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Abstract

We consider a one-phase free boundary problem involving a fractional Laplacian

(−∆)α, 0 < α < 1, and we prove that “flat free boundaries” are C1,γ . We thus extend the

known result for the case α = 1/2.

1. Introduction

In the last decade, a large amount of work has been devoted to non

linear equations involving non local operators with special attention for the

so-called fractional laplacian (−∆)α, where α ∈ (0, 1). This is a Fourier

multiplier in R
n whose symbol is |ξ|2α. The main feature of this operator is

its non locality, which can be seen from the alternative definition given by
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its integral representation (see [11])

(−∆)αu(x) = PV

∫

Rn

u(x)− u(y)

|x− y|n+2α
dy

where PV denotes the Cauchy principal value (up to a renormalizing con-

stant depending on n and α.)

This paper investigates the regularity properties of a free boundary prob-

lem involving the fractional Laplacian. More precisely, we are interested in

a Bernoulli-type one-phase problem. The classical one is given by

{

∆u = 0, in Ω ∩ {u > 0},

|∇u| = 1, on Ω ∩ ∂{u > 0},
(1.1)

with Ω a domain in R
n. A pioneering investigation of (1.1) was that of Alt

and Caffarelli [1] (variational context), and then Caffarelli [2, 3, 4] (viscosity

solutions context).

As a natural generalization of (1.1), we consider the following problem

(see for instance the book [7])







(−∆)αu = 0, in Ω ∩ {u > 0},

lim
t→0+

u(x0 + tν(x0))

tα
= const., on Ω ∩ ∂{u > 0},

(1.2)

with u defined on the whole R
n with prescribed values outside of Ω. This

problem has been first investigated by Caffarelli, Roquejoffre and the third

author in [5].

The non locality of the fractional Laplacian makes computations hard

to handle directly on the equation. However by a result by Caffarelli and

Silvestre [6], one can realize it as a boundary operator in one more dimension.

More precisely, given α ∈ (0, 1) and a function u ∈ Hα(Rn) we consider the

minimizer g to

min
{

∫

R
n+1
+

zβ |∇g|2 dxdz : g|∂Rn+1
+

= u
}

(1.3)

with

β := 1− 2α ∈ (−1, 1).
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The “extension” g solves the Dirichlet problem

{

div (zβ∇g) = 0 in R
n+1
+

g = u on ∂Rn+1
+ ,

and (−△)αu is a Dirichlet to Neumann type operator for g. Precisely in [6]

it is shown that

(−∆)αu = −dα lim
z→0+

zβ∂zg,

where dα is a positive constant depending only on n and α, and the equality

holds in the distributional sense.

Due to the variational structure of the extension problem, one can con-

sider the following functional, associated to (1.2),

J(g,B1) =

∫

B1

|z|β |∇g|2dxdz + LRn({g > 0} ∩R
n ∩B1).

The minimizers of J have been investigated in [5], where general properties

(optimal regularity, nondegeneracy, classification of global solutions), cor-

responding to those proved in [1] for the classical Bernoulli problem (1.1),

have been obtained. In [5], only a partial result concerning the regularity

of the free boundary is obtained. The question of the regularity of the free

boundary in the case α = 1/2 was subsequently settled in a series of papers

co-authored by the first and the second author of this note [13, 14, 15].

In this paper, in view of the previous discussion, we consider the follow-

ing thin one-phase problem associated to the extension

{

div(|z|β∇g) = 0, in B+
1 (g) := B1 \ {(x, 0) : g(x, 0) = 0},

∂g
∂tα = 1, on F (g) := ∂Rn{x ∈ B1 : g(x, 0) > 0} ∩ B1,

(1.4)

where β = 1− 2α,

∂g

∂tα
(x0) := lim

t→0+

g(x0 + tν(x0))

tα
, x0 ∈ F (g) (1.5)

and Br ⊂ R
n is the n-dimensional ball of radius r (centered at 0).

A special class of viscosity solutions to (1.4) (with the constant 1 re-

placed by a precise constant A depending on n and α) is provided by mini-
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mizers of the functional J above.

We explain below the free boundary condition (1.5). In Section 2 we

show that in the case n = 1, a particular 2-dimensional solution U(t, z) to

our free boundary problem is given by

U =
(

r1/2 cos
θ

2

)2α
, (1.6)

with r, θ the polar coordinates in the (t, z) plane. This function is simply the

“extension” of (t+)α to the upper half-plane, reflected evenly across z = 0.

By boundary Harnack estimate (see Theorem 2.14), any solution g to

div(|z|β∇g) = 0, in R
2 \ {(t, 0)|t ≤ 0}

that vanishes on the negative t axis satisfies the following expansion near

the origin

g = U(a+ o(1)),

for some constant a. Then ∂g
∂tα (0) = a and the constant a can be thought as

a “normal” derivative of g at the origin.

The 2-dimensional solution U describes also the general behavior of g

near the free boundary F (g). Indeed, in the n-dimensional case, if 0 ∈ F (g)

and F (g) is C2 then the same expansion as above holds in the 2-dimensional

plane perpendicular to F (g) at the origin. We often denote the limit in (1.5)

as ∂g/∂U and it represents the first coefficient of U in the expansion of g as

above.

We now state our main result about the regularity of F (g) under ap-

propriate flatness assumptions (for all the relevant definitions see Section

2).

Theorem 1.1. There exists a small constant ǭ > 0 depending on n and α,

such that if g is a viscosity solution to (1.4) satisfying

{x ∈ B1 : xn ≤ −ǭ} ⊂ {x ∈ B1 : g(x, 0) = 0} ⊂ {x ∈ B1 : xn ≤ ǭ}, (1.7)

then F (g) is C1,γ in B1/2, with γ > 0 depending on n and α.

The previous theorem has the following corollary.
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Corollary 1.2. There exists a universal constant ǭ > 0, such that if u is a

viscosity solution to (1.2) in B1 satisfying

{x ∈ B1 : xn ≤ −ǭ} ⊂ {x ∈ B1 : u(x, 0) = 0} ⊂ {x ∈ B1 : xn ≤ ǭ},

then F (u) is C1,γ in B1/2.

The Theorem above extends the results in [13] to any power 0 < α < 1.

We follow the strategy developed in [13]. Most of the proofs remain valid in

this context as well, since they rely on basic facts such as Harnack Inequality,

Boundary Harnack inequality, Comparison Principle and elementary prop-

erties of U .

The paper is organized as follows. In section 2 we introduce notation,

definitions and preliminary results. In Section 3 we recall the notion of

ǫ- domain variations and the corresponding linearized problem. Section 4

is devoted to Harnack inequality while Section 5 contains the proof of the

main improvement of flatness theorem. In Section 6 the regularity of the

linearized problem is investigated.

