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Abstract

The K-stability is closely related to the existence of canonical metrics on Kähler

manifolds and is an important issue in complex geometry. In this paper we discuss the

K-stability on toric Kähler manifolds and present an unstable example of toric Kähler

surface with eight T 2

C -fixed points.

1. Introduction

The existence of canonical metrics (Kähler-Einstein metrics, constant

scalar curvature metrics, and extremal metrics) on Kähler manifolds is a

central problem in complex geometry. A well known folklore conjecture

by Yau-Tian-Donaldson [43, 38, 14] asserts that a compact complex po-

larised manifold (M,L) admits canonical metrics in 2πc1(L) if and only if

the underlying manifold is stable in the sense of geometric invariant theory.

Among various notions of stabilities, the K-stability is the most widely stud-

ied and significant progress has been made. It is sometimes also called the
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K-polystable when stressing the nontrivial holomorphic vector fields on the

manifolds.

The concept of K-stability was first introduced by Tian [37] in the study

of Kähler-Einstein metrics. He proved the “only if” part of the conjecture

for the first Chern class (if it is positive) onM , i.e, K-stability is a necessary

condition for the existence of Kähler-Einstein metrics when the holomorphic

automorphism group is trivial. Later, Donaldson extended the K-stability

to general polarized varieties [15] and made a conjecture on the relation

between theK-stability and the existence of constant scalar curvature Kähler

metrics. Stoppa [32] generalized Tian’s result to a compact Kähler manifold

M with a constant scalar curvature Kähler metric and discrete holomorphic

automorphism group. The assumption on the holomorphic automorphism

group in these results were later removed by Berman and Mabuchi [5, 25].

Mabuchi also introduced a stronger K-stability to study the conjecture [26,

27, 28].

As a generalization of Kähler-Einstein metrics, the extremal metric in a

Kähler class on a compact complex manifoldM was introduced by E. Calabi

in 1982 [6]. To study the extremal metrics, the definition of K-stability was

extended by Szekelyhidi [33] to Kähler classes with nonzero extremal vector

fields and was called relative K-stability. Stoppa and Szekelyhidi also proved

that the existence of general extremal metrics impliesK-stability relative to a

maximal torus of automorphisms [36]. However it is still unknown whether it

is true that the existence of general extremal metrics implies the K-stability

relative to the extremal C∗-action. In the case of toric manifolds, a positive

answer was given in [45].

For the “if” part of this conjecture, a remarkable breakthrough has been

made very recently. In 2012, the existence of Kähler-Einstein metrics on a

Fano manifold is proved to be equivalent to the K-stability as originally

expected [39, 8, 9, 10]. The cases for the constant scalar curvature metrics

and the more general extremal metrics are more difficult because one has

to solve a fourth order elliptic equation. It is a challenge in differential

geometry and PDE theory. On some special manifolds, for example, the

projective bundles, the conjecture was confirmed, see [3].
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With the success on the existence of Kähler-Einstein metrics by Tian

and Chen-Donaldson-Sun, the notion of K-stability attracted more atten-

tions. On general complex manifolds, the K-stability is far from being well-

understood. However, on toric manifolds, Donaldson [14] set up a strategy

for this problem and he proved the conjecture for toric surfaces when the

Kähler class admits vanishing Futaki invariant [15, 16, 17].

In this article, we discuss some issues related to Donaldson’s strategy

on the K-stability on toric manifolds. In Section 2, we recall the definitions

of extremal metrics and K-stabilities on general polarised manifolds. Don-

aldson’s reduction of the problem is described in Section 3. Then in Section

4, we focus on the dimension 2 case and state a further simplification of

K-stability on toric surfaces. Examples of stable and unstable polytopes as-

sociated to toric Kähler surfaces are discussed in the last section. In Section

5, we present a new example of unstable polytope with 8 vertices.

We refer the readers to the expositions [18, 29, 30] for more details on

this topic.

2. Extremal metrics and K-stability

In this section, we recall the definition of extremal metrics and K-

stabilities.

2.1. Extremal metrics

Let (Mn, ωg) be an n-dimensional compact Kähler manifold, where g

is a Kähler metric and ωg is its Kähler form. In [6, 7], Calabi proposed to

study critical points of the energy functional

1

V (M)

∫

M

S(ω)2
ωn

n!

in the fixed Kähler class [ωg]. Here ω ∈ [ωg], S(ω) is the scalar curvature of

ω, and V (M) is the volume of M . A Kähler metric in [ωg] is called extremal

if it is a critical point of Calabi’s energy.

In [23], it is shown that for a given Kähler class [ωg], there exists an

extremal holomorphic vector field X, no matter whether the extremal metric
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exists. An equivalent definition of extremal metrics can be given as follows:

A Kähler metric ω in the Kähler class [ωg] is extremal iff

S(ω) = S̄ + θX(ω), (2.1)

where S̄ is the average of the scalar curvature of ωg and θX(ω) is the nor-

malized potential of X with respect to ω such that

iXω =
√
−1 ∂̄θX(ω), and

∫

M

θX(ω)
ωn

n!
= 0. (2.2)

In particular, if X vanishes (i.e., Fukaki invariant vanishes), the extremal

metric, if exists, is a constant scalar curvature metric. Furthermore, if we

choose the Kähler class to be a multiple of the first Chern class and X

vanishes, then the extremal metric, if exists, is a Kähler-Einstein metric.

2.2. Donaldson-Futaki invariant

In this subsection, we recall the definition of Donaldson-Futaki invariant.

Futaki invariant was an holomorphic invariant first constructed by Futaki

and Calabi on any Kähler manifold. It is an obstruction to the existence of

constant scalar curvature metric [7, 22]. This definition was extended to the

case of Fano normal varieties in [20]. Later, Tian defined the notion of K-

stability of a Fano manifold M using this invariant and some degenerations

of M . In [14], Donaldson defined the general Futaki invariant for polarized

scheme in an algebraic way. Here we state this definition as follows.

