
✐

“BN09N22” — 2014/5/15 — 20:59 — page 163 — #1
✐

✐

✐

✐

✐

Bulletin of the Institute of Mathematics
Academia Sinica (New Series)
Vol. 9 (2014), No. 2, pp. 163-186

NEW COMPARISON THEOREMS IN

RIEMANNIAN GEOMETRY

YINGBO HAN1,a,#, YE LI2,b, YIBIN REN3,c

AND SHIHSHU WALTER WEI4,d,∗

1College of Mathematics and Information Science, Xinyang Normal University, Xinyang, Henan 464000,

People’s Republic of China.
aE-mail: yingbohan@163.com
2Department of Mathematics, Central Michigan University, Mt Pleasant, Michigan 48859, U.S.A.
bE-mail: ye.li@cmich.edu
3School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China.
cE-mail: allenrybqqm@hotmail.com
4Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019-0315, U.S.A.
dE-mail: wwei@ou.edu

Abstract

We construct and use solutions, subsolutions, and supersolutions of differential equa-

tions as catalysts to link hypotheses on radial curvature of a complete n-manifold (M, g)

to conclusions on the analysis or geometry of quadratic forms and second order differential

operators. These conclusions are formulated in terms of pointwise estimates on the Hes-

sian and pointwise and weak estimates on the Laplacian of the distance function r from a

fixed point x0 in M. In particular, we prove Hessian Comparison Theorems and Laplacian

Comparison Theorems, generalizing the work of Greene and Wu [2]: If the radial curvature

K of M satisfies − a
2

c2+r2
≤ K(r) ≤ b

2

c2+r2
on D(x0) where 0 ≤ a2, 0 ≤ b2 ≤ 1

4
, 0 ≤ c2, and

D(x0) = M\(Cut(x0) ∪ {x0}), then

1 +
√
1− 4b2

2r

(

g − dr ⊗ dr
)

≤ Hess(r) ≤ 1 +
√
1 + 4a2

2r

(

g − dr ⊗ dr
)

on D(x0), in the sense of quadratic forms, and

(n− 1)
1 +

√
1− 4b2

2r
≤ ∆r ≤ (n− 1)

1 +
√
1 + 4a2

2r
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holds pointwise on D(x0), and ∆r ≤ (n− 1)
1+

√
1+4a2

2r
holds weakly on M. This is equiv-

alent to that if the radial curvature K on D(x0) satisfies

−A(A− 1)

r2
≤ K(r) ≤ B(1−B)

r2

where 1 ≤ A, and 1

2
≤ B ≤ 1, then

B

r

(

g − dr ⊗ dr
)

≤ Hess(r) ≤ A

r

(

g − dr ⊗ dr
)

and (n− 1)
B

r
≤ ∆r ≤ (n− 1)

A

r

holds pointwise on D(x0), and ∆r ≤ (n − 1)A
r

holds weakly on M. We also prove and

apply Hessian Comparison Theorems via Jacobi Type inequalities, Comparison Theorems

on Riccati type inequalities, and Sturm Comparison Theorems. An analog of a theorem

of Greene-Wu on negatively pinched manifolds, − A

r2
≤ K(r) ≤ −A1

r2
< 0 for pointwise

Hessian estimates is given. On positively pinched manifolds, 0 <
b
2

1

r2
≤ K(r) ≤ b

2

r2
,

pointwise Hessian estimates are also made. Pointwise Laplacian Comparison Theorems on

D(x0) are then immediately obtained by taking traces in Hessian Comparison Theorems.

The corresponding weak upper bound estimates of the Laplacian on all of M are then

obtained by Green’s Identity and a double limiting argument(cf. Lemma 9.1, [4], [6]).

1. Introduction

Robert E. Greene and Hung-Hsi Wu have proved a Hessian Comparison

Theorem on a manifold (M,g) with a pole x0, which can be stated as follows:

Let r(x) = distM (x, x0) be the distance function on M from x0.

Theorem A ([2, p.38]). If the radial curvature K of M satisfies

−A

r2
≤ K(r) ≤ −A1

r2
on M\B(a−1)(x0), where 0 < A1 < A, 1 < a,

then

1 +
√
1 + 4A1

2r

(
g − dr ⊗ dr

)
� Hess(r) � 1 +

√
1 + 4A

2r

(
g − dr ⊗ dr

)
.

Here we denote for two functions f1, f2 : [a,∞) → R,

f1 � f2 if lim
f1

f2
(r) ≤ 1 as r → ∞.

In this pioneering result, the radial curvature was required to be neg-

atively pinched off a compact set, and the estimates obtained were (off a
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compact set and) of asymptotical nature near infinity. Since then many

efforts have been made to study the behavior of the Hessian under the as-

sumption of radial curvature with a mixed sign, or positively pinched, or

0 ≤ K(r) ≤ B(1−B)
r2

, and to improve the asymptotic estimates to pointwise

ones and to weak ones on the entire manifold. There are many statements

regarding Hessian comparison theorems in various special cases that are

discussed, made, or applied, however, a general yet detailed result with a

complete proof is still needed to support some works in the literature.

To this end, we prove in this paper the following fundamental results

in a complete n-dimensional Riemannian manifold M : Let x0 ∈ M be a

fixed point. Denote Cut(x0) the cut locus of x0 in M and let D(x0) =

M\(Cut(x0) ∪ {x0}).

