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Abstract

We give new examples of linear differential operators of order k = 2m+1 (any given

odd integer) that are invariant under the isometries of Rn and satisfy so-called L1-duality

estimates and div/curl inequalities.

1. Introduction

The purpose of this note is to exhibit (elementary) examples of kth-

order linear differential operators {S
(k)

}
k
acting on R

n that can be regarded

as higher order analogues of the exterior derivative complex

d : C∞,c
q (Rn) → C∞,c

q+1(R
n), 0 ≤ q ≤ n

(Here C∞,c
q (Rn) and C∞,c

q+1(R
n) stand for the q-forms and (q+1)-forms on R

n

whose coefficients are smooth and compactly supported.) More precisely we

require that, for each k, S
(k)

map q-forms to (q+1)-forms and S
(k)

◦S
(k)

= 0;

that the Hodge Laplacian for S
(k)

, namely the operator S
(k)

S∗
(k)

+ S∗
(k)

S
(k)
,

be elliptic, and that the first-order operator in this family be the exterior

derivative (that is, S1 = d). We also require that S
(k)

and S∗
(k)

have non-trivial

invariance properties and satisfy so-called L1-duality estimates as well as div-

curl inequalities (more on these below). While various operators satisfying

one or more of these conditions were recently constructed for any order
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k = 1, 2, 3, . . ., see [6], [12] and [26]-[28], those operators fail to be invariant

under pullback by the rotations of Rn as soon as k ≥ 2. By contrast, here

we define linear differential operators S
(k)

of odd order

k = 2m+ 1, m = 0, 1, 2, . . . ,

that have the same invariance properties as the codifferential d∗ (the L2-

adjoint of exterior derivative) as soon as k ≥ 3 (i.e. m ≥ 1); that is

S
(k)

◦ ψ∗ = ψ∗ ◦ S
(k)

and S∗
(k)

◦ ψ∗ = ψ∗ ◦ S∗
(k)

for any isometry ψ : Rn → R
n (as customary, ψ∗ denotes the pullback of

ψ acting on q-forms). While such invariance is non-trivial, it is far weaker

than the invariance of d, which indeed is what should be expected of any

linear differential operator of order greater than 1, see [19, Note 4] and [23].

Specifically, given m = 0, 1, 2, 3, . . ., we define

S
(2m+1)

:= d (d∗d)m and, consequently, S∗
(2m+1)

= (d∗d)md∗ (1)

It is clear that S(1) = d and, more generally, that S
(2m+1)

takes q-forms to

(q + 1)-forms and S
(2m+1)

◦ S
(2m+1)

= 0. It is also clear that the Hodge

Laplacian for S
(2m+1)

is

�(2m+1) = �2m+1 = � ◦� ◦ · · · ◦�

where the composition above is performed (2m+ 1)-many times and

� = dd∗ + d∗d

is the Hodge Laplacian for the exterior derivative, so in particular �(2m+1)

is elliptic because it is the composition of elliptic operators [30].

Note, however, that

d ◦ S
(2m+1)

= 0 and d∗ ◦ S∗
(2m+1)

= 0

see (1), and so the natural compatibility conditions for the data of the Hodge

system for S
(2m+1)

and S∗
(2m+1)

are the same as for the system for d and d∗.

As a consequence, the L1-duality inequalities that are relevant to the Hodge
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system for S
(2m+1)

and S∗
(2m+1)

are the same as in [13, page 61] and [24],

namely

Proposition 1.1 ([13]). There is C = C(n) such that for any 0 ≤ q ≤ n−2

and for any f ∈ C∞,c
q+1(R

n)

df = 0 ⇒ |〈f, h〉| ≤ C‖f‖L1
q+1(R

n)‖∇h‖Ln
q+1(R

n) (2)

for any h ∈ L∞
q+1(R

n) such that ∇h ∈ Ln
q+1(R

n).

