma,b,α,C satisfies c21(Ma,b,α,C) = p and

c2(Ma,b,α,C) = q.

Remark. We recall that it is already proved in [7] that given any pair of

integers (p, q) with p + q ≡ 0 (mod 12), there exists a compact connected

almost complex manifold with Chern numbers (c21, c2) given by the pair.

Moreover, suppose p 6 2q, there is a compact complex manifold with Chern

numbers given by the pair. Theorem 2 above shows that the same underlying

differentiable manifold satisfying both properties exists for each admissible

pair of integers satisfying p+ q ≡ 0 (mod 12).

1.4. The organization of the paper goes as follows. In §2, a criterion for a

complex manifold to have positive algebraic dimension is proved. Theorem

1 in terms of non-vanishing of the Todd genus is a consequence of the cri-

terion. To prepare for a proof of Theorem 2, we prove Proposition 4 in §3,

which gives a criterion to modify an existing complex manifold to another

real four manifold with almost complex structure. In this case, appropriate

disjoint union allows us to avoid the constraint that the Todd genus has to

be non-trivial. In §4, we apply the discussions in the earlier sections to con-

struct almost complex manifolds with no integrable complex structure and

prescribed Chern numbers, leading to a proof of Theorem 2.

1.5. It is a pleasure for the author to thank the referee for helpful comments

on the article.

2. Criterion for Positivity of the Algebraic Dimension

2.1. We consider first a general observation on the algebraic dimension of a

complex manifold.
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Proposition 1. Let M be a complex manifold. Let · · · → Mi → · · · → M2 →

M1 = M be an infinite tower of normal coverings of a complex manifold M

of complex dimension n > 0. Let Ni = [Mi : M1] be the index of the covering.

Suppose that h0(Mi,KMi
) ≥ cNi for some constant c > 0 independent of i.

Then M has positive algebraic dimension. Suppose furthermore that m = 2.

Then M is either projective algebraic or is an elliptic fibration.

2.2. From an infinite tower of coverings · · · → M3 → M2 → M1 = M, we

let ∩iπ1(Mi) = Γ∞ and denote by M∞ = M̃/Γ∞.

Lemma 1. Let Ni = [Mi : M1] be the index of the coverings. Suppose that

h0(Mi,KMi
) ≥ cNi for some constant c > 0 independent of i. Then the

reduced L2 cohomology group H0
(2)(M∞,KM∞

) 6= ∅.

Proof. The covering M∞ is a geodesically complete non-compact Rieman-

nian manifold which is a covering of Mi for all i. In general, let fl, l =

1, . . . , pg(X) be an orthonormal base of H0(X,KX ) of a manifold X. Let

BX(x) =
∑pg(X)

l=1 |fl(x)|
2 be the trace of the Bergman kernel. Let F be a

fundamental domain of M on Mi. It follows that

∫

F
sup

f∈H0(Mi,KMi
),‖f‖=1

|f(x)|2 =
1

Ni

∫

Mi

sup
f∈H0(Mi,KMi

),‖f‖=1

|f(x)|2

=
1

Ni

∫

Mi

BMi
(x)

=
1

Ni
h0(Mi,KMi

)

≥ c

Hence there exists xi ∈ F and fi ∈ H0(Mi,KMi
) of L2-norm 1 such that

|fi(xi)| ≥ c. Standard uniform convergence on compacta argument implies

that some subsequence of fi converges to give a non-trivial L2 (2, 0)-form f∞
on M∞. Regularity results for elliptic operators implies that f∞ is actually

smooth (cf. [9, p.203]). ���

2.3.