Let (M,L) be a polarized scheme, where L is an ample line bundle. Let

α be a C∗-action on (M,L). Then for any positive integer k, α induces a

C∗-action on the vector space Hk = H0(M,Lk). Denote by dk the dimension

of the vector space Hk and wk(α) the weight of the induced action on the

highest exterior power Hk. Then dk and wk are given by polynomials of k

as

dk = α0k
n + α1k

n−1 + · · ·,
wk(α) = β0k

n+1 + β1k
n + · · ·.
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The Donaldon-Futaki invariant of α on (M,L) is defined to be

F(α) =
α1β0 − α0β1

α0
.

Donaldson also proved that when M is a smooth manifold and the C∗-

action is induced by a holomorphic vector field X, this definition coincides

with Futaki’s original result [22]: let ω be a Kähler metric in 2πc1(L), then

F(α) = − 1

4V (M)

∫

M

X(h)
ωn

n!
, (2.3)

where h = G(S(ω)− S̄), G is the Green’s operator, S̄ is the average of scalar

curvature. Note that the integral in (2.3) is the original Futaki invariant.

Hence, when M is a manifold, Donaldson-Futaki invariant is the original

Futaki invariant multiplied by a constant.

As was pointed out, Futaki invariant is an obstruction to the existence of

constant scalar curvature metric. When Futaki invariant does not vanish, we

consider general extremal metrics. Hence, a modification of Futaki invariant

is needed.

To define the modified Donaldson-Futaki invariant, we first need an inner

product for the C∗-actions [33]. Let α, β be two C∗-actions on a polarized

scheme (M,L). Suppose that Ak and Bk are the infinitesimal generators of

the actions on H0(M,Lk), respectively. The inner product (α, β) is given by

Tr

[(

Ak −
Tr(Ak)I

dk

)(

Bk −
Tr(Bk)I

dk

)]

= (α, β)kn+2 +O(kn+1).

The modified Donaldson-Futaki invariant is given by

Fβ(α) = F(α) − (α, β)

(β, β)
F(β), (2.4)

where F(α) and F(β) are Donaldson-Futaki invariants of α and β, respec-

tively.

2.3. Notions of K-stabilities

As we said above, the definition of K-stability on Fano manifolds was
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first given by Tian [37]. Based on the algebraic definition of Futaki invariant

above, Donaldson established the K-stability of general polarized manifolds.

The definition is related to its degenerations, called test configuration [14].

A test configuration for a polarized Kähler manifold (M,L) of exponent r

consists of

(1) a scheme W with a C∗-action;

(2) a C∗-equivariant ample line bundle L on W;

(3) a C∗-equivariant flat family of schemes

π : W −→ C,

whereC∗ acts on C by multiplication. We require that the fibers (Wt,L|Wt)

are isomorphic to (M,Lr) for any t 6= 0.

Note that since π is C∗-equivariant, the C∗-action can be restricted to

the central fiber. A test configuration is called trivial if W = M × C is a

product. The following definition of K-stability was given by [14].

Definition 2.1. A polarized Kähler manifold (M,L) is K-semistable if

for any test-configuration the Futaki invariant of the induced C∗-action on

(W0,L|W0
) is nonnegative. It is called K-stable if in addition the equality

holds if and only if the test-configuration is trivial.

It has been proved that this K-stability is a necessary condition for

the existence of constant scalar curvature metrics in 2πc1(L) on a polarized

Kähler manifold (M,L) [32, 25].

In the case that Futaki invariant does not vanish, we need a modified no-

tion of K-stability to study extremal metrics. In [33], Szekelyhidi introduced

the notion of relative K-stability based on the modified Donaldson-Futaki

invariant as a generalization of the K-stability. Let us recall the definition

of relative K-stability.

Let χ be the C∗-action induced by the extremal vector field X. We

say that a test configuration is compatible with χ, if there is C∗-action χ̃ on

(W,L) such that π : W −→ C is an equivariant map with trivial C∗-action

on C and the restriction of χ̃ to (Wt,L|Wt) for nonzero t coincides with

that of χ on (M,Lr) under the isomorphism. Note that C∗-action α on W
induces C∗-action on the central fibre M0 = π−1(0) and the restricted line
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bundle L|M0
. We denote by α̃ and χ̃ the induced C∗-action of α and χ on

(M0,L|M0
), respectively.

The relative K-stability is defined as follows.

Definition 2.2 ([33]). A polarized Kähler manifold (M,L) is relatively K-

semistable if Fχ̃(·) ≤ 0 for any test-configuration compatible with χ. It is

called relatively K-stable if in addition that the equality holds if and only if

the test-configuration is trivial.

As shown in [3] by examples, the relative K-stability may not be enough

to ensure the existence of extremal metrics on general manifolds. A refine-

ment of K-stability in the sense Fχ̃(α) ≤ −C‖α‖ was introduced in [35],

where C is a positive constant, ‖ · ‖ is a norm for the C∗-action α. We will

discuss it later, in the setting of toric manifolds, which are the main objects

in this article.

Finally, we would like to point out that since Donaldson-Futaki invariant

can be defined for polarized schemes, all the above notions are also well

defined for schemes. We only stated the definitions for polarized manifolds

which is enough for this article.

3. Reduction on Toric Manifolds

A complex manifold M is called toric, if there is a complex torus Hamil-

tonian action T n
C on M and the action has a dense free orbit, identified with

T n
C = (C∗)n = (S1)n × Rn. It is known that Kähler metrics on toric mani-

folds can be characterised by functions on the associated moment polytopes

[1, 24]. With this property, Donaldson built up a program of studying the

existence of constant scalar curvature metrics and stabilities on toric mani-

folds [14]. He obtained a reduction of the problem on the moment polytopes.

Later, the reduction was extended to general extremal metrics [44]. In this

section, we will describe this reduction, for more details we refer the readers

to [1, 2, 19, 14, 24, 44].