There is C = C(n) such that for any 2 ≤ q ≤ n and for any g ∈

C∞,c
q−1(R

n)

d∗g = 0 ⇒ |〈g, h〉| ≤ C‖g‖L1
q−1(R

n)‖∇h‖Ln
q−1(R

n) (3)

for any h ∈ L∞
q−1(R

n) such that ∇h ∈ Ln
q−1(R

n).

Here Lp
q±1(R

n) denote the spaces of (q±1)-forms whose coefficients are in

the Lebesgue class Lp(Rn), and 〈·, ·〉 denotes the inner product in L2
q±1(R

n):

〈f, h〉 =

∫

Rn

f ∧ ∗h

where ∗ denotes the Hodge-star operator for Rn.

We take this opportunity to point out that these inequalities can be

restated in the seemingly more invariant, in fact equivalent, fashion (see also

[6, Theorem 1′′])

Proposition 1.2. There is C = C(n) such that for any 0 ≤ q ≤ n− 2 and

for any f ∈ C∞,c
q+1(R

n)

df = 0 ⇒ |〈f, h〉| ≤ C‖f‖L1
q+1(R

n)‖d
∗h‖Ln

q (R
n) (4)

for any h ∈ L∞
q+1(R

n) such that d∗h ∈ Ln
q (R

n).

There is C = C(n) such that for any 2 ≤ q ≤ n and for any g ∈

C∞,c
q−1(R

n)

d∗g = 0 ⇒ |〈g, h〉| ≤ C‖g‖L1
q−1(R

n)‖dh‖Ln
q (R

n) (5)

for any h ∈ L∞
q−1(R

n) such that dh ∈ Ln
q (R

n).
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We show below that this result is equivalent to each of the following

div/curl-type inequalities (one for any choice of m = 0, 1, 2, . . .) which are

proved with the methods of [13]:

Theorem 1.3. Fix 0 ≤ q ≤ n and let f ∈ L1
q+1(R

n) with df = 0, and

g ∈ L1
q−1(R

n) with d∗g = 0 be given. Then, for any m = 0, 1, 2, 3, . . ., the

(unique) q-form v(m) that solves the system

{ S
(2m+1)

v(m) = f

S∗
(2m+1)

v(m) = g
(6)

belongs to the Sobolev space W 2m,r
q (Rn) with r = n/(n − 1) whenever q is

neither 1 (unless g = 0) nor n− 1 (unless f = 0), and we have

‖v(m)‖W 2m,r
q (Rn)

≤ C
(
‖f‖L1

q+1(R
n) + ‖g‖L1

q−1(R
n)

)
. (7)

Here W 2m,r
q (Rn) denotes the space of q-forms whose coefficients belong

to the Sobolev space W 2m,r(Rn) of functions that are 2m-many times dif-

ferentiable in the sense of distributions and whose derivatives of any order

order α (0 ≤ |α| ≤ 2m) are in the Lebesgue class Lr(Rn).

Proposition 1.4. With same hypotheses as Theorem 1.3, if q = 1 and

g 6= 0 a substitute of (7) holds with ‖g‖L1(Rn) replaced by ‖g‖H1(Rn), where

H1(Rn) is the real Hardy space. If q = n − 1 and f 6= 0, then (7) holds

with ‖f‖H1
n(R

n) in place of ‖f‖L1
n(R

n), where H
1
n(R

n) is the space of n-forms

whose coefficients are in H1(Rn).

In the case when m = 0, Theorem 1.3 and Proposition 1.4 were proved

in [13], as in such case we have S(1) = d and W 0,r
q (Rn) = Lr

q(R
n), and so

Theorem 1.3 and Proposition 1.4 can be viewed as a generalization (actually,

as we will see, a consequence) of those earlier results.

We remark in closing that one could also consider the operators

S(2m) := (dd∗)m and S̃(2m) := (d∗d)m

but these fail to map q-forms to (q + 1)-forms and do not form a complex

and as such are not pertinent to this note.
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2. Proofs

We begin by recalling the elliptic estimates for �s = � ◦ · · · ◦�, see [8]

and e.g., [30], [20].

