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Abstract

The Heisenberg group H
1 is known to be conformally equivalent to the CR sphere S

3

minus a point. We use this fact, together with the knowledge of the tangential Cauchy-

Riemann operator on the compact CR manifold S
3, to solve the corresponding operator

on H
1.

1. Introduction

Let M be a strongly pseudoconvex CR manifold of real dimension 3.

Then there is a distinguished complex 1-dimensional subspace T 1,0 of the

complexified tangent space CTM of M , whose elements are called tangent

vectors of type (1, 0). Let θ be a real contact 1-form on M , so that the kernel

of θ is T 1,0⊕T 1,0. This induces a Hermitian inner product on T 1,0, given by

(Z1, Z2) := dθ(Z1, iZ2), Z1, Z2 ∈ T 1,0;

one can then define pointwise geometric quantities like the Webster scalar

curvature W on M . The pair (M,θ) is then called a pseudohermitian mani-

fold; since then θ ∧ dθ is a volume form on M , one can also define Lr spaces
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of (p, q) forms on M . If θ is a contact form satisfying the above conditions,

then v2θ also satisfies the same conditions for any real-valued smooth func-

tion v on M . The Hermitian inner product determined by v2θ is in general

different from that determined by θ, but they are conformally equivalent

because for Z1, Z2 ∈ T 1,0,

d(v2θ)(Z1, iZ2) = v2(dθ)(Z1, iZ2).

In this article, we look at two specific examples of pseudohermitian man-

ifolds, that are conformally equivalent to each other. One is the Heisenberg

group H
1, which has zero Webster scalar curvature everywhere; another is

the CR sphere S
3 minus a point, which has constant Webster scalar curva-

ture equal to 1. More precisely, the Heisenberg group H
1 is the boundary of

upper half space {Im z2 > |z1|
2} in C

2, which we identify with C× R via

C×R → H
1

[z, t] 7→ (z, t+ i|z|2).

It carries a standard contact form

θ = dt+ i(zdz − zdz),

which gives H
1 the structure of a pseudohermitian manifold. On the other

hand, the CR sphere S
3 is the boundary of unit ball {|ζ| < 1} in C

2, and it

carries a standard contact form

θ̂ = i(∂̄ − ∂)|ζ|2 = i

2
∑

j=1

(ζjdζ̄j − ζ̄jdζj).

If p is the south pole (0,−1) on S
2, one can map S

3 \ {p} to H
1 via stereo-

graphic projection:

ζ ∈ S
3 \ {p} 7→ (z, t + i|z|2) ∈ H

1

with

z =
ζ1

1 + ζ2
, t+ i|z|2 = i

1− ζ2

1 + ζ2
.
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We will always identify H
1 with S

3\{p} this way, and pull θ and any function

back from H
1 to S

3 \ {p}. Then

θ = G2θ̂,

where

G(ζ) :=
1

|1 + ζ2|
,

so (H1, θ) and (S3 \ {p}, θ̂) are conformally equivalent to each other.

One can define inner products on functions and (0, 1) forms on H
1 and

S
3. For functions f, g on H

1, we define their inner product by

〈f, g〉H1 =

∫

H1

f · g θ ∧ dθ

whenever the integral makes sense. For (0, 1) forms α, β on H
1, we define

their inner product by

〈α, β〉H1 =

∫

H1

(α, β)θ θ ∧ dθ,

where (α,α)θ is the Hermitian inner product on the dual bundle of T 1,0

induced by θ. Similarly, for functions f, g on S
3, we define their inner product

by

〈f, g〉S3 =

∫

S3

f · g θ̂ ∧ dθ̂.

For (0, 1) forms α, β on S
3, we define their inner product by

〈α, β〉S3 =

∫

S3

(α, β)θ̂ θ̂ ∧ dθ̂.