3.1. Delzant polytopes and Abreu’s formula

Assume that (M,g) is an n-dimensional toric Kähler manifold with a

torus action T ∼= (C∗)n. Then the open dense orbit of T in M induces an
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global coordinates (w1, . . . , wn) ∈ (C∗)n. To do the reduction we use the

affine logarithmic coordinates zi = logwi = ξi +
√
−1ηi. If g is a (S1)n-

invariant Kähler metric, ωg is determined by a convex function ψ0 which

depends only on ξ1, . . . , ξn ∈ Rn in the coordinates (z1, . . . , zn), namely

ωg = 2
√
−1∂∂̄ψ0 on (C∗)n. Since the torus action T is Hamiltonian, there

exists a moment map m : M → Rn, and the image is a convex polytope in

Rn. Moreover, the moment map can be given by

(m1, . . . ,mn) =

(

∂ψ0

∂ξ1
, . . . ,

∂ψ0

∂ξn

)

,

that is the gradient of ψ0. Denote the image by P = Dψ0(R
n). Then P is

a convex polytope. This polytope is independent of the choice of the metric

g in the class [ωg]. However, P can not be an arbitrary polytope in Rn. It

satisfies several special conditions, usually called Delzant’s conditions, which

can be stated as follows [19, 1]:

(1) There are exactly n edges meeting at each vertex p.

(2) The edges meeting at the vertex p are rational, i.e., each edge is of the

form p+ tvi, 0 ≤ t <∞, vi ∈ Zn.

(3) The vectors v1, . . . , vn can be chosen to be a basis of Zn.

As a conclusion, for an n-dimensional compact toric manifold M , together

with an associated Kähler class [ωg], (M, [ωg]), there is an associated bounded

convex polytope P ⊂ Rn satisfying Delzant’s conditions. Conversely, from a

convex polytope P ⊂ Rn satisfying Delzant’s conditions, one can recover a

toric manifold and the associated Kähler class (M, [ωg]). See [19] for details.

We will characterize the (S1)n-invariant Kähler metrics under the poly-

tope coordinates. The polytope P can be represented by a set of inequalities

of the form

P = {x ∈ Rn : 〈x, ℓi〉 ≤ λi, i = 1, 2, . . . , d}, (3.1)

where ℓi is the normal to a face of P , λi is a constant, and d is the number

of faces of P . Delzant’s conditions can be equivalently stated as follows.

(1) There are exactly n faces meeting at each vertex p.

(3) The normals ℓi (i = 1, 2, . . . , d) are vectors in Zn.

(3) At any given vertex p, let ℓi1 , . . . , ℓin be the normals to the faces at p,

then det(ℓi1 , . . . , ℓin) = ±1.
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Remark 3.1. (i) Note that if det(ℓ1, . . . , ℓn) = 1 and if ℓi ∈ Zn, the ma-

trix (ℓ1, . . . , ℓn) can be reduced to the unit matrix by Gauss elimination.

Therefore (ℓ1, . . . , ℓn) is a basis of Zn.

(ii) The constants λ1, . . . , λd are not necessarily integers, and can change

continuously. When they are all integers, the associated Kähler class is

called integral [24] and from the polytope P we can recover a polarized

toric manifold.

(iii) Two different polytopes may correspond to the same toric manifold

(M, [ωg]). Indeed, all Delzant triangles correspond to the complex pro-

jective space CP2.

(iv) We also note that the set of all Kähler classes on a toric manifold M is

a finite dimensional convex cone. Moreover, a Kähler class is the first

Chern class if and only if λi = 1 for all i = 1, . . . , d (up to translation

of coordinates).

By using the Legendre transformation ξ = (Dψ0)
−1(x), one sees that

the function (Legendre dual function) defined by

u0(x) = 〈ξ,Dψ0(ξ)〉 − ψ0(ξ) = 〈ξ(x), x〉 − ψ0(ξ(x)), ∀ x ∈ P

is convex. In general, for any G0-invariant metric ω ∈ [ωg], ω = 2
√
−1∂∂̄ψ

on (C∗)n, where ψ is a convex function on Rn. Then one gets a convex

function uω(x) on P , also called symplectic potential of ω, by using the

above relation while ψ is replaced by ψ. Set

C = {u = u0 + f | u is a convex function in P, f ∈ C∞(P̄ )}.

It was shown in [1] that there is a bijection between functions in C and G0-

invariant Kähler metrics. For any function u in C, it can be explicitly given

by [24, 2]:

u =
1

2

d
∑

1

(λi − 〈ℓi, x〉)log(λi − 〈ℓi, x〉) + f, (3.2)

where f is a function smooth up to boundary of P . We usually say that

a function satisfies Guillemin’s boundary condition if it can be written in
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the form of (3.2). The scalar curvature of ω can be expressed through its

symplectic potential by [1]

S(ω) = −
n
∑

i,j=1

∂2uij

∂xi∂xj
, (3.3)

where (uij) is the inverse matrix of (uij) = ( ∂2u
∂xi∂xj

). In x-coordinates, the

potential θX(ω) of the extremal vector field X is independent of the choice of

ω in [ωg] and is an affine linear function, uniquely determined by the Futaki

invariant. We denote it by θX . Therefore, on toric manifolds, the existence

of extremal metric reduces to finding smooth solutions u to

−
n
∑

i,j=1

∂2uij

∂xi∂xj
= S̄ + θX , (3.4)

defined on a Delzant’s polytope P such that u satisfies Guillemin’s boundary

condition, which is given by (3.2). Here S̄ is the average of scalar curvature.

This equation is called Abreu’s equation.