Lemma 2. Suppose that the space H0
(2)(M∞,KM∞

) of L2-holomorphic sec-

tions of the canonical line bundle KM∞
on M∞ is non-trivial. Then the

algebraic dimension of M is positive.
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Sketch of Proof. We recall the well-known approach to construct a non-

trivial meromorphic function on M . Non-emptiness of H0
(2)(M∞,KM∞

) im-

plies that it is actually infinite dimension, by considering γ∗f for γ ∈ Γ∞

and f ∈ H0
(2)(M∞,KM∞

). Hence f2 ∈ L1(M∞). By considering the Poincaré

series of f2
i for some fi ∈ H0

(2)(M∞,KM∞
), we get a holomorphic sec-

tion of H0(M,K2
M ). Since M is compact, there exists a constant r such

that for each point p on M∞, there exists a geodesic ball of geodesic ra-

dius r centered at p. It follows easily that there exists a constant c >

0 such that for a holomorphic section f ∈ H0
(2)(M∞,KM∞

), |f(p)|2 ≤

c
∫
B(p,r) |f |

2 ≤ c‖f‖2, the L2-norm of f (cf. [9]). Hence f is bounded point-

wise on M∞ and therefore f l ∈ H0
(2)(M∞,K l

M∞
) for all l ≥ 1. It follows that

for any f1, . . . , fk ∈ H0
(2)(M∞,KM∞

), f2
1 · · · f

2
k is an L1-holomorphic section

of K2k
M∞

. The Poincaré series
∑

γ∈Γ γ
∗(f2

1 · · · f
2
k ) is then a holomorphic sec-

tion of H0(M,K2k
M ). It is known that for k sufficiently large, we may choose

g1, · · · , gk ∈ H0
(2)(M∞,KM∞

) such that
∑

γ∈Γ γ
∗(g21 · · · g

2
k) 6= 0 and is not

proportional to
∑

γ∈Γ γ
∗(f2

1 · · · f
2
k ) by a constant, cf. [4]. In such case, the

quotient
∑

γ∈Γ
γ∗(f2

1
···f2

k
)

∑
γ∈Γ

γ∗(g2
1
···g2

k
)
is a meromorphic function on M. This concludes the

proof of Lemma 2. ���

2.4.

Proof of Proposition 1. From the lemmas above, we know that the

algebraic dimension of M is positive. Hence it suffices for us to consider the

case that M has complex dimension 2. Note that h0(2)(M̃) is either trivial or

infinite dimensional. In this case, the algebraic dimension of M is either 1

or 2.

Suppose that the algebraic dimension is 1. Then there exists a fibration

π : M → C onto a algebraic curve. According to Proposition 3.1 in Chapter

VI of [1], we know that M is a minimal properly elliptic surface, p : M → C,

where C is an algebraic curve of genus g.

In the case that the dimension of M is 2, It follows from a well-known

result of Chow-Kodaira (cf. [1, p.139]) that existence of two algebraically

independent meromorphic functions on a compact complex surface implies

that the surface is projective algebraic.

This concludes the proof of Proposition 1. ���
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2.5. The results above essentially help us to handle the case of c21(M) +

c2(M) > 0, see 2.6 below. We need another criterion for the projective

algebraicity of surfaces in case that the characteristic number is negative.

Proposition 2. Suppose that a complex surface M supports an infinite

tower of coverings and satisfies the condition that c21(M)+ c2(M) < 0, Then

M has positive algebraic dimension.

Proof. Assume for the sake of proof by contradiction that M is not alge-

braic. The Riemann-Roch Theorem tells us that

h0(M,O)− h1(M,O) + h2(M,O) =
1

12
(c1(M)2 + c2(M)).

Since the characteristic number on the right hand side is multiplicative with

respective to the index of an unramified covering, we know that

h0(M ′,O)− h1(M ′,O) + h2(M ′,O) =
[M ′ : M ]

12
(c1(M)2 + c2(M))

for an unramified covering M ′ of M . It follows that

h1(M ′,O) = −
[M ′ : M ]

12
(c1(M)2 + c2(M)) + h2(M ′)− 1.

Suppose that [M ′ : M ] ≥ 36. We have h1(M ′) ≥ 3 since c1(M)2+c2(M) < 0.

