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Abstract

We report some recent progress on the study of the following nonlinear Stefan problem















ut −∆u = f(u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|
2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0,

where Ω(t) ⊂ R
N (N ≥ 1) is bounded by the free boundary Γ(t), with Ω(0) = Ω0, µ

is a given positive constant. The initial function u0 is positive in Ω0 and vanishes on

∂Ω0. The class of nonlinear functions f(u) includes the standard monostable, bistable and

combustion type nonlinearities.

When µ → ∞, it can be shown that this free boundary problem converges to the

corresponding Cauchy problem







ut −∆u = f(u) for x ∈ R
N
, t > 0,

u(0, x) = u0(x) for x ∈ R
N
.

We will discuss the similarity and differences of the dynamical behavior of these two

problems by closely examining their spreading profiles, which suggest that the Stefan

condition is a stabilizing factor in the spreading process.
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1. Introduction

In this paper, we report some recent advances on the study of the fol-

lowing nonlinear Stefan problem















ut −∆u = f(u) for x ∈ Ω(t), t > 0,

u = 0 and ut = µ|∇xu|2 for x ∈ Γ(t), t > 0,

u(0, x) = u0(x) for x ∈ Ω0,

(1.1)

where Ω(t) ⊂ R
N (N ≥ 1) is bounded by the free boundary Γ(t), with Ω(0) =

Ω0, µ is a given positive constant. We assume that Ω0 is a bounded domain

that agrees with the interior of its closure Ω0, ∂Ω0 satisfies the interior ball

condition, and u0 ∈ C(Ω0) ∩H1(Ω0) is positive in Ω0 and vanishes on ∂Ω0.

For the nonlinear function f , we make the following assumptions:

(i) f(0) = 0 and f ∈ C1,α([0, δ0]) for some δ0 > 0 and α ∈ (0, 1),

(ii) f(u) is locally Lipschitz in [0,∞), f(u) ≤ 0 in [M,∞) for some M > 0.

We note that these conditions are satisfied by standard monostable, bistable

and combustion type nonlinearities. The detailed assumptions on these non-

linearities are to be recalled later, and much of the research work to be

discussed here is for these three types of nonlinearities.

The physical meaning of the free boundary condition is that, each point

x ∈ Γ(t) moves in the direction of the outer normal to Γ(t) at x, with velocity

µ|∇xu(t, x)|. In the spherically symmetric setting, where Γ(t) = {x : |x| =
h(t)} and u = u(t, r), r = |x|, this can be simplified to h′(t) = −µur(t, h(t)).

Problem (1.1) reduces to the classical one phase Stefan problem when

f(u) ≡ 0, which describes the melting of ice in contact with water, with

u(x, t) representing the temperature of the water. In the setting of (1.1), the

water region Ω(t) is surrounded by ice, and the free boundary Γ(t) = ∂Ω(t)

represents the interphase between water and ice. A nonlinear Stefan problem

of the form (1.1) may arise if water is replaced by a chemically reactive and

heat diffusive liquid surrounded by ice, with f(u) representing the reaction.

The classical one phase Stefan problem has been extensively investigated

in the past 50 years (see, for example, [6, 17, 18, 19, 23, 24, 27] and the

references therein). In contrast, the nonlinear Stefan problem is much less

studied.
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Our motivation to study (1.1) mainly arises from the wish to better

understand the spreading of a new or invasive species, where u is viewed as

the density of such a species, and the free boundary represents the spreading

front, beyond which the species cannot be observed (i.e., the species has

density 0).

Traditionally the spreading phenomenon is modeled by the Cauchy prob-

lem
{

Ut −∆U = f(U) for x ∈ R
n, t > 0,

U(0, x) = u0(x) for x ∈ R
N ,

(1.2)

where u0(x) is as in (1.1) but extended to R
N with value 0 outside Ω0. In

this case, U(x, t) > 0 for all x ∈ R
N once t > 0, but one may specify a

certain level set Γδ(t) := {x : U(t, x) = δ} as the spreading front, where

δ > 0 is small, and Ωδ(t) := {x : U(t, x) > δ} is regarded as the range

where the species can be observed. The behavior of (1.2) is much better

understood compared with (1.1). Nevertheless, significant progress has been

made recently on the understanding of (1.1), as we will see below.