3.2. Reduction of Futaki invariant

Let dσ0 be the Lebesgue measure on the boundary ∂P and ν be the

outer normal vector field on ∂P . Then we define a measure

dσ =
(ν, x)

λi
dσ0 =

1

|ℓi|
dσ0 (3.5)

on the face 〈ℓi, x〉 = λi of P . Futaki invariant can be simply expressed on

the polytope by [14]

Vol(P )

V (M)
F(

∂

∂zi
) = −

(
∫

∂P

xi dσ − S̄

∫

P

xi dx

)

. (3.6)

For simplicity, we denote A := S̄ + θX , and define a linear functional L by

L(u) =
∫

∂P

u dσ −
∫

P

Audx. (3.7)

A is an affine linear function in the polytope coordinates {x1, . . . , xn}, which
can be determined as follows. Let A = a0 +

∑n
1 aixi. Then a0, a1, . . . , an
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can be determined uniquely by the n+ 1-equation system

L(1) = 0, L(xi) = 0, i = 1, . . . , n. (3.8)

3.3. Reduction of K-stability

We consider the relative K-stability of a polarized toric manifold (M,L)

which corresponds to an integral polytope P in Rn (i.e. when λi in (3.1) are

integers). In [15], Donaldson induced toric degenerations as a class of special

test configuration induced by positive rational, piecewise linear functions on

P . The reduction of the stability is based on these degenerations.

Recall that a piecewise linear(PL) convex function u on P is of the form

u = max{u1, . . . , ur},

where uλ =
∑

aλi xi+c
λ, λ = 1, . . . , r, for some vectors (aλ1 , . . . , a

λ
n) ∈ Rn and

some numbers cλ ∈ R. u is called a rational piecewise linear convex function

if the coefficients aλi and numbers cλ are all rational.

For a positive rational PL convex function u on P , we choose an integer

R so that

Q = {(x, t) | x ∈ P, 0 < t < R− u(x)}

is a convex polytope in Rn+1. Without loss of generality, we may assume

that the coefficients aλi are integers and Q is an integral polytope. Otherwise

we replace u by lu and Q by lQ for some integer l, respectively. Then

the n + 1-dimensional polytope Q determines an (n + 1)-dimensional toric

variety MQ with a holomorphic line bundle L → MQ. Note that the face

Q̄ ∩ {Rn × {0}} of Q is a copy of the n-dimensional polytope P , so we have

a natural embedding i : M → MQ such that L|M = L. Decomposing the

torus action T n+1
C on MQ as T n

C ×C∗ so that T n
C ×{Id} is isomorphic to the

torus action on M , we get C∗-action α by {Id} × C∗. Hence, we define an

equivariant map

π :MQ → CP1

satisfying π−1(∞) = i(M). One can check that W = MQ\i(M) is a test

configuration for the pair (M,L), called a toric degeneration [14]. This

test configuration is compatible to the C∗-action χ induced by the extremal
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holomorphic vector field X on M . In fact, χ as a group is isomorphic to a

one parameter subgroup of T n
C × {Id}, which acts on W. Since the action is

trivial in the direction of α, the test configuration is compatible.

The modified Donaldson-Futaki invariant for a toric degeneration has an

explicit formula in polytope coordinates. Indeed, the following proposition

relates theK-stability to the positivity of functional (3.7). It was first proved

in [14] for the case Futaki invariant vanishes and then extended to general

case in [44].

Proposition 3.2. For a C∗-action α on a toric degeneration on M induced

by a positive rational PL-convex function u, we have

Fχ̃(α̃) = − 1

2V ol(P )
L(u), (3.9)

where χ is the C∗-action induced by the extremal holomorphic vector field

X, and Fχ̃(α̃) is given by (2.4).

With this proposition, we call (M,L) is relatively K-stable for toric de-

generations if its associated polytope satisfies L(u) ≥ 0 for all rational PL

convex functions u on P and if L(u) = 0 for a rational PL convex function

u, then u must be a linear function. Then on direction of the Yau-Tian-

Donaldson conjecture for toric manifolds can be proved.

Theorem 3.3 ([45]). Let (M,L) be a polarized toric manifold which admits

an extremal metric in 2πc1(L). Then (M,L) is relatively K-stable (for toric

degenerations).

The theorem is equivalent to that the linear functional L is positive for

all nontrivial rational PL convex functions when equation (3.4) is solvable.

In fact, a stronger result was proved in [45], i.e., L is positive for all nontrivial

PL convex functions. Due to this reason, we will use the positivity of L as

the definition of relative K-stability on toric manifolds and we usually omit

the words “relative” and “for toric degenerations” for simplicity.

Definition 3.4. We call a polytope P associated to a polarised toric mani-

fold (M,L) is K-stable if L(u) ≥ 0 for all PL convex functions u on P ; and

if L(u) = 0 for a PL convex function u, then u must be a linear function.
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Remark 3.5. In [14] the above K-stability was defined on polarised toric

manifolds, that is the case when the constants λi in (3.1) are integers. But

obviously this definition can be extended to general polytopes when the

constants λi in (3.1) are not integers or rational numbers.

The ‘if’ part of the Yau-Tian-Donaldson conjecture is rather difficult.

Most of the recent developments occur in dimension 2. In a series of papers,

Donaldson gave a confirmative answer to toric surfaces in the special case

that the Kähler class has vanishing Futaki invariant, by a continuity method.

Theorem 3.6 ([15, 16, 17]). A toric surface M admit a constant scalar

curvature metric in 2πc1(L) if and only if (M,L) is K-stable and Futaki

invariant vanishes.

In the case that Futaki invariant does not vanish, the problem is still

open. An important progress has been made recently by [12] when the scalar

curvature is positive.

Another interesting problem is how to verify the K-stability condition

for a given toric Kähler manifold. The following theorem gives a criterion

for the K-stability on toric manifolds.

Theorem 3.7 ([44]). Let (M,L) be an n-dimensional polarized toric mani-

fold and P be the associated polytope. Suppose that for each i = 1, . . . , d, it

holds

S̄ + θX ≤ n+ 1

λi
, (3.10)

where λi > 0 are d numbers defined as in (3.1). Then M is relative K-stable.

