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Abstract

We survey some of our recent results on three topics in the study of numerical ranges,

namely, (1) Anderson’s condition for the numerical range of a finite matrix to equal a

circular disc, (2) Holbrook’s conjecture on the numerical radius inequality concerning the

product of two commuting operators, and (3) Williams and Crimmins’s structure theorem

on an operator when its numerical radius equals half of its norm.

1. Introduction

The numerical range of a bounded linear operator A on a complex

Hilbert space H is, by definition, the subset

W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}

of the complex plane C, where 〈·, ·〉 and ‖ · ‖ are the inner product in H

and its associated norm, respectively. The numerical radius of A is w(A) =

sup{|z| : z ∈ W (A)}. Thus W (A) is the image of the unit circle in H under

the quadratic form f(x) ≡ 〈Ax, x〉 from H to C, and w(A) is the smallest

radius of a circular disc centered at the origin which contains W (A).

The study of the numerical range has a history of almost one hundred

years now. It started with the amazing result of Toeplitz–Hausdorff [38, 21]
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that the numerical range is always a convex set in the plane. This means

that the quadratic form f maps the unit circle ‖x‖ = 1 of H (no interior) to

a subset of C with all its interior filled up. The subject was picked up slowly

in the beginning. There are various generalizations of the numerical range

to different contexts over the years. A group of British functional analysts

considered it for elements of a normed algebra, which culminates, in the early

1970s, in the two monographs [3] and [4]. For the past decade or so, the topic

has gone through a renaissance, due in a large part to the biennial “Workshop

on Numerical Ranges and Numerical Radii” (WONRA) organized by the

active and efficient Chi-Kwong Li. In recent years, a prominent development

out of this is the applications of the higher-rank numerical ranges to the

quantum information theory.

In this article, we will concentrate on the investigations concerning the

classical numerical ranges of operators and finite matrices. The general

problems to be considered in this area are the following:

(1) Given an operator A, what can be said about its numerical range W (A)?

(2) Conversely, if we know certain properties of W (A), what can we deduce

about the structure of A?

and

(3) Which nonempty bounded convex subset of C is the numerical range

W (A) of some operator or matrix A (in some special classes)?

We start, in Section 2 below, by presenting the basic properties and

examples of numerical ranges of operators. The ensuing three sections give

the developments in recent years on three topics from the 1960s and early

’70s. Section 3 is concerned with Anderson’s result that if A is an n-by-n

matrix whose numerical range W (A) is contained in a circular disc D with

their boundaries ∂W (A) and ∂D intersect at most than n points, then W (A)

and D coincide with each other. Several analogues, generalizations and ap-

plications will be presented. If A is nilpotent, then we may decrease the

number of intersection points from n to n − 2 (cf. Theorem 3.3). On the

other hand, we may also deduce a weaker conclusion when the circular disc

is assumed to be contained in W (A) (cf. Theorems 3.4, 3.5 and 3.6). The

analogue for compact operators on an infinite-dimensional space, in which

case we need infinitely many intersection points, is also given (cf. Theorem
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3.10). In Section 4, we consider the “conjecture” of Holbrook on the inequal-

ity w(AB) ≤ ‖A‖w(B) for commuting operators A and B. Although this is

refuted by Müller and, subsequently, by Davidson and Holbrook in 1988, we

are able to show, in contrast to the counterexample of the latter, that if the

roles of A and B are switched and A is of class Sn, then w(AB) ≤ w(A)‖B‖

still holds for commuting A and B (cf. Theorem 4.6). As a consequence, the

same is true for A a quadratic operator. However, it is unknown whether

w(AB) ≤ ‖A‖w(B) if A is quadratic and AB = BA. In this respect, our

contribution is that it is indeed the case if A is square-zero or idempotent.