The free boundary problem (1.1) and the Cauchy problem (1.2) are

related. It was shown in [8] that if uµ denotes the unique weak solution of

(1.1), with Ωµ(t) = {x : uµ(t, x) > 0}, then as µ→ ∞, Ωµ(t) → R
N (∀t > 0)

and

uµ → U in C
(1+θ)/2,1+θ
loc ((0,∞) × R

N ) (∀θ ∈ (0, 1)),

where U is the unique solution of (1.2). Thus the Cauchy problem may be

regarded as the limiting problem of (1.1) as µ→ ∞.

The two problems also exhibit fundamentally different behavior. The

first difference was observed in Du and Lin [9], where the one space dimension

case of (1.1) was considered, with logistic nonlinearity f(u) = au − bu2, a

and b are positive constants. Note that in such a case Ω(t) = (g(t), h(t))

is an interval. It was proved in [9] that in this special case problem (1.1)

exhibits a spreading-vanishing dichotomy: as t→ ∞, either Ω(t) expands to

the entire R
1 and u converges to the positive steady-state a/b (spreading),

or Ω(t) stays bounded and u → 0 (vanishing). Moreover, when spreading

happens, there exists c∗ = c∗(µ) > 0 such that

lim
t→∞

h(t)

t
= lim

t→∞

−g(t)
t

= c∗. (1.3)
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The Cauchy problem (1.2) with f(u) = au− bu2, however, behaves very
differently. It was shown in the classical work of Aronson and Weinberger

[2] that, in any space dimension N ≥ 1, there exists c0 > 0 independent of

N , such that, for any small ǫ > 0,

{

limt→∞max|x|≥(c0+ǫ)t U(t, x) = 0,

limt→∞max|x|≤(c0−ǫ)t

∣

∣U(t, x)− a
b

∣

∣ = 0.
(1.4)

The number c0 is usually called the spreading speed, and is determined by

certain traveling wave solutions associated to (1.2), which we will discuss in

more detail later. Let us point out that, in the special case described above,

c0 = 2
√
a = lim

µ→∞
c∗(µ).

Note that the above result indicates that spreading always happens for (1.2).

The behavior of c∗(µ) was examined numerically in [5], where a deduction

of the free boundary condition based on ecological considerations was also

given.

A natural question is whether the spreading-vanishing dichotomy for

(1.1) with logistic nonlinearity in one space dimension is retained in all space

dimensions. In the spherically symmetric setting, this was confirmed in Du

and Guo [7]. The extension to the non-symmetric case is highly nontriv-

ial, since in such a case, the smoothness of the free boundary is a difficult

question. A first step to address this problem was taken in Du and Guo [8],

where it was shown that (1.1) has a unique weak solution u(t, x), with the

free boundary understood as Γ(t) = ∂Ω(t), Ω(t) = {x : u(t, x) > 0}. As

mentioned above, it was also shown in [8] that as µ → ∞, the weak solu-

tion of (1.1) converges to the solution of the corresponding Cauchy problem

(1.2). Moreover, for the logistic problem, sufficient conditions for spreading

and for vanishing are obtained. However, whether there is a sharp spreading-

vanishing dichotomy as in the special cases studied in [9] and [7], was left

open, and the regularity of the free boundary and the solution was not con-

sidered in [8]. These issues are addressed in Du, Matano and Wang [12],

where the following results are obtained, under the assumptions (i) and (ii)

above for f .
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Theorem 1.1. For any fixed t > 0, Γ̃(t) := Γ(t) \ co(Ω0) is a C2,α hyper-

surface in R
N , and Γ̃ := {(t, x) : x ∈ Γ̃(t), t > 0} is a C2,α hypersurface

in R
N+1. In particular, the free boundary is always C2,α smooth if Ω0 is

convex.

Here co(Ω0) stands for the closed convex hull of Ω0.

Theorem 1.2. Ω(t) is expanding in the sense that Ω0 ⊂ Ω(t) ⊂ Ω(s) if

0 < t < s. Moreover, Ω∞ := ∪t>0Ω(t) is either the entire space R
N , or

it is a bounded set. Furthermore, when Ω∞ = R
N , for all large t, Γ(t) is

a smooth closed hypersurface in R
N , and there exists a continuous function

M(t) such that

Γ(t) ⊂ {x :M(t)− d0
2
π ≤ |x| ≤M(t)}; (1.5)

and when Ω∞ is bounded, limt→∞ ‖u(t, ·)‖L∞(Ω(t)) = 0.

