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Abstract

We prove a quadratic interaction estimate for wavefront approximate solutions to the

triangular system of conservation laws

{
ut + f̃(u, v)x = 0,

vt − vx = 0.

This quadratic estimate has been used in the literature to prove the convergence rate of

the Glimm scheme [2].

Our aim is to extend the analysis, done for scalar conservation laws [7], in the presence

of transversal interactions among wavefronts of different families. The proof is based on

the introduction of a quadratic functional Q(t), decreasing at every interaction, and such

that its total variation in time is bounded.

The study of this particular system is a key step in the proof of the quadratic inter-

action estimate for general systems: it requires a deep analysis of the wave structure of

the solution (u(t, x), v(t, x)) and the reconstruction of the past history of each wavefront

involved in an interaction.
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1. Introduction

Consider a hyperbolic system of conservation laws

{

ut + f(u)x = 0

u(0, x) = ū(x)
(1.1)

where ū ∈ BV (R,Rn), f : Rn → R
n smooth (by smooth we mean at least of

class C3(Rn,Rn)).

Let uε be a wavefront solution to (1.1) [9], where ε is a fixed discretiza-

tion parameter. Let {tj}j=1,...,J be the times at which two wavefronts w1, w2

meet or collide; each tj can be an interaction time if the wavefronts w1, w2

belong to the same family and have the same sign; a cancellation time, if

w1, w2 belong to the same family and have opposite sign; a transversal inter-

action time if w1, w2 belong to different families; a non-physical interaction

time if at least one among w1, w2 is a non-physical wavefront (for a precise

definition see Definition 3.2).

In a series of papers [2, 3, 11, 12] the following estimate has been dis-

cussed:

∑

tj interaction

|σ(w1)− σ(w2)||w1||w2|

|w1|+ |w2|
≤ O(1)Tot.Var.(ū)2. (1.2)

In the above formula w1, w2 are the wavefronts which interact at time tj,

σ(w1) (resp. σ(w2)) is the speed of the wavefront w1 (resp. w2) and |w1|

(resp. |w2|) is its strength. Here and in the following, by O(1) we denote a

constant which depends only on the flux function f .

As it is shown in [3, 7], the proofs presented in the above papers contain

glitches/missteps, which justified the publication of a new and different proof

in [7].

This last paper [7] considers the simplest case at the level of (1.1),

namely the scalar case u ∈ R, and shows that nevertheless the analysis is

quite complicated: in fact, one has to follow the evolution of every elementary

component of a wavefront, which we call wave (see Section 2 below and also

Definition 3.3), an idea present also in [2]. One of the conclusions of the
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analysis in [7] is that the functional used to obtain the bound (1.2) is non-

local in time, a situation very different from the standard Glimm analysis of

hyperbolic systems of conservation laws.

In this work we want to study how the same estimate can be proved

in the presence of waves of different families. For this aim, we consider the

most simple situation, namely the 2× 2 Temple-class triangular system (see

[13] for the definition of Temple class systems)

{

ut + f̃(u, v)x = 0,

vt − vx = 0,
(1.3)

with ∂f̃(0,0)
∂u

> −1, so that local uniform hyperbolicity is satisfied. Its quasi-

linear form in the Riemann coordinates is given by

{

wt +
(

∂f̃(u,v)
∂u

)

wx = 0,

vt − vx = 0,
(1.4)

where u = u(w, v) is the Riemann change of coordinates. Being the equa-

tion for the first family v linear, it is sufficient to consider the scalar non-

autonomous PDE for w,

wt +

(

∂f

∂w
(w, v)

)

wx = 0, (1.5)

for some smooth (C3-)function f such that ∂f(0,0)
∂w

> −1.

The (non-conservative) Riemann solver we consider for (1.5) in general

will not generate the standard (entropic) wavefront solution of (1.3): in this

paper, we prefer to study the quasilinear system (1.4) in order to focus on the

main difficulty, namely the analysis of the transversal interactions. Indeed,

the choice of the coordinates (w, v) and of the (non-conservative) Riemann

solver simplifies the computations.