Theorem 1.1 (Hessian Comparison Theorem). If the radial curvature K of

M satisfies

− a2

c2 + r2
≤ K(r) ≤ b2

c2 + r2
(1.1)

on D(x0), where 0 ≤ a2, 0 ≤ b2 ≤ 1
4 , and 0 ≤ c2, then

1 +
√
1− 4b2

2r

(
g − dr ⊗ dr

)
≤ Hess(r) ≤ 1 +

√
1 + 4a2

2r

(
g − dr ⊗ dr

)
(1.2)

on D(x0) in the sense of quadratic forms.

This is equivalent to the following:

Theorem 1.2.

Let − a2

r2
≤ K(r) ≤ b2

r2
on D(x0) with 0 ≤ a2 and 0 ≤ b2 ≤ 1

4
. (1.3)

Then (1.2) holds on D(x0).

By taking A = 1+
√
1+4a2

2 and B = 1+
√
1−4b2

2 in Theorem 1.2, one has

the following equivalent result:

Theorem 1.3. If the radial curvature K of M satisfies

−A(A−1)

r2
≤K(r)≤B(1−B)

r2
on D(x0) with 1≤A and

1

2
≤B≤1, (1.4)
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then

B

r

(
g − dr ⊗ dr

)
≤ Hess(r) ≤ A

r

(
g − dr ⊗ dr

)
on D(x0). (1.5)

Theorems 1.1, 1.2 and 1.3 are sharp when a = b = 0 or A = B = 1, and

M = R
n. By setting c = 1, Theorem 1.1 takes the following form:

Corollary 1.1. Suppose the radial curvature K of M satisfies

− a2

1 + r2
≤ K(r) ≤ b2

1 + r2
(1.6)

on D(x0) where 0 ≤ a2 and 0 ≤ b2 ≤ 1
4 .

Then (1.2) holds on D(x0).

By setting A = 1, Theorem 1.3 takes the following form:

Corollary 1.2. If K of M satisfies

0 ≤ K(r) ≤ B(1−B)

r2
(1.7)

on D(x0) where 1
2 ≤ B ≤ 1, then

B

r

(
g − dr ⊗ dr

)
≤ Hess(r) ≤ 1

r

(
g − dr ⊗ dr

)
(1.8)

on D(x0).

When B = 1, and D(x0) = M\{x0}, Theorem 1.3 takes the following

form:

Corollary 1.3. If the radial curvature K of M satisfies

−A(A− 1)

r2
≤ K(r) ≤ 0 (1.9)

on M\{x0} where 1 ≤ A, then

1

r

(
g − dr ⊗ dr

)
≤ Hess(r) ≤ A

r

(
g − dr ⊗ dr

)
(1.10)

on M\{x0} in the sense of quadratic forms.
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Corollary 1.4 (cf. [2]). If M is a manifold with a pole and

0 ≤ K(r)
(
resp. K(r) ≤ 0

)
, (1.11)

then

Hess r ≤ 1

r

(
g − dr ⊗ dr

) (
resp.

1

r

(
g − dr ⊗ dr

)
≤ Hess(r)

)
on M\{x0}.

(1.12)

In particular,

if K(r) ≡ 0 then Hess(r) =
1

r

(
g − dr ⊗ dr

)
.

The technique we employed is to construct and use solutions, subsolu-

tions, and supersolutions of differential equations as catalysts to link hy-

potheses on radial curvature of a complete manifoldM to conclusions on the

analysis or geometry of quadratic forms and second order differential opera-

tors. These conclusions are formulated in terms of pointwise estimates on the

Hessian and pointwise and weak estimates on the Laplacian of the distance

function r from a fixed point x0 in M. Comparison theorems in differential

equations lead naturally to comparison theorems in differential geometry and

the second order linear Jabobi equations are transformed to the first order

nonlinear Riccati equations. More specifically, to obtain Hessian comparison

theorems, we construct and use solutions, supersolutions and subsolutions of

the Jabobi equation in Sect. 3, and apply Hessian Comparison Theorems via

Jacobi type inequalities (in Sect. 4), Comparison Theorems on Riccati type

inequalities (in Sect. 5) and the Sturm Comparison Theorem (in Sect. 6).

For more discussion, background, or insight of geometric analytic approach,

we refer the reader to Stefano Pigola, Marco Rigoli, and Alberto G. Setti’s

book ([4]), Peter Petersen’s book ([3]), and recent articles [1], [5], etc.

The above technique of constructing and using solutions, subsolutions,

and supersolutions of the Jacobi equation as catalysts to link radial curvature

with the Hessian can be employed to more general settings. In Sect. 7, we

prove an analog of Theorem A for pointwise estimates of the Hessian as

follows:
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Theorem 7.1(An extension of a theorem of Greene-Wu). Let the radial

curvature K of M satisfy

−A

r2
≤ K(r) ≤ −A1

r2
on M\{x0}, where 0 < A1 < A.

Then

1+
√
1+4A1

2r

(
g−dr⊗ dr

)
≤Hess(r)≤ 1+

√
1+4A

2r

(
g−dr⊗ dr

)
on M\{x0}.

By constructing different comparison functions for solutions of Jacobi

type equations in consideration, we have the following:

Theorem 7.2. Let the radial curvature K of M satisfy

− a2

c2 + r2
≤ K(r) ≤ − a21

c2 + r2
on M\{x0}, where 0<a21<a

2, 0≤c.

Then

1+
√

1+4a21
2(r + c)

(
g−dr⊗ dr

)
≤Hess(r)≤ 1+

√
1+4a2

2r

(
g−dr⊗ dr

)
on M\{x0}.

We then turn to the study on positively pinched manifolds in Sect 8 and

obtain

Theorem 8.1(An analog of Theorem 7.1). Let the radial curvature K of M

satisfy

b21
r2

≤ K(r) ≤ b2

r2
on D(x0), where 0 < b21 < b2 ≤ 1

4
. (8.1)

Then

1+
√
1−4b2

2r

(
g−dr ⊗ dr

)
≤Hess(r)≤ 1+

√
1−4b21
2r

(
g−dr ⊗ dr

)
on D(x0).

