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Abstract

In this note, we will outline the classical results of Eells-Sampson [7] on the harmonic

heat flow, Sacks-Uhlenbeck [26] in homotopy classes and Schoen-Uhlenbeck [28] on the

partial regularity of minimizing harmonic maps. This note also contains a new proof of

the Sacks-Uhlenbeck result [26] by using an estimate of Trudinger [34], which improved

the result of Moser in [23].

1. Introduction

The theory of harmonic maps provides a prototype for many complex

physical theories including the σ-model, superconductivity, and string the-

ory. The theory of harmonic maps has many important applications to

geometry and topology. Motivated by the seminal work of Eells and Samp-

son [7] on the harmonic map flow, Donaldson [6] established the important

Donaldson-Uhlenbeck-Yau theorem by using the Yang-Mills flow, and Hamil-

ton in [14] established many pioneering results on the Ricci flow in order to

settle the Poincare conjecture.

One of the important tasks on harmonic maps is to deal with the very

challenging Eells-Sampson question (e.g. [8]). More precisely, let u0 be

a given smooth map from M to N . Can u0 be deformed to a harmonic

map in its homotopy class?
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The Eells-Sampson question is a question of establishing existence of

a smooth harmonic map representative in a fixed homotopy class of maps

between two manifolds. Main purpose of this note is to discuss three classical

results related to this question. We will discuss this question for the case

that the target manifolds N have non-positive sectional curvature and some

results of minimizing the Dirichlet energy. More precisely, in Section 3, we

will outline some key proofs of the classical results of Eells-Sampson [7] on

the harmonic heat flow. In Section 4, we will discuss the result of Sacks-

Uhlenbeck [26] in homotopy classes in 2D. In particular, we will present

some new proofs on the Sacks-Uhlenbeck result [26] by using an estimate of

Trudinger [34], which improved the Moser-Harnack estimate [23]. In Section

5, we will outline some key proofs of Schoen-Uhlenbeck [28] on the partial

regularity of minimizing harmonic maps (see also Giaquinta-Giusti [10]).

This note was lectured by the author in the Winter School on Geometric

Partial Differential Equations at Brisbane, Australia from 2-13 July 2012.

Finally, I would like to dedicate this paper to Professor Neil Trudinger

on the occasion of his 70th birthday.

2. Harmonic Maps between Manifolds

LetM be a n-dimensional Riemannian manifold (with or without bound-

ary) with a smooth Riemannian metric g. In a local coordinates around fixed

point p ∈M , g can be represented by

g = gijdxi ⊗ dxj ,

where (gij) is a positive definite symmetric n×n matrix. Let (gij) = (gij)
−1

be the inverse matrix of (gij) and the volume element of (M ; g) is

dvg =
√

|g|dx,

where |g| = det (gij). Let (N ;h) be another l-dimensional compact Rieman-

nian manifold without boundary (isometrically embedded into R
k), with a

smooth Riemannian metric h.

For a map u :M → N , its Dirichlet energy functional is defined by

E(u) =

∫

M
e(u) dvg,
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where the density function e(u) is given by

e(u)(x) =
1

2
|∇u(x)|2 =

1

2

∑

α,β,i,j

gij(x)hαβ(u(x))
∂uα

∂xi

∂uβ

∂xj
.

A smooth map u from M to N is said to be a harmonic map ([8]) if u

is a critical point of the Dirichlet energy functional E; i.e. it satisfies

△Mu+A(u)(∇u,∇u) = 0

in M , where △M is the Laplacian operator with respect to the Riemannian

metric of M and A is the second fundamental form of N .

Next, we will give details to get the harmonic map equations.

We recall that a Riemannian manifold M is a smooth manifold which

is equipped with a Riemannian metric g; i.e. for each tangent space TxM ,

there is an inner product 〈·, ·〉. In local coordinates,

gij :=

〈

∂

∂xi
,
∂

∂xj

〉

.

For X,Y,Z ∈ C∞(TM), the connection ∇ satisfies

X 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉

The connection, which satisfies the above identity, is called Riemannian. In

local coordinates, the Christoffel symbols are defined by

∇ ∂

∂xi
(
∂

∂xj
) = Γk

ij
∂

∂xk
.

More precisely, the Christoffel symbols Γk
ij can be expressed by

Γk
ij :=

1

2
gkl
(

∂glj
∂xi

+
∂gil
∂xj

−
∂gij
∂xl

)

.

We recall that the curvature tensor of Levi-Civita connection R is given by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z
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for X,Y,Z ∈ C∞(TM). In local coordinates,

R

(

∂

∂xi
,
∂

∂xj

)

∂

∂xl
= Rk

lij

∂

∂xk

We set

Rklij := gkmR
m
lij =

〈

R

(

∂

∂xi
,
∂

∂xj

)

∂

∂xk
,
∂

∂xl

〉

In local coordinates, we have

Rk
lij =

(

∂Γk
jl

∂xi
−
∂Γk

il

∂xj
+ Γk

imΓm
jl − Γk

jmΓ
m
il

)

. (1)

Let N be another compact Riemannian manifold with a metric h.

Let u = (u1, . . . , ul) be a C1-map from M to N . Intrinsically, the

differential du of u is given (see [8] or [18]) by

du =
∂uα

∂xi
dxi ⊗

∂

∂uα

which can be considered as a section of the bundle T ∗M ⊗ u−1(TN). Then

we define the energy density

e(u) =
1

2
〈du, du〉T ∗M⊗u−1(TN) =

1

2
gijhαβ(u)

∂uα

∂xi
∂uβ

∂xj
.

We define the energy of u as

E(u) :=

∫

M
e(u) dvg .

Assume that u is a critical point of E. Then for all admissible variation

ϕ ∈ C∞
0 (M)

d

dt
E(u+ tϕ)

∣

∣

∣

∣

t=0

= 0.

It implies that

0 =

∫

M

(

gijhαβ
∂uα

∂xi
∂ϕβ

∂xj
+

1

2
gijhαβ,uσϕσ ∂u

α

∂xi
∂uβ

∂xj

)

√

|g|dx
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= −

∫

M

∂

∂xj

(

√

|g|gij
∂uα

∂xi

)

hαβϕ
β dx−

∫

M
gij
∂uα

∂xi
∂uσ

∂xj
hαβ,uσϕβ

√

|g|dx

+

∫

M

1

2
gijhαβ,uσϕσ ∂u

α

∂xi
∂uβ

∂xj

√

|g|dx.

Put ηα = hαβϕ
β; i.e. ϕβ = hγβηγ . Then

0 = −

∫

M

∂

∂xj

(

√

|g|gij
∂uγ

∂xi

)

ηγ dx

−
1

2

∫

M
gijhγσ(hασ,uβ + hσβ,uα − hαβ,uσ)

∂uα

∂xi
∂uβ

∂xj
ηγ
√

|g| dx

which implies

△Mu =
1
√

|g|

∂

∂xi

(

√

|g|gij
∂u

∂xi

)

= −A(u)(∇u,∇u),

where A(u) = (A1, . . . , Al) is given by

A(u)γ(∇u,∇u) = gijΓγ
αβ

∂uα

∂xi

∂uβ

∂xj
.

