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Abstract

In this paper, dedicated to Neil Trudinger in the occasion of his 70th birthday, we

propose a relatively elementary proof of the weak lower semicontinuity in W 1,p of a general

integral of the Calculus of Variations of the type (1.1) below with a quasiconvex density

function satisfying p-growth conditions. Several comments and references on the related

literature, and a subsection devoted to some properties of the maximal function operator,

are also included.

1. Introduction

A large number of mathematicians working in partial differential equa-

tions have been influenced by the researches in the field of mathematical

analysis carried out by Neil Trudinger. Sobolev functions are now treated

as simply as smooth functions and operations on them, such as − for in-

stance − truncation and composition, are now considered elementary. This

is due in large part to the popularity of the book [39], which Neil Trudinger

wrote joint with David Gilbarg, and which has been a reference to many

of us. With great pleasure this paper is dedicated to Neil Trudinger in the

occasion of his 70th birthday.

The subject that we consider here is the quasiconvexity condition by

Morrey [53] and its connections with lower semicontinuity. It is well known
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that some properties which hold for solutions to partial differential equations,

for instance of elliptic type, cannot be extended to systems. Often the lack

of the maximum principle is one of the main obstructions. If a variational

formulation exists, from the point of view of an energy functional, a solution

u : Ω ⊂ R
n → R

N of an elliptic partial differential equation (N = 1) or

system (N > 1) can be obtained as a minimizer of an integral functional of

the type

F (u) :=

�
Ω
f
(

x, u(x),∇u(x)
)

dx . (1.1)

Here a strong distinction occurs depending if u : Ω ⊂ R
n → R

N is a

scalar function (i.e., N = 1) or it is a general vector-valued map with values

in R
N with N > 1 (for the sake of simplicity we assume n ≥ 2 throughout

this introduction). In the first case, the convexity of the integrand f in

(1.1) with respect to the gradient variable ∇u plays a central role in the

existence and regularity of minimizers, while convexity is sufficient though

not necessary in the vector-valued setting N > 1, for which the first variation

is a system of partial differential equations.

If N > 1 the assumption which characterizes the lower semicontinuity of

the integral F (under some growth conditions and specific topologies, which

we will make precise below) is the quasiconvexity condition stated at the

beginning of the next section (see (2.1)). We emphasize that quasiconvexity

reduces to convexity if N = 1, while it is really a different − and more

general − condition if N > 1. For instance, when n = N > 1, important

examples of quasiconvex, but non convex, functions are given by

f (∇u) = det∇u , or f (∇u) = |det∇u| ,

where det∇u represents the determinant of the n×n matrix of the gradient

∇u (Jacobian determinant) of a map u : Rn → R
n.

As it is well known, the lower semicontinuity of the integral F in (1.1) is

one of the main ingredients for the existence of minimizers. The first lower

semicontinuity result for quasiconvex integrals has been given by Morrey

[53] and then by Meyers [51]. A semicontinuity theorem with some “nat-

ural” growth assumptions on the integrand f has been proved by Acerbi

and Fusco [3], who used fine properties of the maximal function (see also
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Subsection 3.3 of this paper), and by Marcellini [48], who used some delicate

higher summability properties of minimizing sequences.

Since then, several generalizations of the result mentioned above have

been obtained, we recall some of them in what follows. Weak lower semicon-

tinuity for quasiconvex integrands satisfying p-q growth conditions has been

the object of many efforts due to its relevance in modelling elastic cavitation

and in connection with the theory of relaxation in Calculus of Variations.

The first contributions in this respect are contained in [49], then generalized

in the papers [47], [42], [26], [27], [11], [5], [52]. Similar issues are particularly

interesting when restricting to the class of polyconvex integrands, according

to the terminology introduced by Ball in [9], that arise in some problems

of continuum mechanics and that, in some instances, do not satisfy natural

growth conditions from above. The field is still very active nowadays, the

researches by Dacorogna and Marcellini [15] have been pushed forward and

developed in several papers (cp. with [46], [2], [12], [38], [17], [37], [24], [25],

[31], [32], [33], [6], [23]). References to such subjects are also the books by

Dacorogna [14] and by Giusti [40], and the survey paper by Leoni [45].