Using the fact that the transformations w 7→ u(w, v), |v| ≪ 1, are uniformly

bi-Lipschitz, it is only a matter of additional technicalities to prove that the

analysis in the following sections can be repeated for the standard (entropic)

wavefront solution of (1.3). This will be addressed in a forthcoming paper

concerning general systems [8].
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1.1. Main result

The main result of this paper is the proof of estimate (1.2) for the ε-

wavefront solution wε to (1.5): the parameter ε refers to the discretization

fε of the flux f and to the discretization (wε(0), vε(0)) of the initial data

(w(0), v(0)), with, as usual,

Tot.Var.(wε(0), vε(0)) ≤ Tot.Var.(w(0), v(0)). (1.6)

In order to state precisely the main theorem of this paper (Theorem 1),

as in [7] we need to introduce what we call an enumeration of waves in the

same spirit as the partition of waves considered in [2], see also [1]. Roughly

speaking, we assign an index s to each piece of a wavefront (i.e. to each

elementary discontinuity of size ε), and construct two functions x(t, s), σ(t, s)

which give the position and the speed of the wave s at time t, respectively.

More precisely, let wε be the ε-wavefront solution: for definiteness we

assume wε to be right continuous in space. Consider the set

W :=

{

1, 2, . . . ,
1

ε
Tot.Var.(wε(0))

}

⊆ N,

which will be called the set of waves. In Section 3.3 we construct a function

x : [0,+∞) ×W → (−∞,+∞]

(t, s) 7→ x(t, s)

with the following properties:

1. the set {t : x(t, s) < +∞} is of the form [0, T (s)) with T (s) ∈ (0,+∞):

define W(t) as the set

W(t) :=
{

s ∈ W | x(t, s) < +∞
}

;

2. the function t 7→ x(t, s) is Lipschitz and affine between collisions;

3. for s < s′ such that x(t, s), x(t, s′) < +∞ it holds

x(t, s) ≤ x(t, s′);
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4. there exists a time-independent function S(s) ∈ {−1, 1}, the sign of the

wave s, such that

Dxwε(t, ·) = x(t, ·)♯
(

S(·) εcountxW(t)

)

, (1.7)

where countxW(t) is the counting measure on W(t) ⊆ N.

The last formula means that for all test functions φ ∈ C1
c (R,R) it holds

−

∫

R

wε(t, x)Dxφ(x)dx = ε
∑

s∈W(t)

φ(x(t, s))S(s).

The fact that x(t, s) = +∞ is a convention saying that the wave has been

removed from the solution wε by a cancellation occurring at time T (s).

Formula (1.7) and a fairly easy argument, based on the monotonicity prop-

erties of the Riemann solver and used in the proof of Lemma 3.11, yield that

to each wave s it is associated a unique value ŵ(s) (independent of t) by the

formula

ŵ(s) = wε(0,−∞) +
∑

p∈W(t)
p≤s

S(p).

We finally define the speed function σ : [0,+∞)×W → (−∞,+∞] as follows:

σ(t, s) :=







































+∞ if x(t, s) = +∞,
(

d
dw

conv[wε(t,x(t,s)−),wε(t,x(t,s))]fε

)(

(

ŵ(s)−ε, ŵ(s)
)

, vε(t, x(t, s))
)

if S(s) = +1,
(

d
dw

conc[wε(t,x(t,s)),wε(t,x(t,s)−)]fε

)(

(

ŵ(s), ŵ(s)+ε
)

, vε(t, x(t, s))
)

if S(s) = −1.

(1.8)

We denote by fε(·, vε(t, x(t, s))) the piecewise affine interpolation of f(·, vε(t,

x(t, s))) with grid size ε, as a function of w (see Section 1.4 for the precise

definition). The definition (1.8) of σ(t, s) means, in other words, that to the

wave s ∈ W(t) we assign the speed given by the (non-conservative) Riemann

solver in (t, x(t, s)) to the wavefront containing the interval (ŵ(s)− ε, ŵ(s))

for S(s) = +1 or (ŵ(s), ŵ(s)+ε) for S(s) = −1. Note that being fε affine in

intervals of size ε, then the value of σ(t, s) is constant for s ∈ (ŵ(s)−ε, ŵ(s)).
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We can now state our theorem. As before, let tj, j = 1, . . . , J , be the

times where two wavefronts meet, i.e. a collision occurs.

Theorem 1. The following holds:

J
∑

j=1

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤

[

3‖D2
wwf‖+ 12 log(2)‖D3

wwvf‖Tot.Var.(v(0, ·))

]

Tot.Var.(w(0, ·))2

+‖D2
wvf‖Tot.Var.(w(0, ·))Tot.Var.(v(0, ·)), (1.9)

where |s| := ε is the strength of the wave s.