Let ψ be a vector field along u, i.e. a section of u−1(TN). In local

coordinates

ψ = ψα(x)
∂

∂uα

and

dψ = ∇ ∂

∂xi

(

ψα(x)
∂

∂uα

)

dxi

=
∂ψα

∂xi
∂

∂uα
⊗ dxi + ψαΓγ

αβ

∂uβ

∂xi
∂

∂uγ
⊗ dxi

which is a section of T ∗M ⊗ u−1(TN). Then ψ induces a variation of u by

ut(x) = expu(x)(tψ(x)).

We compute

0 =
d

dt
E(ut)

∣

∣

∣

∣

t=0

=

∫

M
〈du, dψ〉 (2)



✐

“BN09N23” — 2014/5/20 — 10:38 — page 192 — #6
✐

✐

✐

✐

✐

192 MIN-CHUN HONG [June

=

∫

M

〈

du,∇ ∂
∂xi

(

ψα(x)
∂

∂uα

)

dxi
〉

= −

∫

M

〈

∇ ∂

∂xi
du, ψα(x)

∂

∂uα
dxi
〉

= −

∫

M
〈trace∇du, ψ〉

for all ψ, where ∇ is the covariant derivatives in T ∗M ⊗ u−1(TN). Note

∇ ∂

∂xj
dxi = −MΓi

kjdx
k, ∇ ∂

∂uβ
(
∂

∂uα
) = NΓσ

αβ

∂

∂uσ
.

Then we write ∇du = ∇ ∂

∂xj
(du)dxj with

∇ ∂

∂xj
(du) = ∇ ∂

∂xj
(
∂uα

∂xi
dxi ⊗

∂

∂uα
)

=
∂2uα

∂xi∂xj
dxi ⊗

∂

∂uα
− MΓi

lj

∂uα

∂xi
dxl ⊗

∂

∂uα
+ NΓσ

αβ

∂uα

∂xi
∂uβ

∂xj
dxi ⊗

∂

∂uσ
.

From the above, we have

Lemma 2.1. The harmonic map equation is

τ(u) := trace∇du = 0,

where τ(u) = τσ(u) ∂
∂uσ satisfies

τσ(u) = gij
∂2uσ

∂xi∂xj
− gij MΓk

ij

∂uσ

∂xk
+ gij NΓσ

αβ

∂uα

∂xi
∂uβ

∂xj
.

Another way to derive the harmonic map equation:

Let N ⊂ R
K be an embedded compact manifold in R

K . Then there is

a δ = δ(N) > 0 such that the nearest point project map ΠN : Nδ → N is

smooth, where

Nδ :=

{

y ∈ R
k : d(y,N) = inf

x∈N
|y − x| < δ

}

,

and ΠN (y) ∈ N is the projection such that |y−ΠN (y)| = d(y,N) for y ∈ Nδ.

The second result is:
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Remark 2.2. A smooth map u from M to N is harmonic if and only if it

satisfies

△Mu ⊥ TuN.

Proof. Note that dΠu : Rk → TuN is a tangential projection map for any

u ∈ N . For any smooth φ ∈ C∞
0 (M,Rk), set

ut = Π(u+ tφ).

If u is a critical point of E, then we have

d

dt

∣

∣

∣

∣

t=0

E(ut) =

∫

M

〈

∇u,∇(dΠu(x)(φ(x)))
〉

dvg

= −

∫

M

〈

△Mu, dΠu(x)(φ(x))
〉

dvg

= −

∫

M

〈

(dΠu(x))(△Mu), φ
〉

dvg = 0.

In fact, one can show that

(dΠu(x))(△Mu) = △Mu− d2Πu(x)(∇u,∇u) = △Mu+A(u)(∇u,∇u). ���

3. The Heat Flow Approach

In their pioneering paper [7], Eells and Sampson introduced the har-

monic map flow to establish existence of harmonic maps for the case that

the sectional curvature of the target manifold is non-positive.

In this section, we consider the following evolution problem:

∂tu = △Mu+A(u)(∇u,∇u) (3)

with u(x, 0) = u0. We call (3) the heat flow for harmonic maps.

The global estimate is:

Lemma 3.1. If u(x, t) is a solution to the harmonic map flow (3) in M ×



✐

“BN09N23” — 2014/5/20 — 10:38 — page 194 — #8
✐

✐

✐

✐

✐

194 MIN-CHUN HONG [June

[0, T ) for some T with 0 < T ≤ ∞, we then have

E(u(·, t)) +

∫ t

0

∫

M
|∂tu|

2 dvdt = E(u0)

for any t ∈ [0, T ).

Proof. Taking ψ = ∂u
∂t in (2), we have

d

dt
E(u(·, t)) =

∫

M
〈∇∂tdu, du〉 =

∫

M

〈

d
∂u

∂t
, du

〉

= −

∫

M

〈

τ(u),
∂u

∂t

〉

= −

∫

M

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

.

The result follows from integrating by parts. ���

Let RM and RN be the Riemannian curvature tensors of M and N

respectively.

Let RicM denote the Ricci curvature of M and KN be the sectional

curvature of N . Then

Lemma 3.2. Let u(x, t) be a solution to the harmonic map flow inM×[0, T ].

Then we have

(∂t −△M )e(u) =− |∇2u|2 +
〈

du ·RicM (ei), du · ei
〉

−
〈

RN (du · ei, du · ej)du · ej , du · ei
〉

,

where {ei} is an orthonormal frame at x If KN ≤ 0, then

(∂t −△M )e(u) ≤ Ce(u).

Proof. This original approach is due to Eells-Sampson [7]. Our proof is

essentially due to Jost [18].

We introduce normal coordinates at the points x and u(x) such that

gij(x) = δij and hαβ(u(x)) = δαβ and all first derivatives are zero, so the

Christoffel symbols vanish at x and u(x). Since u is a solution of the har-

monic map flow,

∂uσ

∂t
= gij

∂2uσ

∂xi∂xj
− gij MΓk

ij

∂uσ

∂xk
+ gij NΓσ

αβ

∂uα

∂xi
∂uβ

∂xj
.
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Differentiating this equation at the point x along the direction of xl, we have

∂3uσ

∂xi∂xi∂xl
=
∂uσ

xl

∂t
+

1

2

(

gik;xixl + gik;xixl − gii;xkxl

) ∂uσ

∂xk

−
1

2

(

hασ;uβuγ + hσβ;uαuγ − hαβ;uσuγ

) ∂uα

∂xi
∂uβ

∂xi
∂uγ

∂xl
.

In the coordinates, we have at x

gij
;xkxk = −gij;xkxk

and by the chain rule

△Mhαβ(u(x)) = hαβ;uσuγuσxku
γ
xk .

Combining the above estimate, we have at x

(△M − ∂t)

(

1

2
gijhαβu

α
xiu

β
xj

)

= uαxixku
α
xixk + uαxi(u

α
xixkxk − ∂tu

α
xi) +

1

2
[gij

;xkxku
α
xiu

α
xj +△Mhαβu

α
xiu

β
xi ]

= |∇du|2 −
1

2

(

gij;xkxk + gkk;xixj − gkj;xkxi − gkj;xkxi

)

uαxiu
α
xj

+
1

2

(

hαβ;uσuγ + hσγ;uαuβ − hασ;uβuγ − hβσ;uαuγ

)

uαxiu
β
xiu

σ
xku

γ
xk

= |∇du|2 +
1

2
RM

ij u
α
xiu

α
xj −

1

2
RN

ασβγu
α
xiu

β
xiu

σ
xku

γ
xk ,

where at x we noted RM
ij = gklRM

ikjl = RM
ikjk and

RM
klij =

1

2

(

gjk;xlxi + glk;xixj − gjl;xkxi − gik;xlxj − glk;xixj + gil;xkxj

)

=
1

2

(

gjk;xlxi + gil;xkxj − gjl;xkxi − gik;xlxj

)

.