Even more, densities controlled in terms of suitable convex functions and

the weak lower semicontinuity of the associated energies defined on Orlicz-

Sobolev spaces are the subjects of investigation in the papers [19], [20], [10],

[54], [57]. Similarly, the framework of functionals defined on Sobolev spaces

with variable exponent has been studied in [55] and [58].

Extensions of the characterization of weak lower semicontinuity for func-

tionals defined on maps belonging to the kernel of a constant-rank first order

linear partial differential operator A lead to the notion of A -quasiconvexity.

In particular, the standard case of the curl operator is included. This topic

has been dealt with in the papers [30] and [34], developing the ideas intro-

duced by Dacorogna in [13] in connection with compensated compactness

issues and problems in continuum mechanics.

Finally, we mention some recent contributions dealing with energies de-

fined on Sobolev maps taking values into non-flat spaces (see [18] for Alm-

gren’s Q-valued maps, [21] for manifold valued maps, and [22] for Q-valued

maps modelled upon manifolds). The weak lower semicontinuity of energy

functionals is characterized by means of an intrinsic notion of quasiconvexity;

the analysis is carried out within the theory of metric space-valued Sobolev

maps avoiding any embedding of the target space into Euclidean ones.
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None of the proofs in the quoted papers and books can be considered

simple, apart from that one valid for the special authonomous case�
Ω
f (∇u(x)) dx (1.2)

given in Section 2 of [48], which is self contained and till now can be con-

sidered the most elementary proof for lower semicontinuity of the integral in

(1.2).

In this paper we propose a new proof of the lower semicontinuity for

general integrals as in (1.1) by combining arguments that are already known

in literature. In our opinion the outcome is a more elementary proof than

those ones supplied so far. We use some ideas introduced by Acerbi and

Fusco [3] concerning truncation techniques via the maximal function opera-

tor to gain equi-integrability of sequences of Sobolev maps. We also employ

a freezing technique due to Marcellini and Sbordone [50] to reduce the prob-

lem to autonomous integrands (see Section 4 for more details). For what

the first issue is concerned, we exploit a sharp version of the biting lemma

proved by Fonseca, Müller and Pedregal [35]; we include in Subsection 3.2

the elementary proof provided by De Lellis, Focardi and Spadaro [18].

To conclude this introduction we resume briefly the contents of the pa-

per. In the next section we give the main definitions and results, in particular

Theorem 2.2, which is proved in Section 4. For the sake of completeness, in

Subsection 3.3 we recall some well-known properties of the maximal function

operator that are used in this paper.

2. Setting of the Problem and Main Result

Let us first recall Morrey’s celebrated notion of quasiconvexity.

Definition 2.1 (Quasiconvexity). Let g : RN×n → R be a locally bounded

integrand. We say that g is quasiconvex if the following inequality holds for

every affine function u(x) = a + A · x, where a ∈ R
N and A ∈ M

N×n, and

any map w ∈ u+W 1,∞
0 (Q1,R

N ), Q1 the open unitary cube in R
n,

g
(

A
)

≤

�
Q1

g
(

∇w(x)
)

dx. (2.1)
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Let p ∈ (1,∞) and f : Ω × R
N × R

N×n → R be a Charathéodory

integrand satisfying

0 ≤ f(x, u,A) ≤ C(1 + |u|q + |A|p) for all (u,A), (2.2)

for some constant C, where q ≤ p∗ := np
n−p if p < n and q ≥ 1 is any

exponent if p ≥ n. Under the previous assumptions on f it is well-defined

the functional F : W 1,p(Ω,RN ) → [0,∞) given by

F (u) :=

�
Ω
f
(

x, u(x),∇u(x)
)

dx. (2.3)

We shall provide below an elementary proof of the ensuing celebrated

result due to Morrey [53], Meyers [51], Acerbi and Fusco [3] and Marcellini

[48].

Theorem 2.2. Let f be a Charathéodory integrand satisfying (2.2). The

functional F in (2.3) is weakly lower semicontinuous in W 1,p(Ω,RN ) if and

only if f(x, u, ·) is quasiconvex for Ln a.e. x ∈ Ω and for every u ∈ R
N .

In this paper we shall only deal with the sufficiency of quasiconvexity

for weak lower semicontinuity, necessity being a less difficult task (see for

instance the books [14] and [40]). Our proof mixes several tools developed

by different authors in the course of studying the previous result and related

problems. We shall quote each contribution trying to be as exhaustive as

possible.