For a complex surface M , we have the well-known relation that h1(M,O) =

h0,1(M) = h1,0(M) + ǫ, where ǫ = 0 if M is Kähler and ǫ = 1 if otherwise

(cf. [1]). We conclude that h1,0(M ′) ≥ c[M ′ : M ] for some constant c > 0

independent of M ′. Applying the discussions of Lemma 1 to the tower of

coverings, we conclude that on M∞, the space of L2-holomorphic one forms

H0
(2)(M,Ω) is non-trivial and hence infinite dimensional. It follows from the

arguments of Gromov [4] as in Lemma 2 again that M has positive algebraic

dimension. ���

2.6. We can now conclude the proof of Theorem 1.

Proof of Theorem 1. Suppose that (c1(M)2+c2(M)) > 0, the hypothesis

of Theorem 1 and Riemann-Roch shows that the conditions of Proposition

1 are satisfied. Similarly in the case of (c1(M)2 + c2(M)) < 0, Proposition 2

applies. This concludes the proof of Theorem 1. ���
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3. Construction of Non-Integrable Almost Complex Structures

3.1. We recall the following well-known criterion of Wu (cf. [1]), where we

denote by χ(M), τ(M) and w2(M) ∈ H2(M,Z2) the Euler characteristic,

topological index and second Stiefel-Whitney class of a four dimensional

manifold M respectively.

Proposition 3 (Wu). Let M be a four dimensional orientable manifold.

Let θ be a cohomology class in H2(M,Z) satisfying θ ≡ w2(M) (mod 2) and

θ2 = 3τ(M) + 2χ(M). Then there exists an almost complex structure C on

M with c1((M, C)) = θ.

3.2. The following result is a preparation for the proof of Theorem 2 in the

next section.

Proposition 4. Let M be a complex surface with characteristic numbers

c21(M) and c2(M). Let Mα denote the direct sum of M, α copies of S1 × S3

and also (P 1
C
× P 1

C
), representing M♯(♯α[(S

1 × S3)♯(P 1
C
× P 1

C
)]). Then

(a) Mα has the same Euler number and index as M.

(b) Mα supports a non-trivial almost complex structure for all α.

(c) Suppose α is chosen such that b1(Mα) is odd. Then an integrable complex

structure on Mα has to come from an elliptic surface.

3.3. Proof of Proposition 4

In our notation, Mα = M♯(♯α[(S
1 × S3)♯(P 1

C
× P 1

C
)]). The two cocycle

c1(M) on M induces a two cycle θ on Mα.

Recall that for a connected sum X = M1♯M2 of connected manifolds

M1 and M2, where dim(M1) = dim(M2) = n, the Betti numbers satisfy

hi(X) = hi(M1) + hi(M2) for 1 ≤ i ≤ n − 1 and h0(X) = hn(X) = 1. It

follows easily that

b1(Mα) = b1(M) + αb1(S
1 × S3) = b1(M) + α,

b2(Mα) = b2(M) + αb2(P
1
C × P 1

C) = b2(M) + 2α,

b3(Mα) = b3(M) + αb3(S
1 × S3) = b3(M) + α,
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Hence

χ(Mα) =
∑

i

(−1)ibi(Mα) =
∑

i

(−1)ibi(M) = χ(M).

On the other hand, τ(S1 × S3) = 0 as b2(S1 × S3) = 0, and τ(P 1
C
× P 1

C
) = 0

as the bilinear form on H2(P 1
C
× P 1

C
) has signature (1, 1). It follows that

τ(Mα) = τ(M). Hence (a) is proved.

Since wi(Sn) = 0 for 1 ≤ i ≤ n and n = 1, 2, 3, we know that w2(Mα) =

w2(M). Hence from the fact that c1(M) ≡ w2(M), we conclude that θ ≡

w2(Mα) (mod 2). From Proposition 3, there exists an almost complex struc-

ture on Mα with c1(Mα) = θ. This concludes the proof of parts (b).

Consider now part (c). Assume that C is an almost complex structure

on Mα. For simplicity, we write Mα = Mα−1♯(S
1 × S3♯P 1

C
× P 1

C
). Let ρ :

π1(Mα) → Z be the natural homomorphism obtained projection into the π1
of the last factor (S1×S3)♯(P 1

C
×P 1

C
). Let Ai be the kernel the homomorphism

ρi obtained from the composition of ρ and projection map Z → piZ for

some prime ideal p of Z. There exists an infinite tower of coverings Mα,i

with π1(Mα,i) = π1(Mα,i)/ ker(ρi) associated to the homomorphism ρi as

mentioned in the Remark 2 after Theorem 1. If c21(Mα) + c2(Mα) 6= 0, since

b1(Mα) is odd, Theorem 1 and Proposition 1 imply that Mα is not integrable

unless it is an elliptic surface.