2. Preliminaries

In this Section we introduce notation, definitions, and preliminary re-

sults.

2.1. Notation

A point X ∈ R
n+1 will be denoted by X = (x, z) ∈ R

n×R. We will also

use the notation x = (x′, xn) with x′ = (x1, . . . , xn−1). A ball in R
n+1 with

radius r and center X is denoted by Br(X) and for simplicity Br = Br(0).

Also we use Br to denote the n-dimensional ball Br ∩ {z = 0}.

Let v(X) be a continuous non-negative function in B1. We associate to

v the following sets:

B+
1 (v) := B1 \ {(x, 0) : v(x, 0) = 0} ⊂ R

n+1;

B+
1 (v) := B+

1 (v) ∩ B1 ⊂ R
n;

F (v) := ∂RnB+
1 (v) ∩ B1 ⊂ R

n.
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Often subsets of R
n are embedded in R

n+1, as it will be clear from the

context. F (v) is called the free boundary of v.

We consider the free boundary problem,

{

div(|z|β∇g) = 0, in B+
1 (g),

∂g
∂U = 1, on F (g),

(2.1)

where β = 1− 2α, 0 < α < 1

∂g

∂U
(x0) := lim

t→0+

g(x0 + tν(x0), 0)

tα
, X0 = (x0, 0) ∈ F (g).

Here ν(x0) denotes the unit normal to F (g) at x0 pointing toward B+
1 (g)

and U is the function defined in (1.6).

2.2. The solution U

Recall that

U(t, z) = h2α, h := r1/2 cos
θ

2
.

The function h is harmonic and it is easy to check that it satisfies

ht =
h

2r
, |∇h| =

1

2
r−1/2,

hz
z

=
1

4rh
.

We obtain

△U + β
Uz

z
= 2α(2α − 1)h2α−2(|∇h|2 − h

hz
z
) = 0,

and since U is C2 in its positive set, it is a viscosity solution.

Clearly the (n+1) dimensional function U(X) := U(xn, z) is a solution

with the free boundary F (U) = {xn = 0}. Notice that

Un

U
=

Ut

U
=

α

r
.

2.3. Viscosity solutions

We now introduce the notion of viscosity solutions to (2.1). First we
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need the following standard notion.

Definition 2.1. Given g, v continuous, we say that v touches g by below

(resp. above) at X0 ∈ B1 if g(X0) = v(X0), and

g(X) ≥ v(X) (resp. g(X) ≤ v(X)) in a neighborhood O of X0.

If this inequality is strict in O \ {X0}, we say that v touches g strictly by

below (resp. above).

Definition 2.2. We say that v ∈ C(B1) is a (strict) comparison subsolution

to (2.1) if v is a non-negative function in B1 which is even with respect to

{z = 0}, v is C2 in the set where it is positive and it satisfies

(i) div(|z|β∇v) ≥ 0 in B1 \ {z = 0};

(ii) F (v) is C2 and if x0 ∈ F (v) we have

v(x, z) = aU((x−x0) ·ν(x0), z)+o(|(x−x0 , z)|
α), as (x, z) → (x0, 0),

with

a ≥ 1,

where ν(x0) denotes the unit normal at x0 to F (v) pointing toward

B+
1 (v);

(iii) Either v satisfies (i) strictly or a > 1.

Similarly one can define a (strict) comparison supersolution.

Definition 2.3. We say that g is a viscosity solution to (2.1) if g is a

continuous non-negative function in B1 which satisfies

(i) g is locally C1,1 in B+
1 (g), even with respect to {z = 0} and solves (in

the viscosity sense)

div(|z|β∇g) = 0 in B1 \ {z = 0};

(ii) Any (strict) comparison subsolution (resp. supersolution) cannot touch

g by below (resp. by above) at a point X0 = (x0, 0) ∈ F (g).
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Remark 2.4. Observe that the equation in (i) can be written in the follow-

ing non-divergence form

△g + β
gz
z

= 0.

This fact will be used throughout the paper.

Remark 2.5. We notice that in view of Lemma 2.1 in [16], g satisfies part

(i) in Definition 2.3 if and only if g solves

div(|z|β∇g) = 0 in B+
1 (g),

in the distributional sense. Equivalently, g is a local minimizer in B+
1 (g) to

the energy functional
∫

|z|β |∇g|2dX.

In view of this remark, we can apply the standard maximum/comparison

principle to functions that satisfy part (i) of Definition 2.3.

Remark 2.6. We remark that if g is a viscosity solution to (2.1) in Bρ, then

gρ(X) = ρ−αg(ρX), X ∈ B1 (2.2)

is a viscosity solution to (2.1) in B1.

We also introduce the notion of viscosity solutions for the fractional

Laplace free boundary problem (1.2) in the Introduction.

Definition 2.7. We say that u is a viscosity solution to (1.2) if u is a non-

negative continuous function in Ω and it satisfies

(i) (−∆)αu = 0 in Ω;

(ii) at any point x0 ∈ F (u) ∩ Ω that admits a tangent ball from either the

positive set {u > 0} or from the zero set {u = 0} we have

u(x) = ((x− x0)
α · ν(x0))

+ + o(|(x− x0)|
α),

where ν(x0) denotes the unit normal at x0 to F (u) pointing toward

B+
1 (u).
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2.4. Expansion at regular points

In order to explain better the free boundary conditions in the definitions

above we recall Lemma 7.5 from [14] about the expansion of solutions g to

the equation

div(|z|β∇g) = 0 in B+
1 (g), (2.3)

near points on F (g) that have a tangent ball either from the positive side of

g or from the zero-side. The proof in [14] is for the case α = 1/2, however

it uses only boundary Harnack inequality (see Theorem 2.14) and it works

identically for any α ∈ (0, 1).

Proposition 2.8. Let g ∈ Cα(B1), g ≥ 0, satisfy (2.3). If

0 ∈ F (g), B1/2(1/2en) ⊂ B+
1 (g),

then

g = aU + o(|X|α), for some a > 0.

The same conclusion holds for some a ≥ 0 if

B1/2(−1/2en) ⊂ {g = 0}.

Since viscosity solutions have the optimal Cα regularity (see [5], [14]), a

consequence of the proposition above is the following

Corollary 2.9. The function u is a viscosity solution to (1.2) if and only if

its extension to R
n+1 (reflected evenly across z = 0) is a viscosity solution

to (2.1).