Since ei =
∂
∂xi

is an orthonormal frame at x, we have

△Me(u) −
∂

∂t
e(u) =|∇du|2 +

1

2

〈

du ·RicM (ei), du · ei
〉

−
1

2

〈

RN (du · ei, du · ej)du · ej , du · ei
〉
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If KN ≤ 0, we have

△e(u)−
∂

∂t
e(u) ≥ −Ce(u).

This proves our claim. ���

The following is the well-know Moser-Harnack estimate:

Lemma 3.3. Let f ∈ C∞(BR(x0) × [t0 −R2, t0] be a nonnegative function

satisfying

(∂t −△M)f ≤ Cf

for a constant C > 0. Then there is a constant C such that

f(x0, t0) ≤ CRn+2

∫ t0

t0−R2

∫

BR(x0)
f dvg dt.

The following theorem is due to Eells-Sampson [7]:

Theorem 3.4. LetM and N be two compact Riemannian manifolds without

boundary. Assume that the sectional curvature KN is non-positive. Let

u0 ∈ C∞(M,N) be a given map. Then there is a global smooth solution

u ∈ C∞(M × [0,∞)) such that the harmonic map flow with initial value u0

has a global smooth solution. As t → ∞ suitably, u(·, t) converges smoothly

to a harmonic map u∞.

Proof. By the local existence, there is a unique smooth solution inM×[0, T ].

Using Lemmas 3.2−3.3, there is a constant C such that |∇u| is uniformly

bounded inM×[0,∞). By the Lp-estimates, we can show there is a constant

C = C(p,M,N) such that

‖u‖W 2,p(BR×(T−R2,T )) ≤ C(p,M,N)

for some R > 0. By the bootstrap method, u is smooth in M × [0,∞). By

the energy inequality, we know

∫ ∞

0

∫

M
|∂tu|

2 ≤ E(u0) < +∞.
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Using the harmonic map heat flow, there is a sequence tk → ∞ such that

ut(·, tk) → 0 and u(·, tk) → u∞ smoothly satisfying

△Mu∞ +A(u∞)(∇u∞,∇u∞) = 0. ���

In fact, u∞ is unique due to Hartman [15].

Lemma 3.5. Let u(x, t, s) be a smooth family of solutions of the harmonic

map flow with initial values u(x, 0, s) = g(x, s) for 0 ≤ s ≤ s0. Assume

again that N has non-positive sectional curvature. For every s ∈ [0, s0]

sup
s∈[0,1]

sup
x∈M

(

hαβ
∂uα

∂s

∂uβ

∂s

)

is non-increasing in t.

Proof. Using normal coordinates we can obtain

(△−
∂

∂t
)

(

hαβ
∂uα

∂s

∂uβ

∂s

)

= hαβ
∂2uα

∂xk∂s

∂2uβ

∂xk∂s
−

1

2
RN

αβσγu
α
s u

β
xku

σ
su

γ
xk .

Since KN ≤ 0,

(△−
∂

∂t
)

(

hαβ
∂uα

∂s

∂uβ

∂s

)

≥ 0.

Then the result follows from the maximum principle for the parabolic equa-

tions. ���

Assume that u1 and u2 are smooth homotopic maps from M to N and

f :M× [0, 1] → N is a smooth homotopy with f(x, 0) = u1(x) and f(x, 1) =

u2(x). Then the curve f(x, ·) is connecting u1(x) and u2(x). Let g(x, ·) be

the geodesic from u1(x) and u2(x), parameterized by the arc length. We

define d̃(u1(x), u2(x)) to be the arc length of the geodesic arc. Then

Lemma 3.6. Assume again that N has non-positive sectional curvature.

Let u(x, t, s) be a smooth family of solutions of the harmonic map flow with

initial values u(x, 0, s) = g(x, s) for 0 ≤ s ≤ 1. Then

sup
x∈M

d̃ (u(x, t, 0), u(x, t, 1))
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is non-increasing in t ∈ [0, T ].

Proof. By the construction, at t = 0 we have

sup
x∈M

(

hαβ
∂uα

∂s

∂uβ

∂s

)

= sup
x∈M

|
∂g

∂s
|2 = sup

x∈M
d̃2 (u(x, 0, 0), u(x, 0, 1))

For each t ∈ [0, T ],

d̃2 (u(x, t, 0), u(x, t, 1)) ≤ sup
s∈[0,1]

sup
x∈M

(

hαβ
∂uα

∂s

∂uβ

∂s

)

since u(x, t, ·) is a curve joining u(x, t, 0) and u(x, t, 1) in the homotopy class.

The claim follow from Lemma 3.5. ���

Let u∞ be the limit of u(x, tk) as tk → ∞ and ũ∞ be the limit of u(x, t̃k)

as t̃k → ∞. By the above Lemmas,

d̃(u(x, tk + t), u∞) ≤ d̃(u(x, tk), u∞).

By choosing a subsequence t̃k, we show that u∞ = ũ∞.

4. The Sack-Uhlenbeck Functional and Applications

In the two dimensional case, Lemaire [19] and Schoen-Yau [29] estab-

lished many existence results in each homotopy class under certain topolog-

ical conditions.

In a well-known paper [26], Sacks and Uhlenbeck established many ex-

istence results of minimizing harmonic maps in their homotopy classes by

introducing a family of functionals

Eα(u) =

∫

M
(1 + |∇u|2)αdv

for α > 1. The α-functional Eα is now called the ‘Sacks-Uhlenbeck func-

tional’. For each α > 1, there is a minimizer uα of Eα in the same homotopy

class.
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Lemma 4.1. Let u0 ∈ C
∞(M,N) be a given map. For each α > 1, there is

a minimizer uα of Eα in the homotopy class [u0]; i.e.

Eα(uα) = inf
{

Eα(v) : v ∈W 1,2α(M,N), [v] = [u0]
}

.

Moreover, uα satisfies

△Mu+ (α− 1)
∇ |∇u|2 · ∇u

1 + |∇u|2
+A(u)(∇u,∇u) = 0. (4)

Proof. Set

mα = inf
{

Eα(v) : v ∈W 1,2α(M,N), [v] = [u0]
}

.

Then mα ≤ Eα(u0) ≤ C for a uniform constant C > 0 in α. There is a

minimizing sequence in [u0] such that

∫

M
|∇ui|

2α ≤ 1 +mα for all i.

By the lower-semi continuity of Eα, we have

Eα(uα) ≤ lim inf
i→∞

Eα(ui) = mα

Note that ui converges to uα in W 1,2α weakly and in Cβ(M,N) with β =

1− 1
α by the Sobolev inequality, so [uα] = [u0]. Therefore, ui → uα in W 1,2α

strongly. It is easy to check that uα satisfies (4). ���

The following theorem is due to Sacks-Uhlenbeck [26]:

Theorem 4.2. Let uα be critical points of Eα and Eα ≤ B for some constant

B > 0. As α→ 1, uα weakly sub-converges to a map u inW 1,2(M,N). Then

there is a finite numbers of points {x1, . . . , xL} ⊂M such that uα converges

to u in C∞(M\{x1, . . . , xL}, N). Moreover, u can be extended to a smooth

map in M .