One can also define Lp spaces on both H
1 and S

3. For functions on H
1,

we define

‖f‖Lp(H1) :=

(
∫

H1

|f |pθ ∧ dθ

)1/p

.

For (0, 1) forms on H
1, we define

‖α‖Lp
(0,1)

(H1) :=

(
∫

H1

|(α,α)θ |
p/2θ ∧ dθ

)1/p

.
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Similarly, one can define Lp spaces of functions on S
3: if f̂ is a function on

S
3,

‖f̂‖Lp(S3) :=

(
∫

S3

|f̂ |pθ̂ ∧ dθ̂

)1/p

,

as well as Lp spaces of (0, 1) forms on S
3: if α̂ is a (0,1) form on S

3,

‖α̂‖Lp
(0,1)

(S3) :=

(
∫

S3

|(α̂, α̂)θ̂|
p/2θ̂ ∧ dθ̂

)1/p

.

For future reference, we mention that if f is a function on H
1, then

‖f‖Lp(H1) = ‖G4/pf‖Lp(S3).

Recall now the tangential Cauchy-Riemann operator on H
1, which sends

functions in C∞

c (H1) to smooth (0, 1) forms on H
1. If one takes the closure

of the graph of this operator under the graph norm L4 × L2, one obtains a

densely defined closed linear operator

∂b : L
4(H1) → L2

(0,1)(H
1).

The formal adjoint of this operator sends C∞

c (0, 1) forms on H
1 to smooth

functions on H
1. The closure of this formal adjoint under the graph norm

L4 × L2 is written

∂
∗

b : L
4
(0,1)(H

1) → L2(H1).

Similarly, on S
3, the tangential Cauchy-Riemann operator sends C∞ func-

tions on S
3 to smooth (0, 1) forms on S

3. If one takes the closure of the

graph of this operator under the graph norm L4 ×L2, one obtains a densely

defined closed linear operator

∂̂b : L
4(S3) → L2

(0,1)(S
3).

The formal adjoint of this operator sends C∞ (0, 1) forms on S
3 to smooth

functions on S
3. The closure of this formal adjoint under the graph norm

L4 × L2 is written

∂̂b

∗

: L4
(0,1)(S

3) → L2(S3).
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It is a well-known fact that on (S3, θ̂), one can solve ∂̂b and ∂̂b

∗

with

estimates; see e.g. Kohn-Rossi [11] for the L2 theory, and Greiner-Stein [7,

Proposition 10.9], Nagel-Stein [12, Theorem 20] for the Lp theory. We will

recall some of this in the next section. Our question is then the following:

Can one solve ∂b (or ∂
∗

b) on H
1 using this knowledge on S

3?

On the Heisenberg group, there are of course well-known integral for-

mulas, with explicit kernels, that solve for us ∂b and ∂
∗

b . On the other hand,

these formula are very special, and works only because there is a group struc-

ture on the Heisenberg group. The method of solving ∂b and ∂
∗

b we describe

below are more robust. This serves as a first step towards understanding the

∂b complex on some non-compact pseudohermitian CR manifolds of dimen-

sion 3.

More explicitly, let Z be the following vector field on H
1:

Z =
∂

∂z
− iz

∂

∂t
,

and let ω = dz be the dual (0, 1) form to Z. Then if u ∈ C∞

c (H1), we

have ∂bu = (Zu)ω. Thus solving ∂b : L
4(H1) → L2

(0,1)(H
1) amounts to the

following: one seeks conditions on a function f ∈ L2(H1), under which there

exists a function u ∈ L4(H1), and a sequence uj ∈ C∞

c (H1), such that

uj → u in L4(H1), and Zuj → f in L2(H1).

When this holds, we say that u ∈ L4(H1) is a solution to the equation

Zu = f.