In Sect 9, we obtain immediate pointwise Laplacian Comparison Theo-

rems by taking traces in Hessian Comparison Theorems. The corresponding

weak upper bound estimates of the Laplacian on all of M (c.f. Theorems

9.1, 9.2, 9.3, 9.4, 9.5 and 9.6) are then obtained by an exhaustion method,

Green’s Identity, and a double limiting argument(cf. Lemma 9.1, [4], [6]). In
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particular, we prove

Theorem 9.6 Under the radial curvature assumption (8.1) on D(x0) , the

Laplacian of the distance function satisfies:

(n−1)
1+

√
1−4b2

2r
≤∆r ≤ (n−1)

1+
√

1−4b21
2r

pointwise on D(x0) , (9.6)

and ∆r ≤ (n−1)
1+

√
1−4b21
2r

weakly on M.

We end this paper in Sect 10 by discussing the equivalence of Hessian

Comparison Theorems and the equivalence of the Laplacian Comparison

Theorems with their immediate consequences (cf. Theorems 10.1 and 10.2).
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2. Preliminaries

The radial vector field ∂ on D(x0) is the unit vector field such that for

any x ∈ D(x0), ∂ (x) is the unit vector tangent to the unique geodesic joining

x0 to x and pointing away from x0. A radial plane is a plane π which contains

∂(x) in the tangent space TxM. By the radial curvature K of a manifold,

we mean the restriction of the sectional curvature function to all the radial

planes. We define K(t) to be the radial curvature of M at x such that

r(x) = t. Let a tensor g−dr⊗dr = 0 on the radial direction, and be just the

metric tensor g on the orthogonal complement ∂⊥. At x ∈M, the Hessian of

r, denoted by Hess(r) is a quadratic form on TxM given by Hess(r)(v,w) =

(∇vdr)w = g(∇v∇r, w) for v,w ∈ TxM. Here ∇r is the gradient vector field
of r, and hence is dual to the differential dr of r. Thus, Hess(r)(∇r,∇r) = 0.

The Laplacian of r, is defined to be ∆r = trace
(
Hess(r)

)
. M is said to be a

manifold with a pole x0, if D(x0) =M\{x0}. We recall the following:
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Theorem B (cf. [2] [1]). Let (M,g) be a complete Riemannian manifold

with a pole x0, i.e. D(x0) =M\{x0}.

(i) If −α2 ≤ K(r) ≤ −β2 with α > 0, β > 0, then

β coth(βr)
(
g − dr ⊗ dr

)
≤ Hess(r) ≤ α coth(αr)

(
g − dr ⊗ dr

)

(ii) If K(r) = 0, then

1

r

(
g − dr ⊗ dr

)
= Hess(r)

(iii) If − A
(1+r2)1+ǫ ≤ K(r) ≤ B

(1+r2)1+ǫ with ǫ > 0, A ≥ 0, and 0 ≤ B < 2ǫ,

then

1− B
2ǫ

r

(
g − dr ⊗ dr

)
≤ Hess(r) ≤ e

A

2ǫ

r

(
g − dr ⊗ dr

)

(iv) If −Ar2q ≤ K(r) ≤ −Br2q with A ≥ B > 0 and q > 0, then

B0r
q
(
g − dr ⊗ dr

)
≤ Hess(r) ≤ (

√
A coth

√
A)rq

(
g − dr ⊗ dr

)

for r ≥ 1, where B0 = min{1,− q+1
2 + (B + ( q+1

2 )2)1/2}.

Proof. (i), (ii), and (iv) are treated in Section 2 of [2].

(iii) is treated in [1], for completeness, we include a proof here. Since for

every ǫ > 0,

d

ds

(
− 1

2ǫ
(1 + s2)−ǫ

)
=

s

(1 + s2)1+ǫ
,

we have
∫ ∞

0
s

A

(1 + s2)1+ǫ
ds =

A

2ǫ
<∞ and

∫ ∞

0
s

B

(1 + s2)1+ǫ
ds =

B

2ǫ
< 1.

Now the assertion is an immediate consequence of Quasi-isometry Theorem

due to Greene-Wu [2, p.57] in which 1 ≤ η ≤ e
A

2ǫ and 1− B
2ǫ ≤ µ ≤ 1. ���

3. Proof of Theorem 1.1

Let φ1 = rα, where α = 1+
√
1+4a2

2 .

Then φ′1 = αrα−1, and (2α − 1)2 = 1 + 4a2, i.e. α(α− 1) = a2.
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Hence, for r > 0, φ′′1 = α(α − 1)rα−2, i.e.

φ′′1 +
−a2
r2

φ1 = 0. (3.1)

Furthermore,

φ′1
φ1

=
α

r
=

1 +
√
1 + 4a2

2r
(3.2)

Let h1 satisfy
{
h′′1 +G1h1 = 0,

h1(0) = 0, h′1(0) = 1
(3.3)

where G1 = − a2

c2+r2
, and let

r1 = sup{r : h1 > 0 on (0, r), where h1 satisfies (3.3)} (3.4)

We note r1 = ∞. This can be seen by comparing the solution h1 of (3.3)

with the solution h̃(r) = r of the following

{
h̃′′1 + 0 · h̃1 = 0,

h̃1(0) = 0, h̃′1(0) = 1

and applying a standard Sturm Comparison Theorem. Furthermore, (φ′1h1−
h′1φ1)(0) = 0, and in view of (3.1),(3.3) and (3.4), for r ∈ (0,∞)

(φ′1h1 − h′1φ1)
′ = φ′′1h1 − h′′1φ1

= h1φ1
(a2
r2

− a2

c2 + r2

)

≥ 0

The monotonicity then implies that φ′1h1 ≥ h′1φ1 on (0,∞) which in

turn via (3.2) yields

h′1
h1

≤ φ′1
φ1

=
1 +

√
1 + 4a2

2r
on (0,∞). (3.5)

Similarly, suppose β = 1+
√
1−4b2

2 , with b2 ≤ 1
4 , and φ2 = rβ.
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Then (2β − 1)2 = 1 − 4b2, i.e. β(β − 1) = −b2, and φ′2 = βrβ−1 for

r > 0.