Moreover, a bubbling phenomenon occurs by studying the limits of the

critical points of Eα as α→ 1 (see section 4 in [26]).

One of key steps is to derive a Bochner type formula. Let (gij) be a

Riemannian metric on M . Then
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Lemma 4.3. (Bochner’s type formula) Let u(x) be a smooth solution to the

α-equation (4) and set e(u) := |∇u|2. Then, for α− 1 sufficiently small, we

have

(

gij +
(α− 1)

1 + |∇u|2
gik

∂uβ

∂xk
gjl
∂uβ

∂xl

)

∂2e(u)

∂xi∂xj
≥ −Ce(u)(e(u) + 1), (5)

where the constant C does not depend on α and u.

Proof. In a neighborhood of each point x ∈M , we can choose an orthonor-

mal frame {e1, e2}. We denote by ∇i the first covariant derivative with

respect to ei and by uji the second covariant derivatives of u and so on. In

a local frame, we have

∇je(u) = 2uγku
γ
kj, |∇2u|2 =

∑

k,i,γ

∣

∣uγki
∣

∣

2
.

The Ricci identity is

uiki = uiik +Rikui,

where Rik is the Ricci curvature. Then we have

∇i

(

(δij + 2(α− 1)
uβi u

β
j

1 + |∇u|2
)∇je(u)

)

= 2∇i

(

uγku
γ
ki + 2(α− 1)

uβi u
β
j u

γ
ku

γ
kj

1 + |∇u|2

)

= 2|∇2u|2 + 2uγku
γ
iik + 4(α − 1)∇k

(

uγku
γ
j u

β
i u

β
ij

1 + |∇u|2

)

≥ |∇2u|2 + 2uγk∇k

(

uγii + 2(α− 1)
uγj u

β
i u

β
ij

1 + |∇u|2

)

− Ce(u)

for α−1 sufficiently small, where we used the Ricci identity twice for switch-

ing third order derivatives. Using the α-equation (4) and the Young’s in-

equality, we have

−

(

δij + 2(α − 1)
uβi u

β
j

1 + |∇u|2

)

∇2
ije(u)
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≤ −
1

2
|∇2u|2 − 2uγk∇k (A

γ(u)(∇u,∇u)) + Ce(u)

≤ Ce(u)(e(u) + 1)

for α− 1 sufficiently small. This proves our claim. ���

The following local Harnack inequality is taken from Theorem 9.20 of

Gilberg-Trudinger’s book [13].

Lemma 4.4. Let v(x) ∈W 2,n(Ω) and let

aijDijv + Cv ≥ 0,

where aij are measurable functions in Ω ⊂ R
n satisfying

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2

for any two positive constants λ and Λ. Then for any p > 0 and R > 0 with

BR(x) ⊂ Ω, we have

|v(x)| ≤ C

(

1

Rn

∫

BR(x)
(v+)p

)1/p

.

Remark. Moser [23] proved the inequality for p > 1 and Trudinger [34]

proved the inequality for all p > 0. In fact, we need the case for p = 1.

The following ε-regularity estimate is essentially due to Schoen in [27]:

Lemma 4.5. Let u(x) be a solution of the α-equation (4). There is a small

constant ε0 > 0 such that if

∫

BR

|∇u(x)|2 dx ≤ ε0

for a ball BR with some R > 0, then

|∇u(x)|2 ≤
C

R2

∫

BR

|∇u|2 dvg ∀x ∈ BR/2,

where the constant C depends not on x and α.
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Proof. We choose σ0 ∈ [0, R] such that

(R− σ0)
2 sup
Bσ0

e(u) = max
σ∈[0,R]

{

(R − σ)2 sup
Bσ

e(u)

}

.

Let x0 be the point in B̄σ0
such that

e0 =: e(u)(x0) = sup
Bσ0

e(u).

Set ρ0 =
1
2(R− σ0), which implies R− (σ0 + ρ0) = ρ0. Then

sup
Bρ0 (x0)

e(u) ≤ sup
Bσ0+ρ0

e(u) ≤ 4e0.

We claim

r0 = (e0)
1/2ρ0 ≤ 1.

Otherwise, we may assume that r0 > 1; i.e. e0(R − σ0)
2 > 4. We define a

new map v ∈ C2(Br0(x0)) by

v(x) = u(x0 +
x

e
1/2
0

)

for x ∈ Br0(0). Then v satisfies the scaled α-equation

div((e−1

0
+|∇v|2)α−1∇v)

(e−1

0
+|∇v|2)α−1

+A(v)(∇v,∇v) = 0

and

e(v)(0) = 1, sup
Br0

e(v) ≤ 4. (6)

By Lemma 4.3 and (6), we have

−aij(v)∇
2
ije(v) ≤ Ce(v),

where

aij(v) = δij + 2(α − 1)
vβi v

β
j

e−1
0 + |∇v|2

.

The symmetric matrix (aij(v)) has positive eigenvalues satisfying the uni-

form elliptic condition. By the Moser-Trudinger estimate (Lemma 4.4), we
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have

1 = e(v)(0) ≤ C

∫

B1(0)
e(v) ≤ Cε0,

which is impossible if we choose ε0 small, where we note

∫

Br0 (0)
e(v) =

∫

Bρ0 (x0)
e(u) ≤ ε0. (7)

This proves that r0 ≤ 1.

Using the Moser-Trudinger estimate again, we have

1 = e(v)(0) ≤ Cr−2
0

∫

Br0

e(v) = C
1

e0ρ20

∫

Bρ0 (x0)
e(u)

which implies

(

R

2

)2

|∇u(x)|2 ≤ 4e0ρ
2
0 ≤ C

∫

BR

|∇u|2 dvg ∀x ∈ BR/2. ���

Using above two Lemmas, We prove Theorem 4.2:

Proof. We can see that there is a constant C such that

∫

M
|∇uα|

2 ≤ C.

Then there are finite singular points of the set

Σ = {x1, · · · , xl}

such that for every point x0 ∈M\Σ, there is r0 > 0 satisfying

∫

Br0 (x0)
|∇uα|

2 ≤ ε0

By Lemma 4.5, we have

‖uα‖Ck(Br0/2
(x0)) ≤ C(k, x0), ∀k ≥ 1.

Then there exists a subsequence such that uαi → u in Ck
loc(M\Σ, N) for all

k ≥ 1 and u ∈ C∞(M\Σ, N) is harmonic map. By the removable singularity
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theorem (see [26] and also below Theorem 4.8), u ∈ C∞(M,N). ���

Theorem 4.6. If dim(M) = 2 and π2(N) = ∅, then any smooth map u0 is

homotopic to a smooth harmonic map.

Proof.Let ui = uαi be the above minimizers of Eαi in the same homotopy

class [u0]. Using Theorem 4.2, there exist finitely many points x1, . . . , xl

such that ui converges to u smoothly in M away from these points. By the

well-known removable singularity theorem on harmonic maps (see below), u

can be extended to a smooth map on M .