Hence we need only to consider the case that c21(Mα) + c2(Mα) = 0 in

the following discussions. In this case, we have on Mα,i,

b+(Mα,i)− b−(Mα,i) =
[Mα,i,Mα]

3
(c21(Mα)− 2c2(Mα)) = −[Mα,i,Mα]c2(Mα)

b+(Mα,i) + b−(Mα,i) = [Mα,i,Mα]c2(Mα)− 2 + 2b1(Mα,i).

It follows that b+ = b1(Mα,i)− 1 and hence

pg =
1

2
(b+ − ǫ) =

1

2
(b1(Mα,i)− 1− ǫ),

where ǫ is either 1 or 0. Since α > 5, the proportion of b1 on Mα,i coming

from homology classes in the pull-back of Mα−1 to the one from Mα is the

same as the ratio b1(Mα−1)
b1(Mα)

and is greater than 0. Hence we conclude that

b1(Mα,i) ≥
b1(Mα−1)

b1(Mα)
b1(Mα,i)
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=
b1(Mα−1)

b1(Mα)
b1(Mα)[Mα,i : Mα].

It follows that there exists a positive constant c > 0 such that pg(Mα,i) ≥

c[(Mα,i) : Mα]. Again, Theorem 1 and Proposition 1 imply that Mα is not

integrable unless M is a elliptic surface. This concludes the proof of (c). ���

4. Geography of Almost Complex Surfaces with No Integrable

Complex Structure

4.1. The purpose of this section is to give a proof of Theorem 2, which

allows us to find a fourfold equipped with an almost complex structure of

any admissible prescribed pair of Chern numbers but does not support an

integrable complex structure. Note that the Chern numbers of any almost

complex surface satisfy the Noether relation θ · θ + χ(M) ≡ 0 (mod 12).

4.2. Proof of Theorem 2

Since the argument is a bit long, we summarize our construction as fol-

lows. Given any pair of integers p, q satisfying p+q ≡ 0 (mod 12), we choose

c a positive integer such that a = 1
6(p+ q)+3c−1 and b = 1

6(5q−p)+3c−1

are positive integers. Let Ma,b,c = (♯aP
2
C
)♯(♯bP

2
C)♯(♯c(P

1
C
× R)). Here R is a

genus two algebraic curve, P
2
C is the underlying differentiable manifold of P 2

C

with opposite orientation, and pi for i = 1, 2 denotes projection into the i-th

factor of a product. We have also used the following notation. Denote byHN

the positive generator of the Neron-Severi group on a Riemann surface N . In

the case of P
2
C, we use the same notation to denote the two cycle correspond-

ing to the hyperplane line bundle on the underlying surface P 2
C
. We also use

Hp1(P 1

C
×R) and Hp2(P 1

C
×R) to denote the two cycles of the Chern classes of the

hyperplane line bundles on the first factor P 1
C
and the second factor R of the

product P 1
C
×R respectively, where we choose P 1

C
×R to be the first compo-

nent of the connected sum ♯c(P
1
C
× R). Note that similar type of manifolds

have already been utilized in Van der Ven (cf. [7], [1]). For a positive integer

α as used in Proposition 4, let Ma,b,c,α = Ma,b,c♯(♯α[(S
1 × S3))♯(P 1

C
× P 1

C
)]).

Note that Ma,b,c,α has the same Euler characteristic, index and the second

Stiefel-Whitney class as Ma,b,c. Let θ be the 2-cocycle on Ma,b,c,α induced by∑a/2
i=1[HP 2

C,2i−1

+ 3HP 2

C,2i
] +

∑b
j=1[HP

2

C,j

] + [2Hp1(P 1

C
×R) + (1− 3c)Hp2(P 1

C
×R)]

defined on Ma,b,c. Then θ2 = 3τ(Ma,b,c,α)+2χ(Ma,b,c,α) and θ ≡ w2(Ma,b,c,α)
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(mod 2). In this way, we will show that Ma,b,c,α supports an almost complex

structure with Chern numbers given by p and q according to Proposition

3, and it will not support any integrable complex structure according to

Theorem 1, Proposition 4 and their consequences.