Here d0 is the diameter of Ω0.

Theorem 1.3. If f(u) = au − bu2 with a, b positive constants, then there

exists µ∗ ≥ 0 such that Ω∞ = R
N if µ > µ∗, and Ω∞ is bounded if µ ∈ (0, µ∗].

Moreover, when Ω∞ = R
N , the following holds:

lim
t→∞

M(t)

t
= c∗(µ), lim

t→∞
max
|x|≤ct

∣

∣

∣
u(t, x)− a

b

∣

∣

∣
= 0 ∀c ∈ (0, k0(µ)),

where c∗(µ) is the same as in (1.3), which is a positive increasing function

of µ satisfying limµ→∞ c∗(µ) = 2
√
a.

Clearly Theorem 1.3 extends the spreading-vanishing dichotomy of [9]

to all space dimensions.

In the rest of this paper, we discuss some further issues associated with

the free boundary problem (1.1), and compare the results with that of the

Cauchy problem. In section 2, we consider the one space dimension case of

(1.1), with f(u) of monostable, bistable and combustion type. We look at the

general dynamical behavior of (1.1) and compare it with the corresponding

Cauchy problem (1.2). The material here is based on Du and Lou [10]. In

section 3, for monostable, bistable and combustion types of nonlinearities,

we examine the spreading profile of (1.1) for both the one space dimension



418 YIHONG DU [December

case and the case of high space dimensions with spherical symmetry. We

will reveal fundamentally different behavior of the free boundary problem

from the corresponding Cauchy problem. Our discussions here are based

on recent results obtained in Du, Matsuzawa and Zhou [13, 14]. We note

that Theorem 1.2 suggests that the spreading behavior of the general case

is usually well approximated by the spherically symmetric case.

While leaving the detailed discussions to sections 2 and 3 below, we

would like to briefly comment on the key differences between the Cauchy

problem (1.2) and the free boundary problem (1.1), and their implications.

In the monostable case, f ′(0) > 0, which indicates that u ≡ 0 is an unstable

steady-state of (1.2). In the bistable case f ′(0) < 0 and hence 0 is a stable

steady-state, while in the combustion case f ′(0) = 0 and 0 is weakly stable.

These differences in stability of 0 have a profound influence on the spread-

ing behavior of (1.2), especially in the way how the solution approaches the

traveling wave profile. The bistable case and the combustion case are known

to behave in a similar fashion while the monostable case behaves drasti-

cally differently. In sharp contrast, for the free boundary problem (1.1),

the spreading profiles for all three types of nonlinearities behave in a rather

synchronized manner, and can be treated by a unified approach, suggest-

ing that the Stefan condition in (1.1) can considerably weaken the effect of

the steady-state u ≡ 0, and thus plays a role of stabilizer in the spreading

process.

2. Spreading and Vanishing in One Space Dimension

In one space dimension, (1.1) reduces to the following problem



























ut = uxx + f(u), g(t) < x < h(t), t > 0,

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

g′(t) = −µux(t, g(t)), t > 0,

h′(t) = −µux(t, h(t)), t > 0,

−g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(2.1)

where x = g(t) and x = h(t) are the moving boundaries to be determined
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together with u(t, x), µ is a given positive constant. We assume that

f : [0,∞) → R
1 is C1, f(0) = 0 and f(u) ≤ 0 in [M,∞) for some M > 0.

(2.2)

Moreover, the initial function u0 belongs to X (h0) for some h0 > 0, where

X (h0) :=
{

φ ∈ C2([−h0, h0]) : φ(−h0) = φ(h0) = 0, φ′(−h0) > 0,

φ′(h0) < 0, φ(x) > 0 in (−h0, h0)
}

.

For any given h0 > 0 and u0 ∈ X (h0), by a (classical) solution of (2.1)

on the time-interval [0, T ] we mean a triple (u(t, x), g(t), h(t)) belonging to

C1,2(GT ) × C1([0, T ]) × C1([0, T ]), such that all the identities in (2.1) are

satisfied pointwisely, where

GT :=
{

(t, x) : t ∈ (0, T ], x ∈ [g(t), h(t)]
}

.

In what follows, the solution may be simply denoted by (u, g, h).