Note that θX ≡ 0 is equivalent to that the Futaki invariant vanishes. If

the Futaki invariant is not zero, (3.10) becomes θX ≤ 1. It has been verified

on toric Fano surfaces [44]. It is interesting to ask whether this condition

is satisfied for higher dimensional toric Fano manifolds or not. In case that

M is a toric Fano manifold with the vanishing Futaki invariant, condition

(3.10) in this theorem is trivial on the canonical Kähler class 2πc1(M) since

S̄ = n and all λi are 1. Thus Theorem 3.7 is always true for these toric

manifolds. Indeed, the problem of existence of Kähler-Einstein metrics on

toric Fano manifolds, has been completely solved by Wang and Zhu [41]. A



98 XU-JIA WANG AND BIN ZHOU [March

more general approach to verify the stability of polytopes will be discussed

in dimension 2 in the next section.

On the other hand, to find a toric manifold (M,L) which is K-unstable,

it suffices to find a bounded convex Delzant polytope P and a PL convex

function u such that L(u) < 0. Examples will be discussed in the final

section.

3.4. Uniform K-stability

TheK-stability is determined by the positivity of the linear functional L.
Let P ∗ be the union of the interior of P and the interiors of its co-dimension

1 faces. Denote

C1 = {u | u is convex on P ∗ and

∫

∂P

u <∞}. (3.11)

The linear functional L is well defined in C1. Note that, for u ∈ C1, it may

not be uniform bounded at the vertices of P , but the value of u at vertices

has no effect on the integral
∫

∂P
f dσ. Without loss of generality, we assume

0 lies in the interior of P . Since L is invariant when subtracting an affine

linear function, and homogeneous with respect to scaling, we consider the

set of normalized functions

C̃1 = {u | u is a convex function in P ∗ satisfying
∫

∂P

udσ = 1 and inf
P
u = u(0) = 0}.

(3.12)

By a simple observation that

∫

P

u ≤ C

∫

∂P

u dσ, u ∈ C̃1, (3.13)

where C is independent of u, L has a lower bound on C̃1.
When proving the existence of constant scalar curvature metrics on toric

surfaces [16, 17], Donaldson introduced a refinement of the K-stability. P is

called uniformly K-stable if

inf
C̃1

L(u) ≥ λP > 0,
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where λP is a constant depending only on P . In [11], it is proved that the

above uniform K-stability is necessary to the existence of extremal metrics

on toric manifolds. In particular, in dimension 2, theK-stability and uniform

K-stability are equivalent [14, 42].

A different definition of uniform K-stability with L
n

n−1 -norm of convex

functions was given in the thesis of Szekelyhidi. In [35], a polytope P is

called uniformly K-stable if

L(f) ≥ λP ‖f‖
L

n
n−1 (P )

for all normalised convex functions. He also showed that there exists a

constant such that

‖f‖L2(P ) ≤ C

∫

∂P

f dσ

for all non-negative continuous convex functions on P .

The problem of optimal destabilisating test configuration was also stud-

ied by Szekelyhidi [34]. He considered the minimum of L in the space of

L2-convex functions with ‖ · ‖L2(P ) = 1. It is proved that if P is K-unstable,

then there is a unique convex function u such that the infimum of L in the

considered space is attained at u. Furthermore, it is shown that if u is piece-

wise linear, then the maximal subpolytopes of P on which u is linear give a

standard decomposition of P into semistable pieces. This is an analogous to

the Harder-Narasimhan filtration of an unstable vector bundle.

In the next section, one can see that when considering L in C̃1, the

destabilisation functions in dimension 2 can be reduced to simple piecewise

linear convex functions.

4. The Simple Characterisation on Toric Surfaces

In the next section, we focus on the dimension 2 case, that is, on toric

surfaces. A further reduction on the positivity of L to simple PL convex

functions will be established.

Following Donaldson, we say a convex function u is simple piecewise

linear (SPL) if there is a linear function ℓ such that u = max{0, ℓ}. If u is

simple PL, the set Iu = P ∩ {ℓ = 0} is called the crease of u.



100 XU-JIA WANG AND BIN ZHOU [March

Theorem 4.1. Let P be a convex polytope in R2. Then P is (relatively)

K-stable if and only if L(u) > 0 for all SPL convex functions with crease

Iu 6= ∅.

The theorem contains the following two issues on the simplification of

destabilizing functions.

(1) K-semistable case, i.e., if L(u) ≥ 0 for all u ∈ C1 but there is a nonlinear

convex function u ∈ C1 such that L(u) = 0. Then there is a SPL convex

function û such that L(û) = 0.

(2) K-unstable case, i.e., if there is u ∈ C1 such that L(u) < 0, then there is

a SPL convex function û such that L(û) ≤ 0.

(1) was first proved by Donaldson under the assumption A ≥ 0 (Proposi-

tion 5.3.1, [14]). The condition A ≥ 0 was removed in [42]. (2) was included

in [42] as a corollary, but we omitted the details there. By modifying the

proof in [42], we give a general proof combing the two issues together here.

As in last section, we assume 0 lies in the interior of P . In particular,

we assume 0 lies in the interior of {x ∈ P | A(x) = 0} if it is nonempty.

Lemma 4.2. Let P be a convex polytope P ⊂ Rn. Suppose inf C̃1 L(u) ≤ 0.

There is a u ∈ C̃1 such that the infimum is attained at u and u is continuous

at any co-dimension 1 face of the polytope.

Proof. Assume uk ∈ C̃1 be a sequence of functions minimizing L. Then uk
converges to a function u in P and

∫

P
uk →

∫

P
u. We can extend u to any

co-dimension 1 face F by letting

u(x0) = lim
x∈P,x→x0

u(x)

for x0 ∈ F (the value of u on the codimension 2 edges does not affect the

integral
∫

∂P
dσ). Note that by

∫

∂P
ukdσ = 1, uk converges to a function ũ

on the set of all co-dimension 1 faces. If there is a point x0 ∈ F at which

u < ũ, then we have L(u) < inf C̃1 L(u). Multiply u by a constant c > 1 such

that
∫

∂P
cu dσ = 1. Then cu ∈ C̃1 and

L(u) < c inf
C̃1

L(u) ≤ inf
C̃1

L(u).