Remark 2.1. We can actually prove the same result for integrands satisfying

the milder growth condition

−C(1 + |u|r + |A|s) ≤ f(x, u,A) ≤ C(1 + |u|q + |A|p) for all (u,A),

for some positive constant C, where s ∈ (1, p) and r ∈ [1, p∗) if p < n and

r ≥ 1 otherwise.

Indeed, one can reduce to the setting of Theorem 2.2 thanks to the

equi-integrability of the sequence (1 + |uk|
r + |∇uk|

s), if (uk) is bounded in

W 1,p(Ω,RN ) (see for instance [48], [42]).

Counterexamples are well-known in literature if r = p∗, and if s = p (see

[48, Section 6]).
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Remark 2.2. Lower semicontinuity in the case p = 1 can be proved along

sequences in W 1,1 that are equi-integrable, as shown first by Fusco [36]. Oth-

erwise, a relaxation phenomenon in the space BV of functions with bounded

variation occurs (see for instance [7], [28], [29], [43], [44] and the book [8] for

more detailed results and an exhaustive list of references).

3. Preliminary Results

The aim of this section is to introduce some notations and to recall some

basic definition and results which will be used in the sequel.

We begin with some algebraic notations.

Let n,N ≥ 2 and M
N×n be the linear space of all N × n real matrices.

For A ∈ M
N×n, we denote A = (Ai

j), 1 ≤ i ≤ N , 1 ≤ j ≤ n, where upper and

lower indices correspond to rows and columns respectively. The euclidean

norm of A will be denoted by |A|.

As usual, Qr(x), Br(x) denote the open euclidean cube, ball in R
n,

n ≥ 2, with side r, radius r and center the point x, respectively. The center

shall not be indicated explicitly if it coincides with the origin.

3.1. Equi-integrability

Let us first recall some definitions and introduce some notations. As

usual, in the following Ω ⊂ R
n denotes an open set with Lipschitz regular

boundary with finite measure.

Definition 3.1. A sequence (gk) in L1(Ω) is equi-integrable if one of the

following equivalent conditions holds:

(a) for every ε > 0 there exists δ > 0 such that, for every Ln-measurable set

E ⊆ Ω with Ln(E) ≤ δ, we have supk

�
E |gk| ≤ ε;

(b) the distribution functions ϕk(t) :=
�
{|gk|≥t} |gk| satisfy limt↑∞ supk ϕk(t)

= 0;
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(c) (De la Vallée Poissin’s criterion) there exists a Borel function ψ : [0,∞)

→ [0,∞] such that

lim
t↑∞

ψ(t)

t
= ∞ and sup

k

�
Ω
ψ(|gk|)dx <∞.

Note that, since Ω has finite measure, an equi-integrable sequence is also

equi-bounded.

Our first aim is to prove Chacon’s biting lemma, in doing that we shall

follow the approach by Fonseca, Müller and Pedregal [35], though the proof

presented here is revisited as done by De Lellis, Focardi and Spadaro [18].

Lemma 3.2. Let (gk) be a bounded sequence in L1(Ω). Then, given any

increasing sequence (tj) ⊂ (0,∞) with tj ↑ ∞, there exists a subsequence

(kj) such that (gkj ∨ (−tj) ∧ tj) is equi-integrable.

Proof. Without loss of generality, assume gk ≥ 0 and consider for every

j ∈ N the functions hjk := gk ∧ tj. Since, for every j, (hjk)k is equi-bounded

in L∞(Ω), up to passing to a subsequence (not relabeled), there exists the

L∞(Ω) weak* limit fj of hjk for every j. Clearly the limits fj have the

following properties:

(a) fj ≤ fj+1 for every j (since hjk ≤ hj+1
k for every k);

(b) ‖fj‖L1(Ω) = limk

∥

∥

∥
hjk

∥

∥

∥

L1(Ω)
(since (hjk) is positive and converges to fj

weak* L∞(Ω));

(c) supj ‖fj‖L1(Ω) = supj limk

∥

∥

∥
hjk

∥

∥

∥

L1(Ω)
≤ supk ‖gk‖L1(Ω) <∞.