Finally, Section 5 deals with generalizations of Williams and Crimmins’s re-

sult on an operator A with w(A) = ‖A‖/2. The latter says that if A is

such that w(A) = |z| for some z in W (A) and w(A) = 1/2 and ‖A‖ = 1,

then it is unitarily equivalent to an operator of the form
[

0 1
0 0

]

⊕ B. Since

w(A) ≥ ‖A‖/2 for any operator A, this says something about the structure

of A in the extremal case. Two generalizations are to be presented. One con-

cerns a finite Blaschke product f(z) = z
∏n

i=2(z − ai)/(1 − aiz), |ai| < 1 for

all i, of A with w(A) = 1 and ‖f(A)‖ = 2 (cf. Corollary 5.4). Another yields

the inequality w(A) ≥ cos(π/(k+2)) for any contraction A with ‖Akx‖ = 1

for some k ≥ 1 and some unit vector x, and a corresponding Jordan block

summand Jk+1 for A when the inequality becomes an equality (cf. Theorem

5.5).

2. Preliminaries

In this section, we give some basic properties and examples of numerical

ranges of operators which are to be used in later discussions.

Proposition 2.1. For operators A and B on spaces H and K, respectively,

the following hold:

(a) W (A) is a nonempty bounded convex subset of C. If H is finite dimen-

sional, then W (A) is even compact.

(b) W (aA+ bI) = aW (A) + b for any complex a and b.

(c) W (U∗AU) = W (A) for any unitary operator U on H.

(d) If A is unitarily equivalent to an operator of the form
[

B ∗

∗ ∗

]

(that is, A

is a dilation of B or B is a compression of A), then W (B) ⊆ W (A).
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(e) A complex number z is in W (A) if and only if A is unitarily equivalent

to an operator of the form
[

z ∗

∗ ∗

]

.

(f) The spectrum σ(A) of A is always contained in W (A).

(g) W (A ⊕ B) = (W (A) ∪ W (B))∧, the convex hull of the union W (A) ∪

W (B).

(h) If A is normal, then W (A) = σ(A)∧.

(i) ‖A‖/2 ≤ w(A) ≤ ‖A‖.

We next give some commonly seen examples of numerical ranges.

Example 2.2. If A is an operator on a two-dimensional space represented

as a 2-by-2 upper-triangular matrix
[

a b

0 c

]

, then W (A) is the elliptic disc

with foci the eigenvalues a and c of A and with its minor axis of length |b|.

Example 2.3. If A is a normal operator on an n-dimensional space with

eigenvalues a1, . . . , an, then W (A) is a polygonal region with some of the

aj’s as vertices.

Example 2.4. If A is the n-by-n Jordan block

Jn =













0 1

0
. . .
. . . 1

0













,

then W (A) = {z ∈ C : |z| ≤ cos(π/(n + 1))}.

Example 2.5. If A is the unilateral shift













0

1 0

1
. . .
. . .

. . .













on ℓ2, then W (A) equals the open unit disc D ≡ {z ∈ C : |z| < 1}.

In studying the numerical ranges of finite matrices, we have an addi-

tional tool which is not available for general operators, namely, the Kippen-

hahn polynomial. For an n-by-n matrix A, let pA(x, y, z) = det(xReA +
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yImA + zIn) denote its Kippenhahn polynomial, where ReA = (A + A∗)/2

and ImA = (A−A∗)/(2i) denote the real and imaginary parts of A, respec-

tively. Note that pA(x, y, z) is a degree-n homogeneous polynomial in the

three variables x, y and z. It encodes plenty of the spectral and numerical

range information of A. This is because pA(−1,−i, z) = det(zIn −A) is the

characteristic polynomial of A, whose zeros are exactly the eigenvalues of

A. On the other hand, pA(− cos θ,− sin θ, z) = det(zIn − Re (e−iθA)) is the

characteristic polynomial of Re (e−iθA) for any real θ, whose maximum zero

is the (signed) distance from the origin to the supporting line Lθ of W (A),

which is perpendicular to the ray Rθ from the origin with inclination θ from

the positive x-axis (cf. Figure 1). As θ runs over all numbers in [0, 2π),

the supporting lines Lθ form an envelope of W (A), which clearly yields the

numerical range of A.

Figure 1

The technical statement of the above is the following theorem of Kip-

penhahn (cf. [26, 43]).

Theorem 2.6. If A is an n-by-n matrix, then W (A) equals the convex hull

of the real points (u, v) for which ux + vy + z = 0 is a tangent line to the

curve pA(x, y, z) = 0 in the complex projective plane CP2.