The contradiction follows. ���
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Lemma 4.3. Let P be a convex polytope P ⊂ Rn. Suppose inf C̃1 L(u) ≤ 0

and the minimum is attained at u, then u is a generalized solution to the

degenerate Monge-Ampère equation

detD2u = 0. (4.1)

Proof. We consider the case that {x ∈ P | A(x) = 0} ∩ P is not empty.

Denote

P+ = {x ∈ P | A(x) > 0}, P− = {x ∈ P | A(x) < 0}.

Let

u+(x) = sup{ℓ(x) | ℓ is a linear function with ℓ ≤ u in P− ∪ ∂P}. (4.2)

Then u+ = u in P− and on ∂P , and u+ ≥ u in P+. This implies that u+ ∈ C̃1.
If there is a point x ∈ P+ such that u+(x) > u(x), then L(u+) < L(u), in
contradiction with the assumption that infu∈C̃1 L = L(u). Hence u+ = u in

P . By (4.2), u satisfies the degenerate Monge-Ampère equation (4.1) in P+.

Next let

u−(x)=sup{ℓ(x) : ℓ is a supporting function of u at some point x∈P+}.
(4.3)

Then u− = u in P+ and u− ≤ u in P−. If there is a point x ∈ P− such that

u−(x) < u(x), then L(u−) < L(u). Let ũ− = (
∫

∂P
u− dσ)

−1u− ∈ C̃1. Since
∫

∂P
u− dσ ≤ 1, we have

L(ũ−) <
(
∫

∂P

u− dσ

)−1

L(u) ≤ inf
u∈C̃1

L.

The contradiction follows. Hence u− = u in P .

The above facts imply that u satisfies the degenerate Monge-Ampere

equation (4.1) in the whole polytope P . ���

Let u be a generalized solution of (4.1) in Ω ∈ Rn. For any interior

point z ∈ Ω, let Lz = {xn+1 = φ(x), x ∈ Rn} be a supporting plane of u at

z. By convexity, the set T := {x ∈ Ω : u(x) = 0} is convex. By (4.1), T
cannot be a single point. The following lemma often used in the study of

Monge-Ampere equation.
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Lemma 4.4. An extreme point of T must be a boundary point of Ω.

Now we can prove the theorem by showing that L can always be desta-

bilised by SPL convex functions.

Proposition 4.5. Let P be a convex polytope P ⊂ R2. Suppose inf C̃1 L(u) ≤
0. Then the infimum can be attained at a SPL convex function.

Proof. We prove it by contradiction. Suppose that L(v) > 0 for all SPL

convex functions in C̃1. Then there exists σ0 > 0 such that L(v) > σ0 for

any SPL convex function v = max(0, ℓ) with |Dℓ| = 1 and |{x ∈ P | v(x) >
0}| ≥ δ0.

By the assumption inf C̃1 L(u) ≤ 0 and Lemma 4.3, the minimum is

attained at u, such that detD2u = 0. By Lemma 4.4, the extreme points

of T = {x ∈ P | u(x) = 0} are located on ∂P . Assume n = 2. Then T is

either a line segment with both endpoint on ∂P , or T is a polytope (which

is a convex subset of P ) with vertices on ∂P .

By a rotation of the coordinates, we assume T is contained in the x1-

axis in the former case, or an edge of T is contained in the x1-axis and

T ⊂ {x2 ≤ 0} in the latter case. For any point (x1, 0) ∈ P , let

a(x1) = lim
tց0

1

t
(u(x1, t)− u(x1, 0)).

By convexity the limit exists and is nonnegative. Let a0 = inf a(x1). We

must have a0 = 0, otherwise denote

ψ(x) = max(0, x2), (4.4)

and u1 = uχ−, u2 = (u− a0ψ)χ+, where χ− = 1 in {x2 < 0} and χ− = 0 in

{x2 > 0}, and χ+ = 1− χ−. Then ψ is a SPL convex function,

u = u1 + u2 + a0ψ,

and u1 + u2 is convex in P . Hence

L(u) = L(u1 + u2) + a0L(ψ) > L(u1 + u2),
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Normalize u1 + u2 by

ũ1 + u2 =

(
∫

∂P

u1 + u2 dσ

)−1

(u1 + u2)

such that ũ1 + u2 ∈ C̃1. It is clear that
∫

∂P
u1 + u2 dσ < 1. Hence,

L(ũ1 + u2) < L(u). We reach a contradiction.

Since u > 0 in P ∩{x2 > 0} and the set Gǫ := {x ∈ P : u(x) < ǫψ(x)} 6=
∅, we have

Gǫ ⊂ {0 ≤ x2 < δ} with δ → 0 as ǫ → 0 (4.5)

(otherwise by taking limit we would reach a contradiction as T ⊂ {x2 ≤ 0}).
Denote

u1 = uχ−,

u2 = (u− ǫψ)χ+,

ũ2 = max(u2, 0).

Then u = u1+u2+ ǫψ and u1+ ũ2 is convex in P . Denote ũ = u1+ ũ2+ ǫψ.

We have

L(ũ) = L(u1 + ũ2) + ǫL(ψ) ≥ L(u1 + ũ2) + ǫσ0. (4.6)

On the other hand, observing that 0 ≤ ũ2−u2 ≤ ǫδ, we have u ≤ ũ ≤ u+ ǫδ.

It follows that

L(ũ) ≤ L(u) + Cǫδ. (4.7)

By (4.6), (4.7), we have

L(u1 + ũ2) ≤ L(u) + ǫ(δ − Cσ0).

Normalize u1 + ũ2 by

ũ1 + ũ2 =

(
∫

∂P

u1 + ũ2 dσ

)−1

(u1 + ũ2)

such that ũ1 + ũ2 ∈ C̃1. It is clear that u1 + ũ2 ≤ u, which implies
∫

∂P
u1 +

ũ2 dσ ≤ 1. But recall that δ → 0 as ǫ → 0. Hence when ǫ > 0 is sufficiently

small, we obtain L(ũ1 + ũ2) < L(u). The contradiction follows. ���
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The theorem can be used to verify the (relative) K-stability of poly-

topes. Namely to verify the (relative) K-stability for a polytope P ∈ R2, by

Theorem 4.1 it suffices to verify L(u) ≥ 0 for all SPL convex functions u. In

the last section, we provide examples of stable and unstable polytopes.