Without loss of generality, we assume that l = 1. Let η(r) be a smooth

cutoff function in R with the property that η ≡ 1 for r ≥ 1 and η ≡ 0 for

r ≤ 1/2. For some ρ > 0, we define a new sequence of maps vi : M → N

such that vi is the same as ui outside Bρ(x1), and for x ∈ Bρ(x1),

vi(x) = expu(x)

(

η(
|x|

ρ
) exp−1

u(x)
◦ui(x)

)

,

where exp is the exponential map on N .

We claim that

‖vi − u‖W 1,2(M) → 0 (8)

as i→ ∞.

To see this, it suffices to consider Bρ(x1) \ Bρ/2(x1) because vi ≡ u

on Bρ/2(x1) and vi ≡ ui outside Bρ(x1). On the other hand, ui con-

verges to u on Bρ(x1) \ Bρ/2(x1) strongly in W 1,2 and Cβ for some β > 0.

Hence for large i, vi(Bρ(x1) \ Bρ/2(x1)) lies in a small neighborhood of

u(x1), where exp−1
u(x) is a well defined smooth map (if ρ is small). Since

F (y) = expu(x)

(

η( |x|ρ ) exp−1
u(x) y

)

is a smooth map from a neighborhood of

u(x1) into itself, we have

sup
Bρ\Bρ/2(x1)

|∇(vi − u)| = sup
Bρ\Bρ/2(x1)

|∇(F ◦ ui − F ◦ u)|

≤ C sup
Bρ\Bρ/2(x1)

|∇(ui − u)| → 0 as i→ ∞.

The claim (8) is proved.
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Since π2(N) is trivial, vi is in the same homotopy class as ui. Since ui
is a minimizer of Eαi and ui converges weakly to u in W 1,2, we have

E(u) + |M | ≤ lim inf
i→∞

E(ui) + |M |

≤ lim sup
i→∞

Eαi(ui) ≤ lim sup
i→∞

Eαi(vi)

= E(u) + |M |,

which implies

E(u) = lim
i→∞

E(ui).

Now, ui converges to u strongly inW 1,2(M,N), which means that there is no

energy concentration, and Theorem 4.2 in turn shows that the convergence

is in Cβ for some β > 0 and hence also in C∞(M,N). ���

In order to establish the removable singularity theorem of Sack-Uhlenbeck

[26], we need

Lemma 4.7. Let u ∈ C∞(B̄\{0}, N) be a smooth harmonic map with

E(u;B) ≤ +∞, where B = B1. Then for any 0 < r ≤ 1,

∫ 2π

0

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

2

(r, θ)dθ = r−2

∫ 2π

0

∣

∣

∣

∣

∂u

∂θ

∣

∣

∣

∣

2

(r, θ)dθ

Proof. The result is a consequence of the Pohozaev identity (see [22]).

However, 0 is a singular point. We need to use a test function to cut off the

singularity. For a very small ε > 0, let φ(x) = φε(r) ∈ C∞(B) with r = |x|

be a cut-off function such that φ = 0 in Bε and φ = 1 in B\B2ε, 0 ≤ φ ≤ 1

and |∇φ| ≤ 2/ε.

Multiplying the harmonic map equation by φx ·∇u and then integrating

by parts, we have

0 =

∫

B
△u · (φx · ∇u) dx

=

∫

∂B

(

|∂ru|
2 −

1

2
|∇u|2

)

dθ +

∫

B
|x|φ′(|x|)

(

1

2
|∇u|2 − |∂ru|

2

)

dx.

Since E(u;B) is finite, the claim follows from taking ε → 0 in the above

identity. ���
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Theorem 4.8. If u ∈ C∞(B̄\{0}) → N is a harmonic map and E(u;B) <

+∞, then u ∈ C∞(B,N).

Proof. This proof is due to Sack-Uhlenbeck in [26]. Since E is conformal

invariant, we assume that
∫

B2
|∇u|2 ≤ ε20, where ε0 is a small constant. For

any nonzero point x ∈ B, we have E(u,B|x|) ≤ ε20. Then Lemma 4.5 (with

α = 1) yields

|x||∇u|(x) ≤ C‖∇u‖L2(B) ≤ Cε0.

For any integer m ≥ 1, set

Am = {x ∈ B : 2−m ≤ |x| ≤ 2−m+1}.

There exists a radial symmetric harmonic function q(x) = q(r) in Am to

solve the harmonic equation

△q = 0 in Am

with boundary conditions q(2−m) = 1
2π

∫ 2π
0 u(2−m, θ) dθ and q(2−m+1) =

1
2π

∫ 2π
0 u(2−m+1, θ) dθ. By the maximum principle, we have

|q(x)− u(x)| = |q(r)− u(r, θ)| ≤ 2 max
x,y∈Am

{|u(x) − u(y)|}

≤ 2−m+3 max
x∈Am

|∇u(x)| ≤ C

(

∫

|x|≤2−m+2

|∇u|2

)1/2

≤ Cε0.

Multiplying the harmonic map equation by u − q and then integrating by

parts yields that

∫

B
|∇(q(x)− u(x))|2 =

∞
∑

m=1

∫

Am

|∇(q(x)− u(x))|2

=
∞
∑

m=1

r

∫ 2π

0
(q(r)− u(r, θ)) · (ur(r, θ)− q′(r)) dθ

∣

∣

∣

∣

∣

r=2−m+1

r=2−m

+

∫

B
△u · (u− q).

Note for any m ≥ 1

∫ 2π

0
(q(r)− u(r, θ)) · q′(r) dθ

∣

∣

∣

∣

r=2−m
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=

(

q(2−m)2π −

∫ 2π

0
u(2−m, θ)dθ

)

· q′(r) = 0.

Since u, q and ur are continuous, the boundary terms with ur cancel for any

finite m; i.e.

∞
∑

m=1

r

∫ 2π

0
(q(r)− u(r, θ)) · ur(r, θ) dθ

∣

∣

∣

∣

∣

r=2−m+1

r=2−m

=

∫ 2π

0
(q(1)− u(1, θ)) · ur(1, θ) dθ

− lim
m→∞

2−m

∫ 2π

0
(q(2−m)− u(2−m, θ)) · ur(2

−m, θ) dθ

=

∫ 2π

0
(q(1)− u(1, θ)) · ur(1, θ) dθ.

Since |A(u)(∇u,∇u)| ≤ C|∇u|2, we have

∣

∣

∣

∣

∫

B
△u · (u− q)

∣

∣

∣

∣

≤ C‖u− q‖L∞(B)

∫

B
|∇u|2 dx ≤ Cε0‖∇u‖

2
L2(B).

Therefore

∫

B
|∇(u− q)|2 ≤

(
∫ 2π

0
|q(1) − u(1, θ)|2 dθ

)1/2(∫ 2π

0
|ur(1, θ)|

2 dθ

)1/2

+ Cε0‖∇u‖
2
L2(B).

Since q does not depend on θ, it follows from Lemma 4.7 that

1

2

∫

B
|∇u|2 =

1

2

∫ 1

0

∫ 2π

0
|ur|

2 +
1

r2
|uθ|

2dθr dr ≤

∫

B
|∇(u− q)|2.

By the Poincare inequality on S1, we have

∫

r=1
|u− q|2 dθ ≤

∫

r=1
|uθ|

2 dθ =
1

2

∫

r=1
|∇u|2 dθ.