Similarly, let Z
∗

be the formal adjoint of Z under the inner product in

L2(H1), i.e. Z
∗

is the differential operator satisfying

〈Zf, g〉H1 = 〈f, Z
∗

g〉H1

for all f, g ∈ C∞

c (H1). Then if u ∈ C∞

c (H1), ∂
∗

b(uω) = Z
∗

u. Thus solving

∂
∗

b : L
4(H1) → L2(H1) amounts to the following: one seeks conditions on a

One can also refer to Folland-Stein [6], Rothschild-Stein [13], and Koenig [9] for the Lp theory
in higher dimensions. In fact, a lot is known even if S3 is replaced by the boundary of a weakly
pseudoconvex domain of finite type in C2: see e.g. Kohn [10], Boas-Shaw [1], and Christ [3], [4].
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function f ∈ L2(H1), under which there exists a function u ∈ L4(H1), and a

sequence uj ∈ C∞

c (H1), such that

uj → u in L4(H1), and Z
∗

uj → f in L2(H1).

When this holds, we say that u ∈ L4(H1) is a solution to the equation

Z
∗

u = f.

In order to state our results, we need the following extensions of Z and

Z
∗

so that they become closed linear operators from L2(H1) to L4/3(H1). In

fact, Z and Z
∗

are linear maps that preserve C∞

c (H1). Thus we can take the

closure of the graphs of these operators in the graph norm L2 × L4/3, and

obtain two closed linear operators L2(H1) → L4/3(H1). What we need are

then the kernels of these closed linear operators: they are closed subspaces

of L2(H1), and for convenience they will be referred to as the kernel of Z

and the kernel of Z
∗

. In other words, u ∈ L2(H1) is in the kernel of Z, if

and only if there exists a sequence uj ∈ C∞

c (H1), such that

uj → u in L2(H1), and Zuj → 0 in L4/3(H1).

Similarly, u ∈ L2(H1) is in the kernel of Z
∗

, if and only if there exists a

sequence uj ∈ C∞

c (H1), such that

uj → u in L2(H1), and Z
∗

uj → 0 in L4/3(H1).

Our main results are then the following:

Theorem 1. For any f ∈ L2(H1) that is orthogonal to the kernel of Z
∗

in

L2(H1), there exists a solution u ∈ L4(H1) to the equation Zu = f .

Theorem 2. For any f ∈ L2(H1) that is orthogonal to the kernel of Z in

L2(H1), there exists a solution u ∈ L4(H1) to the equation Z
∗

u = f .

We will prove these theorems by reducing them to the corresponding

statements for ∂̂b : L
4(S3) → L2

(0,1)(S
3) and ∂̂b

∗

: L4
(0,1)(S

3) → L2(S3) on S
3.

The key will be two-fold:

(a) the conformal equivalence of (H1, θ) with (S3 \ {p}, θ̂) mentioned above,

where θ = G2θ̂; and
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(b) the fact that G = |h| where h = 1
1+ζ2

is a CR function on S
3 \ {p}.

We remark that on H
1, it is easy to see that Z

∗

= −Z. As a result,

Theorems 1 and 2 are equivalent to each other. But this is a feature specific

to H
1. In anticipation of a more general theory, we have therefore adopted

a more robust approach below, that does not depend on this fact.

2. The tangential Cauchy-Riemann Complex on S
3

Before we proceed, let’s first recall and clarify the definitions of the

operators ∂̂b : L
4(S3) → L2

(0,1)(S
3) and ∂̂b

∗

: L4
(0,1)(S

3) → L2(S3). Let Ẑ be

the vector field on S
3 \ {p} that satisfies

Ẑ = GZ on S
3 \ {p}, (2.1)

and ω̂ be the (0, 1) form dual to Ẑ. Then for u ∈ C∞

c (S3 \ {p}),

∂̂bu = (Ẑu)ω̂.