Under the assumption (2.2), our problem (2.1) always has a unique

classical solution which is defined for all time t > 0. Moreover, g′(t) < 0 and

h′(t) > 0. We will use the notations

g∞ := lim
t→∞

g(t), h∞ := lim
t→∞

h(t).

Taking advantage of the assumption that the space dimension is one, and

hence the zero number argument can be used, we have the following result

(see [10]), which gives more information than Theorem 1.2 when spreading

happens.

Theorem 2.1. Suppose that (2.2) holds and (u, g, h) is the unique solution of

(2.1). Then (g∞, h∞) is either a finite interval or (g∞, h∞) = R
1. Moreover,

if (g∞, h∞) is a finite interval, then limt→∞ u(t, x) = 0, and if (g∞, h∞) = R
1

then either limt→∞ u(t, x) is a nonnegative constant solution of

vxx + f(v) = 0, x ∈ R
1, (2.3)

or

u(t, x)− v(x+ γ(t)) → 0 as t→ ∞,
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where v is an evenly decreasing positive solution of (2.3), and γ : [0,∞) →
[−h0, h0] is a continuous function.

By an evenly decreasing function we mean a function v(x) satisfying

v(−x) = v(x) which is strictly decreasing in [0,∞).

Next we focus on three types of nonlinearities:

(fM ) monostable case, (fB) bistable case, (fC) combustion case.

In the monostable case (fM ), we assume that f is C1 and it satisfies

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, (1−u)f(u) > 0 for u > 0, u 6= 1.

Clearly f(u) = u(1− u) belongs to (fM ). This kind of nonlinearity was first

investigated by Fisher [15] and Kolmogorov-Petrovskii-Piskunov [25], and is

known as Fisher’s equation or the KPP equation, which was used to describe

the propagation of advantageous genes in a population.

In the bistable case (fB), we assume that f is C1 and it satisfies

f(0) = f(θ) = f(1) = 0, f(u)











< 0 in (0, θ),

> 0 in (θ, 1),

< 0 in (1,∞)

for some θ ∈ (0, 1), f ′(0) < 0, f ′(1) < 0 and

∫ 1

0
f(s)ds > 0.

A typical bistable f(u) is u(u−θ)(1−u) with θ ∈ (0, 12). Such a nonlinearity

appears in various applications including mathematical ecology, population

genetics and physics. See, for example, [15, 28, 1, 2, 16] and the references

therein.

In the combustion case (fC), we assume that f is C1 and it satisfies

f(u) = 0 in [0, θ], f(u) > 0 in (θ, 1), f ′(1) < 0, f(u) < 0 in [1,∞)

for some θ ∈ (0, 1), and there exists a small δ0 > 0 such that

f(u) is nondecreasing in (θ, θ + δ0).
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Such a nonlinearity appears, typically, as a model for combustion; see [31,

22, 3, 32] and the references therein. The value θ is called the “ignition

temperature”.

Clearly (2.2) is satisfied if f is of (fM ), or (fB), or (fC) type. The next

three theorems are obtained in [10], which give a good description of the long-

time behavior of the solution, and they also reveal the related but different

sharp transition behaviors between vanishing and spreading for these three

types of nonlinearities.

Theorem 2.2 (The monostable case). Assume that f is of (fM ) type, and

h0 > 0, u0 ∈ X (h0). Then either

(i) Spreading: (g∞, h∞) = R
1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R
1,

or

(ii) Vanishing: (g∞, h∞) is a finite interval with length no bigger than

π/
√

f ′(0) and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0.

Moreover, if u0 = σφ with φ ∈ X (h0), then there exists σ∗ = σ∗(h0, φ) ∈
[0,∞] such that vanishing happens when 0 < σ ≤ σ∗, and spreading happens

when σ > σ∗. In addition,

σ∗















= 0 if h0 ≥ π/(2
√

f ′(0)),

∈ (0,∞] if h0 < π/(2
√

f ′(0)),

∈ (0,∞) if h0 < π/(2
√

f ′(0)) and if f is globally Lipschitz.

Theorem 2.3 (The bistable case). Assume that f is of (fB) type, and h0 >

0, u0 ∈ X (h0). Then either

(i) Spreading: (g∞, h∞) = R
1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R
1,

or
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(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0,

or

(iii) Transition: (g∞, h∞) = R
1 and there exists a continuous function γ :

[0,∞) → [−h0, h0] such that

lim
t→∞

|u(t, x)− v∞(x+ γ(t))| = 0 locally uniformly in R
1,

where v∞ is the unique positive solution to

v′′ + f(v) = 0 (x ∈ R
1), v′(0) = 0, v(−∞) = v(+∞) = 0.

