
Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 8 (2013), No. 3, pp. 351-358

∂-NEUMANN AND RELATED QUESTIONS

Peter C. Greiner

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada.

E-mail: greiner@math.toronto.edu

Abstract

I shall discuss some of the reasons for the study of the ∂-Neumann problem and spec-

ulate about its nonelliptic analogue the so called ∂b-Neumann problem, plus the possibility

of a nonelliptic index. The talk will point to the necessity of understanding CR-geometry

more precisely than is understood at present.

1. Given a (0,1)-form

f = f1dz1 + · · ·+ fn+1dzn+1 (1)

find a function u such that

f = ∂u =
∂u

∂z1
dz1 + · · ·+ ∂u

∂zn+1
dzn+1. (2)

Here zj = xj+ixj+n+1, ∂/∂zj = (1/2)(∂/∂xj−i∂/∂xj+n+1), j = 1, 2, . . . , n+

1. Since second derivatives commute, one has the following compatibility

conditions on f :

∂fj
∂zk

=
∂fk
∂zj

(3)

which one writes in the following form

∂f =
∑

j<k

(∂fk
∂zj

− ∂fj
∂zk

)
dzj ∧ dzk = 0; (4)
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in words,

“f is a ∂-closed form.”

According to Dolbeault local solutions u exist.

We are interested in global solutions in a bounded domain. The ∂-

operator has a nullspace when acting on functions, namely all holomorphic

functions. If f is square integrable it is natural to look for a square integrable

u with minimal L2-norm, that is for a u which is orthogonal to the nullspace

of ∂ which is the space of holomorphic functions. This is the canonical

solution. To find it, set

Λ(0,0)
∂−→
←−
θ

Λ(0,1)
∂−→
←−
θ

Λ(0,2) · · · , θ = ∂
∗
; (5)

∂ is an exterior derivative and θ is a contraction. In view of Dolbeault’s

Lemma,

θ + ∂ : Λ(0,1) −→ Λ(0,0) ⊕ Λ(0,2) (6)

is locally 1-1, hence so is

� = (θ + ∂)∗(θ + ∂) = ∂θ + θ∂ : Λ(0,1) −→ Λ(0,1). (7)

In particular, �v = f and ∂f = 0 imply that θ∂f = 0 and then u = θv is

the canonical solution of ∂u = f . According to (7) one needs

v ∈ Dom(θ), ∂v ∈ Dom(θ). (8)

Integrating by parts these requirements may be transferred to the boundary

and yield the ∂-Neumann boundary conditions; (8) characterizes the space

of functions on which � is selfadjoint. In our terminology � = −△, where

△ is the Laplace-Beltrami operator in the induced metric, so � is elliptic,

and its nullspace may be identified with the boundary values of its harmonic

forms via the Poisson kernel. Let Ω denote a bounded domain and let r

represent the geodesic distance of its points from the boundary bΩ. Let

1√
2

∂

∂r
+ i

1√
2
T, Z1, . . . ,Zn. (9)
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denote an orthonormal basis of T (1,0)Ω in some neightbourhood of the bound-

ary. The ∂-Neumann boundary operator applied to the Poisson kernel yields

�+ = iT +
√

△b : C
∞(bΩ) → C∞(bΩ), (10)

where△b represents the Laplace-Beltrami operator on bΩ. Now △b = −�b+

T 2 with

�b =
1

2

n∑

j=1

(ZjZ
∗
j + ZjZ

∗
j )In + first order. (11)

�+ is not elliptic. Indeed, when σ(�b) = 0 one has σ(△b) = −σ(T )2, so

σ(�+) = iσ(T ) + i|σ(T )| (12)

vanishes on the half line σ(�b) = 0, σ(T ) < 0. Still, with �− = iT − √△b

one has

�
−1
+ = �

−1
b �−, (13)

and �
−1
b has been constructed when bΩ is strongly pseudoconvex; (rzjzk) > 0

on tangential holomorphic vectorfields. Now the formula for �
−1
+ leads to

the explicit ∂-Neumann kernel.

Remark. A sum of squares of vectorfields is invertible if the vectorfields

are bracket generating. Similarly, �b, which is a system, is invertible when

Kohn’s nonvanishing ideal sheaf condition holds.