Hence, for r > 0, φ′′2 = β(β − 1)rβ−2, i.e.

φ′′2 +
b2

r2
φ2 = 0. (3.6)

and

φ′2
φ2

=
1 +

√
1− 4b2

2r
for r > 0. (3.7)

Let h2 satisfy
{
h′′2 +G2h2 = 0,

h2(0) = 0, h′2(0) = 1
(3.8)

where G2 =
b2

c2+r2
, and let

r2 = sup{r : h2 > 0 on (0, r), where h2 satisfies (3.8)} (3.9)

Then by l’Hospital’s Rule,

lim
r→0+

(φ′2h2 − h′2φ2)(r) = lim
r→0+

− β

β − 1
h′2(r) r

β = 0.

Furthermore, in view of (3.6), (3.8) and (3.9) for r ∈ (0, r2)

(φ′2h2 − h′2φ2)
′ = φ′′2h2 − h′′2φ2

= φ2h2
(−b2
r2

+
b2

c2 + r2

)

≤ 0

Integrating the above inequality on [ǫ1, r2−ǫ2] ⊂ (0, r2), where ǫ1, ǫ2 > 0,

and passing ǫ1, ǫ2 → 0 we have φ′2h2 ≤ h′2φ2 on (0, r2). This in turn via (3.7)

implies that

1 +
√
1− 4b2

2r
=
φ′2
φ2

≤ h′2
h2

on (0, r2). (3.10)
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Integrating (3.10) on [ǫ, r] ⊂ (0, r2), we have

0 < C(ǫ)rβ ≤ h2 on (ǫ, r) for every 0 < ǫ < r < r2, (3.11)

where C(ǫ) > 0 is a constant depending on ǫ. Thus h2 > 0 on (0, r2). We

claim r2 = ∞. Otherwise there would exist a δ > 0 such that r2 + δ <∞ at

which h2 > 0 by the continuity, and would lead to, via (3.9) a contradiction

r2 < r2 + δ ≤ r2.

Applying (3.5) and (3.10) to the following Comparison Theorem 4.1, we

obtain the desired (1.2) on D(x0).

4. Hessian Comparison Theorems via Jacobi Type Inequalities

Theorem 4.1. Let radial curvature K of a complete n-manifold M satisfy-

ing

G1 ≤ K on D(x0)
(
resp. K ≤ G̃2 on D(x0)

)
(4.1)

where Gi (resp. G̃i ) is a continuous function on R
+ ∪ {0}, and (0, ri) ⊂

(0,∞) is the maximal interval in which hi, i = 1, 2 is a positive solution of

the following

{
h′′1 +G2h1 ≥ 0,

h1(0) = 0, h′1(0) = 1

(
resp.

{
h′′2 + G̃1h2 ≤ 0,

h2(0) = 0, h′2(0) = 1

)
(4.2)

Assume

G2 ≤ G1

(
resp. G̃2 ≤ G̃1

)
.

Then

Hess(r) ≤ h′1
h1

(g − dr ⊗ dr) on Br1(x0) ∩D(x0), (4.3)

(
resp.

h′2
h2

(
g − dr ⊗ dr

)
≤ Hess(r) on Br2(x0) ∩D(x0)

)

in the sense of quadratic forms.
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For the case G1 = G2 = G̃1 = G̃2, h1 = h2 and G1 is a smooth function

on R, we refer the reader to Stefano Pigola, Marco Rigoli, and Alberto G.

Setti’s book [4].

Proof. Let γ be the unit speed geodesic curve joining x0 = γ(0) to

x = γ(t0), and V be a parallel vector field along γ(t), for 0 ≤ t ≤ t0. In

view of Gauss lemma γ′(t) = ∇r(γ(t)). By the definitions of curvature ten-

sor R, geodesic, parallel vector field V and zero torsion of the Riemannian

connection ∇, one has at x

∇∇r∇V ∇r = ∇V ∇∇r∇r +∇[∇r,V ]∇r −R(V,∇r)∇r
= ∇∇∇r V ∇r −∇∇V ∇r∇r −R(V,∇r)∇r
= −∇∇V ∇r∇r −R(V,∇r)∇r

Taking the inner product with V,

〈∇∇r∇V ∇r, V 〉+ 〈∇∇V ∇r∇r, V 〉 = −〈R(V,∇r)∇r, V 〉 (4.4)

We note the above second term on the left hand

〈∇∇V ∇r∇r, V 〉 =
n∑

i=1

〈∇V ∇r, ei〉〈∇ei∇r, V 〉 = 〈∇V ∇r,∇V ∇r〉

where {ei}ni=1 is a local orthonormal frame field, and the last step follows

from the symmetry of the Hessian of r.