By the Lebesgue monotone convergence theorem, (a) and (c), it follows that

(fj) converges in L1(Ω) to a function f . Moreover, from (b), for every j we

can find a kj such that

∣

∣

∣

∣

�
Ω
hjkj dx−

�
Ω
fj dx

∣

∣

∣

∣

≤ t−1
j . (3.1)

We claim that hjkj = gkj ∧ tj fulfills the conclusion of the lemma. To see

this, it is enough to show that (hjkj ) weakly converges to f in L1(Ω), from

which the equi-integrability follows. Let a ∈ L∞(Ω) be a test function. Since
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hlkj ≤ hjkj for l ≤ j, we have that�
Ω

(

‖a‖L∞ − a
)

hlkj dx ≤

�
Ω

(

‖a‖L∞ − a
)

hjkj dx. (3.2)

Taking the limit as j goes to infinity in (3.2), we obtain by the convergence

of (hlkj ) to fl weak∗ L∞(Ω) and (3.1)�
Ω

(

‖a‖L∞ − a
)

fl dx ≤ ‖a‖L∞

�
Ω
f dx− lim sup

j

�
Ω
ahjkj dx.

From which, passing to the limit in l, we conclude since (fl) converges to f

in L1(Ω)

lim sup
j

�
Ω
ahjkj dx ≤

�
Ω
af dx. (3.3)

Using −a in place of a, one obtains as well the inequality�
Ω
af dx ≤ lim inf

j

�
Ω
ahjkj dx. (3.4)

Inqualities (3.3) and (3.4) together conclude the proof of the weak conver-

gence of hjkj to f in L1(Ω). ���

Next we show that concentration effects for critical Sobolev embedding

do not show up if equi-integrability of both functions and gradients is as-

sumed. Here we follow De Lellis, Focardi and Spadaro [18].

Lemma 3.3. Let p ∈ [1, n) and (gk) ⊂ W 1,p(Ω) be such that (|gk|
p) and

(|∇gk|
p) are both equi-integrable, then (|gk|

p∗) is equi-integrable as well.

Proof. Since (gk) is bounded in W 1,p(Ω), Chebychev’s inequality implies

sup
j
jpLn({|gk| > j}) ≤ C <∞. (3.5)

For every fixed j ∈ N, consider the sequence gjk := gk−(gk∨(−j)∧j). Then,

(gjk) ⊂W 1,p(Ω) and ∇gjk = ∇gk in {|gk| > j} and ∇gjk = 0 otherwise.

The Sobolev embedding yields

‖gjk‖
p
Lp∗(Ω)

≤ c‖gjk‖
p
W 1,p(Ω)

≤ c

�
{|gk|>j}

(

|gk|
p + |∇gk|

p
)

dx. (3.6)
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Therefore, the equi-integrability assumptions and (3.5) imply that for every

ε > 0 there exists jε ∈ N such that for every j ≥ jε

sup
k

‖gjk‖Lp∗(Ω) ≤ ε/2. (3.7)

Let δ > 0 and consider a generic Ln-measurable sets E ⊆ Ω with Ln(E) ≤ δ.

Then, since we have

‖gk‖Lp∗ (E) ≤ ‖gk − gjεk ‖Lp∗(E) + ‖gjεk ‖Lp∗ (E) ≤ jε (Lm(E))1/p
∗

+ ‖gjεk ‖Lp∗ (Ω),

by (3.7), to conclude it suffices to choose δ such that jεδ
1/p∗ ≤ ε/2. ���

3.2. A truncation lemma

In the next lemma we show how a weakly convergent sequence can be

truncated in order to obtain an equi-integrable sequence still weakly con-

verging to the same limit. This result is the analog of the decomposition

lemma proved by Fonseca, Müller and Pedregal (see [35, Lemma 2.3]) and

constitutes the main point in the proof of the sufficiency of quasiconvex-

ity for the lower semicontinuity property. Similar results are well-known in

literature and have been obtained by several authors, see for instance the

contributions by Acerbi and Fusco [4] and Kristensen [44]. The statement

below is in the form presented in [18].

Lemma 3.4. Let (vk) ⊂ W 1,p(Ω,RN ) be weakly converging to u. Then,

there exists a subsequence (vkj ) and a sequence (uj) ⊂ W 1,∞(Ω,RN ) such

that

(i) Ln({vkj 6= uj}) = o(1) and uj → u weakly in W 1,p(Ω,RN );

(ii) (|∇uj |
p) is equi-integrable;

(iii) if p ∈ [1, n), (|uj |
p∗) is equi-integrable and, if p ≥ n, (|uj |

q) is equi-

integrable for any q ≥ 1.