Moreover, if u0 = σφ for some φ ∈ X (h0), then there exists σ∗ = σ∗(h0, φ) ∈
(0,∞] such that vanishing happens when 0 < σ < σ∗, spreading happens

when σ > σ∗, and transition happens when σ = σ∗. In addition, there exists

ZB > 0 such that σ∗ < ∞ if h0 ≥ ZB, or if h0 < ZB and f is globally

Lipschitz.

Theorem 2.4 (The combustion case). Assume that f is of (fC) type, and

h0 > 0, u0 ∈ X (h0). Then either

(i) Spreading: (g∞, h∞) = R
1 and

lim
t→∞

u(t, x) = 1 locally uniformly in R
1,

or

(ii) Vanishing: (g∞, h∞) is a finite interval and

lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0,

or

(iii) Transition: (g∞, h∞) = R
1 and

lim
t→∞

u(t, x) = θ locally uniformly in R
1.

Moreover, if u0 = σφ for some φ ∈ X (h0), then there exists σ∗ = σ∗(h0, φ) ∈
(0,∞] such that vanishing happens when 0 < σ < σ∗, spreading happens
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when σ > σ∗, and transition happens when σ = σ∗. In addition, there exists

ZC > 0 such that σ∗ < ∞ if h0 ≥ ZC , or if h0 < ZC and f is globally

Lipschitz.

Remark 2.5. In [9], to determine whether spreading or vanishing hap-

pens for the special monostable nonlinearity, a threshold value of µ was

established, which was shown in [9] to be always finite. Here we use σ in

u0 = σφ as a varying parameter, which appears more natural especially for

the bistable and combustion cases, since in these cases the dynamical be-

havior of (2.1) is more responsive to the change of the initial function than

to the change of µ; for example, when ‖u0‖∞ ≤ θ, then vanishing always

happens regardless of the value of µ.

Theorems 2.3 and 2.4 above are parallel to Theorems 1.3 and 1.4 in [11],

where the Cauchy problem (1.2) in one space dimension was considered.

In contrast, Theorem 2.2 is very different from the Cauchy problem version,

where a “hair-trigger” phenomenon appears, namely, when f is of (fM ) type,

any nonnegative solution of (1.2) is either identically 0, or it converges to

1 as t → ∞ (see [2]). Indeed, the results below will add further support to

the observation that, though the monostable case for the Cauchy problem

behaves rather differently from the bistable and combustion cases, for the

free boundary problem (1.1), the behaviors of these three cases are more

synchronized and can often be handled by a unified approach.

We now investigate the spreading speed of (2.1) when spreading hap-

pens. It turns out that, like the Cauchy problem, there exists an asymptotic

spreading speed, which is determined by the following problem

{

qzz − cqz + f(q) = 0 for z ∈ (0,∞),

q(0) = 0, qz(0) = c/µ, q(∞) = 1, q(z) > 0 for z > 0.
(2.4)

Proposition 2.6. ([10]) Assume that f is of (fM ), or (fB), or (fC) type.

Then for each µ > 0, (2.4) has a unique solution (c, q) = (c∗, q∗).

We call q∗ a “semi-wave” with speed c∗, since the function v(t, x) =

q∗(c∗t− x) satisfies

vt = vxx + f(v) (t ∈ R
1, x < c∗t), v(t, c∗t) = 0, v(t,−∞) = 1,
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and it resembles a wave moving to the right at constant speed c∗, with front

at x = c∗t. In comparison with the normal traveling wave generated by the

solution of

Qzz − cQz + f(Q) = 0 for z ∈ R
1, Q(−∞) = 0, Q(+∞) = 1, Q(0) = 1/2,

(2.5)

the generator q∗(z) of v(t, x) here is only defined on the half line {z ≥ 0}.
Hence we call it a semi-wave. We notice that at the front x = c∗t, we have

c∗ = −µvx(t, x), namely the Stefan condition in (2.1) is satisfied by v(t, x)

at x = c∗t.

Making use of the above semi-wave, Du and Lou [10] proved the following

result.