Notice that, since the r.h.s. of (1.9) is independent of ε (under the

assumption (1.6)), the above theorem provides a uniform estimate of (1.2)

for wavefront tracking solution. In fact, a simple computation based on

Rankine-Hugoniot condition yields

(σ(w1)− σ(w2))|w1||w2|

|w1|+ |w2|
=

1

2

[

(

σ(w1)− σ(w)
)

|w1|+
(

σ(w) − σ(w2)
)

|w2|
]

,

in the case of an interaction of the wavefronts w1, w2 generating the wavefront

w, with w1 coming from the left and w2 coming from the right.

1.2. Sketch of the proof

As observed in [3, 7], the study of wave collisions cannot be local in

time, but one has to take into account the whole sequence of interactions-

cancellations-transversal interactions involving every couple of waves.

Our approach in this paper follows the ideas of [7]: we construct a

quadratic functional Q such that

(a) its total variation in time is bounded by O(1)Tot.Var.(w(0), v(0))2 ;

(b) at any interaction involving the wavefronts w1, w2, it decays at least of

the quantity

|σ(w1)− σ(w2)||w1||w2|

|w1|+ |w2|
.
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The functional can increase only when a transversal interaction occurs, but

in this case we show that its positive variation is controlled by the decrease

of the classical transversal Glimm interaction functional [10]

Qtrans(t) :=
H
∑

h=1

∑

s∈W(t)
x(t,s)<x(t,vh)

|vh||s|.

In the above formula, we denote by {vh}1≤h≤H the wavefronts of the first

family generated at t = 0, by {|vh|}1≤h≤H their strengths, and by x(t, vh),

1 ≤ h ≤ H, their position at time t. Clearly it holds x(t, vh) = x(0, vh) − t,

and we assume that x(0, vh) < x(0, vh+1) for each h.

Being Qtrans a Lyapunov functional, it follows that

positive total variation of Q(t) ≤ O(1)Qtrans(0)

≤ O(1)Tot.Var.(w(0))Tot.Var.(v(0)),(1.10)

so that, being by construction Q(0) ≤ O(1)Tot.Var.(w(0), v(0))2 , the func-

tional t 7→ Q(t) has total variation of the order of Tot.Var.(w(0), v(0))2 . In

particular,

left hand side of (1.9) at interactions ≤ negative variation of Q

≤ O(1)Tot.Var.(w(0), v(0))2 . (1.11)

The estimates (1.9) concerning transversal interactions and cancellations are

much easier (and already done in the literature, see [2, 7]), and we present

them in Propositions 4.1, 4.3.

As in [7], Q(t) has the form

Q(t) :=
∑

s,s′∈W(t)
s<s′

q(t, s, s′)|s||s′|.

What differs from the analysis in the scalar case is the computation of the

weights q(t, s, s′).

We recall that in the scalar case the computation of q(t, s, s′) involves

two steps:
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(1) the definition of the interval I(t, s, s′), made of all waves which have

interacted both with s and s′;

(2) the computation of an artificial difference in speed of s, s′, obtained by

solving the Riemann problem in I(t, s, s′) with the flux of the scalar

equation f .

The fundamental fact in the analysis of the scalar case is that

Property D. The Riemann solution of Point (2) divides waves which are

divided in the approximate solution of the Cauchy problem (1.1).

As a consequence, two waves which have been separated at a time tj > 0,

can join again at some interaction only if this interaction involves waves

which have never interacted.

The main difficulty we face in our setting (i.e. in the presence of wave-

fronts of different families) is that the two properties above are not true

any more. This has an impact in the construction of the intervals I(t, s, s′)

(Point (1) above) and in the definition of the weights q, which is now given

by an ”artificial flux” (Point (2)).

We now address these points more deeply.

1.2.1. Definition of the interval I(t, s, s′)

The model situation to be considered here is the following: even in the

absence of cancellations or interactions involving waves which have never

interacted with s, s′, the waves s, s′ can undergo to a sequence of splittings

and interactions due to the presence of the wavefronts of the first family.

In this case, the interval I(t, s, s′) as defined in [7] does not contain the

information about their common story: in fact, by the definition given in

[7], Section 3.3, I(t, s, s′) contains all waves which have interacted both with

s and s′, but it gives us no information about the transversal interactions in

which each wave p ∈ I(t, s, s′) has been involved before time t.

Hence, it is more natural to compute the interval I(t, s, s′) starting from

the last common splitting point.

The drawback of this definition is that, differently from the scalar case

(Lemma 3.17 of [7]), the intervals I(t, s, s′) and I(t, p, p′), for (s, s′) 6= (p, p′),
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are not in general comparable. However, a fundamental reduction property

still holds, Proposition 4.13.