2.5. Flatness assumption

Theorem 1.1 is stated under the flatness assumption of the free boundary

F (g). As in Lemma 7.9 in [14] this implies closeness between the function g

and the one-dimensional solution U. Precisely we have

Lemma 2.10. Assume g solves (2.1). Given any ǫ > 0 there exist ǭ > 0

and δ > 0 depending on ǫ such that if

{x ∈ B1 : xn ≤ −ǭ} ⊂ {x ∈ B1 : g(x, 0) = 0} ⊂ {x ∈ B1 : xn ≤ ǭ},
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then the rescaling gδ (see (2.2)) satisfies

U(X − ǫen) ≤ gδ(X) ≤ U(X + ǫen) in B1.

In view of Lemma (2.10) we may assume from now on that

U(X − ǫen) ≤ g(X) ≤ U(X + ǫen) in B1,

for some ǫ > 0.

2.6. Comparison principle

We state the comparison principle for problem (2.1), which in view of

Remark 2.5 holds in this setting as well. Its proof is standard and can

be found in [13]. As an immediate consequence one obtains Corollary 2.12

which is the formulation of the Comparison Principle used in this paper.

Lemma 2.11 (Comparison Principle). Let g, vt ∈ C(B1) be respectively a

solution and a family of subsolutions to (2.1), t ∈ [0, 1]. Assume that

i. v0 ≤ g, in B1;

ii. vt ≤ g on ∂B1 for all t ∈ [0, 1];

iii. vt < g on F(vt) which is the boundary in ∂B1 of the set ∂B+
1 (vt)∩∂B1,

for all t ∈ [0, 1];

iv. vt(x) is continuous in (x, t) ∈ B1 × [0, 1] and B+
1 (vt) is continuous in

the Hausdorff metric.

Then

vt ≤ g in B1, for all t ∈ [0, 1].

Corollary 2.12. Let g be a solution to (2.1) and let v be a subsolution

to (2.1) in B2 which is strictly monotone increasing in the en-direction in

B+
2 (v). Call

vt(X) := v(X + ten), X ∈ B1.

Assume that for −1 ≤ t0 < t1 ≤ 1

vt0 ≤ g, in B1,
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and

vt1 ≤ g on ∂B1, vt1 < g on F(vt1).

Then

vt1 ≤ g in B1.

2.7. Harnack inequalities for A2 weights

The weight involved in our problem, i.e. w(z) = |z|β where β = 1− 2α

with α ∈ (0, 1) belongs to the well-known class of A2 functions as defined

by Muchenhoupt [12]. Equations in divergence form involving such weights

have been studied in a series of papers by Fabes et al in [8, 9, 10]. In the

following, we review the results needed for our purposes.

Theorem 2.13 (Harnack inequality [8]). Let u ≥ 0 be a solution of

div(|z|β∇u) = 0 in B1 ⊂ R
n.

Then,

sup
B1/2

u ≤ C inf
B1/2

u

for some constant C depending only on n and β.

Theorem 2.14 (Boundary Harnack principle [9]). Let Ω ⊂ R
n be a Lipschitz

domain, 0 ∈ ∂Ω. Let u > 0 and v be solutions of

div(|z|β∇u) = div(|z|β∇v) = 0 in B1 \ (Ω× {0}),

that vanish continuously on B1 ∩ (Ω × {0}). Then,

[v

u

]

Cγ(B1/2)
≤ C

for some constants C, γ depending on n and the Lipschitz constant of ∂Ω.
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3. The Function g̃ and the Linearized Problem

In this section we recall the notion of ǫ-domain variations of a viscosity

solution to (2.1). We also introduce the linearized problem associated to

(2.1).

3.1. The function g̃

Let ǫ > 0 and let g be a continuous non-negative function in Bρ. Let

P := {X ∈ R
n+1 : xn ≤ 0, z = 0}, L := {X ∈ R

n+1 : xn = 0, z = 0}.

To each X ∈ R
n+1 \ P we associate g̃ǫ(X) ⊂ R such that

U(X) = g(X − ǫwen), ∀w ∈ g̃ǫ(X). (3.1)

We call g̃ǫ the ǫ- domain variation associated to g. By abuse of notation,

from now on we write g̃ǫ(X) to denote any of the values in this set. As noted

in [13], if g satisfies

U(X − ǫen) ≤ g(X) ≤ U(X + ǫen) in Bρ, (3.2)

for all ǫ > 0 we can associate to g a possibly multi-valued function g̃ǫ defined

at least on Bρ−ǫ \ P and taking values in [−1, 1] which satisfies

U(X) = g(X − ǫg̃ǫ(X)en). (3.3)

Moreover if g is strictly monotone in the en-direction in B+
ρ (g), then g̃ǫ

is single-valued.

The following comparison principle is proved in [13] in the case α = 1/2.

The proof remains still valid as it only involves Corollary 2.12 and some

elementary considerations following from the definition of g̃.

Lemma 3.1. Let g, v be respectively a solution and a subsolution to (2.1)

in B2, with v strictly increasing in the en-direction in B+
2 (v). Assume that

g satisfies the flatness assumption (3.2) in B2 for ǫ > 0 small and that ṽǫ is

defined in B2−ǫ \ P and satisfies

|ṽǫ| ≤ C.
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If,

ṽǫ + c ≤ g̃ǫ in (B3/2 \B1/2) \ P, (3.4)

then

ṽǫ + c ≤ g̃ǫ in B3/2 \ P. (3.5)

Finally, we recall the following useful fact. Given ǫ > 0 small and a

Lipschitz function ϕ̃ defined on Bρ(X̄), with values in [−1, 1], there exists a

unique function ϕǫ defined at least on Bρ−ǫ(X̄) such that

U(X) = ϕǫ(X − ǫϕ̃(X)en), X ∈ Bρ(X̄). (3.6)

Moreover such function ϕǫ is increasing in the en-direction. If g satisfies

the flatness assumption (3.2) in B1 and ϕ̃ is as above then (say ρ, ǫ < 1/4,

X̄ ∈ B1/2,)

ϕ̃ ≤ g̃ǫ in Bρ(X̄) \ P ⇒ ϕǫ ≤ g in Bρ−ǫ(X̄). (3.7)

3.2. The linearized problem

We introduce here the linearized problem associated to (2.1). Here and

later Un denotes the xn-derivative of the function U defined in (1.6).

Given w ∈ C(B1) and X0 = (x′0, 0, 0) ∈ B1 ∩ L, we call

|∇rw|(X0) := lim
(xn,z)→(0,0)

w(x′0, xn, z)− w(x′0, 0, 0)

r
, r2 = x2n + z2.

Once the change of unknowns (3.1) has been done, the linearized problem

associated to (2.1) is

{

div(|z|β∇(Unw)) = 0, in B1 \ P,

|∇rw| = 0, on B1 ∩ L.
(3.8)

Our notion of viscosity solution for this problem is below.