Choosing ε0 sufficiently small with δ0 = Cε0 < 1, we obtain

(1− δ0)

∫

B
|∇u|2 ≤

∫

∂B
|∇u|2.
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By scaling in r, we can obtain

(1− δ0)

∫

Br

|∇u|2 ≤ r

∫

∂Br

|∇u|2 = r
d

dr

(
∫

Br

|∇u|2
)

for all r with 0 < r ≤ 1. This implies

∫

Br

|∇u|2 ≤ r1−δ0

∫

B
|∇u|2

Using the ε-regularity, we have

|x|2|∇u|2(x) ≤ C

∫

B2|x|

|∇u|2 ≤ C|x|1−δ0

∫

B
|∇u|2, ∀0 < r <

1

2
.

This implies ∇u∈Lp(B) for some p>2 and u∈Cα(B) for some 0<α<1. By

using the elliptic theory of partial differential equations, u∈C∞(B,N). ���

In fact, we can improve the above result as follows. Let ui be a sequence

of smooth maps minimizing E(u) =
∫

M |∇u|2 dv in a fixed homotopy class of

maps. Since ui is bounded in W 1,2, there is a weak limit u in W 1,2(M,N).

In general, u may not be in the same homotopy class, but we can show:

Remark 4.9. Let u be the weak limit of the above minimizing sequence

{ui}. Then it is a harmonic map from M to N and there exist harmonic

maps ωk : S2 → N with k = 1, . . . , l such that

lim
i→∞

E(ui) = E(u) +

l
∑

k=1

E(ωk). (9)

Moreover, if π2(N) is trivial, then ui converges strongly to u in W 1,2(M,N)

and u is a minimizer in the homotopy class of ui. (see [17], also [22]).

5. The Partial Regularity of Minimizing Harmonic Maps

The study of partial regularity of various classes of weakly harmonic

maps has been of great interest for a number of years. Schoen-Uhlenbeck

[28] and Giaquinta-Giusti [10] established that an energy minimizing map

u : M → N between Riemannian manifolds is smooth in M away from a

singular set Σ that has Hausdorff dimension ≤ n−3, where n is the dimension
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of M . Bethuel [1] proved that a weak stationary harmonic map u :M → N

is smooth away from a singular set of vanishing (n−2)-dimensional Hausdorff

measure. Lin [L] proved an important result that if there is no non-constant

harmonic map from S2 toN , then the singular set of any stationary harmonic

map into N has to be (n− 4)-rectifiable.

Let n and k be positive integers with n ≥ 3. Let Ω be a bounded

smooth domain in n-dimensional space R
n and let N ⊂ R

l be a compact

k-dimensional Riemannian manifold without boundary for some integer l.

For a map u ∈ W 1,2(Ω, N) := {v ∈ W 1,2(Ω,Rl)| v ∈ N}, its Dirichlet

energy is given by

E(u,Ω) =

∫

Ω
|∇u|2 dx,

where ∇u is the gradient of u.

A map u ∈ W 1,2(Ω, N) is said to be a (weakly) harmonic map if u

belongs to W 1,2(Ω, N) and satisfies

∫

Ω
〈∇u,∇φ〉+A(u)(∇u,∇u) · φdvg = 0,

for all φ ∈ C∞(Ω,Rl).

Without any assumption on weak harmonic maps, Rivière in [24] gave

an counterexample that weakly harmonic maps may have singularities. In

this section, we will prove partial regularity of the classic result of minimizing

harmonic maps by Schoen-Uhlenbeck.

Definition 5.1. For 0 ≤ s ≤ n, the s-dimensional Hausdorff measure Hs on

R
n is defined by

Hs(A) = lim
δ→0+

Hs
δ(A), A ⊂ R

n,

with

Hs
δ(A) = inf

{

∑

i

rsi : A ⊂
⋃

i

Bri , ri ≤ δ

}

.

The Hausdorff dimension of A ⊂ R
n is defined by

dimH(A) := inf {s : Hs(A) = 0} = sup
{

s : Ht(A) = ∞
}

.
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The main result of this section is:

Theorem 5.2. Let u ∈W 1,2(Ω;N) be a minimizer of E(u) in W 1,2(Ω;N).

Then, u is smooth in M\Σ, where Σ is the singular set of u and is defined

by

Σ := {x ∈ Ω : u is discontinuous at x.}

Moreover, the Hausdorff dimension of Σ is less or equal to n− 3.

Lemma 5.3 (Monotonicity). For n ≥ 3, let u ∈W 1,2(Ω, N) be a minimizing

harmonic map. Then for any x0 ∈ Ω and for any two r and R, we have

R2−n

∫

BR(x0)
|∇u|2 − s2−n

∫

Bs(x0)
|∇u|2 ≥

∫

BR(x0)\Bs(x0)
r2−n

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

2

(10)

with r = |x− x0|.

Proof. The hint is to use that ur(x) = u( rx|x|) for x ∈ Br with r > 0. Using

the minimality of u, we have

∫

Br

|∇u|2 ≤

∫

Br

|∇ur|
2 =

r

n− 2

∫

∂Br

(

|∇u|2 − |
∂u

∂r
|2
)

dHn−1.

We omit all details. (see [28]). ���

In fact, the inequality also holds for stationary harmonic maps.

Assume that u : B1 → N is a minimizing harmonic map satisfying

E(u;B1) =

∫

B1

|∇u|2 dvg ≤ ε.

Let φ ∈ C∞(Rn,R+) be a radial mollifying function so that supp φ ⊂ B1

and
∫

Rn φ = 1 (see Chapter 7 of the book of Gilberg-Trudinger [13]).

Let h ∈ (0, 14 ], set

uh(x) =

∫

B1

φh(x− y)u(y)dy, ∀x ∈ B1/2,
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where φh(x) = h−nφ(xh ). Then

dist2(uh(x), N) ≤
1

|Bh|

∫

Bh

|u(y)−uh(x)|2 dy≤Ch2−n

∫

Bh

|∇u(y)|2 dy≤Cε,

where we used a variant of Poincare’s inequality

∫

B1

|u(x)−

∫

B1

φ(y)u(y)dy|2 dx ≤ C

∫

B1

|∇u|2.

For a sufficiently small, uh̄(B1/2) ⊂ Nδ0 and we can define

uh̄ := ΠN (uh̄) : B1/2 → N.

Lemma 5.4. For h̄ = ε1/4, we have

∫

B1/2

|∇uh̄|2 ≤ C

∫

B1

|∇u|2, (11)

sup
x∈B1/2

|uh̄(x)− uh̄(0)|2 ≤ Cε1/2 (12)

where the constant C does not depend on α and u.

Proof. For any x ∈ B1/2, we have

|∇uh̄|2(x) =

∣

∣

∣

∣

∫

B1

φh̄(x− y)∇u(y) dy

∣

∣

∣

∣

2

≤

∫

B1

φh̄(x− y)|∇u(y)|2 dy

≤ C
1

h̄n

∫

Bh̄(x)
|∇u(y)|2 dy ≤ C

ε

h̄2
= Cε1/2.

The inequality (12) also follows. ���

Let h̄ = ε1/4, τ = ε1/8. We choose h(x) = h(r), r = |x| to be a non-

increasing smooth function of r such that

h(x) = h(r) = h̄, for r ≤ θ, h(θ + τ) = 0, |h′(r)| ≤ 2ε1/8.