1.2.2. Computation of the weight q(t, s, s′)

The other characteristic of systems is that the scalar reduced flux func-

tion (see [6]) depends (as a function) on the solution. Hence the separation

property cited above is certainly not valid, if we use this reduced scalar flux.

Indeed, as we said before, two waves which have split can be again approach-

ing due only to transversal interactions, which means that the flux function

f of (1.5) is not separating them when solving the Riemann problem in

I(t, s, s′).

In any case, it is not clear which can be a natural flux function to be used

to compute the difference in speeds as in Point (2), because of the presence

of the wavefronts of the first family.

In order to overcome this difficulty and preserve the separation Property

(D), we build first the partition P(t, s, s′) of I(t, s, s′) as follows: P(t, s, s′)

is the least refined partition such that for all t′ ≤ t, if p, p′ are waves in

I(t, s, s′) which are separated at t′, then they belong to different elements

J ,J ′ ∈ P(t, s, s′), Proposition 4.11. It is fairly easy to see that the elements

J of the partition P(t, s, s′) are intervals.

The weights q(t, s, s′) are then constructed recursively by computing at each

transversal interaction the worst possible increase in the difference in speed

π(t, s, s′)[s, s′], see (4.9) and Lemma 4.14, and then defining (4.10)

q(tj , s, s
′) :=















0 s, s′ joined at time tj in the real solution

π(tj ,s,s′)[s,s′]
|ŵ(s′)−(ŵ(s)−S(s)ε)| s, s′ divided at time tj and already interacted,

‖D2
wwf‖L∞ s, s′ never interacted.

(1.12)

Another difference w.r.t. the scalar case is that here we do not increase

the weight q(t, s, s′) when a cancellation occurs. Even if we do not obtain

the sharpest estimate on (1.9), this choice is sufficient for proving (1.2) and

the analysis is certainly simpler.
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In Section 3.4, we introduce an effective flux function f
eff , which is

defined up to an affine function by the formula (3.7),

d2feff
t̄

dw2
(w) :=

∂2f

∂w2
(w, v) for a.e. w,

where v = v(t̄, x(t̄, s)) for any s such that w ∈ (ŵ(s)− ε, ŵ(s)] in the case of

s positive (resp. w ∈ [ŵ(s), ŵ(s)+ ε) in the case of s negative). As observed

before, this flux f
eff is not useful for computing the weights: in fact, its

main use is in the comparison in the difference in Rankine-Hugoniot speed

σrh(feff ,J ) (obtained by Rankine-Hugoniot condition with flux f
eff on the

element J of the partition P(t, s, s′)) with the weights π(t, s, s′), see (4.12).

In particular, when no transversal wavefronts are present, then, up to a con-

stant independent of J ∈ P(t, s, s′), σrh(feff ,J ) corresponds to the Rankine-

Hugoniot speed σrh(f,J ) computed according to the flux f on the interval

J , and hence the weights π(t, s, s′) yield a control on the speed difference.

An important consequence of the fact that the intervals I(t, s, s′),

I(t, p, p′) for (s, s′) 6= (p, p′) are not comparable, is that the reasoning of

Theorem 3.23 of [7] (precisely the inequality before (3.16) in Step 4 of the

proof) cannot be carried out.

However, the separation property of the partitions P(t, s, s′) allows to

divide the pairs of waves (s, s′) (involved in an interaction of the wavefronts

L, R, with s ∈ L, s′ ∈ R) according to the last transversal interaction-

cancellation time which splits them (Lemma 4.17). The proof of Point ()

of page 492 then proceeds by considering a subtree D of {1, 2, 3}<N and by

constructing for each α ∈ D a subrectangle Ψα = Lα × Rα of L × R, such

that the following estimate holds:

σrh(f,Lα)− σrh(f,Rα) ≤
∑

(s,s′)∈Ψα

(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

+
∑

(s,s′)∈Ψα

(s,s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|.

This is done in Lemma 4.18 for the elements Ψα with α final leaf of the tree

D. A standard argument allows to move backward the above estimate to all
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the elements Ψα, α ∈ D, obtaining finally

σrh(f,L)− σrh(f,R) ≤
∑

(s,s′)∈L×R
(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

+
∑

(s,s′)∈L×R
(s,s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|.

Dividing both side by |L|+ |R| and remembering the definition of q(t, s, s′)

(1.12), we obtain the proof of Point ().

1.3. Structure of the paper

The paper is organized as follows.