Definition 3.2. We say that w is a solution to (3.8) if w ∈ C1,1
loc (B1 \P ), w

is even with respect to {z = 0} and it satisfies (in the viscosity sense)
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i. div(|z|β∇(Unw)) = 0 in B1 \ {z = 0};

ii. Let φ be continuous around X0 = (x′0, 0, 0) ∈ B1 ∩ L and satisfy

φ(X) = φ(X0) + a(X0) · (x
′ − x′0) + b(X0)r +O(|x′ − x′0|

2 + r1+γ),

for some γ > 0 and

b(X0) 6= 0.

If b(X0) > 0 then φ cannot touch w by below at X0, and if b(X0) < 0

then φ cannot touch w by above at X0.

In Section 8, we will investigate the regularity of solutions to (3.8) and

obtain the following corollary, which we use in the proof of the improvement

of flatness.

Corollary 3.3. There exists a universal constant ρ > 0 such that if w solves

(3.8) and |w| ≤ 1 in B1, w(0) = 0 then

a0 · x
′ −

1

8
ρ ≤ w(X) ≤ a0 · x

′ +
1

8
ρ in B2ρ

for some vector a0 ∈ R
n−1.

4. Harnack Inequality

This section is devoted to a Harnack type inequality for solutions to our

free boundary problem (2.1).

Theorem 4.1 (Harnack inequality). There exists ǭ > 0 such that if g solves

(2.1) and it satisfies

U(X + ǫa0en) ≤ g(X) ≤ U(X + ǫb0en) in Bρ(X
∗), (4.1)

with

ǫ(b0 − a0) ≤ ǭρ,

then

U(X + ǫa1en) ≤ g(X) ≤ U(X + ǫb1en) in Bηρ(X
∗), (4.2)
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with

a0 ≤ a1 ≤ b1 ≤ b0, (b1 − a1) ≤ (1− η)(b0 − a0),

for a small universal constant η.

Let g be a solution to (2.1) which satisfies

U(X − ǫen) ≤ g(X) ≤ U(X + ǫen) in B1.

Let Aǫ be the following set

Aǫ := {(X, g̃ǫ(X)) : X ∈ B1−ǫ \ P} ⊂ R
n+1 × [a0, b0]. (4.3)

Since g̃ǫ may be multivalued, we mean that given X all pairs (X, g̃ǫ(X))

belong to Aǫ for all possible values of g̃ǫ(X). An iterative argument (see

[13]) gives the following corollary of Theorem 4.1.

Corollary 4.2. If

U(X − ǫen) ≤ g(X) ≤ U(X + ǫen) in B1,

with ǫ ≤ ǭ/2, given m0 > 0 such that

2ǫ(1− η)m0η−m0 ≤ ǭ,

then the set Aǫ ∩ (B1/2 × [−1, 1]) is above the graph of a function y = aǫ(X)

and it is below the graph of a function y = bǫ(X) with

bǫ − aǫ ≤ 2(1 − η)m0−1,

and aǫ, bǫ having a modulus of continuity bounded by the Hölder function αtβ

for α, β depending only on η.

The proof of Harnack inequality follows as in the case α = 1/2. The key

ingredient is the lemma below.

Lemma 4.3. There exists ǭ > 0 such that for all 0 < ǫ ≤ ǭ if g is a solution

to (2.1) in B1 such that

g(X) ≥ U(X) in B1/2, (4.4)
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and at X̄ ∈ B1/8(
1
4en)

g(X̄) ≥ U(X̄ + ǫen), (4.5)

then

g(X) ≥ U(X + τǫen) in Bδ, (4.6)

for universal constants τ, δ. Similarly, if

g(X) ≤ U(X) in B1/2,

and

g(X̄) ≤ U(X̄ − ǫen),

then

g(X) ≤ U(X − τǫen) in Bδ.

A preliminary basic result is the following.

Lemma 4.4. Let g ≥ 0 be C1,1
llc in B+

2 (g) and solve (2.3) in B2 \ {z = 0}

and let X̄ = 3
2en. Assume that

g ≥ U in B2, g(X̄)− U(X̄) ≥ δ0

for some δ0 > 0, then

g ≥ (1 + cδ0)U in B1 (4.7)

for a small universal constant c.

In particular, for any 0 < ǫ < 2

U(X + ǫen) ≥ (1 + cǫ)U(X) in B1, (4.8)

with c small universal.

Its proof can be found in [13] (Lemma 5.1.) It remains valid since

Maximum principle, Harnack Inequality, Boundary Harnack Inequality, and

monotonicity of U in the en-direction, which are all the ingredients of the

proof, are still valid. Harmonic functions in that proof are replaced by

solutions to

div(|z|β∇g) = 0. (4.9)
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The main tool in the proof of Lemma 4.3 will be the following family of

radial subsolutions. Let R > 0 and denote by

VR(t, z) = U(t, z)((n − 1)
t

R
+ 1).

Then set

vR(X) = VR(R−
√

|x′|2 + (xn −R)2, z), (4.10)

that is we obtain the n + 1-dimensional function vR by rotating the 2-

dimensional function VR around (0, R, z).

Proposition 4.5. If R is large enough, the function vR(X) is a comparison

subsolution to (2.1) in B2 which is strictly monotone increasing in the en-

direction in B+
2 (vR). Moreover, there exists a function ṽR such that

U(X) = vR(X − ṽR(X)en) in B1 \ P, (4.11)

and

|ṽR(X) − γR(X)| ≤
C

R2
|X|2, γR(X) = −

|x′|2

2R
+ 2(n − 1)

xnr

R
, (4.12)

with r =
√

x2n + z2 and C universal.

Proof. We divide the proof of this proposition in two steps.

Step 1. In this step we show that vR is a comparison subsolution in B2

which is monotone in the en-direction.

First we see that vR is a strict subsolution to (4.9) in B2 \{z = 0}. One

can easily compute that on such set,

∆vR(X) + β
(vR)z(X)

z

= ∆t,zVR(R − ρ, z)−
n− 1

ρ
∂tVR(R− ρ, z) + β

∂zVR(R− ρ, z)

z
,

where for simplicity we call

ρ :=
√

|x′|2 + (xn −R)2.
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Also for (t, z) outside the set {(t, 0) : t ≤ 0}

∆t,zVR(t, z) + β
(VR)z(t, z)

z

= (∂tt + ∂zz)VR(t, z) + β
(VR)z(t, z)

z

=
2(n− 1)

R
∂tU(t, z) + (1 + (n− 1)

t

R
)(∆t,zU(t, z) + β

Uz(t, z)

z
)

=
2(n− 1)

R
∂tU(t, z),

and

∂tVR(t, z) = (1 + (n− 1)
t

R
)∂tU(t, z) +

n− 1

R
U(t, z). (4.13)

Thus to show that vR solves (4.9) in B2 \ {z = 0} we need to prove that in

such set

2(n − 1)

R
∂tU −

n− 1

ρ
[(1 + (n− 1)

R − ρ

R
)∂tU +

n− 1

R
U ] ≥ 0,

where U and ∂tU are evaluated at (R − ρ, z).