Theorem 2.1. Given any s ∈ Z
+, we have that

�s : C∞,c
q (Rn) → C∞,c

q (Rn)

is invertible, and

‖(�s)−1 u‖W 2s,r
q (Rn) . ‖u‖Lr

q(R
n) (8)

for any 1 < r <∞.

Proof of Theorem 1.3. The casem = 0 was proved in [13] and here we will

show that the estimates in the case whenm ∈ Z
+ follow from the inequalities

for m = 0. Without loss of generality we may assume: f ∈ C∞,c
q+1(R

n)

and g ∈ C∞,c
q−1(R

n), so that each of d∗f and dg has smooth and compactly

supported coefficients.

Applying the codifferential d∗ to the first equation in (6) and the exterior

derivative d to the second equation, and then adding the two equations, see

(1), we find that

�m+1v(m) = d∗f + dg (9)

Comparing v(m) with the solution u of the Hodge system for d and d∗ with

same data as (6), namely
{
du = f

d∗ u = g
(10)

we find

�mv(m) = u

and so the elliptic estimate (8) (with s := m) grants

‖v(m)‖W 2m,r
q (Rn)

. ‖u‖Lr
q(R

n) (11)
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for any 1 < r < ∞. On the other hand, by [13] we have that u ∈ Lr
q(R

n)

with r := n/(n− 1) and

‖u‖Lr
q(R

n) ≤ C(n)
(
‖f‖L1

q+1(R
n) + ‖g‖L1

q−1(R
n)

)
. (12)

The desired conclusion (7) now follows by combining (11) and (12). ���

Proof of Proposition 1.4. The casem = 0 was proved in [13] and here we

will again only consider m ∈ Z
+. As before, we may assume: f ∈ C∞,c

q+1(R
n)

and g ∈ C∞,c
q−1(R

n). Now (11) holds as before, and if q = 1 and g 6= 0 it

was proved in [13] that a substitute of (12) holds with ‖g‖L1(Rn) replaced

by ‖g‖H1(Rn), so the proof of Proposition 1.4 in the case q = 1 follows by

combining (11) and the H1-substitute for (12). (The case q = n − 1 and

f 6= 0 is proved in a similar fashion.) ���

Next we show that Theorem 1.3 (for any choice of m = 0, 1, 2, . . .) is

equivalent to Proposition 1.2.

Theorem 1.3 ⇒ Proposition 1.2. To prove (4), it again suffices to consider

the case when f and h have smooth and compactly supported coefficients;

given f as in (4) we consider the solution v(m) (for m fixed arbitrarily) of

the system (6) with g := 0, namely

{
d (d∗d)m v(m) = f

(d∗d)md v(m) = 0

see (1), so that

〈f, h〉 = 〈d (d∗d)m v(m), h〉

Integrating by parts the right-hand side of this identity we obtain

〈f, h〉 = 〈v(m), (d
∗d)md∗h〉

Hölder inequality for W
2m,n/(n−1)
q (Rn) and its conjugate spaceW−2m,n

q (Rn)

now grants

|〈f, h〉| ≤ ‖v(m)‖W 2m,n/(n−1)
q (Rn)

‖(d∗d)md∗h‖
W−2m, n

q (Rn)
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and by Theorem 1.3 it thus follows that

|〈f, h〉| ≤ ‖f‖L1
q+1(R

n)‖(d
∗d)md∗h‖

W−2m, n
q (Rn)

On the other hand, we have

‖(d∗d)md∗h‖W−2m, n
q (Rn) = sup

‖ζ‖
W

2m, n/(n−1)
q

≤1

|〈(d∗d)md∗h, ζ〉|

Integrating the latter by parts 2m-many times and applying Hölder inequal-

ity for Ln
q (R

n) and its dual space L
n/(n−1)
q (Rn) we find

|〈(d∗d)md∗h, ζ〉| ≤ ‖d∗h‖Ln
q
‖(d∗d)mζ‖

L
n/(n−1)
q

but

‖(d∗d)mζ‖
L
n/(n−1)
q

≤ ‖ζ‖
W

2m, n/(n−1)
q

which concludes the proof of (4). To prove (5) it suffices to apply (4) to

f := ∗h ∈ C∞,c
q̃+1(R

n) with q̃ := n − q (recall that d∗ ≈ ∗d∗ and that ∗ :

L1
q(R

n) → L1
n−q(R

n) is an isometry). ���

Proposition 1.2 ⇒ Theorem 1.3 for any m = 0, 1, 2, . . . Without loss of

generality we may assume, as before, that f ∈ C∞,c
q+1(R

n) and g ∈ C∞,c
q−1(R

n).