Proof. Let gk be the function corresponding to vk provided by Lemma 3.8,

and note that (|gk|
p) ⊂ L1(Ω) is a bounded sequence thanks to estimate

(3.12) and the boundedness of (vk) in W 1,p(Ω). Applying Chacon’s biting

lemma (see Lemma 3.2) to (|gk|
p) with tj = j, we get a subsequence (kj)

and a sequence such that (|gkj |
p ∧ j) is equi-integrable.
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Let Ωj := {x ∈ Ω : |gkj (x)|p ≤ j} and note that by (3.11), vkj |Ωj
is

Lipschitz continuous on Ωj with constant c j1/p. Let uj be the Lipschitz

extension of vkj |Ωj
with Lipschitz constant c j1/p. Then, it is easy to verify

that Ln(Ω \ Ωj) = O(j−1), and that

|∇uj |
p= |∇vkj |

p≤|gkj |
p ∧ j on Ωj and |∇uj |

p≤c j=c (|gkj |
p ∧ j) on Ω \ Ωj.

Thus, (ii) follows immediately from these properties and (i) by taking into

account the equi-integrability of (|gkj |
p∧ j) and the Poincaré type inequality

‖v‖Lp(Ω) ≤ c‖∇v‖Lp(Ω,RN×n)

for some constant c = c(n, p,Ω), for all v ∈ W 1,p(Ω) such that Ln({v =

0}) ≥ σ, with σ > 0 fixed.

As for (iii), note that the functions wj = |uj| are in W 1,p(Ω), with

|∇wj| ≤ |∇uj|. Moreover, (wj) converge weakly to |u| by (i). Hence,

(|wj |
p) and (|∇wj |

p) are equi-integrable. In case p ∈ [1, n), this implies (see

Lemma 3.3) the equi-integrability of (|uj |
p∗). In case p ≥ n, the property

follows from Hölder inequality and Sobolev embedding. ���

3.3. The maximal function operator

For the sake of completeness we recall some results well-known in lit-

erature that are employed to prove the truncation Lemma 3.4. We refer to

the classical book by Stein [56] for further references and results, and to the

expository paper by Aalto and Kinnunen [1] for a more up-to-date state of

the art on the subject.

We start off introducing the maximal function operator.

Definition 3.5. Let v ∈ L1
loc(R

n), the Hardy-Littlewood maximal function

M v : Rn → [0,∞] of v is defined as

M v(x) := sup
r>0

 
Br(x)

|v(y)| dy for all x ∈ R
n.

It is elementary to check that M v is a positive lower semicontinuous

function being the supremum of positive continuous functions.
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To be self-contained we present the proof of the well-known Hardy-

Littlewood’s maximal theorem about the continuity of the maximal function

operator. We establish first the so called weak type estimate.

Theorem 3.6. If v ∈ L1(Rn), then for all λ > 0

Ln({M v > λ}) ≤
5n

λ
‖v‖L1(Rn).

Proof. Given λ > 0 consider the superlevel set Eλ := {M v > λ}, that turns

out to be open thanks to the quoted lower semicontinuity of M v. Then, for

all x ∈ Eλ we can find a radius rx > 0 such that 
Brx (x)

|v| dy > λ.

Then rx < (λ−1 ω−1
n ‖v‖L1(Rn))

1/n, and by Vitali’s 5r-covering theorem (see

for instance [8] and [16]) we can find disjoint balls Bri(xi), i ∈ N, such that

Eλ ⊆ ∪i∈NB5ri(xi), and

 
Bri

(xi)
|v| dy > λ.

Therefore, we conclude that

Ln(Eλ) ≤
∑

i≥0

Ln(B5ri(xi)) ≤
5n

λ

∑

i≥0

�
Bri

(xi)
|v| dy ≤

5n

λ
‖v‖L1(Rn). ���

Theorem 3.7. Let p ∈ (1,∞], there exists a positive constant c = c(n, p)

such that for all v ∈ Lp(Rn)

‖M v‖Lp(Rn) ≤ c‖v‖Lp(Rn).