Since V is parallel, it follows from (4.4) and (4.1) that

d

dt
〈∇V ∇r, V 〉+ 〈∇V ∇r,∇V ∇r〉 = −〈R(V,∇r)∇r, V 〉 ≤ −G1 (4.5)

Define

λmax(x) = max
{v∈Tx(M)\{0},v⊥∇r(x)}

Hess r(v, v)

〈v, v〉

Select a unit vector v at x = γ(t0) such that

〈∇v∇r, v〉 := Hess r(v, v) = λmax ◦ γ(t0)



✐

“BN09N22” — 2014/5/15 — 20:59 — page 175 — #13
✐

✐

✐

✐

✐

2014] NEW COMPARISON THEOREMS IN RIEMANNIAN GEOMETRY 175

Then

〈∇v∇r,∇v∇r〉 = λ2max ◦ γ(t0)

Let the parallel vector field V along γ satisfying V (t0) = v. Then the function

Hess r(V, V )− λmax ◦ γ(t) ≤ 0, attains its maximum value 0 at t = t0, and if

at this point λmax ◦ γ is differentiable,

d

dt

∣∣∣∣
t=t0

Hess r(V, V ) =
d

dt

∣∣∣∣
t=t0

λmax ◦ γ(t) (4.6)

It follows from (4.5), (4.6), and the fact Hess(r) = 1
r

(
g − dr ⊗ dr

)
+ o(1) as

t→ 0+, that λmax ◦ γ satisfies

{
d
dtλmax ◦ γ + λ2max ◦ γ +G1≤0, for a. e. t>0, where γ([0, t]) ⊂ D(x0)

λmax ◦ γ = 1
t +O(1) as t→ 0+

On the other hand, one can transform Jacobi type inequalities (4.2) into

the following Ricatti type inequalities by setting φ1 =
h′
1

h1
:

{
φ′1 + φ21 =

h′′
1

h1
≥ −G2 on (0, r1)

φ1(t) =
1
t +O(1) as t→ 0+

(4.7)

Indeed, h1(t) = t+O(t2), h′1 = 1 +O(t), and

φ1(t) =
h′1(t)
h1(t)

=
1 +O(t)

t+O(t2)
=

1

t

1 +O(t)

1 +O(t)

=
1

t

(
1

1+O(t)
+O(t)

)
=

1

t
(1 +O(t))=

1

t
+O(1), as t→0+

(4.8)

Now the first part of result (4.3) follows from Comparison Theorem 5.1

in which k1 = λmax ◦ γ is a supersolution of a generalized Riccati equation

and k2 = φ1 is a subsolution of the other equation in (5.1).

Similarly, define

λmin(x) = min
{v∈Tx(M)\{0},v⊥∇r(x)}

Hess r(v, v)

〈v, v〉
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Arguing in the same way by setting φ2 =
h′

2

h2
and using (4.8), one compares

{
d
dtλmin ◦ γ+λ2min ◦ γ+G̃2≥0 for a. e. t>0, where γ([0, t]) ⊂ D(x0)

λmin ◦ γ = 1
t +O(1) as t→ 0+

with {
φ′2 + φ22 =

h′′
2

h2
≤ −G̃1 on (0, r2)

φ2(t) =
1
t +O(1) as t→ 0+

(4.9)

Now the counter-part of the results follows from Comparison Theorem

5.1 where supersolution k1 = φ2 and subsolution k2 = λmin ◦ γ in (5.1),

κ = 1 and G2 = G̃2 ≤ G̃1 = G1. ���

5. Comparison Theorems on Riccati Type Inequalities

Theorem 5.1 (Comparison Theorem for Subsolutions and Supersolutions

of Riccati type equations). Let G1, G2 be continuous functions on [0,∞) with

G2 ≤ G1. For i = 1, 2, let ki ∈ AC(0, ti) be solutions of

k1
′ +

k1
2

κ
+ κG1 ≤ 0 k2

′ +
k2

2

κ
+ κG2 ≥ 0 (5.1)

a.e. in (0, ti) satisfying the asymptotic condition

ki(t) =
κ

t
+O(1) as t→ 0+,

for some constant κ > 0. Then t1 ≤ t2 and k1 ≤ k2 on (0, t1).

This is treated in [4], where G1 = G2.

Proof. Without loss of generality we may assume (5.1) with κ = 1, since

we can rescale ki so that ki
κ , i = 1, 2 satisfies (5.1) with κ = 1. Now observe

ki(s)− 1
s is bounded and locally integrable in a neighborhood of 0. Let

φi(t) = t exp

(∫ t

0
ki(s)−

1

s
ds

)
(5.2)

Then φi ∈ C1(0, ti), φi(0) = 0 and φi > 0 on (0, ti).
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Differentiating (5.2) with respect to t gives

φ′i(t) = ki(t)φi(t) (5.3)

Hence, φ′i(0) = 1 and φ′i ∈ AC(0, ti). Differentiating (5.3) and applying

(5.1), one has

φ′′1 +G1φ1 ≤ 0 on (0, t1) φ′′2 +G2φ2 ≥ 0 on (0, t2)

It follows from the following Sturm Comparison Theorem 6.1 that

t1 ≤ t2 and k1 =
φ1

′

φ1
≤ φ2

′

φ2
= k2. ���

6. Sturm Comparison Theorems

Theorem 6.1. Let G1, G2 ∈ C([0,∞)) with G2 ≤ G1, and let ψ1, ψ2 ∈
C1([0,∞)) with ψ′

1, ψ
′
2 ∈ AC([0,∞)) be solutions of the problems

{
ψ′′
1 +G1ψ1 ≤ 0, a. e. in (0,∞),

ψ1(0) = 0,

{
ψ′′
2 +G2ψ2 ≥ 0, a. e. in (0,∞),

ψ2(0) = 0, ψ′
2(0) > 0

If ψ1(r) > 0 for r ∈ (0, t1) ψ′
1(0) ≤ ψ′

2(0), and (0, ti) in the maximum

domain in which ψi > 0, i = 1, 2, then

t1 ≤ t2

and

ψ′
1(0) > 0,

ψ′
1

ψ1
≤ ψ′

2

ψ2
and ψ1 ≤ ψ2 in (0, t1).