Set t = R− ρ, then straightforward computations reduce the inequality

above to

(n− 1)[2(R − t)−R− (n− 1)2t]∂tU(t, z) − (n− 1)2U(t, z) ≥ 0.

Using that ∂tU(t, z) = αU(t, z)/r with r2 = t2 + z2, this inequality becomes

R ≥ 2t+ (n − 1)2t+
(n− 1)

α
r.

This last inequality is easily satisfied for R large enough, since t, r ≤ 3.

Now we prove that vR satisfies the free boundary condition in Definition

2.2. First observe that

F (vR) = ∂BR(Ren, 0) ∩ B2,

and hence it is smooth. By the radial symmetry it is enough to show that

the free boundary condition is satisfied at 0 ∈ F (vR) that is

vR(x, z) = aU(xn, z) + o(|(x, z)|α), as (x, z) → (0, 0), (4.14)
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with a ≥ 1.

First notice since U is Holder continuous with exponent α, it follows

from the formula for VR that

|VR(t, z) − VR(t0, z)| ≤ C|t− t0|
α for |t− t0| ≤ 1.

Thus for (x, z) ∈ Bs, s small

|vR(x, z)−VR(xn, z)| = |VR(R− ρ, z)−VR(xn, z)| ≤ C|R− ρ−xn|
α ≤ Cs2α,

where we have used that (recall that ρ :=
√

|x′|2 + (xn −R)2)

R− ρ− xn = −
|x′|2

R− xn + ρ
. (4.15)

It follows that for (x, z) ∈ Bs

|vR(x, z) − U(xn, z)| ≤ |vR(x, z)− VR(xn, z)| + |VR(xn, z)− U(xn, z)|

≤ Cs2α + |VR(xn, z)− U(xn, z)|.

Thus from the formula for VR

|vR(x, z) − U(xn, z)| ≤ Cs2α + (n − 1)
|xn|

R
U(xn, z) ≤ C ′s2α, (x, z) ∈ Bs

which gives the desired expansion (4.14) with a = 1.

Now, we show that vR is strictly monotone increasing in the en-direction

in B+
2 (vR). Outside of its zero plate,

∂xnvR(x) = −
xn −R

ρ
∂tVR(R− ρ, z).

Thus we only need to show that VR(t, z) is strictly monotone increasing in

t outside {(t, 0) : t ≤ 0}. This follows immediately from (4.13) and the

formula for U .

Step 2. In this step we state the existence of ṽR satisfying (4.11) and

(4.12). Since we have a precise formula for vR in terms of U , this is

only a matter of straightforward (though tedious) computations which are

carried on in [13]. Also, one needs to use Boundary Harnack inequality for
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U and its derivatives, the fact that U is homogeneous of degree α and that

the ratio Ut/U = α/r (with α = 1/2 in [13].) All these are still valid in this

context. ���

Then, one easily obtain the following Corollary.

Corollary 4.6. There exist δ, c0, C0, C1 universal constants, such that

vR(X +
c0
R
en) ≤ (1 +

C0

R
)U(X), in B1 \B1/4, (4.16)

with strict inequality on F (vR(X + c0
R en)) ∩B1 \B1/4,

vR(X +
c0
R
en) ≥ U(X +

c0
2R

en), in Bδ, (4.17)

vR(X −
C1

R
en) ≤ U(X), in B1. (4.18)

We are now ready to present the proof of Lemma 4.3.

Proof of Lemma 4.3. We prove the first statement. In view of (4.5)

g(X̄)− U(X̄) ≥ U(X̄ + ǫen)− U(X̄) = ∂tU(X̄ + λen)ǫ ≥ cǫ, λ ∈ (0, ǫ).

From Lemma 4.4 we then get

g(X) ≥ (1 + c′ǫ)U(X) in B1/4. (4.19)

Now let

R =
C0

c′ǫ
,

where from now on the Ci, ci are the constants in Corollary 4.6. Then, for ǫ

small enough vR is a subsolution to (2.1) in B2 which is monotone increasing

in the en- direction and it also satisfies (4.16)–(4.18). We now wish to apply

the Comparison Principle as stated in Corollary 2.12. Let

vtR(X) = vR(X + ten), X ∈ B1,

then according to (4.18),

vt0R ≤ U ≤ g in B1/4, with t0 = −C1/R.
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Moreover, from (4.16) and (4.19) we get that for our choice of R,

vt1R ≤ (1 + c′ǫ)U ≤ g on ∂B1/4, with t1 = c0/R,

with strict inequality on F (vt1R ) ∩ ∂B1/4. In particular

g > 0 on F(vt1R ) in ∂B1/4.

Thus we can apply Corollary 2.12 in the ball B1/4 to obtain

vt1R ≤ g in B1/4.

From (4.17) we have that

U(X +
c1
R
en) ≤ vt1R (X) ≤ g(X) on Bδ

which is the desired claim (4.6) with τ = c1c′

C0
. ���

5. Improvement of Flatness

In this section we state the improvement of flatness property for solutions

to (2.1) and we provide its proof. Our main Theorem 1.1 follows from the

Theorem below and Lemma 2.10.

Theorem 5.1 (Improvement of flatness). There exist ǭ > 0 and ρ > 0

universal constants such that for all 0 < ǫ ≤ ǭ if g solves (2.1) with 0 ∈ F (g)

and it satisfies

U(X − ǫen) ≤ g(X) ≤ U(X + ǫen) in B1, (5.1)

then

U(x · ν −
ǫ

2
ρ, z) ≤ g(X) ≤ U(x · ν +

ǫ

2
ρ, z) in Bρ, (5.2)

for some direction ν ∈ R
n, |ν| = 1.

The proof of Theorem 5.1 is divided into the next four lemmas.

The following Lemma is contained in [13] (Lemma 7.2) and its proof

remains unchanged, since it does not depend on the particular equation
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satisfied by g but only on elementary considerations related to the definition

of g̃ǫ.

Lemma 5.2. Let g be a solution to (2.1) with 0 ∈ F (g) and satisfying (5.1).

Assume that the corresponding g̃ǫ satisfies

a0 · x
′ −

1

4
ρ ≤ g̃ǫ(X) ≤ a0 · x

′ +
1

4
ρ in B2ρ \ P, (5.3)

for some a0 ∈ R
n−1. Then if ǫ ≤ ǭ(a0, ρ) g satisfies (5.2) in Bρ.