Our main references for the numerical ranges of operators are [20, Chap-

ter 22] and [19], and for matrices [25, Chapter 1].
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3. Anderson’s Theorem

In the early 1970s, Anderson obtained a condition for the numerical

range of a finite matrix to be equal to a circular (elliptic) disc.

Theorem 3.1. If A is an n-by-n matrix such that W (A) is contained in a

closed elliptic disc E and their boundaries ∂W (A) and ∂E intersect at more

than n points, then W (A) = E.

Anderson’s original proof, which is never published, is based on Kip-

penhahn’s result and Bézout’s theorem. Recall that the latter says that if

p(x, y, z) and q(x, y, z) are homogeneous complex polynomials of degrees m

and n, respectively, which have no common factor, then they have exactly

mn common zeros counting multiplicities (cf. [27, Theorem 3.1]). Theorem

3.1 can be seen by assuming that E = D (since the involved properties are

all invariant under affine transforms) and noting that pA(x, y, z) = 0 and the

irreducible quadratic curve q(x, y, z) = x2 + y2 − z2 = 0, which corresponds

to the unit circle ∂D, have more than n intersection points, each with a

common tangent line. Hence Bézout’s theorem yields that q is a factor of

pA and thus D ⊆ W (A). The assertion of Theorem 3.1 then follows.

Another proof, due to the second author [37, Lemma 6], is via the clas-

sical theorem of Riesz–Fejér (cf. [31, p. 77, Problem 40]). Indeed, the

assumption W (A) ⊆ D is equivalent to Re (e−iθA) ≤ In for all real θ. If

p(eiθ) = det(In −Re (e−iθA)), then p(eiθ) =
∑n

j=−n aje
ijθ is a trigonometric

polynomial which assumes only nonnegative values. Thus the Riesz–Fejér

theorem yields that p(eiθ) = |q(eiθ)|2 for some polynomial of degree at most

n. Since a point eiθ0 is in ∂W (A) if and only if p(eiθ0) = 0, the assumption

on the intersection points of ∂W (A) and ∂D implies that p(eiθ) = 0 for more

than n many θ’s. Thus the same is true for q, which yields q ≡ 0 and hence

p ≡ 0. The latter is equivalent to W (A) = D.

A generalization of Theorem 3.1 using only the fact that a degree-n

polynomial can have at most n zeros is given in [13].

Anderson’s theorem rules out the possibility for the half disc {z ∈ D :

Re z ≥ 0} to be the numerical range of any finite matrix.

Another easy consequence of Theorem 3.1 is the following.
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Proposition 3.2. If A =
∑k

j=1⊕Aj is an n-by-n matrix whose numerical

range is an elliptic disc E, then W (Aj) = E for some j.

Since W (A) = (∪k
j=1W (Aj))

∧ = E, the pigeonhole principle yields that,

for some j, ∂W (Aj)∩∂E contains infinitely many points, and thus Theorem

3.1 is applicable to Aj to give W (Aj) = E. This is a generalization of [37,

Theorem 3].

If A is an n-by-n nilpotent matrix (An = 0), then the critical number of

intersection points n in Theorem 3.1 can be reduced to n− 2 to achieve the

same conclusion.

Theorem 3.3. If A is an n-by-n nilpotent matrix with W (A) contained in

D and ∂W (A) ∩ ∂D containing more than n− 2 points, then W (A) = D. In

this case, the number “n− 2” is sharp.

This is in [17, Propositions 3.1 and 3.2]. Again, it can be proven via the

Riesz–Fejér theorem. The magic number n− 2 is explained by the fact that,

in this case, the trigonometric polynomial p(eiθ) = det(In − Re (e−iθA)) is

of degree at most n− 2. Its sharpness can be seen by the matrix

An =

























0 1 0 · · · 0 1

0 1
. . . 0

0
. . .

. . .
...

. . .
. . . 0
. . . 1

0

























,

which is such that W (An) $ D and ∂W (An) ∩ ∂D contains exactly n − 2

points.

It is interesting to know what conclusion can be drawn about W (A)

when it is assumed to contain an elliptic disc E. The next theorem [17,

Theorem 2.5] gives the answer. It says that though W (A) = E may not be

true in general, the boundary ∂W (A) does contain an arc of ∂E.