Fix m ∈ {0, 1, 2, 3, . . .} arbitrarily and write

v(m) = X(m) + Y(m)

where {
d(d∗d)mX(m) = f

(d∗d)md∗X(m) = 0
(13)

and {
d(d∗d)mY(m) = 0

(d∗d)md∗ Y(m) = g
(14)

see (1). We claim that

‖X(m)‖W 2m,n/(n−1)
q

≤ C‖f‖L1
q+1
, (15)
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and

‖Y(m)‖W 2m,n/(n−1)
q

≤ C‖g‖L1
q−1

(16)

Note that if Y(m) solves (14) then X(m) := ∗Y(m) solves (13) with f := ∗g ∈

C∞,c
q̃+1(R

n) and q̃ := n− q, and so it suffices to prove (15) for f and X(m) as

in (13). (Note that the proof of (15) is non-trivial only for q 6= n, and the

hypotheses of Theorem 1.3 require q 6= n− 1, so all together we may assume

0 ≤ q ≤ n− 2.) By duality, proving (15) is equivalent to showing

∣∣〈DβX(m), ϕ〉
∣∣ ≤ C‖f‖L1

q+1
‖ϕ‖Ln

q
(17)

for any ϕ ∈ C∞,c
q (Rn) and for any multi-index β of length s (that is, β =

(β1, . . . , βn) ∈ N
n, β1 + · · · + βn = s) and for any 0 ≤ s ≤ 2m, where we

have set

DβX(m) :=
∑

|I|=q

(
∂sX(m)I

∂xβ

)
dxI .

To this end, write ϕ = �m+1Φ for some Φ ∈ C∞,c
q (Rn), see Theorem 2.1;

then
∣∣〈DβX(m), ϕ〉

∣∣ =
∣∣〈DβX(m),�

m+1Φ〉
∣∣

Integrating the right-hand side of this identity by parts we find

∣∣〈DβX(m), ϕ〉
∣∣ =

∣∣〈�m+1X(m),D
βΦ〉

∣∣

But �m+1X(m) = d∗f , see (13) and so

∣∣〈DβX(m), ϕ〉
∣∣ =

∣∣〈d∗f,DβΦ〉
∣∣ =

∣∣〈f, dDβΦ〉
∣∣.

Applying Proposition 1.2 to h := dDβΦ ∈ C∞,c
q+1(R

n) we conclude

∣∣〈DβX(m), ϕ〉
∣∣ ≤ C(n)‖f‖L1

q+1
‖d∗dDβΦ‖Ln

q
≤ C(n)‖f‖L1

q+1
‖Φ‖

W
2(m+1),n
q

On the other hand, since we had chosen Φ = (�m+1)−1ϕ, Theorem 2.1 grants

‖Φ‖
W

2(m+1),n
q

. ‖ϕ‖Ln
q

which combines with the previous estimates to give the desired inequality.���
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It should by now be clear that Propositions 1.1 and 1.2 are equivalent

to one another: on the one hand, it is obvious that Proposition 1.2 ⇒

Proposition 1.1 (because ∇h ∈ Ln
q±1 ⇒ dh ∈ Ln

(q+1)±1 and d∗h ∈ Ln
(q−1)±1

and, moreover, ‖dh‖, ‖d∗h‖ ≤ ‖∇h‖). On the other hand, it was proved in

[13, page 61] that Proposition 1.1 ⇒ Theorem 1.3 in the case m = 0 which

in turn, as we have just seen, gives Theorem 1.3 for arbitrary m as well as

Proposition 1.2.
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