The next lemma follows immediately from the Corollary 4.2 to Harnack

inequality.

Lemma 5.3. Let ǫk → 0 and let gk be a sequence of solutions to (2.1) with

0 ∈ F (gk) satisfying

U(X − ǫken) ≤ gk(X) ≤ U(X + ǫken) in B1. (5.4)

Denote by g̃k the ǫk-domain variation of gk. Then the sequence of sets

Ak := {(X, g̃k(X)) : X ∈ B1−ǫk \ P},

has a subsequence that converge uniformly (in Hausdorff distance) in B1/2\P

to the graph

A∞ := {(X, g̃∞(X)) : X ∈ B1/2 \ P},

where g̃∞ is a Holder continuous function.

From here on g̃∞ will denote the function from Lemma 5.3.

Lemma 5.4. The limiting function satisfies g̃∞ ∈ C1,1
loc (B1/2 \ P ).

Proof. We fix a point Y ∈ B1/2 \ P , and let δ be the distance from Y to

L. It suffices to show that the functions g̃ǫ are uniformly C1,1 in Bδ/8(Y ).

Indeed , since gǫ − U is an even function that solves the extension problem

in Bδ/2(Y ) we find

‖gǫ − U‖C1,1(Bδ/4)(Y ) ≤ C‖gǫ − U‖L∞(Bδ/2(Y )) ≤ Cǫ,
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and, by implicit function theorem it follows that

‖g̃ǫ‖C1,1(Bδ/8)(Y ) ≤ C.

Here the constants above depend on Y and δ as well. ���

Lemma 5.5. The function g̃∞ satisfies the linearized problem (3.8) in B1/2.

Proof. We start by showing that Ung̃∞ satisfies (4.9) in B1/2 \ {z = 0}.

Let ϕ̃ be a C2 function which touches g̃∞ strictly by below at X0 =

(x0, z0) ∈ B1/2 \ {z = 0}. We need to show that

∆(Unϕ̃)(X0) + β
(Unϕ̃)z(X0)

z0
≤ 0. (5.5)

Since by Lemma 5.3, the sequence Ak converges uniformly to A∞ in B1/2 \P

we conclude that there exist a sequence of constants ck → 0 and a sequence

of points Xk ∈ B1/2 \ {z = 0}, Xk → X0 such that ϕ̃k := ϕ̃+ ck touches g̃k

by below at Xk for all k large enough.

Define the function ϕk by the following identity

ϕk(X − ǫkϕ̃k(X)en) = U(X). (5.6)

Then according to (3.7) ϕk touches gk by below at Yk = Xk−ǫkϕ̃k(Xk)en

∈ B1\{z = 0}, for k large enough. Thus, since gk satisfies (4.9) inB1\{z = 0}

it follows that

∆ϕk(Yk) + β
(ϕk)n+1(Yk)

zk
≤ 0, (5.7)

with zk denoting the (n+ 1)-coordinate of Xk.

Let us compute ∆ϕk(Yk) and (ϕk)n+1(Yk). Since ϕ̃ is smooth, for any

Y in a neighborhood of Yk we can find a unique X = X(Y ) such that

Y = X − ǫkϕ̃k(X)en. (5.8)

Thus (5.6) reads

ϕk(Y ) = U(X(Y )),
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with Yi = Xi if i 6= n and

∂Xj

∂Yi
= δij , when j 6= n.

Using these identities we can compute that

∆ϕk(Y ) = Un(X)∆Xn(Y ) +
∑

j 6=n

(Ujj(X) + 2Ujn(X)
∂Xn

∂Yj
)

+Unn(X)|∇Xn|
2(Y ). (5.9)

From (5.8) we have that

DXY = I − ǫkDX(ϕ̃ken).

Thus, since ϕ̃k = ϕ̃+ ck

DY X = I + ǫkDX(ϕ̃en) +O(ǫ2k),

with a constant depending only on the C2-norm of ϕ̃.

It follows that

∂Xn

∂Yj
= δjn + ǫk∂jϕ̃(X) +O(ǫ2k). (5.10)

Hence

|∇Xn|
2(Y ) = 1 + 2ǫk∂nϕ̃(X) +O(ǫ2k), (5.11)

and also,

∂2Xn

∂Y 2
j

= ǫk
∑

i

∂jiϕ̃
∂Xi

∂Yj
+O(ǫ2k) = ǫk

∑

i 6=n

∂jiϕ̃δij + ǫk∂jnϕ̃
∂Xn

∂Yj
+O(ǫ2k),

from which we obtain that

∆Xn = ǫk∆ϕ̃+O(ǫ2k). (5.12)

Combining (5.9) with (5.11) and (5.12) we get that

∆ϕk(Y ) = ∆U(X) + ǫkUn∆ϕ̃+ 2ǫk∇ϕ̃ · ∇Un +O(ǫ2k)(Un(X) + Unn(X)).
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From the computations above it also follows that,

(ϕk)n+1(Y ) = Un(X)
∂Xn

∂Yn+1
+ Uz(X)

∂Xn+1

∂Yn+1

= Un(X)(ǫk∂n+1ϕ̃(X) +O(ǫ2k)) + Uz(X).

Using (5.7) together with the fact that U solves (4.9) at Xk we conclude

that

0 ≥ ∆(Unϕ̃)(Xk) + β
(Unϕ̃)z(Xk)

zk
+O(ǫk)(Un(Xk) + β

Un(Xk)

zk
+ Unn(Xk)).

The desired inequality (5.5) follows by letting k → +∞.

Next we need to show that

|∇rg̃∞|(X0) = 0, X0 = (x′0, 0, 0) ∈ B1/2 ∩ L,

in the viscosity sense of Definition 3.2. The proof is the same as in the case

α = 1/2, once the properties of the function vR defined in Proposition 4.5

have been established. For convenience of the reader, we present the details.

Assume by contradiction that there exists a function φ which touches

g̃∞ by below at X0 = (x′0, 0, 0) ∈ B1/2 ∩ L and such that

φ(X) = φ(X0) + a(X0) · (x
′ − x′0) + b(X0)r +O(|x′ − x′0|

2 + r1+γ),

for some γ > 0, with

b(X0) > 0.