Theorem 3.4. Let A be an n-by-n (n ≥ 3) matrix. Then

(a) ∂W (A) can contain at most n− 2 arcs of any ellipse, and
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(b) if W (A) contains an elliptic disc E and ∂W (A) and ∂E intersect at

more than n points, then ∂W (A) contains an arc of ∂E.

In this case, both numbers “n− 2” and “n” are sharp.

The proof of (a) depends on some analytic arguments on the polyno-

mial p(z, eiθ) ≡ det(zIn − Re (e−iθA)) for z in C and real θ. (b) is then

proven by enlarging A to an (n + 2)-by-(n + 2) matrix and making use

of (a). The sharpness of “n − 2” and “n” is seen by the matrices A =
[

0 2
0 0

]

⊕diag (r, rωn−2, rω
2
n−2, . . . , rω

n−3
n−2), where 1 < r < sec(π/(n−2)) and

ωn−2 = e2πi/(n−2), and A = diag (1, ωn, ω
2
n, . . . , ω

n−1
n ), where ωn = e2πi/n,

respectively.

For a nilpotent A, Theorem 3.4 has the following analogue (cf. [17,

Theorem 3.5]).

Theorem 3.5. Let A be an n-by-n nilpotent matrix.

(a) If n ≥ 5, then ∂W (A) contains at most n− 4 arcs of any circle centered

at the origin.

(b) If W (A) contains a closed circular disc D centered at the origin and

∂W (A) and ∂D intersect at more than n− 2 points, then W (A) = D if

2 ≤ n ≤ 4, and ∂W (A) contains at least one arc of ∂D if n ≥ 5.

In this case, both “n− 4” and “n− 2” are sharp.

The proof, which makes full use of the nilpotency of A, is a modification

of that for Theorem 3.4.

Another specialization of the preceding results is to the companion ma-

trices. Recall that a companion matrix is one of the form



















0 1

0
. . .
. . . 1

0 1

−an −an−1 · · · −a2 −a1



















.
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It is well known that the characteristic and minimal polynomials of such a

matrix are both zn +
∑n

j=1 ajz
n−j. For companion matrices, we have the

following stronger conclusion.

Theorem 3.6. If A is an n-by-n companion matrix with W (A) containing

D, a closed circular disc centered at the origin, and ∂W (A) and ∂D inter-

secting at more than n points, then A equals the Jordan block Jn and, in

particular, W (A) = D.

This is proven first in [14, Theorem 2.9] under the assumption W (A) =

D, and in [16, Theorem 1] for the general case W (A) ⊇ D. Its proof makes

use of the fact that Jn−1 is a principal submatrix of A and also the Riesz–

Fejér theorem.

The next generalization of Anderson’s theorem [41, Theorem 1] is useful

in deducing, when W (A) is a circular disc, properties of its center.

Theorem 3.7. If A is an n-by-n matrix of the form

[

aIm B

0 C

]

,

where 0 ≤ m < n, such that W (A) is contained in a closed circular disc D

centered at a and ∂W (A)∩∂D has more than n−m points, then W (A) = D.

The case m = 0 corresponds to Anderson’s theorem. Again, the Riesz–

Fejér theorem plays a major role in its proof.

Note that if A is an n-by-n matrix such that W (A) is an elliptic disc E,

then the two foci of ∂E are eigenvalues of A. This can be seen via the fact

that the irreducible quadratic polynomial q(x, y, z) which corresponds to the

dual ellipse of ∂E is a factor of pA(x, y, z) by Bézout’s theorem. Thus, in

particular, if W (A) is a circular disc, then its center is an eigenvalue of A

with algebraic multiplicity at least 2. Theorem 3.7 can be used to deduce

more precise spectral information of the center.

Theorem 3.8. If A is an n-by-n matrix such that ∂W (A) contains more

than 2n points of a circle C centered at a, then W (A) ⊇ C∧ and a is an

eigenvalue of A with its geometric multiplicity strictly less than its algebraic

multiplicity. In this case, the number “2n” is sharp.