2. �b of (11) is not an elliptic operator. It is selfadjoint on a bounded

domain M if Dom(�b) is given by the ∂b-boundary conditions; again, these

are found by integration by parts. The question of existence of solutions to

this problem is the ∂b-Neumann problem; it played a role in the proof of Ku-

ranishi’s imbedding theorem. Since �b is not elliptic even the existence of the

Poisson kernel is a problem. I shall restrict my attention to the Heisenberg

group Hn, which is a prototype for strongly pseudoconvex CR-structures,

and suggest two possible approaches to finding the ∂b-Neumann kernel. The

Heisenberg group Hn is Cn × R with the underlying geometry induced by

the vectorfields

Zj =
∂

∂zj
+ izj

∂

∂y
, j = 1, . . . , n. (14)
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(i) On H1 let M denote the unit Korányi ball, |z|4 + y2 ≤ 1. Set

y + i|z|2 = ρ2eiϕ. Following tradition one searches for spherical harmonics,

i.e. for the boundary restriction of Heisenberg homogeneous polynomials in

the nullspace of �b; the Heisenberg dilation is given by λ(z,y) = (λz, λ2y).

Separating variables one finds that the critical factor in these spherical har-

monics of degree m is H
(ℓ)
(m−|ℓ|)/2(e

iϕ), ℓ ∈ Z, generated by

(1− reiϕ)−γ(1− re−iϕ)−γ+ℓ =

∞∑

k=0

rkH
(ℓ)
k (eiϕ), (15)

where γ = (|ℓ|+1)/2+ℓ/2, ℓ ∈ Z such that (m−|ℓ|)/2 = 0, 1, 2, . . . ,H
(ℓ)
k (eiϕ)

are Laurent polynomials, or twisted Legendre polynomials. They are com-

plete but not orthogonal; orthogonality may suggest that �b is elliptic which

it is not. Dunkl found a sequence of functions expressed in terms of Meixner-

Pollaczek polynomials which is biorthogonal to H
(ℓ)
k (eiϕ), k = 0, 1, 2, . . ..

This yields a Poisson kernel and, in principle, the ∂b-Neumann kernel. All

this works on Hn, n ≥ 1, too.

(ii) More geometrically on Hn one has

△H =
1

2

n∑

j=1

(ZjZj + ZjZj)

=
n∑

j=1

{ ∂2

∂zj∂zj
+ |zj |2

∂2

∂y2
+

∂

i∂y

(
zj

∂

∂zj
− zj

∂

∂zj

)}
. (16)

△H is not elliptic at z = 0, but

△ε = △H + ε2
∂2

∂y2
(17)

is. △ε is selfadjoint with respect to the ε-boundary conditions. Let Bε denote

the unit ball for the Riemannian distance induced by △ε. △H = △0 is subel-

liptic and induces a subRiemannian geometry which allows more than one

geodesic between two given points, in general. There always exists a shortest

geodesic whose length represents the Carnot-Carathéodory distance between

the two points. The Carnot-Carathéodory unit ball is B0 = limε→0Bε; note

that B0 is singular. △ε is elliptic and one should find its Neumannkernel by

the method of 1, then letting ε → 0 one obtains the ∂b-Neumannkernel on
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B0. In principle we reduced the boundary problem for a nonelliptic opera-

tor to the solution of a boundary problem for an elliptic operator modulo a

limiting procedure.

3. So the construction of both the ∂-Neumann kernel and the ∂b-Neumann

kernel is reduced to inverting a �b-like operator on the boundary. Since

�
−1
b =

∫ ∞

0
e−t�bdt, (18)

we shall look for heat kernels. To discover the form of a subelliptic heat kernel

let me discuss pc = ker et△c , where △c is a subLaplacian on S2n+1; we note

that S2n+1 is a prototype of strongly pseudoconvex CR-structures, just like

Hn is, but the heat kernel on S2n+1 yields more information about subelliptic

heat kernels in general than the heat kernel on Hn. Let
√
2Z1, . . . ,

√
2Zn

denote an orthonormal basis of the subspace of holomorphic vectorfields in

C
n+1 which are tangent to S2n+1. Then

△c = −2Re
n∑

j=1

Z∗jZj. (19)

Theorem. pc is a function of t and z ·w = z1w1+ · · ·+zn+1wn+1 = cos θeiϕ

only,

pc =
e

n2

2
t

(2πt)n+1

∑

k∈Z

∫

R

e−
f(u,κ+i2kπ)

2t Vn(κ+ i2kπ, t)du, (20)

where

f(u, κ) = u2 − κ2 = u2 − (cosh−1(cos θ cosh(u+ iϕ)))2, (21)

Vn(x, t) =

n−1∑

j=0

Vn,j(x)t
j , Vn,0(x) =

( x

sinhx

)n
, . . . (22)

It is interesting to compare pc to the heat kernel ps of the Laplace-

Beltrami operator △s on S2n+1:

ps =
e

n2

2
t

(2πt)n+1/2

∑

k∈Z

e−
(γ+2kπ)2

2t Vn(iγ + i2kπ, t). (23)
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γ is the angle subtended by the arc on S2n+1 which joins the two points

in ps on a great circle, therefore |γ+2kπ|, k ∈ Z, are geodesic lengths. So are

the values of f(u, κ)1/2 at the critical points of f as a function of u. pc and

ps are global formulas. In general one finds local heat kernels where k = 0

and 0 ≤ j < ∞. When k = 0, ps has one distance while pc has many. The

most interesting fact is that the pc integrand is found in a manner completely

analogous to the construction of ps, word-for-word. This suggests that heat

kernels of second order subelliptic operators, in general, may be constructed

the same way as one normally derives heat kernels for elliptic operators.