For the case G1 = G2, please see [4].

Proof. Let τ = sup{s ∈ (0, t1) : ψ2 > 0 in (0, s]}. Then ψ1, ψ2 > 0 on

(0, τ), τ ≤ t2, (ψ
′
2ψ1 − ψ′

1ψ2)(0) = 0, and

(ψ′
2ψ1 − ψ′

1ψ2)
′ = ψ′′

2ψ1 − ψ′′
1ψ2 ≥ 0 a. e. in (0, τ)
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Whence ψ′
2ψ1 − ψ′

1ψ2 ≥ 0, and

ψ′
1

ψ1
≤ ψ′

2

ψ2

Integrating from ǫ(> 0) to r(< τ), and passing ǫ to 0 from the right, one has

ψ1(r) = lim
ǫ→0+

ψ1(r) ≤ lim
ǫ→0+

ψ1(ǫ)

ψ2(ǫ)
ψ2(r) =

ψ′
1(0)

ψ′
2(0)

ψ2(r) ≤ ψ2(r) in [0, τ)

Thus, ψ′
1(0) > 0. Or ψ1(r) ≤ 0 on some interval (0, δ), a contradiction.

Furthermore, t1 = τ ≤ t2. Otherwise, τ < t1 would lead to, by the continuity

0 < ψ1(τ) ≤ ψ2(τ) and hence ψ2 > 0 in (0, τ + δ],

for some 0 < δ < t1 − τ , contradicting the definition of τ . ���

7. An extension of A Theorem of Greene-Wu

In contrast to Theorem A, where asymptotic estimates are given, we

have the following:

Theorem 7.1. If

−A

r2
≤ K(r) ≤ −A1

r2
on M\{x0}, where 0 < A1 < A, (7.1)

then

1+
√
1+4A1

2r

(
g−dr⊗ dr

)
≤Hess(r)≤ 1+

√
1+4A

2r

(
g− dr⊗ dr

)
on M\{x0}.

(7.2)

Proof. Arguing as in the proof of Theorem 1.1, Sect 3: We choose φ1 = rα,

where α = 1+
√
1+4A
2 . and choose h1 as in (3.3) where G1 = − A

r2
, Then

(φ′1h1 − h′1φ1)(0) = 0, and for r ∈ (0,∞),

(φ′1h1 − h′1φ1)
′ = φ′′1h1 − h′′1φ1

= h1φ1
(A
r2

− A

r2

)

= 0.
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Thus, corresponding to (3.5) one has

h′1
h1

=
φ′1
φ1

=
1 +

√
1 + 4A

2r
on (0,∞).

Similarly, choose φ2 = rβ, where β = 1+
√
1+4A1

2 , with A1 > 0. Choose

h2 as in (3.8) where G2 = −A1

r2
, Then

lim
r→0+

(φ′2h2 − h′2φ2)(r) = 0.

Furthermore, for r ∈ (0,∞)

(φ′2h2 − h′2φ2)
′ = φ′′2h2 − h′′2φ2

= φ2h2
(A1

r2
+

−A1

r2

)

= 0

The corresponding (3.10) becomes

1 +
√
1 + 4A1

2r
=
φ′2
φ2

=
h′2
h2

on (0,∞).

The assertions follow from Theorem 4.1. ���

The following Theorem recaptures Theorem 7.1, when c = 0.

Theorem 7.2. If

− a2

c2+r2
≤K(r)≤− a21

c2+r2
on M\{x0}, where 0<a21<a

2, 0≤c, (7.3)

then

1 +
√
1 + 4a21

2(r + c)

(
g−dr⊗dr

)
≤ Hess(r) ≤ 1 +

√
1 + 4a2

2r

(
g−dr⊗dr

)
. (7.4)

on M\{x0}.

Proof. We choose φ2 = (c + r)β, where β =
1+
√

1+4a21
2 and let h2 satisfy
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(3.8), where G2 = − a21
c2+r2

. Then on (0,∞),

(φ′2h2 − h′2φ2)
′ = φ′′2h2 − h′′2φ2

= φ2h2
( a21
(c+ r)2

− a21
c2 + r2

)

≤ 0.

Since (φ′2h2 − h′2φ2)(0) = −cβ ≤ 0, φ′2h2 ≤ h′2φ2 on [0,∞). Hence

1 +
√

1 + 4a21
2(c+ r)

=
φ′2
φ2

≤ h′2
h2

on (0, r2).

Arguing in the same way as in the proof of Theorem 1.1 completes the

proof. ���

8. Hessian Comparison Theorems on Positively Pinched Manifolds

In contrast to Corollary 10.1 in which c = 0, we have the following:

Theorem 8.1. Let the radial curvature K of M satisfy

b21
r2

≤ K(r) ≤ b2

r2
on D(x0), where 0 < b21 < b2 ≤ 1

4
. (8.1)

Then

1+
√
1−4b2

2r

(
g−dr ⊗ dr

)
≤Hess(r)≤ 1+

√
1−4b21
2r

(
g − dr ⊗ dr

)
on D(x0).