✐

“BN09N33” — 2014/9/2 — 20:15 — page 360 — #10
✐

✐

✐

✐

✐

360 HWA-LONG GAU AND PEI YUAN WU [September

Note that, in the above situation, W (A) may not be equal to C∧ as

the example A = Jn−1 ⊕ [1] shows. The sharpness of “2n” is seen by the

n-by-n diagonal matrix A = (1+ ε)diag (1, ωn, ω
2
n, . . . , ω

n−1
n ), where ε > 0 is

sufficiently small.

The preceding theorem rules out the circular discs as the numerical

ranges of certain special types of matrices.

Corollary 3.9. Let A be an n-by-n matrix. If (a) A is similar to a normal

matrix, (b) A is nonnegative and permutationally irreducible, or (c) A is row

(resp., column) stochastic, then W (A) cannot be a circular disc.

In case (a), every eigenvalue of A has equal algebraic and geometric

multiplicities. Thus W (A) is not a circular disc by Theorem 3.8. (b) is

proven in [28, Theorem 4.5]. It can be seen by noting that if W (A) is a

circular disc, then its center coincides with the strictly positive maximum

eigenvalue of A by [28, Theorem 4.8], the two multiplicities of which are

both equal to 1, thus contradicting Theorem 3.8. Recall that a matrix A =

[aij ]
n
i,j=1 is row (resp., column) stochastic if aij ≥ 0 for all i and j, and

∑n
j=1 aij = 1 for all i (resp.,

∑n
i=1 aij = 1 for all j). Every row (resp.,

column) stochastic A is permutationally similar to a direct sum
∑k

j=1⊕Aj

with Aj row (resp., column) stochastic and ReAj permutationally irreducible

for all j. Assuming that W (A) is a circular disc D, we infer from Proposition

3.2 that W (Aj) = D for some j. Since the center of D equals the maximum

eigenvalue 1 of Aj by [28, Theorem 4.8], and the algebraic and geometric

multiplicities of 1 are equal to each other by [34, Lemma 6.3 (vi)], we have

a contradiction as before.

Theorems 3.7, 3.8 and Corollary 3.9 (a) were proven later in [6] by

elementary arguments using only properties of polynomials and continuous

functions.

For compact operators on an infinite-dimensional space, there is also an

analogue of Anderson’s theorem.

Theorem 3.10. If A is a compact operator such that W (A) is contained in

a closed circular disc D centered at the origin and ∂W (A)∩∂D has infinitely

many points, then W (A) = D.
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This is in [15, Theorem 1]. If the compact A acts on an infinite-

dimensional space, then, instead of the trigonometric polynomial p(eiθ) =

det(In − Re (e−iθA)) defined in terms of the determinant, we need consider

an analytic branch of the function dA(e
iθ) ≡ maxW (Re (e−iθA)) for real θ.

Our assumptions yield that dA(e
iθ) ≤ r for all θ and dA(e

iθ) = r for infinitely

many θ’s, where r is the radius of D. Thus dA(e
iθ) is identically equal to

r, which then gives W (A) = D. As before, this theorem implies that no

half-disc centered at the origin can be the numerical range of a compact

operator.

4. Holbrook’s Conjecture

In 1969, Holbrook [22] considered a numerical radius inequality of the

commuting product of two operators: If A and B are two commuting op-

erators, then w(AB) ≤ min{‖A‖w(B), w(A)‖B‖}. Note that if no commu-

tativity assumption is made on A and B, then, in comparing the three

numerical radii w(AB), w(A) and w(B), the best we can have is that

w(AB) ≤ 4w(A)w(B). For example, if A =
[

0 0
1 0

]

and B =
[

0 1
0 0

]

, then

AB =
[

0 0
0 1

]

, in which case w(A) = w(B) = 1/2 and w(AB) = 1, and thus

the equality w(AB) = 4w(A)w(B) holds. On the other hand, if A and B

commute, then the constant “4” on the right-hand side of the inequality can

be reduced to “2”, that is, w(AB) ≤ 2w(A)w(B) is true. Again, in this case,

“2” is sharp. This is seen by A =
[

0 1
0 0

]

⊕
[

0 1
0 0

]

and

B =











0 0 1 0

0 0 1

0 0

0











,

in which case we have w(AB) = w(A) = w(B) = 1/2.

Back then, Holbrook had already shown the validity of his conjecture

for doubly commuting A and B, that is, for A and B satisfying AB = BA

and AB∗ = B∗A. This is also obtained independently by Sz.-Nagy [35].