Then we can find constants α, δ, r̄ and a point Y ′ = (y′0, 0, 0) ∈ B2

depending on φ such that the polynomial

q(X) = φ(X0)−
α

2
|x′ − y′0|

2 + 2α(n − 1)xnr

touches φ by below at X0 in a tubular neighborhood Nr̄ = {|x′−x′0| ≤ r̄, r ≤

r̄} of X0, with

φ− q ≥ δ > 0, on Nr̄ \Nr̄/2.
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This implies that

g̃∞ − q ≥ δ > 0, on Nr̄ \Nr̄/2, (5.13)

and

g̃∞(X0)− q(X0) = 0. (5.14)

In particular,

|g̃∞(Xk)− q(Xk)| → 0, Xk ∈ Nr̄ \ P,Xk → X0. (5.15)

Now, let us choose Rk = 1/(αǫk) and let us define

wk(X) = vRk
(X − Y ′ + ǫkφ(X0)en), Y ′ = (y′0, 0, 0),

with vR the function defined in Proposition 4.5. Then the ǫk-domain varia-

tion of wk, which we call w̃k, can be easily computed from the definition

wk(X − ǫkw̃k(X)en) = U(X).

Indeed, since U is constant in the x′-direction, this identity is equivalent to

vRk
(X − Y ′ + ǫkφ(X0)en − ǫkw̃k(X)en) = U(X − Y ′),

which in view of Proposition 4.5 gives us

ṽRk
(X − Y ′) = ǫk(w̃k(X) − φ(X0)).

From the choice of Rk, the formula for q and (4.12), we then conclude that

w̃k(X) = q(X) + α2ǫkO(|X − Y ′|2),

and hence

|w̃k − q| ≤ Cǫk in Nr̄ \ P. (5.16)

Thus, from the uniform convergence of Ak to A∞ and (5.13)-(5.16) we get

that for all k large enough

g̃k − w̃k ≥
δ

2
in (Nr̄ \Nr̄/2) \ P. (5.17)
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Similarly, from the uniform convergence of Ak to A∞ and (5.16)-(5.15) we

get that for k large

g̃k(Xk)−w̃k(Xk) ≤
δ

4
, for some sequence Xk ∈ Nr̄ \ P,Xk → X0. (5.18)

On the other hand, it follows from Lemma 3.1 and (5.17) that

g̃k − w̃k ≥
δ

2
in Nr̄ \ P,

which contradicts (5.18). ���

The main Theorem now follows combining all of the lemmas above with

the regularity result for the linearized problem, as in the case α = 1/2. For

completeness we present the details.

Proof of Theorem 5.1. Let ρ be the universal constant from Lemma 3.3

and assume by contradiction that we can find a sequence ǫk → 0 and a

sequence gk of solutions to (2.1) in B1 such that gk satisfies (5.1), i.e.

U(X − ǫken) ≤ gk(X) ≤ U(X + ǫken) in B1, (5.19)

but it does not satisfy the conclusion of the Theorem.

Denote by g̃k the ǫk-domain variation of gk. Then by Lemma 5.3 the

sequence of sets

Ak := {(X, g̃k(X)) : X ∈ B1−ǫk \ P},

converges uniformly (up to extracting a subsequence) in B1/2 \ P to the

graph

A∞ := {(X, g̃∞(X)) : X ∈ B1/2 \ P},

where g̃∞ is a Holder continuous function in B1/2. By Lemma 5.5, the

function g̃∞ solves the linearized problem (3.8) and hence by Corollary 3.3

g̃∞ satisfies

a0 · x
′ −

1

8
ρ ≤ g̃∞(X) ≤ a0 · x

′ +
1

8
ρ in B2ρ, (5.20)

with a0 ∈ R
n−1.
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From the uniform convergence of Ak to A∞, we get that for all k large

enough

a0 · x
′ −

1

4
ρ ≤ g̃k(X) ≤ a0 · x

′ +
1

4
ρ in B2ρ \ P, (5.21)

and hence from Lemma 5.2, the gk satisfy the conclusion of our Theorem

(for k large). We have thus reached a contradiction. ���

6. The Regularity of the Linearized Problem

The purpose of this section is to prove an improvement of flatness result

for viscosity solutions to the linearized problem associated to (2.1), that is

{

div(|z|β∇(Unw)) = 0, in B1 \ P,

|∇rw| = 0, on B1 ∩ L,
(6.1)

where we recall that for X0 = (x′0, 0, 0) ∈ B1 ∩ L, we set

|∇rw|(X0) := lim
(xn,z)→(0,0)

w(x′0, xn, z) − w(x′0, 0, 0)

r
, r2 = x2n + z2.

The following is our main theorem.

Theorem 6.1. Given a boundary data h̄ ∈ C(∂B1), |h̄| ≤ 1, which is even

with respect to {z = 0}, there exists a unique classical solution h to (6.1)

such that h ∈ C(B1), h = h̄ on ∂B1, h is even with respect to {z = 0} and

it satisfies

|h(X)−h(X0)−a′ · (x′−x′0)| ≤ C(|x′−x′0|
2+r1+γ), X0 ∈ B1/2∩L, (6.2)

for universal constants C, γ and a vector a′ ∈ R
n−1 depending on X0.

As a corollary of the theorem above we obtain the desired regularity

result, as stated also in Section 3.

Theorem 6.2 (Improvement of flatness). There exists a universal constant

C such that if w is a viscosity solution to (6.1) in B1 with

−1 ≤ w(X) ≤ 1 in B1,
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then

a0 · x
′ − C|X|1+γ ≤ w(X) − w(0) ≤ a0 · x

′ + C|X|1+γ , (6.3)

for some vector a0 ∈ R
n−1.

The existence of the classical solution of Theorem 6.1 will be achieved

via a variational approach in the appropriate weighted Sobolev space. The

advantage of working in the variational setting is that the difference of two

solutions remains a solution. This is not obvious if we work directly with

viscosity solutions.

We say that h ∈ H1(U2
ndX,B1) is a minimizer to the energy functional

J(h) :=

∫

B1

|z|βU2
n|∇h|2dX,

if

J(h) ≤ J(h+ φ), ∀φ ∈ C∞
0 (B1).

Since J is strictly convex this is equivalent to

lim
ǫ→0

J(h) − J(h+ ǫφ)

ǫ
= 0, ∀φ ∈ C∞

0 (B1),

which is satisfied if and only if

∫

B1

|z|βU2
n∇h · ∇φ dX = 0, ∀φ ∈ C∞

0 (B1).

Below, we briefly describe the relation between minimizers and viscosity

solutions. First, a minimizer h solves the equation

div(|z|βU2
n∇h) = 0 in B1,

which in B1 \ P is equivalent to solving

div(|z|β∇(Unh)) = 0 in B1 \ P. (6.4)

Indeed, if φ ∈ C∞
0 (B1 \ P ) then

∫

|z|βU2
n∇h∇(

φ

Un
)dX = 0.
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This implies,
∫

|z|β(Un∇h∇φ−∇hφ∇Un)dX = 0.