(8.2)

Proof. We modify the first part of the proof of Theorem 1.1 by choosing α =
1+
√

1−4b21
2 , and G1 =

b21
r2 . Then by l’Hospital’s Rule, lim

r→0+
(φ′1h1 − h′1φ1)(r) =

lim
r→0+

α
1−αh

′
1(r) r

α = 0, and for r ∈ (0, r1), r1 is as in (3.4)

(φ′1h1 − h′1φ1)
′ = φ′′1h1 − h′′1φ1

= h1φ1
(
− b21
r2

+G1

)

= 0
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Thus, corresponding to (3.5) one has

h′1
h1

=
φ′1
φ1

=
1 +

√
1− 4b21
2r

on (0, r1)

which implies that r1 = ∞. Similarly, choose β = 1+
√
1−4b2

2 and G2 = b2

r2
.

Then lim
r→0+

(φ′2h2 − h′2φ2)(r) = lim
r→0+

β
1−βh

′
2(r) r

β = 0 and for r ∈ (0, r2), r2 is

as in (3.9)

(φ′2h2 − h′2φ2)
′ = φ′′2h2 − h′′2φ2

= h2φ2
(
− b2

r2
+G2

)

= 0

Thus corresponding to (3.10) one has

h′2
h2

=
φ′2
φ2

=
1 +

√
1− 4b2

2r
on (0, r2).

which implies that r2 = ∞. Applying Theorem 4.1 completes the proof. ���

9. Laplacian Comparison Theorems

Taking traces in Theorem 1.1, Theorem 1.2, and Corollary 1.1, we imme-

diately obtain the pointwise estimates for ∆r on D(x0). The corresponding

weak estimates on M follow from the following Lemma by a double limiting

argument (cf. [4], [6]):

Lemma 9.1. If ∆r ≤ f(r) holds pointwise in D(x0), where f ∈ C0(0,∞),

then ∆r ≤ f(r) holds weakly on M. That is, for every 0 ≤ ϕ(r) ∈ C∞
0 (M),

∫

M
ϕ(r)∆r dv ≤

∫

M
ϕ(r)f(r) dv

Proof. Let Ω = expx0
(E), where E is the maximal star shaped domain

(⊂ Tx0
M) on which expx0

: E → Ω is a diffeomorphism. Then Cut(x0) =

∂(expx0
(E)) has measure 0, andM = Ω∪Cut(x0), and Ω is star-shaped. We

can exhaust Ω by a family {Ωn}∞n=1 of relatively compact and star-shaped
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domains with smooth boundaries such that

Ωn ⊂ Ωn+1 and

∞⋃

n=1

Ωn = Ω

Since Cut(x0) has measure 0, for every 0 ≤ ϕ(r) ∈ C∞
0 (M),

∫

M
r∆ϕdv =

∫

Ω
r∆ϕdv = lim

n→∞

∫

Ωn

r∆ϕdv

Let νn be the unit outer normal to ∂Ωn ∪ ∂Bδ(x0). Then it follows from

Green’s Identity and ∂r
∂νn

> 0 on the boundary of star-shape Ωn that

∫

Ωn

r∆ϕdv

=

∫

Ωn\Bδ(x0)
r∆ϕdv +

∫

Bδ(x0)
r∆ϕdv

=

∫

Ωn\Bδ(x0)
ϕ∆r dv −

∫

∂Ωn∪∂Bδ(x0)

(
ϕ
∂r

∂νn
− r

∂ϕ

∂νn

)
dS +

∫

Bδ(x0)
r∆ϕdv

=

∫

Ωn\Bδ(x0)
ϕ∆r dv −

∫

∂Ωn

ϕ
∂r

∂νn
dS +

( ∫

∂Ωn

r
∂ϕ

∂νn
dS

)

+
( ∫

Bδ(x0)
r∆ϕdv −

∫

∂Bδ(x0)
ϕ
∂r

∂νn
− r

∂ϕ

∂νn
dS

)

:=

∫

Ωn\Bδ(x0)
ϕ∆r dv −

∫

∂Ωn

ϕ
∂r

∂νn
dS + In + Iδ

≤
∫

Ωn\Bδ(x0)
ϕf(r) dv + 0 + In + Iδ

→
∫

M
ϕf(r) dv as δ → 0 and n→ ∞

Combining the above identity and the inequality gives the desired. ���

Theorem 9.1. Under the radial curvature assumption (1.1) or (1.3) or

(1.6) on D(x0), the Laplacian of the distance function satisfies:

(n−1)
1+

√
1−4b2

2r
≤∆r ≤ (n−1)

1+
√
1+4a2

2r
pointwise on D(x0), (9.1)

and ∆r ≤ (n−1)
1+

√
1+4a2

2r
weakly on M.
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As an immediate consequence of Theorem 1.3 and Lemma 9.1,

Theorem 9.2. Under the radial curvature assumption (1.4) on D(x0), the

Laplacian of the distance function satisfies:

(n− 1)
B

r
≤ ∆r ≤ (n− 1)

A

r
pointwise on D(x0), (9.2)

and ∆r ≤ (n− 1)
A

r
weakly on M.

Theorem 4.1 and Lemma 9.1 imply immediately

Theorem 9.3. Under the curvature assumption (4.1) on D(x0), the as-

sumption (4.2) in which (0, ri) ⊂ (0,∞) is the maximal interval in which

hi, i = 1, 2 is a positive solution, with G2 ≤ G1(resp. G̃2 ≤ G̃1), the Lapla-

cian of the distance function satisfies:

∆r ≤ (n− 1)
h′1
h1

on Br1(x0) ∩D(x0), and weakly on Br1(x0), (9.3)

(
resp. (n− 1)

h′2
h2

≤ ∆r on Br2(x0) ∩D(x0)
)
.