Section 2 provides some useful results on convex envelopes. Part of these

results are already present in the literature, others can be deduced with little

effort. We decided to collect them for reader’s convenience. Two particular

estimates play a key role in the main body of the paper: the dependence

of the derivative of the convex envelope of f when f changes (Proposition

2.12) and the behavior of the speed assigned to a wave by the solution to

Riemann problem [uL, uR] when the left state uL or the right state uR are

varied (Proposition 2.11).

The next two sections contain the main results of the paper.

In Section 3 we introduce the main tools which are used in the proof of

the main theorem, Theorem 1.

After recalling how the (non-conservative) wavefront approximated solution

wε is constructed, we begin with the definition of the wave map x and of enu-

meration of waves in Section 3.3, Definition 3.3. This is the triple (W, x, ŵ),

where x is the position of the waves s and ŵ is its right state. In Section

3.3.3 we show that it is possible to construct a function x(t, s) such that at

any time (W, x(t), ŵ) is an enumeration of waves, with ŵ independent on t.

The second tool is the definition of the effective flux function f
eff , Section

3.4, and we list some of its properties.
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Finally in Section 3.5 we recall the definition of transversal Glimm interac-

tion functional Qtrans and Proposition 3.14 recalls the two main properties

of Qtrans.

Once we have an enumeration of waves, we can start the proof of The-

orem 1 (Section 4).

First we study the estimate (1.9) when a single transversal interaction or

a cancellation occurs. These estimates are standard (see for example [2, 7]).

In the case of a transversal interaction, the variation of speed is controlled by

the strength of the wavefront of the first family interacting with the solution

wε, and then the l.h.s. of (1.9) is controlled by the decay of Qtrans. The

precise estimate is reported in Proposition 4.1; Corollary 4.2 completes the

estimate (1.9) for the case of transversal interaction times.

For cancellation times, the variation of speed is controlled by the amount of

cancellation, which in turn is bounded by the decay of a first order functional,

namely Tot.Var.(wε(t, ·)). This is shown in Proposition 4.3, where the de-

pendence w.r.t. Tot.Var.(wε(t, ·)) and ‖Dwwf‖L∞ is singled out. Corollary

4.4 concludes the estimate (1.9) for the case of cancellation times.

The rest of Section 4 is the construction and analysis of the functional Q

described above (Section 1.2), in order to prove Proposition 4.5. This propo-

sition proves (1.9) for the case of interaction times, completing the proof of

Theorem 1.

In Section 4.1 we define the notion of pairs of waves (s, s′) which have never

interacted before a fixed time t and pairs of waves which have already in-

teracted and, for any pair of waves which have already interacted, we asso-

ciate an interval of waves I(t, s, s′) and a partition P(t, s, s′) of this interval,

which in some sense summarize their past common history. In order to

overcome the difficulty mentioned at the beginning of Section 1.2.1, we in-

troduce the time of last interaction T(t, s, s′) (4.7), defined as the last time

before t such that s, s′ have the same position. The computation of I(t, s, s′)

starts from time T(t, s, s′) (see (4.8)) as well as the construction of the par-

tition P(t, s, s′). The desired separation properties of P(t, s, s′) are proved

in Propositions 4.11 and 4.13.

In Section 4.2 we write down the functional Q in order to conclude the proof

of Theorem 1.
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Then we study separately the behavior of Q at interactions and transversal

interactions-cancellations. Theorem 4.16 and Corollary 4.19 in Section 4.3

prove that the functional Q decreases at least of the quantity (1.9) at a single

interaction time.

Theorem 4.20 in Section 4.4 shows that the increase of Q at each transversal

interaction time is controlled by the decrease of the transversal Glimm inter-

action functional Qtrans. The behavior of Q at cancellations is elementary,

due to the definition of the weights q(t, s, s′), see the end of Section 4.2.

These two facts conclude the proof of Proposition 4.5, as shown in Sec-

tion 1.2, namely estimates (1.10) and (1.11).

1.4. Notations

For usefulness of the reader, we collect here some notations used in the

subsequent sections.

• g(u+) = limu→u+ g(u), g(u−) = limu→u− g(u);

• g′(u−) (resp. g′(u+)) is the left (resp. right) derivative of g at point u;

• If g : [a, b] → R, h : [b, c] → R are two functions which coincide in b, we

define the function g ∪ h : [a, c] → R as

g ∪ h(x) =

{

g(x) if x ∈ [a, b],

h(x) if x ∈ [b, c].

• Sometime we will write Rx instead of R (resp. [0,+∞)t instead of

[0,+∞)) to emphasize the symbol of the variables (resp. x or t) we

refer to.