5. Examples

In this section, we present examples of unstable Delzant polytopes in

dimension 2.

The vertices of a Delzant polytope correspond to the fixed points of T 2
C

action on the associated toric surface. A toric surface with 3 or 4 T 2
C-fixed

points must be CP2 or a Hirzebruch surface Fk(k = 0, 1, 2, · · · ), and they

all admits extremal metrics in any Kähler class and are K-stable. When

the surface has more T 2-fixed points, only partial results are known up to

now. For example, on CP2#2CP2 which has 5 fixed points, we only know a

family of Kähler classes with symmetry admitting extremal metrics [13]. It

is known that every compact toric surface can be obtained from CP2 or Fk

by a succession of blow-ups at T 2
C-fixed points ([21], p.42). More precisely,

let M be a toric surface with Kähler class [ωg] corresponding to a polytope

P . Then a T 2
C-fixed point X of M corresponds to a vertex p of the polytope

P . A blow-up of M at X is a new toric Kähler surface which corresponds to

a convex polytope P̃ obtained by chopping off a corner of the polytope P at

p. By applying the result in [4], one sees that on every toric surface, there

is a Kähler class which admits an extremal metric [42].

On the other hand, there are examples of unstable polytopes. This

means that in the associated Kähler classes, there is no extremal metric.

The first example of unstable polytope was found by Donaldson ([14], Section

7.2). It is a symmetric polytope with large number of vertices so that its

Futaki invariant vanishes. An interesting question is how the stability is

affected by the number of fixed points. In [42], we asked how many vertices

at least can destabilise a Delzant polytope, and found an unstable polytope

with 9 vertices. Computations in that paper suggests the case of 8 vertices

is the borderline case. In this paper we are able to provide a new unstable

example with exactly 8 vertices.
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5.1. Unstable polytopes

For a given polytope, denote

b0 =

∫
∂P

dσ, b1 =

∫
∂P

x1dσ, b2 =

∫
∂P

x1dσ,

v0 =

∫
P

dx, v1 =

∫
P

x1dx, v2 =

∫
P

x2dx,

v11 =

∫
P

x
2

1dx, v22 =

∫
P

x
2

2dx, v12 =

∫
P

x1x2dx.

Note that the boundary measure dσ is not the standard Lebesgue measure

and is given by (3.5).

Let k be a positive integer, β be a positive constant to be determined

later and α = βk2. Choose ǫi > 0 (i = 1, 2, 3) small enough. Let Pǫ1,ǫ2,ǫ3 be

the polytope with vertices given by

p0 = (−1,−α− 2k),

p1 = (−1, α+ 4),

p2 = (0, α + 4),

p3 = (ǫ1, α + 4− ǫ1),

p4 = (ǫ1 + ǫ2, α+ 4− ǫ1 − 2ǫ2),

p5 = (ǫ1 + ǫ2 + ǫ3, α+ 4− ǫ1 − 2ǫ2 − 3ǫ3),

p6 = (1, α + 3ǫ1 + 2ǫ2 + ǫ3),

p7 = (1,−α).

One can check that this polytope satisfies Delzant conditions. It can be seen

as a four times blow-up surface from the Hirzebruch surface Fk. We prove

Theorem 5.1. Pǫ1,ǫ2,ǫ3 is relative K-unstable when ǫ1, ǫ2, ǫ3 are sufficiently

small and β, k are sufficiently large.

Proof. Note that when ǫi → 0, i = 1, 2, 3, Pǫ1,ǫ2,ǫ3 converges to a polytope

P with vertices given by

p0 = (−1,−α − 2k),

p1 = (−1, α + 4),

p2 = (0, α + 4),

p3 = (1, α),
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p4 = (1,−α).

Since we actually concern on the stability of Pǫ1,ǫ2,ǫ3 , it does not matter

whether P satisfies Delzant’s condition. We can still have the computations

for A and L. It suffices to find a PL function on P such that L < 0.

First we estimate A on P . It is a affine linear function that can be

uniquely determined by the polytope by (3.8). Denote by A = a0 + a1x1 +

a2x2. By computation,

b0 = 4α+ 2k + 8, b1 = −2k − 4, b2 = −2αk + 4α− 2k2 − 2k + 14,

v0 = 4α+ 2k + 6, v1 = −2

3
k − 4

3
, v2 = −2αk + 6α− 4

3
k2 +

32

3
,

v11 =
4

3
α+

2

3
k +

5

3
, v12 =

2

3
αk − 4

3
α+

2

3
k2 − 10

3
,

v22 =
4

3
α3 + 2α2k + 6α2 +

8

3
αk2 +

4

3
k3 +

64

3
α+

80

3
.

Substituting them into (3.8), we have a linear equation system

4α+ 2k + 8

= (4α+ 2k + 6)a0 + (−2

3
k − 4

3
)a1 + (−2αk + 6α− 4

3
k2 +

32

3
)a2,

−2k − 4

= (−2

3
k − 4

3
)a0 + (

4

3
α+

2

3
k +

5

3
)a1 + (

2

3
αk − 4

3
α+

2

3
k2 − 10

3
)a2,

−2αk + 4α− 2k2 − 2k + 14

= (−2αk + 6α− 4

3
k2 +

32

3
)a0 + (

2

3
αk − 4

3
α+

2

3
k2 − 10

3
)a1

+(
4

3
α3 + 2α2k + 6α2 +

8

3
αk2 +

4

3
k3 +

64

3
α+

80

3
)a2.

By the first two equations, we have

a0 =
α2 +O(αk) +O(α2k)a2

α2
, a1 =

O(αk) +O(α2k)a2
α2 +O(αk)

.