Furthermore, we have the following lemma:

Lemma 3. For a function u ∈ L4(S3), the following are equivalent:

(a) u is in the domain of ∂̂b : L
4(S3) → L2

(0,1)(S
3);

(b) there exists a sequence vj ∈ C∞(S3), so that

vj → u in L4(S3), and ∂̂bvj → α in L2
(0,1)(S

3)

for some α ∈ L2
(0,1)(S

3);

(c) there exists a sequence uj ∈ C∞

c (S3 \ {p}), so that

uj → u in L4(S3), and Ẑuj → f in L2(S3)

for some f ∈ L2(S3).

If all the above holds, then

∂̂bu = α = fω̂ in L2
(0,1)(S

3).
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Proof. In fact, (a) and (b) are equivalent by definition, and it is clear that

(c) implies (b). To see that (b) implies (c), note that if vj are as in (b), then

one can take uj := (1−χj)vj , where χj is a smooth function on S
3 so that it

is identically 1 in a (non-isotropic) ball of radius εj centered at p, 0 outside a

ball of radius 2εj , and ‖Ẑχj‖L∞ +‖Ẑχj‖L∞ ≤ Cε−1
j . Here we choose εj → 0

sufficiently rapidly so that ‖vj‖L4(supp χj) + ‖Ẑvj‖L2(supp χj) → 0 as j → ∞.

Then uj ∈ C∞

c (S3 \ {p}),

‖uj − u‖L4 ≤ ‖vj − u‖L4 + ‖χjvj‖L4

≤ ‖vj − u‖L4 + C‖vj‖L4(supp χj) → 0

as j → ∞, and

‖Ẑuj − f‖L2 ≤ ‖(1− χj)Ẑvj − f‖L2 + ‖(Ẑχj)vj‖L2

≤ ‖Ẑvj − f‖L2 + ‖χjẐvj‖L2 + ‖(Ẑχj)‖L4‖vj‖L4(supp χj)

≤ ‖Ẑvj − f‖L2 + C‖Ẑvj‖L2(supp χj) + C‖vj‖L4(supp χj) → 0

as j → ∞.

Now suppose (a) through (c) all holds. One can show that α = fω̂ by

testing them against a (0, 1) form that is smooth and compactly supported

in S
3 \ {p}. In fact, if gω̂ is such a form, then

〈α, gω̂〉S3 = 〈u, Ẑ
∗

g〉S3 = 〈fω̂, gω̂〉S3 ,

which shows that α=fω̂ in L2
(0,1)(S

3). They are equal to ∂̂bu by definition. ���

Next, let Ẑ
∗

be the formal adjoint of Ẑ under the inner product on

L2(S3). In other words, Ẑ
∗

is the differential operator satisfying

〈Ẑf, g〉S3 = 〈f, Ẑ
∗

g〉S3

for all f, g ∈ C∞

c (S3 \ {p}). Then for u ∈ C∞

c (S3 \ {p}),

∂̂b

∗

(uω̂) = Ẑ
∗

u.

Furthermore, by the same argument as the one proving Lemma 3, we have:
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Lemma 4. For a (0, 1) form α ∈ L4
(0,1)(S

3), the following are equivalent:

(a) α is in the domain of ∂̂b

∗

: L4
(0,1)(S

3) → L2(S3);

(b) there exists a sequence of smooth (0, 1) forms αj on S
3, so that

αj → α in L4
(0,1)(S

3), and ∂̂b

∗

αj → f in L2(S3)

for some f ∈ L2(S3);

(c) there exists a sequence of functions uj ∈ C∞

c (S3 \ {p}), so that

ujω̂ → α in L4
(0,1)(S

3), and Ẑ
∗

uj → g in L2(S3)

for some g ∈ L2(S3).

If all the above holds, then

∂̂b

∗

α = f = g in L2(S3).

We record for later use the following formula for Ẑ
∗

: if u ∈ C∞

c (S3\{p}),

then

Ẑ
∗

u = G4Z
∗

(G−3u).