• For any f : R → R and for any ε > 0, the piecewise affine interpolation

of f with grid size ε is the piecewise affine function fε : R → R which

coincides with f in the points of the form mε, m ∈ Z.

• If a, b ∈ N, we will denote by [a, b] :=
{

n ∈ N
∣

∣ a ≤ n ≤ b
}

. From the

context it will be always clear if [a, b] is an interval of natural number or

the usual interval of real number.

• Given a Lipschitz function g : E ⊆ R −→ R, we denote by

Lip(g) := sup
u,v∈E
u 6=v

|g(v) − g(u)|

|v − u|
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the best Lipschitz constant of g.

2. Convex Envelopes

In this section we define the convex envelope of a continuous function

f : R → R in an interval [a, b] and we prove some related results. The first

section provides some well-known results about convex envelopes, while in

the second section we prove some propositions which will be frequently used

in the paper.

The aim of this section is to collect the statements we will need in

the main part of the paper. In particular, the most important results are

Theorem 2.5, concerning the regularity of convex envelopes; Proposition

2.11, referring to the behavior of convex envelopes when the interval [a, b] is

varied; Proposition 2.12, referring to the to the behavior of convex envelopes

when the function is varied: these estimates will play a major role for the

study of the Riemann problems.

2.1. Definitions and elementary results

Definition 2.1. Let f : R → R be continuous and [a, b] ⊆ R. We define the

convex envelope of f in the interval [a, b] as

conv[a,b]f(u) := sup

{

g(u)
∣

∣

∣
g : [a, b] → R is convex and g ≤ f

}

.

A similar definition holds for the concave envelope of f in the interval

[a, b] denoted by conc[a,b]f . All the results we present here for the convex

envelope of a continuous function f hold, with the necessary changes, for its

concave envelope.

Lemma 2.2. In the same setting of Definition 2.1, conv[a,b]f is a convex

function and conv[a,b]f(u) ≤ f(u) for each u ∈ [a, b].

The proof is straightforward.

Adopting the language of Hyperbolic Conservation Laws, we give the

next definition.
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Definition 2.3. Let f be a continuous function on R, let [a, b] ⊆ R and

consider conv[a,b]f . A shock interval of conv[a,b]f is an open interval I ⊆ [a, b]

such that for each u ∈ I, conv[a,b]f(u) < f(u).

A maximal shock interval is a shock interval which is maximal with

respect to set inclusion.

A shock point is any u ∈ [a, b] belonging to a shock interval. A rarefac-

tion point is any point u ∈ [a, b] which is not a shock point, i.e. any point

such that conv[a,b]f(u) = f(u).

Notice that, if u ∈ [a, b] is a point such that conv[a,b]f(u) < f(u), then,

by continuity of f and conv[a,b]f , it is possible to find a maximal shock

interval I containing u.

It is fairly easy to prove the following result.

Proposition 2.4. Let f : R → R be continuous; let [a, b] ⊆ R. Let I be a

shock interval for conv[a,b]f . Then conv[a,b]f is affine on I.

The following theorem is classical and provides a description of the reg-

ularity of the convex envelope of a given function f . For a self contained

proof, see Theorem 2.5 of [7].

Theorem 2.5. Let f be a C1,1 function. Then:

(1) the convex envelope conv[a,b]f of f in the interval [a, b] is differentiable

on [a, b];

(2) for each rarefaction point u ∈ (a, b) it holds

d

du
f(u) =

d

du
conv[a,b]f(u);

(3) d
du
conv[a,b]f is Lipschitz-continuous with Lipschitz constant less or equal

than Lip(f ′).

By “differentiable on [a, b]” we mean that it is differentiable on (a, b) in

the classical sense and that in a (resp. b) the right (resp. the left) derivative

exists.
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2.2. Further estimates

We now state some useful results about convex envelopes, which we will

frequently use in the following sections.

Proposition 2.6. Let f : R → R be continuous and let a < ū < b. If

conv[a,b]f(ū) = f(ū), then

conv[a,b]f = conv[a,ū]f ∪ conv[ū,b]f.

Proof. See Proposition 2.7 of [7]. ���

Corollary 2.7. Let f : R → R be continuous and let a < ū < b. Assume

that ū belongs to a maximal shock interval (u1, u2) with respect to conv[a,b]f .

Then conv[a,ū]f |[a,u1] = conv[a,b]f |[a,u1].