Proof. In case p = ∞, estimate

‖M v‖L∞(Rn) ≤ ‖v‖L∞(Rn) (3.8)

easily follows from the very definition of the maximal operator.

Next fix p ∈ (1,∞). For any λ > 0 decompose v as the sum of vλ and

wλ, where

vλ(x) := v(x)χ{|v|>λ/2}(x).
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Hence, vλ ∈ L1(Rn) with

‖vλ‖L1(Rn) =

�
Rn

|vλ|
1−p|vλ|

p dx ≤

(

λ

2

)1−p

‖v‖pLp(Rn),

and wλ ∈ L∞(Rn) with

‖wλ‖L∞(Rn) ≤
λ

2
. (3.9)

By the very definition, it turns out that the maximal function defines a

positive sublinear operator, so that

M v ≤ M vλ + Mwλ.

In particular, by taking into account estimate (3.8) for wλ and the inequality

in (3.9), we can apply Theorem 3.6 to vλ and deduce that

Ln ({M v > λ}) ≤ Ln ({M vλ > λ/2}) ≤
2

λ
5n

�
{|v|>λ/2}

|v| dx. (3.10)

Therefore, by using the layer-cake representation formula and Fubini’s the-

orem we find�
Rn

|M v|pdx = p

� ∞

0
λp−1Ln ({M v > λ}) dλ

(3.10)

≤ 2 5n p

� ∞

0
λp−2

�
{|v|>λ/2}

|v| dx dλ

= 2p 5n p

� ∞

0
λp−2

�
{|v|>λ}

|v| dx dλ =
2p 5n p

p− 1

�
Rn

|v|p dx. ���

We are now ready to prove the ensuing result, instrumental for the

truncation technique used in Lemma 3.4. Actually, the pointwise estimate

proved below provides a characterization of Sobolev functions as shown by

Haj lasz [41].

Lemma 3.8. Let v ∈ W 1,p(Ω), then there exists a function g ∈ Lp(Ω) and

a positive constant c = c(n,Ω) such that for Ln a.e. x, y ∈ Ω

|v(x) − v(y)| ≤ c (g(x) + g(y)) |x− y| (3.11)

and

‖g‖Lp(Ω) ≤ c‖v‖W 1,p(Ω). (3.12)
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Proof. We first prove the result for functions v ∈W 1,p(Rn).

To this aim, let x be a Lebesgue point of v and r ∈ (0,∞) be any radius

to be chosen suitably along the proof. Set Bi := Br/2i(x), i ∈ N, and

vBi
:=

 
Bi

v(y) dy.

Being x a Lebesgue point of v, from the trivial estimate

|v(x) − vB0
| ≤ |v(x) − vBi

| +

j−1
∑

i=0

|vBi+1
− vBi

| for all j ∈ N,

and Poincaré inequality, we deduce that

|v(x) − vB0
| ≤

∑

i≥0

|vBi+1
− vBi

| =
∑

i≥0

∣

∣

∣

∣

∣

 
Bi+1

(v − vBi
) dy

∣

∣

∣

∣

∣

Bi+1⊂Bi

≤ 2n
∑

i≥0

 
Bi

|v − vBi
| dy ≤ c(n)

∑

i≥0

r

2i

 
Bi

|∇v| dy

≤ c(n) rM (|∇v|)(x). (3.13)

Let z ∈ Br(x) be another Lebesgue point of v, since by definition of r we

have Br(x) ⊂ B2r(z), by estimate (3.13) applied in z and Poincaré inequality

we get

|v(z) − vBr(x)| ≤ |v(z) − vB2r(z)| + |vB2r(z) − vBr(x)|

≤ 2c(n)rM (|∇v|)(z) +

 
Br(x)

|v − vB2r(z)|dy

≤ 2c(n)rM (|∇v|)(z) + c(n)

 
B2r(z)

|v − vB2r(z)|dy

≤ 4c(n)rM (|∇v|)(z). (3.14)

Finally, we choose r = 2|x − z| so that z is in Br(x), then from estimates

(3.13) and (3.14) we conclude that

|v(x) − v(z)| ≤ |v(x) − vBr(x)| + |v(z) − vBr(x)|

≤ 4c(n)
(

M (|∇v|)(x) + M (|∇v|)(z)
)

|x− z|. (3.15)
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The conclusion follows at once with g := M (|∇v|) thanks to the Hardy-

Littlewood’s maximal theorem (see Theorem 3.7).