Substituting them to the third equation, we have

a2 = O(α−2).

Note that α = βk2. Again substituting a2 into the first two equations, we
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have

a0 = 1 +
3β − 1

6β2
k−2 +O(k−3), a1 = − 1

β
k−1 +O(k−2).

Now we let ut = max{x2 − α+ tk, 0} and Pt = {x ∈ P | ut > 0}. Then we

have

L(ut) =

∫

∂Pt

utdσ −
∫

Pt

Autdx,

dL(ut)
dt

= k

(
∫

∂Pt

dσ −
∫

Pt

Adx

)

.

It is clear that
∫

∂P0

dσ = 6,

∫

P0

dx = 6,

∫

P0

x1dx = −4

3
.

For k sufficiently large and 0 << t << k, we have

dL(ut)
dt

= k

(
∫

∂Pt

dσ −
∫

Pt

Adx

)

= k

[
∫

∂P0

dσ −
∫

P0

Adx+ (2− 2a0)tk − a2t
2k2

]

= k

[

6− 6a0 −
(
∫

P0

x1dx

)

a1 +O(k−2) + (2− 2a0)tk − a2t
2k2

]

≤ − 4

3β
− 3β − 1

3β2
t+O(t2k−1).

Choose β ≥ 1
3 . Then dL(ut)

dt
≤ − 4

3β for sufficiently large k. Note that L(u0)
is uniformly bounded with respect to k. By choosing k sufficiently large, we

obtain L(ut) < 0 for 0 << t << k. ���

5.2. K-stable polytopes

An interesting question is whether all Delzant polytope with 7 or less

vertices are stable. However, even though the K-stability of a toric surface

can be reduced to the positivity of the functional L for all SPL functions,

the verification is technically a difficult problem, even for the polytopes with

small number of vertices. In the case that Futaki invariant vanishes, that is,

when A is constant, the verification was carried out in [42]. It was computed
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that among the toric surfaces with 5 or 6 T 2
C-fixed points, CP2#3CP2 is the

only one which admits Kähler classes with vanishing Futaki invariants. In

addition, all such associated polytopes have been founded. After scaling, the

vertices are given by

p0 = (0, 0),

p1 = (0, h),

p2 = (s, h+ s),

p3 = (1, h + 1),

p4 = (1, 1 − t),

p5 = (t, 0),

where the nonnegative parameters t, s, h satisfies

s+ t = 1 (5.1)

or

h = 1− t = 1− s. (5.2)

Let H be the hyperplane divisor of CP2, and D1, D2, D3 be the three

exceptional divisors. Then after a dilation, the Kähler class corresponding

to (5.1) is 3H−aD1−bD2−(3−a−b)D3 and the Kähler class corresponding

to (5.2) is 3H−c(D1+D2+D3), where a, b, c are positive constants, a+b < 3,

and c < 3
2 . It is verified that L is positive for all SPL convex functions on

these polytopes [42]. Hence, by Theorem 3.6, it implies the existence of

constant scalar curvature metrics in the associated Kähler class. In the case

when t = s = 1
2 , it is half of the first Chern class on CP2#3CP2. In this

case, a constant scalar curvature metric is a Kähler-Einstein metric and was

also obtained in [31, 40].
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25. T. Mabuchi, K-stability of constant scalar curvature polarization, arXiv:0812.4093.

26. T. Mabuchi, A stronger concept of K-stability, arXiv:0910.4617.

27. T. Mabuchi, The Yau-Tian-Donaldson Conjecture for general polarizations,
arXiv:1307.3623.

28. T. Mabuchi, Existence problem of extremal Kähler metrics, arXiv:1307.5203.

29. D. H. Phong and J. Sturm, Lectures on stability and constant scalar curvature,
arXiv:0801.4179.

30. J. Ross, Constant scalar curvature metrics on toric manifolds, Lecture notes for a
minicourse part of MACK5 workshop, Rome, 2012.

31. Y. T. Siu, The existence of Kähler-Einstein metrics on manifolds with positive anti-
canonical line bundle and a suitable finite symmetry group, Ann. Math., 127(1988),
585-627.

32. J. Stoppa, K-stability of constant scalar curvature Kähler manifolds, Adv. Math.,
221(2009), 1397-1408.
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36. J. Stoppa and G. Székelyhidi, Relative K-stability of extremal metrics , J. Eur. Math.
Soc., 13(2011), 899-909.

37. G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math.,
130(1997), 1-39.

38. G. Tian, Canonical Metrics in Kähler Geometry, Birkhauser, 2000.

39. G. Tian, K-stability and Kähler-Einstein metrics, arXiv:1211.4669.

40. G. Tian and S. T. Yau, Kähler-Einstein metrics on complex surfaces with C1 > 0,
Comm. Math. Phys., 112(1987), 175-203.

41. X.-J. Wang and X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first
Chern class, Adv. Math., 188(2004), 87-103.

42. X. J. Wang and B. Zhou, Existence and nonexistence of extremal metrics on toric
Kähler manifolds. Adv. Math., 226(2011), 4429-4455.

43. S. T. Yau, Open problems in geometry, Proc. Symp. Pure. Math., 54(1993), 1-28.

44. B. Zhou and X. H. Zhu, RelativeK-stability and modifiedK-energy on toric manifolds,
Adv. Math. 219(2008), 1327-1362.

45. B. Zhou and X. H. Zhu, K-stability on toric manifolds, Proc. Amer. Math. Soc.,
136(2008), 3301-3307.


	1. Introduction
	2. Extremal metrics and K-stability
	2.1. Extremal metrics
	2.2. Donaldson-Futaki invariant
	2.3. Notions of K-stabilities

	3. Reduction on Toric Manifolds
	3.1. Delzant polytopes and Abreu's formula
	3.2. Reduction of Futaki invariant
	3.3. Reduction of K-stability
	3.4. Uniform K-stability

	4. The Simple Characterisation on Toric Surfaces
	5. Examples
	5.1. Unstable polytopes
	5.2. K-stable polytopes