4. The expansion of the heat kernel in powers of t also yields geomet-

ric information about the underlying manifold other than geodesic lengths,

assuming that the differential operator is in some sense induced by the un-

derlying geometry. The index of an operator L defined by

indL = dim(Null L)− dim(Null L∗), (24)

is a topological invariant of L, meaning that it is invariant under small per-

turbations of L; the Gauss-Bonnet Theorem and the Riemann Roch formula

are indices of geometrically defined differential operators. For an example

consider the quadric φε given as an intersection,

φε = {z21 + · · ·+ z2n+1 = ε2} ∩ {|z1|2 + · · ·+ |zn+1|2 ≤ 1}. (25)

φε is an n-dimensional complex analytic variety with a strongly pseudocon-

vex boundary bφε. When ε = 0, Stephen Yau calculated the ∂b-cohomology

on bφ0. The alternating sum is the index of ∂b modulo holomorphic func-

tions. The index can also be found from

indL = dimkerL∗L− dimkerLL∗ = trace(e−tL
∗L − e−tLL

∗

), (26)

where

L = ∂b ⊕ θb :
∑

q odd

⊕H̃p,q →
∑

q even

⊕H̃p,q, (27)

H̃p,q =

{
Hp,q, 0 < q ≤ n,

I − Cp,0Hp,0, q = 0;
(28)
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Cp,0 is the Cauchy-Szegö projection. Note that the boundary is a twisted

sphere so the work in 3 may be useful.

φ0 has no interior cohomology. φε, ε > 0, has interior cohomology, the

so called vanishing classes, but no ∂b-cohomology on the boundary. For

ε > 0 the interior Euler characteristic agrees with the index of ∂b on bϕ0.

Consequently this number is independent of ε ≥ 0, so it is the index of

the ∂-Neumann problem on φε. As a Riemann-Roch formula for a bounded

domain it should be derived by local heat kernel calculations. Similar results

should hold for the intersection

{z2m1
1 + · · ·+ z

2mn+1

n+1 = ε2} ∩ {|z1|2 + · · · + |zn+1|2 ≤ 1}. (29)

5. In Riemannian geometry one has control of the whole tangent space,

while working with subRiemannian geometry we control only a subspace

of the tangent space, which, of course needs to be bracket generating. A

natural question is how to find the missing directions geometrically.

On the other side of the coin, in Riemannian geometry an “origin” al-

ways has a sufficiently small neighbourhood in which every point is con-

nected to the “origin” by a unique geodesic. In subRiemannian geometry

every point has at least one geodesic connection to the “origin”, but no

matter how small the neighbourhood is it contains points which may be

joined to the “origin” by a finite number of geodesics, more than one, and

it will also contain points which have an infinite number of geodesic con-

nections to the “origin”; at least in all the examples worked out so far. In

these examples, the Heisenberg group and the geometries induced by the

Grusin operator and the subLaplacian on S2n+1, one has one missing direc-

tion and the points which can be joined to an “origin” by an infinite number

of geodesics of different lengths are parameterized by a curve through the

“origin”, the “canonical curve”. A somewhat more interesting example is

R
3 equipped with the geometry induced by the step 3 vectorfields

X =
∂

∂x
+ y2

∂

∂t
, Y =

∂

∂y
; (30)

again one direction is missing. One has

Theorem. y0 > 0. Every point P (x, y, t), y > 0, can be joined to P (0, y0, 0)

by at least one local geodesic.
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(a) The number of the geodesics is finite if and only if (i) y 6= y0, or (ii)

y = y0 but t+ y20x 6= 0.

(b) When y = y0 and t+ y20x = 0, P (x, y0, t) can be joined to P (0, y0, 0) by

a discrete infinity of local geodesics.

For the missing directions in general we make the following

Conjecture. Given m bracket generating vectorfields on an n-dimensional

manifold Mn, for every point p ∈ Mn there is an n−m dimensional canonical

submanifold Sp, p ∈ Sp, characterized by having all its points connected to p

by infinite number of geodesics.

Clearly, the tangent space of Sp at P yields canonically defined missing

directions.

Remark. I venture to suggest that in the long run heat kernels will be

derived by path integration.
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