Next consider a continuous extension operator E : W 1,p(Ω)→W 1,p(Rn).

By (3.15) we have for all pairs x and z of Lebesgue points of v in Ω

|v(x) − v(z)| ≤ 4c(n)
(

M (|∇(E v)|)(x) + M (|∇(E v)|)(z)
)

|x− z|.

Therefore, the conclusion follows by setting g := M (|∇(E v)|), since by The-

orem 3.7 and the continuity of the extension operator E we have for a positive

constant c = c(n,Ω)

‖g‖Lp(Ω) ≤ c ‖∇(E v)‖Lp(Rn) ≤ c ‖v‖W 1,p(Ω). ���

4. Proof of Theorem 2.2

In this section we prove Theorem 2.2 following a by now well-established

strategy. We first reduce ourselves to check the inequality on equi-integrable

sequences by taking advantage of Lemma 3.4 and thanks to (2.2). Equi-

integrability, in fact, allows us to perform several operations on the given

sequence paying only an infinitesimal energetic error. More precisely, by

equi-integrability we can freeze the lower order variables and reduce ourselves

to autonomous functionals and target affine functions. The last setting is

easily dealt with, again thanks to equi-integrability, by changing the bound-

ary data in order to exploit directly the very definition of quasiconvexity to

conclude.

4.1. Sufficiency of quasiconvexity

We are now ready to show that the direct implication of Theorem 2.2.

That is, given a sequence (vk) ⊂ W 1,p(Ω,RN ) weakly converging to u ∈

W 1,p(Ω,RN ) and f as (2.2), then

F (u) ≤ lim inf
k→∞

F (vk). (4.1)

Clearly, we may suppose that the right hand term above is finite since oth-

erwise there is nothing to prove. Moreover, up to extracting a subsequence,
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we may assume that the inferior limit in (4.1) is actually a limit. In what

follows, for the sake of convenience, subsequences will never be relabeled.

The proof is divided into several steps.

Step 1. Reduction to an equi-integrable sequence.

Using Lemma 3.4, up to a subsequence, there exists (uk) such that (i)-

(iii) in Lemma 3.4 hold. Therefore, (4.1) follows provided we prove

F (u) ≤ lim
k→∞

F (uk), (4.2)

since, by the positivity of f and the equi-integrability properties (ii) and

(iii),

F (uk) =

�
{vk=uk}

f(x, vk,∇vk) +

�
{vk 6=uk}

f(x, uk,∇uk)

≤ F (vk) + C

�
{vk 6=uk}

(1 + |uk|
q + |∇uk|

p) = F (vk) + o(1).

Step 2. Reduction to autonomous integrands.

Once the equi-integrability of the relevant sequence is guaranteed we

can end the proof following some arguments introduced by Marcellini and

Sbordone in [50].

We start off fixing ε > 0 and noting that by the equi-integrability of

(uk) and (∇uk) we can find δ = δε > 0 such that for any set measurable E

with Ln(E) ≤ δ it holds

sup
k

�
E

(1 + |u|q + |∇u|p + |uk|
q + |∇uk|

p) dx ≤ ε. (4.3)

Then, for all m ∈ N consider a partition of Ω into cubes Qi
m of side

m−1 and centre xim. Denote by Ωm the union of all those cubes Qi
m, i ∈ I,

contained in Ω, and set

[u]m :=
∑

i∈I

( 
Qi

m

u dx

)

χQi
m
, and [∇u]m :=

∑

i∈I

( 
Qi

m

∇u dx

)

χQi
m
.

Note that [u]m and [∇u]m are constant on each cube Qi
m and null on Ω\Ωm.
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Furthermore, it is a standard fact that ([u]m) converges strongly to u in

Lp(Ω), and that ([∇u]m) converges strongly to ∇u in Lp(Ω,RN×n).

Hence, up to the extraction of subsequences as usual not relabeled, we

may assume also that (uk) and ([u]m) both converge to u Ln a.e. on Ω, and

([∇u]m) to ∇u Ln a.e. on Ω.