Hence,
∫

|z|β(∇(Unh)∇φ−∇Un∇(hφ)) = 0.

The second integral is zero, since Un is a solution of the equation div(|z|β∇Un)

= 0. Thus, our conclusion follows.

Moreover, we claim that if h ∈ C(B1) is a solution to (6.4), such that

lim
r→0

hr(x
′, xn, z) = b(x′), (6.5)

with b(x′) a continuous function, then h is a minimizer to J in B1 if and

only if b ≡ 0.

Proof of the claim. By integration by parts and the computation above

the identity

∫

B1

|z|βU2
n∇h · ∇φ dX = 0, ∀φ ∈ C∞

0 (B1),

is equivalent to the following two conditions

div(|z|β∇(Unh)) = 0 in B1 \ P, (6.6)

and

lim
δ→0

∫

∂Cδ∩B1

|z|βU2
nφ∇h · νdσ = 0, (6.7)

where Cδ is the cylinder {r ≤ δ} and ν the inward unit normal to Cδ.

Here we use that

lim
ǫ→0

∫

{|z|=ǫ}∩(B1\Cδ)
|z|βU2

nφhνdσ = 0.

Indeed, in the set {|z| = ǫ}∩(B1\Cδ) we have, ( for some C independent

of ǫ)

Un ≤ C|z|1−β,

and
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|∇(Unh)|, |∇Un| ≤ C|z|β,

from which it follows that

|∇h| ≤ C|z|−1.

In conclusion we need to show that (6.7) is equivalent to b(x′) = 0.

This follows, after an easy computation showing that

lim
δ→0

∫

∂Cδ∩B1

|z|βU2
nφ∇h · νdσ = Cα

∫

L
b(x′)φ(x′, 0, 0)dx′

with

Cα = α2

∫ π

−π
(cos θ)β(cos

θ

2
)2−2βdθ. ���

From the claim it follows that the function

v(X) := −
|x′|2

n− 1
+ 2xnr,

is a minimizer of J . Using as comparison functions the translations of the

function v above we obtain as in Lemma 4.3 that minimizers h satisfy Har-

nack inequality.

Since our linear problem is invariant under translations in the x′-direction,

we see that discrete differences of the form

h(X + τ)− h(X),

with τ in the x′-direction are also minimizers. Now by standard arguments

we obtain the following regularity result.

Lemma 6.3. Let h be a minimizer to J in B1 which is even with respect to

{z = 0}. Then Dk
x′h ∈ Cγ(B1/2) and

[Dk
x′h]Cγ(B1/2) ≤ C‖h‖L∞(B1),

with C depending on the index k = (k1, .., kn−1).

We are now ready to prove our main theorem.
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Proof of Theorem 6.1. It suffices to show that minimizers h with smooth

boundary data on ∂B1 achieve the boundary data continuously and satisfy

the conclusion of our theorem. Then the general case follows by approxima-

tion.

First we show that h achieves the boundary data continuously. At points

on ∂B1 \ P this follows from the continuity of Unh, since Un 6= 0.

For points X0 ∈ ∂B1∩P we need to construct local barriers for h which

vanish at X0 and are positive in B̄1 near X0. If X0 /∈ L then we consider

barriers of the form

z1−βW (x)/Un

with W harmonic in x. If X0 ∈ L then the barrier is given by

(x′ − x′0) · x
′
0.

By Lemma 6.3 and (6.5), it remains to prove that

|h(x′, xn, x)− h(x′, 0, 0) − b(x′)r| ≤ Cr1+γ , (x′, 0, 0) ∈ B1/2 ∩ L, (6.8)

|hr(x
′, xn, z)− b(x′)| ≤ Crγ , (x′, 0, 0) ∈ B1/2 ∩ L, (6.9)

with C, γ universal and b(x′) a continuous function.

Indeed, h solves

div(|z|β∇(Unh)) = 0 in B1 \ P .

Since Un is independent on x′ we can rewrite this equation as

divxn,z(|z|
β∇(Unh)) = −|z|βUn∆x′h, (6.10)

and according to Lemma 6.3 we have that

∆x′h ∈ L∞(B1/2).

Thus, for each fixed x′, we need to investigate the 2-dimensional problem (in

the (t, z)-variables)

div(|z|β∇(Uth)) = |z|βUtf, in B1/2 \ {t ≤ 0, z = 0}



2014] REGULARITY OF FLAT FREE BOUNDARIES 143

with f bounded.

After fixing x′, say x′ = 0, we may subtract a constant and assume

h(0, 0, 0) = 0. Then Uth is continuous at the origin and coincides with the

solution H(t, z) to the problem

div(|z|β∇H) = |z|βUtf, in B1/2 \ {t ≤ 0, z = 0}, (6.11)

such that

H = Uth on ∂B1/2, H = 0 on B1/2 ∩ {t ≤ 0, z = 0}.

The fact that Uth = H follows from standard arguments by comparing

H − Uth with ±ǫUt and then letting ǫ → 0.

Using that U is a positive solution to the homogenous equation (6.11)

we may apply boundary Harnack estimate (see Remark 6.4) and obtain that

H/U is a Cγ function in a neighborhood of the origin. Thus

|H − aU | ≤ C0r
γU, r2 = t2 + z2, C0 universal,

for some a ∈ R. Since U/Ut = r/α we obtain (6.8) with b = a/α.

We show that (6.9) follows from (6.8) and the derivative estimates for

the extension equation. Indeed, the function H̄ := H − aU above satisfies

|div(|z|β∇H̄)| ≤ Cr−α, ‖H̄‖L∞(B2r\Br) ≤ CrγU,

and the derivative estimates for the rescaled function H̄(r(t, z)) imply

|H̄r| ≤ Crγ−1U = CrγUt.

Using that

Uthr = Hr + (1− α)
H

r
,

we easily obtain (6.9).

Finally we remark that b(x′) is a smooth function since by the translation

invariance of our equaltion in the x′ direction, the derivatives of b are the

corresponding functions in (6.8) for the derivatives ∂xih, i = 1, . . . , n− 1. ���

Remark 6.4. In general boundary Harnack estimate is stated for the quo-

tient v/u of two solutions (and u positive) to a homogenous equation Lu = 0.
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The result remains valid if v solves the equation Lv = g for a right hand side

g that is not too degenerate near the boundary. In fact we only need to find

an explicit barrier w such that Lw ≥ |g| and w/u is Holder continuous at 0.

Then the strategy of trapping v in dyadic balls between multiples aku and

bku can be carried out by trapping v between functions of the type aku+w

and bku− w.

In the case of equation (6.11) an explicit w is given by w := rU and it

is easy to check that

div(|z|β∇w) ≥ c0|z|
βU/r,

for some positive constant c0.
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