Theorem 4.1. If A and B doubly commute, then w(AB) ≤ min{‖A‖w(B),

w(A)‖B‖}. In particular, this is the case if A or B is normal and AB = BA.
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The normal case is proven by first checking for diagonal operators and

then by approximating them to the normal ones. For the doubly commuting

case, this is proven by simultaneously dilating such a pair to two commuting

normal operators.

Another partial generalization of the normal case is the next result from

[5, Lemma 2] concerning isometries.

Theorem 4.2. If A and B commute and A is an isometry, then w(AB) ≤

min{‖A‖w(B), w(A)‖B‖}.

Since A can be extended to a unitary operator U , the commuting B can

also be extended to an operator C which commutes with U . The inequality

w(AB) ≤ ‖A‖w(B) then follows by showing that W (B) = W (C). The other

inequality w(AB) ≤ w(A)‖B‖ is trivial.

In [22, Theorem 4.4], Holbrook showed that the smallest constant c for

which w(AB) ≤ c‖A‖w(B) holds for all commuting A and B is strictly less

than 2. One specific such constant was obtained by Crabb [30, pp. 209–210].

Theorem 4.3. If A and B commute, then w(AB) ≤ (
√

2 + 2
√
3/2)‖A‖w(B).

Note that the constant
√

2 + 2
√
3/2 equals 1.1687 . . ., which is bigger

than 1. The proof of Theorem 4.3 involves some ingenious arguments, which

can be further refined to yield even smaller estimates of c.

In light of all such partial results, it came as a surprise when in 1988

Müller [29] gave an example showing that the best constant c for which

w(AB) ≤ c‖A‖w(B) holds for all commuting operators A and B is greater

than 1.01 instead of the long-suspected 1. His example involves operators

on a 12-dimensional space and relies on a computer check for its validity.

The day is saved by Davidson and Holbrook: they gave in [8] simpler ex-

amples involving only zero-one matrices with the additional advantages that

the computations can be carried out directly and the lower bound on the

constant c can be improved. Here is one of their examples.

Example 4.4. If A = J9 and B = J3
9 + J7

9 , then A and B commute,

w(AB) = ‖A‖ = 1 and w(B) = cos(π/10). Thus w(AB) > ‖A‖w(B).
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This also shows that the constant c for which w(AB) ≤ c‖A‖w(B)

holds for all A and B with AB = BA is at least 1/ cos(π/10) = 1.0514 . . .

In recent years, Holbrook and Schoch [24, p. 278] gave examples to show

that w(AB) > ‖A‖w(B) may even occur for commuting 3-by-3 matrices.

However, no such examples can exist for matrices of size 2. This was proven

again by Holbrook [23].

Theorem 4.5. If A and B are commuting 2-by-2 matrices, then w(AB) ≤

w(A)w(B).

The proof of this theorem is based on the following lemma, which has

some independent interest.

Lemma 4.1. If A and B are commuting 2-by-2 matrices with w(A), w(B) ≤

1, then there is another 2-by-2 matric C with w(C) ≤ 1 and there are analytic

functions f and g from D to D such that A = f(C) and B = g(C).

Another proof of Theorem 4.5, based on the Pick interpolation condition,

is given in [24, Corollary 3.2].

Note that, in Example 4.4, the inequality w(AB) ≤ w(A)‖B‖ is still

true, revealing its asymmetric nature. Our contributions to this subject is

that the latter inequality holds for a much larger class of operators.

Recall that a contraction A (‖A‖ ≤ 1) is of class C0 if it is completely

nonunitary (meaning that A has no unitary direct summand) and satisfies

φ(A) = 0 for some φ in the Hardy space H∞ of bounded analytic functions

on D. The minimal function of a C0 contraction A is the annihilating φ in

H∞ which divides all other such annihilating functions of A. In this case, φ

must be inner, namely, it satisfies |φ| = 1 a.e. on the unit circle ∂D. One

example of C0 contractions is the compression of the shift S(φ) for any inner

function φ, defined on the space H ≡ H2 ⊖ φH2 by S(φ)f = PH(zf(z))|H

for f in H, where PH denotes the orthogonal projection from H2 onto H.