Theorem 2.7. Assume that f is of (fM ), or (fB), or (fC) type, and spreading

happens. Let c∗ be given by Proposition 2.6. Then

lim
t→∞

h(t)

t
= lim

t→∞

−g(t)
t

= c∗,

and for any small ε > 0, there exist positive constants δ, M and T0 such

that

max
|x|≤(c∗−ε)t

|u(t, x)− 1| ≤Me−δt for all t ≥ T0. (2.6)

The asymptotic spreading speed c∗ depends on the parameter µ appear-

ing in the free boundary conditions and in (2.4). Therefore we may denote

c∗ by c∗(µ) to stress this dependence.

We now compare c∗ = c∗(µ) with the spreading speed c0 determined by

the corresponding Cauchy problem, in the sense of (1.4) with a/b replaced

by 1. (Here we understand that c0 depends on f , and c0 = 2
√
a when

f(u) = au − bu2.) It is well-known (see, e.g., [2]) that when f is of type

(fM ), the spreading speed c0 is the minimal c > 0 such that (2.5) has a

solution Q, and when f is of type (fB) or (fC), c0 is the unique c > 0 such

that (2.5) has a solution Q. Moreover, it was shown in [10] that c∗(µ) is

increasing in µ and

lim
µ→∞

c∗(µ) = c0.

This is not surprising though, since the Cauchy problem (1.2) is the limiting

problem of (1.1) as µ→ ∞.
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We may thus conclude that the asymptotic spreading speed c∗(µ) of

the free boundary problem is always smaller than the asymptotic spreading

speed c0 of the corresponding Cauchy problem, and as µ → ∞, c∗(µ) → c0.

We observe that c∗(µ) is always the unique value of c > 0 such that (2.4)

has a solution q, while c0 is the unique value of c > 0 such that (2.5) has a

solution Q when f is of type (fB) or (fC), but when f is of type (fM ), for

every c ≥ c0, (2.5) has a solution Q. This phenomenon suggests that the

instability of the steady-state u ≡ 0 in the monostable case has a significant

influence on the behavior of (2.5) which determines the spreading speed of

the Cauchy problem, but its influence is considerably weakened in (2.4) which

determines the spreading speed of the free boundary problem. This suggests

that the Stefan condition works against the influence of the instability of

u ≡ 0 in the monostable case.

3. Spreading Profile

The profound differences between the free boundary problem (1.1) and

the Cauchy problem (1.2) are further revealed when we examine their spread-

ing profiles. We first recall some known results for the Cauchy problem

(1.2). In one space dimension, a classical result of Fife and McLeod [16]

states that for f of type (fB), and for appropriate initial function u0 that

guarantees U(t, x) → 1 as t → ∞, where U is the unique solution to (1.2),

the spreading profile of U is described by

|U(t, x)−Qc0(c0t+ x+ C−)| < Ke−ωt for x < 0,

|U(t, x)−Qc0(c0t− x+ C+)| < Ke−ωt for x > 0.

Here (c0, Qc0) is the unique solution of (2.5), C± ∈ R
1, and K, ω are suitable

positive constants.

The monostable case of (1.2) behaves very differently. As mentioned

before, in such a case, there exists c0 > 0 such that (2.5) has a unique solution

Qc for every c ≥ c0, and it has no solution for c < c0 (see [2]). Moreover, there

is an essential difference on how the solution of (1.2) approaches the traveling

waves: When (fM) holds and furthermore f(u) ≤ f ′(0)u for u ∈ (0, 1) (so
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f falls to the so called “pulled” case), as t → ∞, there exist constants C±

such that

lim
t→∞

max
x≥0

∣

∣

∣

∣

U(t, x)−Qc0(c0t−
3

c0
log t− x+ C+)

∣

∣

∣

∣

= 0,

and

lim
t→∞

max
x≤0

∣

∣

∣

∣

U(t, x)−Qc0(c0t−
3

c0
log t+ x+ C−)

∣

∣

∣

∣

= 0.

The term 3
c0
log t is known as the logarithmic Bramson correction term; see

[4, 21, 26, 29] for more details.