✐

“BN09N23” — 2014/5/20 — 10:38 — page 212 — #26
✐

✐

✐

✐

✐

212 MIN-CHUN HONG [June

Then we set

uh(x)(x) =

∫

B1

φh(x)(x− y)u(y) dy

We know

uh(x) := Π ◦ uh(x)(x) ∈ N.

Then we have

Lemma 5.5. For θ ∈ (τ, 14 ], the above map uh(x) satisfies uh = u on

B1/2\Bθ+τ and

∫

Bθ+τ\Bθ

|∇uh|
2dx ≤ C

∫

Bθ+2τ\Bθ−τ

|∇u|2dx

where the constant C does not depend on θ and u.

Proof. Since Π is smooth, it suffices to prove this lemma for uh instead of

uh. Note that

uh =

∫

B1

φ(y)u(x− h(x)y) dy.

We compute

∂uh

∂xα
=

∫

B1

φ(y)

[

∂u

∂xα
(x− hy)−

∂h

∂xα
· ∇u(x− hy)

]

dy.

Then

∫

Bθ+τ\Bθ

|∇uh|2 ≤ C

∫

Bθ+τ\Bθ

∫

B1

φ(y)|∇u|2(x− hy) dydx

≤ C

∫

Bθ+2τ\Bθ−τ

|∇u|2 dx. ���

Lemma 5.6. (Energy decay estimate) For n ≥ 3, there are a small constant

ε = ε(n,M) and another constant θ ∈ (0, 14) such that if u : B1 → N is a

minimizing harmonic map satisfying

E(u;B1) =

∫

B1

|∇u|2 dvg ≤ ε,
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then

θ2−n

∫

Bθ

|∇u|2 ≤
1

2

∫

B1

|∇u|2. (13)

Proof. The proof is divided into three parts.

Claim 1: For any θ ∈ (0, 14 ],

θ2−n

∫

Bθ

|∇uh̄|
2 ≤ C(θ2−nε1/4 + θ2)

∫

B1

|∇u|2 (14)

Claim 2: There is a θ ∈ [θ̄, 2θ̄] with θ̄ = εγn with γn = min{ 1
32(n−2) ,

1
64}

and τ = ε1/8 such that

∫

Bθ+τ\Bθ

|∇uh(x)|2 ≤ Cε
1

16

∫

B1

|∇u|2.

Claim 3: Since u is minimizing,

∫

Bθ+τ

|∇u|2 ≤ C

∫

Bθ+τ

|∇uh(x)|2.

Using Claims 1−3 and noting θ ∈ [θ̄, 2θ̄], we obtain

θ2−n

∫

Bθ

|∇u|2 ≤ θ2−n

∫

Bθ+τ

|∇u|2

≤ Cθ2−n(

∫

Bθ

|∇uh|2 +

∫

Bθ+τ\Bθ

|∇uh|2)

≤ C(θ2−nε
1

4 + θ2 + ε
1

16 )

∫

B1

|∇u|2 ≤ Cε2γn
∫

B1

|∇u|2.

Choosing ε sufficiently small, the required result follows.

Claim 3 follows from Lemma 5.5. Next, we are going to prove Claims

1−2.

To prove Claim 1, let v be the solution of

△v = 0 in B1/2

v = uh̄ on ∂B1/2.
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By the maximal principle, we have

sup
B1/2

|v − uh̄| ≤ Cε1/4.

By the mean value inequality (△|∇v|2 ≥ 0), we have

sup
B1/4

|∇v|2 ≤ C

∫

B1/2

|∇v|2 ≤ C

∫

B1/2

|∇uh̄|2 ≤ C

∫

B1

|∇u|2.

Hence for any θ ∈ (0, 14 ],

θ2−n

∫

Bθ

|∇uh̄|
2 ≤ 2θ2−n

∫

Bθ

|∇(uh̄ − v)|2 + 2θ2−n

∫

Bθ

|∇v|2 (15)

≤ 2θ2−n

∫

Bθ

|∇(uh̄ − v)|2 +Cθ2
∫

B1

|∇u|2. (16)

Note

△uh =

∫

Rn

[△xφ
h̄(x− y)]u(y)dy

=

∫

Rn

[△yφ
h̄(x− y)]u(y)dy] =

∫

Rn

φh̄(x− y)△yu(y)dy

=

∫

Rn

φh̄(x− y)]A(u)(∇u,∇u)(y)dy

which implies
∫

B1/2

|△uh̄| ≤ C

∫

B1

|∇u|2.

Then
∫

B1/2

|∇(uh̄ − v)|2 = −

∫

B1/2

△uh̄ · (uh̄ − v) ≤ Cε1/4
∫

B1

|∇u|2. (17)

Claim 1 follows from (15)−(17).

Now we are going to prove Claim 2.

We recall θ̄ = εγn with γ ≤ 1
16 . Let l =

[

θ̄
3τ

]

(≥ 1
3ε

− 1

16 −1) be the integer

of θ
3τ and write

[θ̄, θ̄ + 3τ l] = ∪1≤i≤lIi, |Ii| = 3τ,
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where each Ii is a closed interval of length 3τ . Since γn ≤ 1
16 , l ≥

1
3ε

− 1

16 .

Then
∫

Bθ̄+3lτ\Bθ̄

|∇u|2dx =
∑

1≤i≤l

∫

|x|∈Ii

|∇u|2dx ≤

∫

B1

|∇u|2.

There is at least one interval Ij with 1 ≤ j ≤ l such that

∫

|x|∈Ij

|∇u|2 dx ≤ l−1

∫

B1

|∇u|2 ≤ Cε
1

16

∫

B1

|∇u|2.

Let θ be the number such that Ij = [θ− τ, θ+2τ ] ⊂ [θ̄, 2θ̄], and let h = h(x)

be as in Lemma 5.3. Then uh ∈W 1,2(B1/2, N) and uh = u for any |x| ≥ θ+τ ,

and
∫

Bθ+τ\Bθ

|∇uh|
2 ≤ Cε

1

16

∫

B1

|∇u|2.

This proves Claim 2. ���

As a consequence of this lemma, we can prove:

Theorem 5.7. Let u ∈W 1,2(M ;N) be a minimizer of E(u) in W 1,2(M ;N).

Then, u is smooth in M\Σ, where Σ is the singular set defined by

Σ = {x ∈M : lim
r→0

r2−n

∫

Br(x)
|∇u|2 ≥ ε20} (18)

and Hn−2(Σ) = 0.

Proof. If x0 /∈ Σ, then there is a r0 > 0 such that

r2−n
0

∫

Br0(x0)
|∇u|2 ≤ ε20

implying

(
r0
2
)2−n

∫

Br0 (x)
|∇u|2 ≤ 2n−2ε20, ∀x ∈ B r0

2

(x0).

By the monotonicity, we have

r2−n

∫

Br(x)
|∇u|2 ≤ 2n−2ε20 ≤ ε, ∀x ∈ B r0

2

(x0) and 0 < r ≤
r0
2
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for ε0 sufficiently small, where ε is the constant in Lemma 5.6. By the above

lemma, there is a θ ∈ (0, 1) such that

θ2−n

∫

Bθ

|∇u|2 ≤
1

2

∫

B1

|∇u|2.