Note that the minimal function of S(φ) is φ and rank (I − S(φ)∗S(φ)) = 1

holds. If φ(z) = zn, then S(φ) is unitarily equivalent to the n-by-n Jordan

block Jn. Such operators were first studied by Sarason [33] and later featured

prominently in the Sz.-Nagy–Foiaş contraction theory [36] as the building

blocks of the “Jordan model” for C0 contractions [36, 2].
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Theorem 4.6. If A is a C0 contraction with minimal function φ such that

W (A) = W (S(φ)) and if B commutes with A, then w(AB) ≤ w(A)‖B‖.

This is proven in [42] first for A a compression of the shift S(φ) and, for

the general C0 contraction A with minimal function φ, by extending it to

the direct sum A1 of copies of S(φ) and by extending the commuting B to

an operator B1 which commutes with A1 and satisfies ‖B1‖ = ‖B‖.

Note that the extra condition that W (A) = W (S(φ)) in Theorem 4.6 is

essential for otherwise the example of B = (J9 + (1/4)J5
9 )/‖J9 + (1/4)J5

9 ‖

and A = B3 attests the falsity of w(AB) ≤ w(A)‖B‖.

An operator A is said to be quadratic if it satisfies A2 + aA + bI = 0

for some complex numbers a and b. Using Theorem 4.6, we can prove a

numerical radius inequality for quadratic operators (cf. [42, Theorem 5]). It

is a partial generalization of Theorem 4.5.

Theorem 4.7. If A is a quadratic operator and B commutes with A, then

w(AB) ≤ w(A)‖B‖.

Note that the inequality above is not necessarily true if A is annihilated

by a cubic polynomial. For example, it was shown in [8, Corollary 4] that if

A =







0 I3 J3
0 I3

0






and B =







J3
J3

J3






,

then A3 = B3 = 0, AB = BA, w(A) = cos(π/10), ‖B‖ = 1 and w(AB) = 1.

Thus, in this case, w(AB) > w(A)‖B‖. The remaining open question is

whether w(AB) ≤ ‖A‖w(B) holds for A quadratic and B commuting with

A. Some special cases of it are known to be true. For example, this is the

case if A satisfies A2 = aI for some scalar a (cf. [32]).

Theorem 4.8. If A is an operator satisfying A2 = aI for some scalar a and

B commutes with A, then w(AB) ≤ ‖A‖w(B).

Another known case is the following.

Theorem 4.9. If A is an idempotent operator (A2 = A) and B commutes

with A, then w(AB) ≤ ‖A‖w(B).
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This is from [10, Theorem 3]. Its proof makes use of Theorem 4.1, the

doubly commuting case.

5. Williams–Crimmins’s Result

As we have seen in Proposition 2.1 (i) that w(A) ≥ ‖A‖/2 holds for any

operator A. The result of Williams and Crimmins [39] gives the structure of

A when this becomes an equality.

Theorem 5.1. Let A be an operator on H such that ‖Ax‖ = ‖A‖ for some

unit vector x in H. If w(A) = 1 and ‖A‖ = 2, then A is unitarily equivalent

to an operator of the form
[

0 2
0 0

]

⊕A′ and W (A) = D.

The proof is quite straightforward. Indeed, if y = (1/2)Ax, then y and

x are orthonormal vectors. Let K be the subspace of H generated by y

and x. Then A is unitarily equivalent to
[

0 2
0 0

]

⊕ A′ on the decomposition

H = K ⊕K⊥ of H.

A generalization of the preceding theorem was obtained by Crabb [7].

Theorem 5.2. If A is an operator on H with w(A) ≤ 1 and ‖Anx‖ = 2 for

some n ≥ 1 and some unit vector x in H, then A is unitarily equivalent to

an operator of the form B ⊕C, where B is the (n+ 1)-by-(n+ 1) matrix

[

0 2

0 0

]

or























0
√
2

0 1

0
. . .

. . . 1

0
√
2

0























depending on whether n = 1 or n ≥ 2. In this case, W (A) = D.

As for Theorem 5.1, the subspace K of H on which B acts is generated

by the mutually orthogonal vectors x,Ax, . . . , Anx. The proof itself is quite

involved, not easily to be further generalized.