Proof. It is an easy consequence of Proposition 2.6, just observing that by

maximality of (u1, u2), conv[a,b]f(u1) = f(u1). ���

Proposition 2.8. Let f : R → R be continuous; let a < ū < b. Then

(1)
(

d
du
conv[a,ū]f

)

(u+) ≥
(

d
du
conv[a,b]f

)

(u+) for each u ∈ [a, ū);

(2)
(

d
du
conv[a,ū]f

)

(u−) ≥
(

d
du
conv[a,b]f

)

(u−) for each u ∈ (a, ū];

(3)
(

d
du
conv[ū,b]f

)

(u+) ≤
(

d
du
conv[a,b]f

)

(u+) for each u ∈ [ū, b);

(4)
(

d
du
conv[ū,b]f

)

(u−) ≤
(

d
du
conv[a,b]f

)

(u−) for each u ∈ (ū, b].

The above statement is identical to Proposition 2.9 of [7], to which we

refer for the proof.

Proposition 2.9. Let f : R → R be continuous; let a < ū < b. Then

(1) for each u1, u2 ∈ [a, ū), u1 < u2,

( d

du
conv[a,ū]f

)

(u2+)−
( d

du
conv[a,ū]f

)

(u1+)

≥
( d

du
conv[a,b]f

)

(u2+)−
( d

du
conv[a,b]f

)

(u1+);

(2) for each u1, u2 ∈ (a, ū], u1 < u2,

( d

du
conv[a,ū]f

)

(u2−)−
( d

du
conv[a,ū]f

)

(u1−)
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≥
( d

du
conv[a,b]f

)

(u2−)−
( d

du
conv[a,b]f

)

(u1−);

(3) for each u1, u2 ∈ [ū, b), u1 < u2,

( d

du
conv[ū,b]f

)

(u2+)−
( d

du
conv[ū,b]f

)

(u1+)

≥
( d

du
conv[a,b]f

)

(u2+)−
( d

du
conv[a,b]f

)

(u1+);

(4) for each u1, u2 ∈ (ū, b], u1 < u2,

( d

du
conv[ū,b]f

)

(u2−)−
( d

du
conv[ū,b]f

)

(u1−)

≥
( d

du
conv[a,b]f

)

(u2−)−
( d

du
conv[a,b]f

)

(u1−).

Proof. Easy consequence of previous proposition. ���

Corollary 2.10. Let f : R → R be continuous and let a < ū < b. Let

u1, u2 ∈ [a, ū], u1 < u2. If u1, u2 belong to the same shock interval of

conv[a,ū]f , then they belong to the same shock interval of conv[a,b]f .

Proposition 2.11. Let f be a C1,1 function, let a < ū < b. Then

(

d

du
conv[a,ū]f

)

(ū−)−

(

d

du
conv[a,b]f

)

(ū) ≤ Lip(f ′)(b− ū).

Moreover, if fε is the piecewise affine interpolation of f with grid size ε, it

holds

(

d

du
conv[a,ū]fε

)

(ū−)−

(

d

du
conv[a,b]fε

)

(ū−) ≤ Lip(f ′)(b− ū).

Proof. See Proposition 2.15 of [7]. ���

Proposition 2.12. Let f, g : R −→ R be C1 functions. Let a, b ∈ R, a < b.

It holds
∥

∥

∥

∥

d

du
conv[a,b]f −

d

du
conv[a,b]g

∥

∥

∥

∥

L∞

≤

∥

∥

∥

∥

df

du
−

dg

du

∥

∥

∥

∥

L∞

.

Moreover, if fε, gε are the piecewise affine interpolation of f, g respectively,



✐

“BN09N38” — 2014/8/29 — 15:11 — page 504 — #18
✐

✐

✐

✐

✐

504 STEFANO BIANCHINI AND STEFANO MODENA [September

with grid size ε, then

∥

∥

∥

∥

d

du
conv[a,b]fε −

d

du
conv[a,b]gε

∥

∥

∥

∥

L∞

≤

∥

∥

∥

∥

df

du
−

dg

du

∥

∥

∥

∥

L∞

.

Proof. Take ū ∈ [a, b]. We want to prove

∣

∣

∣

∣

d

du
conv[a,b]f(ū)−

d

du
conv[a,b]g(ū)

∣

∣

∣

∣

≤

∥

∥

∥

∥

df

du
−

dg

du

∥

∥

∥

∥

L∞

. (2.1)

Without loss of generality we can assume that ū is a rarefaction point for f

and a shock point for g. Namely if ū is a rarefaction point both for f and

for g, estimate (2.1) is a direct consequence of Theorem 2.5, Point (2.5). If

ū is a shock point both for f and for g, we can always find a point û where

d
du
conv[a,b]f(ū) =

d
du
conv[a,b]f(û),

d
du
conv[a,b]g(ū) =

d
du
conv[a,b]g(û) and u is

a rarefaction point for either f or g.