4.3. In the following we will implement the outline above. We begin with

some computations. It is easy to see that in terms of the positive generator

of the Neron-Severi group,

c1(P
2
C) = 3HP 2

C

, c2(P
2
C) = 3HP 2

C

·HP 2

C

.

Hence

χ(P 2
C) = 3, τ(P 2

C) = 1.

Since P
2
C is just the same underlying differentiable manifold with opposite

orientation, it is clear that

χ(P
2
C) = 3, τ(P

2
C) = −1.

For P 1
C
×R, the total Chern class is given by (1 + 2HP 1

C

)(1− 2HR). Hence

c1(P
1
C ×R) = 2(HP 1

C

−HR),

c2(P
1
C ×R) = −4HP 1

C

·HR.

We know that

χ(P 1
C ×R) = −4, τ(P 1

C ×R) = 0.

Hence for M = (♯aP
2
C
)♯(♯bP

2
C)♯(♯c(P

1
C
×R)),

χ(Ma,b,c) = aχ(P 2
C) + bχ(P

2
C) + cχ(P 1

C ×R)−2(a+b+c−1)=a+b−6c+2,

τ(Ma,b,c) = aτ(P 2
C) + bτ(P

2
C) + cτ(P 1

C ×R) = a− b.

Suppose p, q are integers satisfying p + q ≡ 0 (mod 12). We claim that

there exists a Ma,b,c with χ(Ma,b,c) = q and a two cocycle θ on Ma,b,c sat-

isfying θ = w2(Ma,b,c) and θ2 = p ≡ 3τ(Ma,b,c) + 2χ(Ma,b,c), so that there

exists an almost complex structure on Ma,b,c.
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In fact, 3τ(Ma,b,c) + 2χ(Ma,b,c) = 5a− b− 12c + 4. Hence we require

p = 5a− b− 12c + 4,

q = a+ b− 6c+ 2.

This is equivalent to

a =
1

6
(p + q) + 3c− 1

b =
1

6
(5q − p) + 3c− 1.

As p+ q ≡ 0 (mod 12), we may assume that p+ q = 12k. Hence

a = 2k + 3c− 1, b = q − 2k + 3c− 1.

If c is sufficiently large, we obviously have a solution in positive integers

a, b. We choose c to be an odd positive integer and a to be an even positive

integer. Then on Ma,b,c = (♯aP
2
C
)♯(♯bP

2
C)♯(♯c(P

1
C
×R)), we choose

θ =

a/2∑

i=1

[HP 2

C,2i−1

+3HP 2

C,2i
] +

b∑

j=1

[H
P

2

C,j

] + [2Hp1(P 1

C
×R) + (1− 3c)Hp2(P 1

C
×R)].

Note that

(

a/2∑

i=1

(HP 2

C,2i−1

+ 3HP 2

C,2i
))2 = 5a

(

b∑

j=1

(H
P

2

C,j

))2 = −b

(2Hp1(P 1

C
×R) + (1− 3c)Hp2(P 1

C
×R))

2 = 4− 12c.

From our choice of a, b, c and θ, it follows that χ(Ma,b,c) = q and

θ2 = 5a− b+ 12c+ 4 = p = 3τ(Ma,b,c) + 2χ(Ma,b,c).
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Furthermore, we have

θ =

a/2∑

i=1

[HP 2

C,2i−1

+3HP 2

C,2i
]+

b∑

j=1

[H
P

2

C,j

]+[2Hp1(P 1

C
×R)+(1− 3c)Hp2(P 1

C
×R)]

≡

a/2∑

i=1

[HP 2

C,2i−1

+3HP 2

C,2i
]+

b∑

j=1

[H
P

2

C,j

] (mod 2)

≡

a/2∑

i=1

[HP 2

C,2i−1

+HP 2

C,2i
]+

b∑

j=1

[H
P

2

C,j

] (mod 2)

≡

a/2∑

i=1

[w2(P 2
C,2i−1)+w2(P 2

C,2i)]+
b∑

j=1

[w2(P
2
C,j)]+

b∑

j=1

w2(PC,j×Rj) (mod 2),

where we use the fact (1− 3c) is even from our choice of c, and the fact that

w2(PC,j ×Rj) ≡ 0 (mod 2).