This is because for any v ∈ C∞

c (S3 \ {p}), we have

〈Ẑ
∗

u, v〉S3 =〈u, Ẑv〉S3 =〈G−4u,GZv〉H1 =〈Z
∗

G−3u, v〉H1 =〈G4Z
∗

G−3u, v〉S3 .

By a similar argument, for any u ∈ C∞

c (S3 \{p}) and any integer k, we have

Ẑ
∗

u = h̄−kG4Z
∗

(h̄kG−3u) : (2.2)

The key is that h is a CR function on H
1 (i.e. Zh = 0 on H

1). Thus for any

v ∈ C∞

c (H1), we have

〈Ẑ
∗

u, v〉S3 = 〈G−4u,GZv〉H1

= 〈h̄kG−3u,Z(h−kv)〉H1

= 〈Z
∗

(h̄kG−3u), h−kv〉H1

= 〈h−kG4Z
∗

(h̄kG−3u), v〉S3 .
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To proceed further, an important fact we need is that the operators

∂̂b : L
4(S3) → L2

(0,1)(S
3) and ∂̂b

∗

: L4
(0,1)(S

3) → L2(S3) have closed ranges.

We will briefly recall the proof of this in what follows. To describe the range

of these operators, we need to introduce another closure of the tangential

Cauchy-Riemann operator, and another closure of its formal adjoint, which

we define as follows:

First, the tangential Cauchy-Riemann operator sends C∞ functions on

S
3 to smooth (0, 1) forms on S

3. We take the closure of this operator in the

graph norm L2 × L2, and obtain a closed linear operator

∂̂b : L
2(S3) → L2

(0,1)(S
3).

(Note this is a different closure than the one we took earlier!) In other words,

we say that u ∈ L2(S3) is in the domain of ∂̂b : L
2(S3) → L2

(0,1)(S
3), if and

only if there exists a sequence uj ∈ C∞(S3) such that

uj → u in L2(S3), and ∂̂buj → α in L2
(0,1)

for some α ∈ L2
(0,1)(S

3). In that case ∂̂bu = α.

Next, we let

∂̂b

∗

: L2
(0,1)(S

3) → L2(S3)

be the Hilbert space adjoint of ∂̂b : L
2(S3) → L2

(0,1)(S
3). In other words,

α ∈ L2
(0,1)(S

3) is in the domain of ∂̂b

∗

: L2
(0,1)(S

3) → L2(S3), if and only if

there exists a function f ∈ L2(S3) such that

〈α, ∂̂bu〉S3 = 〈f, u〉S3

for all u in the domain of ∂̂b : L
2(S3) → L2

(0,1)(S
3). In that case ∂̂b

∗

α = f .

Since the Hilbert space adjoint of a closed linear operator is again a closed

linear operator, we note that ∂̂b

∗

: L2
(0,1)(S

3) → L2(S3) is a closed linear

operator as well.

Since (S3, θ̂) is strongly pseudoconvex and embedded in C
2, we have:

Proposition 5. The ranges of the operators

∂̂b : L
2(S3) → L2

(0,1)(S
3) and ∂̂b

∗

: L2
(0,1)(S

3) → L2(S3)
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are closed subspaces of L2
(0,1)(S

3) and L2(S3) respectively.

Let now H and H1 be the kernels of ∂̂b : L
2(S3) → L2

(0,1)(S
3) and

∂̂b

∗

: L2
(0,1)(S

3) → L2(S3) respectively. These are closed subspaces of L2(S3)

and L2
(0,1)(S

3) respectively. Let Π̂ : L2(S3) → H and Π̂1 : L
2
(0,1)(S

3) → H1

be orthogonal projections onto these closed subspaces. They are continuous

linear operators called the Szegö projections. Now by the previous propo-

sition, there exist continuous linear operators (called the relative solution

operators)

K̂1 : L
2
(0,1)(S

3) → Dom(∂̂b : L
2(S3) → L2

(0,1)(S
3)) ⊆ L2(S3)

and

K̂ : L2(S3) → Dom(∂̂b

∗

: L2
(0,1)(S

3) → L2(S3)) ⊆ L2
(0,1)(S

3)

so that

∂̂bK̂1 = I − Π̂1, and Π̂K̂1 = 0 = K̂1Π̂1 on L2
(0,1)(S

3),

and

∂̂b

∗

K̂ = I − Π̂ and Π̂1K̂ = 0 = K̂Π̂ on L2(S3).