For space dimension N ≥ 2, if u0(x) is spherically symmetric and hence

the unique solution U of (1.2) is spherically symmetric (U = U(t, |x|)), re-
sults in [20, 30] indicate that the Bramson correction term for the monostable

case (with some extra conditions on f) becomes

N + 2

c0
log t (for the pulled case of f),

or
N − 1

c0
log t (for the pushed case of f),

that is, there exists some constant C such that for the pulled case of f ,

lim
t→∞

sup
x∈RN

∣

∣

∣

∣

U(t, |x|) −Qc0

(

c0t−
N + 2

c0
log t+ C − |x|

)

∣

∣

∣

∣

= 0,

and for the pushed case of f ,

lim
t→∞

sup
x∈RN

∣

∣

∣

∣

U(t, |x|) −Qc0

(

c0t−
N − 1

c0
log t+ C − |x|

)

∣

∣

∣

∣

= 0.

In the bistable case (as well as the combustion case), the Fife-McLeod

result should be changed to (see [30])

lim
t→∞

sup
x∈RN

∣

∣

∣

∣

U(t, |x|) −Qc0

(

c0t−
N − 1

c0
log t+ L− |x|

)

∣

∣

∣

∣

= 0,

where L is some constant.

In sharp contrast, the spreading profile of the free boundary problem

is much more synchronized for all three types of nonlinearities. In [13], for
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space dimension one, the following result is obtained.

Theorem 3.1. Suppose that f is of type (fM), or (fB), or (fC) and (u, g, h)

is the unique solution to (2.1) for which spreading happens. Let (c∗, qc∗) be

given by Proposition 2.6. Then there exist Ĥ, Ĝ ∈ R such that

lim
t→∞

(h(t) − c∗t− Ĥ) = 0, lim
t→∞

h′(t) = c∗,

lim
t→∞

(g(t) + c∗t− Ĝ) = 0, lim
t→∞

g′(t) = −c∗,
and

lim
t→∞

sup
x∈[0, h(t)]

|u(t, x) − qc∗(h(t)− x)| = 0,

lim
t→∞

sup
x∈[g(t), 0]

|u(t, x) − qc∗(x− g(t))| = 0.

For higher space dimensions, [14] considered the radially symmetric case

of (1.1), which has the form



























ut = ∆u+ f(u), 0 < r < h(t), t > 0,

ur(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), 0 ≤ r ≤ h0,

(3.1)

where ∆u = urr+
N−1
r ur, r = h(t) is the moving boundary to be determined,

h0 is a positive constant. The initial function u0 is chosen from

K (h0) :=
{

ψ ∈ C2([0, h0]) : ψ
′(0) = ψ(h0) = 0, ψ(r) > 0 in [0, h0)

}

.

For any given h0 > 0 and u0 ∈ K (h0), by a classical solution of (3.1) on

the time-interval [0, T ] we mean a pair (u(t, r), h(t)) belonging to C1,2(DT )×
C1([0, T ]), such that all the identities in (3.1) are satisfied pointwisely, where

DT :=
{

(t, r) : t ∈ (0, T ], r ∈ [0, h(t)]
}

.

If f is of monostable, or bistable, or combustion type, it is known that (3.1)

has a classical solution defined for all t > 0. Simple sufficient conditions can

be easily obtained to guarantee that spreading happens for (3.1), namely

h(t) → ∞ as t→ ∞, and limt→∞ u(t, r) = 1 locally uniformly for r ∈ [0,∞).

The following result of [14] describes the spreading profile of (3.1).
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Theorem 3.2. Suppose that f is of type (fM), or (fB), or (fC) and (u, h)

is the unique solution to (3.1) for which spreading happens. Let (c∗, qc∗) be

given by Proposition 2.6. Then there exists ĥ ∈ R
1 such that

lim
t→∞

[

h(t)− c∗t− cN log t− ĥ
]

= 0, lim
t→∞

h′(t) = c∗,

and

lim
t→∞

sup
r∈[0,h(t)]

∣

∣u(t, r)− qc∗(h(t) − r)
∣

∣ = 0,

where

cN =
N − 1

ζ c∗
, ζ = 1 +

c∗

µ2
∫∞
0 q′c∗(z)

2e−c∗zdz
.

Let us note that, in sharp contrast to the Cauchy problem, for the free

boundary problem, the spreading profile for all three types of nonlinearities

can be described in a unified fashion. The distinct spreading behavior for the

monostable case of the Cauchy problem, caused by the instability of u ≡ 0,

has disappeared in the free boundary problem. This adds further support

to the view that the Stefan condition plays the role of a stabilizer in the

modeling of spreading processes.
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