Theorem 9.4. Under the radial curvature assumption (7.1) on M\{x0},
the Laplacian of the distance function satisfies:

(n− 1)
1+

√
1+4A1

2r
≤∆r≤(n−1)

1+
√
1+4A

2r
pointwise on M\{x0}, (9.4)

and ∆r ≤ (n− 1)
1 +

√
1 + 4A

2r
weakly on M.

Theorem 9.5. Under the radial curvature assumption (7.3) on M\{x0},
the Laplacian of the distance function satisfies:

(n−1)
1+

√
1+4a21

2(c + r)
≤∆r≤(n−1)

1+
√
1+4a2

2r
pointwise on M\{x0}, (9.5)

and ∆r ≤ (n− 1)
1 +

√
1 + 4a2

2r
weakly on M.

Theorem 9.6. Under the radial curvature assumption (8.1) on D(x0),

the Laplacian of the distance function satisfies:

(n−1)
1+

√
1−4b2

2r
≤∆r≤(n−1)

1+
√

1−4b21
2r

pointwise on D(x0), (9.6)
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and ∆r ≤ (n− 1)
1 +

√
1− 4b21
2r

weakly on M.

Corollary 9.1. Under the radial curvature assumption (10.1) on D(x0), the

Laplacian of the distance function satisfies

(n− 1)
1 +

√
1− 4b2

2r
≤ ∆r ≤ (n− 1)

1

r
pointwise on D(x0), (9.7)

and ∆r ≤ (n− 1)
1

r
weakly on M.

Corollary 9.2. Under the radial curvature assumption (10.3) on M\{x0},
the Laplacian of the distance function satisfies:

(n− 1)
1

r
≤ ∆r ≤ (n − 1)

1 +
√
1 + 4a2

2r
on M\{x0}. (9.8)

and ∆r ≤ (n− 1)
1 +

√
1 + 4a2

2r
weakly on M.

As an immediate consequence of Corollary 1.2,

Corollary 9.3. Under the radial curvature assumption (1.7) on D(x0), the

Laplacian of the distance function satisfies:

(n− 1)
B

r
≤ ∆r ≤ (n− 1)

1

r
pointwise on D(x0), (9.9)

and ∆r ≤ n− 1

r
weakly on M.

Corollary 1.3 implies at once the following:

Corollary 9.4. Under the assumption of (1.9), the Laplacian of the distance

function satisfies:

(n− 1)
1

r
≤ ∆r ≤ (n− 1)

A

r
pointwise on M\{x0}, (9.10)

and ∆r ≤ (n− 1)
A

r
weakly on M.

Corollary 9.5 (cf. [2]). If (1.11) holds, then

∆r ≤ (n− 1)
1

r

(
resp. (n− 1)

1

r
≤ ∆r.

)
(9.11)
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In particular,

if K(r) ≡ 0 then ∆r =
n− 1

r
.

10. The equivalence of Hessian Comparison Theorems and

The equivalence of Laplacian Comparison Theorems

Proposition 10.1. Three Hessian Comparison Theorems 1.1, 1.2, and 1.3

are equivalent.

Proof. (i) Theorem 1.1 ⇐⇒ Theorem 1.2: If (1.1) holds then (1.3) holds

by choosing c = 0 in (1.1). Conversely if (1.3) holds, then (1.1) holds, since

[− a2

c2+r2
, b2

c2+r2
] ⊂ [−a2

r2
, b

2

r2
] (ii) Theorem 1.2 ⇐⇒ Theorem 1.3: This is due to

the fact that A = 1+
√
1+4a2

2 and B = 1+
√
1−4b2

2 if and only if a2 = A(A− 1)

and b2 = B(1−B). ���

Proposition 10.2. Three implications that state Laplacian Comparison

Theorems in Theorem 9.1, i.e. (1.1) =⇒ (9.1), (1.3) =⇒ (9.1), (1.6) =⇒
(9.1) are equivalent.

By setting a = 0, Theorem 1.1 takes the following form:

Corollary 10.1.

0 ≤ K(r) ≤ b2

c2 + r2
(10.1)

on D(x0) where 0 ≤ b2 ≤ 1
4 , and 0 ≤ c2, then

1 +
√
1− 4b2

2r

(
g − dr ⊗ dr

)
≤ Hess(r) ≤ 1

r

(
g − dr ⊗ dr

)
(10.2)

on D(x0) in the sense of quadratic forms. Furthermore, the pointwise and

weak Laplacian estimates (9.7) hold.

By setting b = 0, Theorem 1.1 takes the following form:

Corollary 10.2. If

− a2

c2 + r2
≤ K(r) ≤ 0 (10.3)
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on M\{x0} where 0 ≤ a2, and 0 ≤ c2, then

1

r

(
g−dr ⊗ dr

)
≤Hess(r)≤ 1+

√
1+4a2

2r

(
g − dr ⊗ dr

)
on M\{x0}. (10.4)

Furthermore, the pointwise and weak Laplacian estimates (9.8) hold.

Combining Theorem 8.1 and Corollary 10.1 in which c = 0, one has

Theorem 10.1. Let the radial curvature K of M satisfy

(8.1)
b21
r2

≤ K(r) ≤ b2

r2
on D(x0), where 0 ≤ b21 < b2 ≤ 1

4
.

Then the Hessian estimates (8.2) and the pointwise and weak Laplacian

estimates (9.6) hold.

Analogously, combining Theorem 7.2 and Corollary 10.2 in which c = 0,

one has

Theorem 10.2. Let

−a
2

r2
≤ K(r) ≤ −a

2
1

r2
on M\{x0}, where 0 ≤ a21 < a2. (10.5)

Then the Hessian estimates (7.4) and the pointwise and weak Laplacian es-

timates (9.5) hold.
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