Therefore, by Egoroff-Severini and Scorza-Dragoni theorems we may

find a compact subset K in Ω with Ln(Ω \K) ≤ δ
2 , δ for which (4.3) holds,

such that (uk) and ([u]m) converge to u in L∞(K), ([∇u]m) converges to ∇u

in L∞(K,RN×n), and f is continuous on K × R
N × R

N×n. In addition, we

fix M = Mε > 0 such that

sup
k

Ln({|u| + |∇u| + |uk| + |∇uk| ≥M}) ≤ δ. (4.4)

Hence, for every η > 0, supposing that m and k are sufficiently big so that

m−1 + ‖uk − u‖L∞(K) + ‖u− [u]m‖L∞(K) + ‖∇u− [∇u]m‖L∞(K) ≤ η, (4.5)

thanks to (4.3)-(4.5), we can finally estimate as follows�
Ω
f(x, uk,∇uk) dx =

�
K∩Ωm

f(x, uk,∇uk) dx+O(ε)

=
∑

i∈I

�
{K∩Qi

m: |uk|+|∇uk|≤M}
f(x, uk,∇uk) dx+O(ε)

=
∑

i∈I

�
{K∩Qi

m: |uk|+|∇uk|≤M}
f
(

xim, [u]m, [∇u]m + ∇(uk − u)
)

dx

−Ln(Ω)ωM (η) +O(ε)

=
∑

i∈I

�
Qi

m

f
(

xim, [u]m, [∇u]m+∇(uk−u)
)

dx−Ln(Ω)ωM (η)+O(ε), (4.6)

where ωM is a modulus of continuity of f on the compact subset K×{(u,A) :

|u| + |A| ≤M}.

To conclude it suffices to show that for all indices i ∈ I we have

lim inf
k

�
Qi

m

f
(

xim, [u]m, [∇u]m+∇(uk − u)
)

dx≥

�
Qi

m

f
(

xim, [u]m, [∇u]m
)

dx.

(4.7)
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Indeed, given this for granted, from (4.6) we infer that

lim inf
k

�
Ω
f(x, uk,∇uk) dx

≥
∑

i∈I

�
Qi

m

f
(

xim, [u]m, [∇u]m
)

dx− Ln(Ω)ωM (η) +O(ε)

=

�
Ω
f(x, u,∇u) dx −Ln(Ω)ωM (η) +O(ε),

where in the last equality we have used again (4.3)-(4.5). The lower semi-

continuity inequality in (4.2) then follows by letting first η ↓ 0 and then

ε ↓ 0.

Step 3. Conclusion.

To finish the proof we need to establish inequality (4.7) in the previous

step. To this aim we note that for all i ∈ I the integral functional to be

considered is autonomous, i.e. it depends only on the gradient variable

being [u]m constant on each cube Qi
m. Moreover, by taking into account

that [∇u]m satisfies the same property, the inequality has to be checked for

affine target functions. Therefore, we can rephrase inequality (4.7) as�
Q
g(∇w)dx ≤ lim inf

k

�
Q
g(∇wk)dx

for a quasiconvex function g satisfying

0 ≤ g(A) ≤ C(1 + |A|p) for all A, (4.8)

and an equi-integrable sequence (wk) weakly converging to an affine function

w(x) := a+ A · x on a cube Q.

With fixed ε > 0, by equi-integrability we can find an open subcube

Q′ ⊂⊂ Q such that

sup
k

�
Q\Q′

(1 + |∇w|p + |∇wk|
p) dx ≤ ε.

Let then ϕ ∈ C∞
c (Q, [0, 1]) be such that ϕ|Q′ = 1, and define the functions

ϕk := (1 − ϕ)w + ϕwk. Clearly, (ϕk) converges weakly to w in W 1,p, and

being ϕk ∈ w + W 1,p
0 (Q,RN ) one can use it to test the quasiconvexity of g
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at A and get

Ln(Q) g(A) ≤

�
Q
g(∇ϕk)dx ≤

�
Q′

g(∇wk)dx+C

�
Q\Q′

(1+|∇w|p+|∇wk|
p)dx,

for some positive constant C depending on ‖∇ϕ‖∞. Therefore, the choice

of Q′ and the growth condition on g in (4.8) give

Ln(Q) g(A) ≤ lim inf
k

�
Q
g(∇wk) dx+O(ε),

and the arbitrariness of ε > 0 provides the conclusion.
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