Furthermore, it is known that Π̂, Π̂1, K̂ and K̂1 are pseudolocal operators:

in particular, if f is a smooth function on S
3, then Π̂f and K̂f are smooth

on S
3; if α is a smooth (0, 1) form on S

3, then Π̂1α and K̂1α are smooth on

S
3.

Using this, we can prove:

Lemma 6. If α ∈ L2
(0,1)(S

3), then α is in the domain of ∂̂b

∗

: L2
(0,1)(S

3) →

L2(S3), if and only if there exists a sequence of smooth (0, 1) forms αj on

S
3, such that

αj → α in L2
(0,1)(S

3), and ∂̂b

∗

αj → g in L2(S3)

for some g ∈ L2(S3). In that case, ∂̂b

∗

α = g.

Proof. Suppose α is in the domain of ∂̂b

∗

: L2
(0,1)(S

3) → L2(S3). Let u =

∂̂b

∗

α ∈ L2(S3), and uj ∈ C∞(S3) be such that uj → u in L2(S3). Let βj be
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a sequence of smooth (0, 1) forms such that βj → α in L2
(0,1)(S

3). Then

αj := K̂uj + Π̂1βj

are smooth (0, 1) forms,

lim
L2

αj = K̂u+ Π̂1α = (I − Π̂1)α+ Π̂1α = α,

and

lim
L2

∂̂b

∗

αj = lim
L2

∂̂b

∗

K̂uj = lim
L2

(uj − Π̂uj) = u− Π̂u = ∂̂b

∗

α.

This shows half of the implication. The reverse implication follows from the

fact that ∂̂b

∗

: L2
(0,1)(S

3) → L2(S3) is a closed linear operator, as we noted

earlier. ���

We now have a nice characterization of the kernels H and H1 of the

operators ∂̂b : L
2(S3) → L2

(0,1)(S
3) and ∂̂b

∗

: L2
(0,1)(S

3) → L2(S3) respectively:

Lemma 7. (i) u ∈ L2(S3) is in H, if and only if there exists a sequence

vj ∈ C∞(S3) such that

vj → u in L2(S3), and ∂̂bvj → 0 in L2
(0,1)(S

3).

(ii) α ∈ L2(S3) is in H1, if and only if there exists a sequence of smooth

(0, 1) forms αj on S
3 such that

αj → α in L2
(0,1)(S

3), and ∂̂b

∗

αj → 0 in L2(S3).

Proof. The proof of the first part of the lemma is immediate from the

definition of ∂̂b : L
2(S3) → L2

(0,1)(S
3). The second part of the lemma follows

from Lemma 6. ���

We also have:

Lemma 8. Suppose u ∈ L2(S3) is in H. Then there exists uj ∈ C∞

c (S3\{p})

such that

uj → u in L2(S3), and Ẑuj → 0 in L4/3(S3).

It follows that h−2u ∈ L2(H1) is in the kernel of Z.
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Proof. The first statement of the lemma follows by letting uj = (1− χj)vj ,

where vj are as in part (i) of Lemma 7, and χj ∈ C∞(S3) are as in the proof

of Lemma 3, except that now εj are chosen such that ‖vj‖L2(supp χj) → 0 as

j → ∞. Note that

‖uj − u‖L2 ≤ ‖vj − u‖L2 + ‖χjvj‖L2

≤ ‖vj − u‖L2 + C‖vj‖L2(supp χj) → 0 as j → ∞,

and

‖Ẑuj‖L4/3 ≤ ‖(1− χj)Ẑvj‖L4/3 + ‖(Ẑχj)vj‖L4/3

≤ C‖∂̂bvj‖L2
(0,1)

+ ‖Ẑχj‖L4‖vj‖L2(supp χj)

≤ C‖∂̂bvj‖L2
(0,1)

+ C‖vj‖L2(supp χj) → 0 as j → ∞.