Hence we manage to construct θ on an appropriateMa,b,c such that θ sat-

isfies the criterion of Wu. Consider now the four-foldMa,b,c,α = Ma,b,c♯(♯α[(S
1

×S3)♯(P 1
C
×P 1

C
)]). As argued in Proposition 4, Ma,b,c,α satisfies the criterion

of Wu in Proposition 3.

4.4. We are going to show that for appropriate choice of α, Ma,b,c,α supports

an almost complex structure, but does not support any integrable almost

complex structure.

First of all, choose α such that b1(Ma,b,c,α) is odd. Then there exists

a non-trivial tower of coverings as in Theorem 1 and hence the algebraic

dimension a(Ma,b,c,α) of Ma,b,c,α is either 1 or 2. From Proposition 1, we

know that a(Ma,b,c,α) = 2 implies that Ma,b,c,α is projective algebraic, con-

tradicting the fact that b1(Ma,b,c,α) is odd from our choice of the parameters.

Hence we are left with the case that a(Ma,b,c,α) = 1. As in Proposition 4,

Ma,b,c,α is then an elliptic surface. Consulting Table 10 in Chapter VI of [1],

we conclude that unless b1(Ma,b,c,α) 6 4, Ma,b,c,α has to be a minimal proper

elliptic surface. Choose constants α > 7. We know that b1(Ma,b,c,α) > 7 and

hence Ma,b,c,α is a minimal proper elliptic surface. Hence there is an elliptic

fibration p : Ma,b,c,α → C. In this case, we conclude that

π1(F )
β
→ π1(Ma,b,c,α)

γ
→ π1,orb(C) → 0.



282 SAI-KEE YEUNG [June

Here F denotes a generic fiber of p, and π1,orb(C) denotes the orbifold

fundamental group of C. Note that C has orbifold structure near the points

corresponding to the singular fibers, cf. Theorem 2.9 in [2].

Since α > 7 and F is an elliptic curve, we conclude from the above exact

sequence that b1(C) > α− 2 > 5. Hence genus g(C) > 3. Note however from

construction that π1(Ma,b,c,α) is the free product of c copies of π1(R), and α

copies of Z.

Let R1, . . . , Rc be the copies of R in the c copies of P 1
C
× R in the

definition of Ma,b,c,α. Recall that c > 2. We claim that γ(π1(Ri)) = 0 for at

least one index i. Assume on the contrary that γ(π1(Ri)) 6= 0 for all i. Then

there exists a non-trivial smooth mapping from the Riemann surface Ri of

genus 2 to another Riemann surface C of genus g(C) > 3. The mapping can

be deformed to a non-trivial harmonic map fi from the classical result of

Eells and Sampson [3] with respect to the Poincaré metrics. There are two

cases to consider, rankRfi = 1 or 2.

If rankRfi = 1, it is known that the image of fi is simply a geodesic

curve γ in C from a result of Sampson [8]. From the exact sequence of

fundamental groups above, as the genus of Ri is 2, it follows that the kernel

of γ|P 1

C
×Ri

must be accounted for from γ(π1(F )). This however is possible

only for one of the i’s, since F is a connected elliptic curve.

Hence as c > 2, there exists at least one i with rankRfi > 2. For such

an i, the absolute of the degree di of fi is at least 1. From the result of

Eells-Wood [EW], as

χ(Ri) + |di| · |χ(C)| > 0,

we conclude that fi is either holomorphic or anti-holomorphic. This however

contradicts the usual Hurwitz Formula. Note that the non-existence of the

mapping in the case of non-zero degree also follows from the classical result

of Kneser [5]. The claim is proved.

It follows from the claim that for some i = 1, . . . , c, π1(Ri) has to come

from β(π1(F )) in the above exact sequence of fundamental groups. However

this contradicts the fact that F is an elliptic curve, which implies that π1(Ri)

cannot be contained in β(π1(F )). Note that β(π1(F )) can only take the value

of Z,Z2 or the trivial group.



2013] TOWER AND COMPLEX STRUCTURES 283

We conclude that by choosing α > 7 and c sufficiently large and a, b as

described earlier in 4.3, the surface Ma,b,c,α cannot support any integrable

almost complex structure. ���
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