We consider a rescaling map uθ(x) = u(θx). Then

∫

B1

|∇uθ|
2 = θ2−n

∫

θ
|∇u|2 ≤ ε.

Using again Lemma, we have

(θ2)2−n

∫

Bθ2

|∇u|2 = (θ)2−n

∫

Bθ

|∇uθ|
2 ≤

1

2

∫

B1

|∇uθ|
2 =

(

1

2

)2 ∫

B1

|∇u|2.

By the induction argument, we have

(θi)2−n

∫

Bθi

|∇u|2 ≤

(

1

2

)i ∫

B1

|∇u|2.

For any r ∈ (0, 1), there is integer i so that r ∈ [θi+1, θi]. Then

r2−n

∫

Br(x)
|∇u|2 ≤ C(θi)2α

∫

B1

|∇u|2 ≤ Cr2α
∫

B1

|∇u|2

for some α = log 2/(2 log θ−1) > 0. Repeating the above arguments, we can

obtain

r2−n

∫

Br(x)
|∇u|2 ≤ Cr2α, ∀x ∈ Br0/2(x0) and 0 < r ≤

r0
2

for some α ∈ (0, 1) depending on ε0, M and N . By Morrey’s Lemma,

u ∈ Cα(Br0/2(x0), N).

Next we will show Hn−2(Σ) = 0.

SinceM is compact and Σ is relatively closed, by Vitali’s covering lemma

(see Giaquinta’s book [9]), there are disjoint balls {Bri(xi)}i∈I such that

Σ ⊂ ∪iB3ri(xi), ri ≤ δ
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so

Hn−2
5δ (Σ) ≤

∑

i∈I

(5ri)
n−2 ≤

5n−2

ε20

∫

∪i∈IBri
(xi)

|∇u|2 dx ≤ C

∫

M
|∇u|2 < +∞.

Note

meas| ∪i∈I Bri(xi)| ≤ Cδ2

Hence Hn−2(Σ) = 0 by letting δ → 0. ���

Lemma 5.8. Let ui ∈ W 1,2(Ω, N) be a sequence of minimizing harmonic

maps. If ui → u weakly in W 1,2(Ω, N), then ui → u strongly in W 1,2
loc (Ω, N)

and u is a minimizing harmonic map.

The proof is based on the application of Luckhaus’s Lemma. (We omit

details and refer to see Leon Simon’s book [31] or Lin-Wang’s book [22])

Next we will prove the Hausdorff dimension of the singular set is n− 3.

Following [28], we define

ϕp(E) = inf

{

∑

i

rsi : E ⊂ ∪iBri(xi)

}

Then

ϕp(E) = 0 if and only if Hp(E) = 0.

Moreover, if ϕs(E) > 0, then the following density result of Federer holds:

lim sup
λ→0

λ−sϕs(E ∩Bλ) ≥ c > 0

for ϕs a. e. x ∈ E (see [28]).

Lemma 5.9. Suppose ui is a sequence of minimizing maps in W 1,2(M,N),

which converges weakly to u in W 1,2. Let Σi be the singular set of ui and Σ

denotes the singular set of u. Then we have

ϕs(Σ ∩B1) ≥ lim sup
i→0

ϕs(Σi ∩B1)

for any s ≥ 0
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We complete the proof of Theorem 5.2.

Proof. Suppose u ∈ W 1,2(M,N) is a minimizing harmonic map with the

singular set Σ ⊂ int M. Let 0 ≤ s < n− 2 be such that ϕs(Σ) > 0. Then by

the density result, we can choose x0 ∈ Σ such that

lim
λi→0

λ−s
i ϕs(Σ ∩Bλi

(x0)) > 0

for a sequence of λi → 0. Then we consider the scaled maps uλ(x) = u(λx).

By the monotonicity formula (Lemma 5.3) and Theorem 5.9, uλi
converges

to a minimizing harmonic map u0 weakly in W 1,2(B2, N) and strongly in

W 1,2(B1). Note that ϕs(Σλ ∩ B1) = λ−sϕs(Σ ∩ B1). The density result

implies

lim
λi→0

ϕs(Σλi
∩B1) > 0

By Lemma 5.9, we obtain

ϕs(Σ ∩B1) > 0.

Since ∂u0

∂r = 0, we have λΣ0 ⊂ Σ0 for any λ > 0.

There are two cases: either s ≤ 0 or there is a point x1 ∈ Σ0 ∩ ∂B1 such

that

lim sup
λ→0

λ−sϕs(Σ0 ∩Bλ(x1)) > 0.

Then repeating the above argument at x1, there is a radially symmetric

minimizing harmonic map u1 with φ
s(Σ1∩B1) > 0, where Σ1 is the singular

set of Σ1. If s − 1 ≤ 0, we stop. Otherwise, we repeat the above argument

so that there is a point x2 ∈ Σ1 ∩ ∂B1. If we repeat this procedure m times,

we get minimizing harmonic maps uj ∈ W 1,2(Rn, N) for j = 1, . . . ,m such

that
∂uj

∂xk = 0 for k = 1, . . . , j. By the construction um, it must have that

s − m + 1 > 0 and s ≤ m. Since s < n − 2 and m is an integer, then

m ≤ n− 2. If m = n− 2, then we have

Σm ⊃ R
n−2 = {(x1, . . . , xn−2, 0, 0)}

which contradicts with the fact that Hn−2(Σm) = 0. Therefore, we have

m ≤ n − 3. Hence ϕt(Σ ∩ B1) = 0 for all t ≥ n − 3. This implies that

dim Σ ≤ n− 3. ���
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In fact, Leon Simon [31] (also also [22]) presented another beautiful

proof based on the ideas of Almgren.

6. Further Developments

In this section, we would like to make a few remarks about harmonic

maps and related topics.

1. Minimizing harmonic maps:

Leon Simon [30] proved the rectifiablity of the singular set of minimizing

harmonic maps.

2. Partial regularity result on Stationary harmonic maps:

Partial regularity result on Stationary harmonic maps have been estab-

lished by Bethuel [1]. A new approach was presented by Riviere-Struwe [25].

Lin [21] established a result on the structure of the singular set.

3. Heat flow for Harmonic maps:

Struwe [32] proved the global existence of the weak solution to the har-

monic map flow and that the solution to the flow converges to a harmonic

map as t → ∞. Chang, Ding and Ye [3] constructed an example where

the harmonic map flow blows up at finite time. Chen-Struwe [5] (also [22])

used the Ginzburg-Landau approximation to establish the global existence

and partial regularity of the harmonic map flow. Recently, Hong-Yin [17]

introduced the Sack-Uhlenbeck flow in 2D to establish new existence of the

harmonic map flow.

4. Relaxed energy for harmonic maps and a new approximation approach:

Bethuel-Brisis-Coron [2] introduced the relaxed energy functional.

Giaquinta-Modica-Soucek [12] proved the partial regularity using Cartesian

currents. Giaquinta-Hong-Yin [11] proposed a new approximation method

to prove the partial regularity.

5. Biharmonic maps between manifolds:

Partial regularity of stationary bi-harmonic maps was established by

Chang-Wang-Yang [4], Wang [36] and Struwe [33]. Recently, Hong and Yin

[16] solved a problem on the relaxed energy for biharmonic maps.
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