To see the second part of the lemma, note that if uj are as in the

statement of the lemma, then h−2uj ∈ C∞

c (H1),

h−2uj → h−2u in L2(H1), and Z(h−2uj) = G−1h−2Ẑuj → 0 in L4/3(H1).

(We used (2.1) in the equality in the previous line.) This is because

‖h−2uj−h−2u‖L2(H1) = ‖uj−u‖L2(S3) and ‖G−1h−2Ẑuj‖L4/3(H1) = ‖Ẑuj‖L4/3(S3).

The claim then follows. ���

Similarly, we have

Lemma 9. Suppose gω̂ ∈ L2(S3) is in H1. Then there exists gj ∈ C∞

c (S3 \

{p}) such that

gj → g in L2(S3), and Ẑ
∗

gj → 0 in L4/3(S3).

It follows that h̄G−3g is in the kernel of Z
∗

.

Proof. The proof of the lemma parallels that of Lemma 8. One only needs

to use (2.2) with k = 1 instead wherever we used (2.1). ���
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We now come back to the operators ∂̂b : L
4(S3) → L2

(0,1)(S
3) and ∂̂b

∗

:

L4
(0,1)(S

3) → L2(S3) we studied at the beginning of this section, and discuss

the solvability of these operators.

Lemma 10. Suppose α ∈ L2
(0,1)(S

3) and is orthogonal to H1 in L2
(0,1)(S

3).

Then there is a function u in the domain of ∂̂b : L
4(S3) → L2

(0,1)(S
3) such

that ∂̂bu = α. In particular, the range of ∂̂b : L
4(S3) → L2

(0,1)(S
3) is closed

in L2
(0,1)(S

3).

Proof. The key here is the Lp theory of K̂1, which shows that K̂1 extends

to a bounded linear operator from L2
(0,1)(S

3) → L4(S3). Thus if α is as in

the lemma, then u := K̂1α is in L4(S3). Furthermore, let αj be a sequence

of smooth (0, 1) forms such that αj → α in L2
(0,1)(S

3). Then vj := K̂1αj ∈

C∞(S3), vj → u in L4(S3), and ∂̂bvj = αj − Π̂1αj → α − Π̂1α = α in

L2
(0,1)(S

3). This completes the proof of the first statement in the lemma.

It then follows that the range of ∂̂b : L
4(S3) → L2

(0,1)(S
3) is the orthogonal

complement of H1 in L2
(0,1)(S

3), which is a closed subspace of L2
(0,1)(S

3). ���

Similarly, using the Lp theory of K̂ instead, we have

Lemma 11. Suppose f ∈ L2(S3) and is orthogonal to H in L2(S3). Then

there exists a (0, 1) form α in the domain of ∂̂b

∗

: L4
(0,1)(S

3) → L2(S3) such

that ∂̂b

∗

α = f . In particular, the range of ∂̂b

∗

: L4
(0,1)(S

3) → L2(S3) is closed

in L2(S3).

We then have the following corollaries:

Corollary 12. Suppose f ∈ L2(S3), and 〈f, g〉S3 = 0 for all g ∈ L2(S3) with

gω̂ ∈ H1. Then there exists û ∈ L4(S3), and a sequence ûj ∈ C∞

c (S3 \ {p}),

such that ûj → û in L4(S3), and Ẑûj → f in L2(S3).