In 2009, the authors were able to give in [18] a generalization of the

preceding theorem.
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Theorem 5.3. Let f be a function in H∞ with ‖f‖∞ ≤ 1. Then there is

an operator A on H with w(A) ≤ 1 which has no unitary summand and

has a unit vector x in H such that ‖f(A)x‖ = 2 if and only if f is inner

and f(0) = 0. In this case, A has a direct summand similar to S(φ), where

φ(z) = zf(z) for z in D.

A finite-dimensional version of this confirms Drury’s Conjecture 6 in [9].

Corollary 5.4. Let f : D → D be a function analytic on D and continuous

on D. Then there is an operator A on H with w(A) ≤ 1 and ‖f(A)x‖ = 2

for some unit vector x in H if and only if f(z) = z
∏n

i=2(z − ai)/(1 − aiz)

for some n ≥ 1 and a2, . . . , an in D. In this case, A is unitarily equivalent

to an operator of the form B ⊕ C, where B = [bij ]
n+1
i,j=1 is such that b11 =

bn+1,n+1 = 0, bii = ai for 2 ≤ i ≤ n,

bij =



















√
2aij if 1 = i < j ≤ n or 2 ≤ i < j = n+ 1,

2aij if i = 1 and j = n+ 1,

aij if 2 ≤ i < j ≤ n,

0 if i > j,

and

aij = (−1)j−i−1ai+1 · · · aj−1[(1− |ai|
2)(1 − |aj |

2)]1/2 for i < j.

Moreover, in this case, W (A) = D.

Note that the case f(z) = z corresponds exactly to Theorem 5.1, the

Williams–Crimmins result, while f(z) = zn (n ≥ 1) corresponds to Theorem

5.2.

The proof of Theorem 5.3 is quite intricate. It depends on a factorization

theorem of Ando [1, Theorem 2] for operators A with w(A) ≤ 1. The matrix

form of B in Corollary 5.4 is a consequence of the necessity proof of Theorem

5.3 and the upper-triangular matrix representation of the finite-dimensional

compression of the shift S(φ) [12, Corollary 1.3].

Another finite-dimensional generalization of Theorem 5.1 was obtained

more recently in [11, Theorem 2.10]. Later on, the first author found out

that it is even true for operators.
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Theorem 5.5. Let A be a contraction on H. If ‖Akx‖ = 1 for some k ≥ 1

and some unit vector x in H, then w(A) ≥ cos(π/(k+2)). Moreover, in this

case, the equality w(A) = cos(π/(k + 2)) holds if and only if A is unitarily

equivalent to an operator of the form Jk+1 ⊕B with w(B) ≤ cos(π/(k +2)).

Also, if this is the case, then W (A) = {z ∈ C : |z| ≤ cos(π/(k + 2))}.

In [11, Theorem 2.5], the inequality w(A) ≥ cos(π/(k + 2)) (for A a

finite matrix) was proven by showing the equivalence of ‖Ak‖ = 1 and w(A⊗

Jk+1) = w(Jk+1). When the equality is true, we show that the subspaceK of

Cn generated by x,Ax, . . . , Akx, where x is a unit vector in Cn with ‖Akx‖ =

1, is reducing for A and the restriction of A to K is unitarily equivalent to

Jk+1. For an operator A, a more direct proof has been discovered by the

first author recently.

In the preceding theorem, the case k = 1 corresponds to the Williams–

Crimmins result. Another extremal case is for k to be equal to n− 1 as the

following corollary shows.

Corollary 5.6. For an n-by-n matrix A with ‖A‖ = 1, the following condi-

tions are equivalent:

(a) ‖An−1‖ = 1 and w(A) = cos(π/(n + 1)),

(b) A is unitarily equivalent to Jn, and

(c) ‖An−1‖ = 1 and An = 0.

We conclude this section with one more equivalent condition, besides

the ones in Corollary 5.6.

Theorem 5.7. An n-by-n matrix A is unitarily equivalent to Jn if and only

if ‖A‖ = 1 and W (A) = {z ∈ C : |z| ≤ cos(π/(n + 1))}.

This is in [40, Theorem 3]. The proof is of a matricial nature, which is

independent of the ones for Theorem 5.5 and Corollary 5.6.
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