Proof. This follows from Lemma 10 and Lemma 3. ���

Similarly, by Lemma 11 and Lemma 4, we have

Corollary 13. Suppose f ∈ L2(S3), and 〈f, g〉S3 = 0 for all g ∈ H. Then

there exists û ∈ L4(S3), and a sequence ûj ∈ C∞

c (S3 \{p}), such that ûj → û

in L4(S3), and Ẑ
∗

ûj → f in L2(S3).
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3. Proof of Theorem 1

We now proceed to prove Theorem 1. Let f be in L2(H1) and orthogonal

to the kernel of Z
∗

in L2(H1). To solve Zu = f , since Ẑ = GZ, formally it

suffices to solve

Ẑu = Gf. (3.1)

To do so one is tempted to use Corollary 12. Unfortunately this does not

work directly: while Gf is in L2(S3), in general it is not orthogonal to all g

with gω̂ ∈ H1. The key observation is the following: instead of solving (3.1),

it suffices to solve

Ẑ(hu) = hGf, (3.2)

where h is defined as at the end of Section 1. This works because Ẑh = 0

on S
3 \ {p}, as was observed earlier. Now if f ∈ L2(H1) and is orthogonal to

the kernel of Z
∗

in L2(H1), then we claim the following:

(a) hGf ∈ L2(S3), and

(b) hGf is orthogonal to all g with gω̂ ∈ H1.

In fact,

‖hGf‖L2(S3) = ‖f‖L2(H1),

proving claim (a). To prove claim (b), we use Lemma 9: if gω̂ is in H1, then

h̄G−3g is in the kernel of Z
∗

. It follows that

〈hGf, g〉S3 = 〈f, h̄G−3g〉H1 = 0

by our assumption on f . This proves claim (b) above.

Having now proved the claims (a) and (b) above, we invoke Corollary 12

with hGf in place of f . Then we obtain some û ∈ L4(S3), and a sequence

ûj ∈ C∞

c (S3 \ {p}), with ûj → û in L4(S3), and Ẑûj → hGf in L2(S3).

Letting

u := h−1û and uj := h−1ûj ,

we have u ∈ L4(H1), uj ∈ C∞

c (H1), uj → u in L4(H1), and

Zuj = h−1G−1Ẑûj → f
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in L2(H1). (We used (2.1) in the identity on the previous line.) Thus u ∈

L4(H1) is a solution to Zu = f. This proves our current Theorem.

4. Proof of Theorem 2

The proof of Theorem 2 parallels that of Theorem 1. Let f ∈ L2(H1)

be orthogonal to the kernel of Z in L2(H1). Motivated by (2.2) with k = 2,

one rewrites the equation Z
∗

u = f as

Ẑ
∗

(h̄−2G3u) = h̄−2G4f. (4.1)

(It does not work if we had used (2.2) with k = 0!) Now it is easy to check

that h̄−2G4f is in L2(S3), and orthogonal to H in L2(S3). In fact,

‖h̄−2G4f‖L2(S3) = ‖f‖L2(H1),

and if H is in H, then Lemma 9 shows that h−2H is in the kernel of Z. Thus

〈h̄−2G4f,H〉S3 = 〈f, h−2H〉H1 = 0

by our assumption on f . Thus one can invoke Corollary 13, and obtain some

û ∈ L4(S3), together with a sequence ûj ∈ C∞

c (S3 \ {p}), such that

ûj → û in L4(S3), and Ẑ
∗

ûj → h̄−2G4f in L2(S3).

Letting

u := h̄2G−3û and uj := h̄2G−3ûj ,

we have u ∈ L4(H1), uj ∈ C∞

c (H1), uj → u in L4(H1), and

Z
∗

uj = h̄2G−4Ẑ
∗

ûj → f

in L2(H1) as desired. (We used (2.2) with k = 2 in the identity on the

previous line.) Thus u ∈ L4(H1) is a solution to the equation Z
∗

u = f . This

completes the proof. ���
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