Hence let us assume that ū is a rarefaction point for f and a shock point

for g. Set

m :=
d

du
conv[a,b]f(ū), m̄ :=

d

du
conv[a,b]g(ū).

Since u is a rarefaction point for f , it holds

f(ū) +m(u− ū) ≤ f(u) for each u ∈ [a, b]. (2.2)

On the other hand, since ū is a shock point for g, denoting by (ā, b̄) the

maximal shock interval of g which ū belongs to, it holds

g(b̄)− g(ū)

b̄− ū
≤ m̄ ≤

g(ū)− g(ā)

ū− ā
. (2.3)

Now assume that m ≥ m̄. It holds

∣

∣

∣

∣

d

du
conv[a,b]f(ū)−

d

du
conv[a,b]g(ū)

∣

∣

∣

∣

= m− m̄

(2.2),(2.3)

≤
f(b̄)− f(ū)

b̄− ū
−

g(b̄)− g(ū)

b̄− ū

≤
1

b̄− ū

∫ b̄

ū

(

df

du
(u)−

dg

du
(u)

)

du
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≤

∥

∥

∥

∥

df

du
−
dg

du

∥

∥

∥

∥

L∞

. (2.4)

If m ≤ m̄ a similar argument yields (2.1).

In the piecewise affine case, inequalities (2.2), (2.3) still hold with fε
instead of f and gε instead of g. We can always assume that ū, ā, b̄ ∈ Zε.

Since fε = f, gε = g on Zε, the chain of inequalities (2.4) still holds. ���

Proposition 2.13. Let f : R −→ R be continuous. Let a, b ∈ R. Let

r(u) = mu+ q be an affine function, m, q ∈ R. It holds

conv[a,b](f + r) =
(

conv[a,b]f
)

+ r.

Proof. Let us prove that
(

conv[a,b]f
)

+ r is the convex envelope of f + r in

the interval [a, b]. First observe that
(

conv[a,b]f
)

+r is convex, since it is sum

of convex functions. Next, since conv[a,b]f ≤ f , then
(

conv[a,b]f
)

+r ≤ f+r.

Finally let h be any convex function such that h ≤ f + r. This means that

h− r ≤ f . Since r is affine, h− r is convex and so h− r ≤ conv[a,b]f , or, in

other words, h ≤
(

conv[a,b]f
)

+ r. ���

3. Preliminary Results

In this section we construct a wavefront solution to a triangular system,

and for this solution we introduce the notions of waves and the idea of

enumeration of waves of the solution u. We next construct a scalar flux

function f
eff , the effective flux function, which is defined by removing the

jumps in the first derivative of f due to the waves of the first family v.

We conclude the section recalling the definition of the transversal Glimm

interaction potential and its decay properties.

3.1. Triangular systems of conservation laws: a case study

The system of conservation laws we consider is of the form

{

ut + f̃(u, v)x = 0,

vt − vx = 0.
(3.1)
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The function f̃ is assumed to satisfy

∂f̃

∂u
(0, 0) > −1,

so that the system is uniformly hyperbolic in every compact neighborhood

of the origin.

It is elementary to verify that the system (3.1) is of Temple class [13],

in particular it admits a set of Riemann coordinates (w, v) such that its

quasilinear form is given by

{

wt +
∂f̃(u,v)

∂u
wx = 0,

vt − vx = 0,
(3.2)

where u = u(w, v) is the Riemann change of coordinates.

3.2. Wavefront solution

Let us define f : R2 −→ R be the relation

∂f̃

∂u
(u(w, v), v) =

∂f

∂w
(w, v).

Since the Riemann change of coordinates has the regularity of Df̃ , we can

assume that f is a C3 function satisfying

(1) ‖Dαf‖L∞ < ∞ for any multindex α, |α| ≤ 3;

(2) ∂f
∂w

(w, v) > −1 in a neighborhood of (0, 0).

We will construct a wavefront solution in the coordinates (w, v), by specifying

a (non-conservative) Riemann solver.

Remark 3.1. The solution we will construct in general will not correspond

to the standard (entropic) wavefront solution of (3.1): in this paper, we

prefer to study the quasilinear system (3.2) in order to focus on the main

difficulty, namely the analysis of the transversal interactions. Indeed, the

choice of the coordinates (w, v) and of the (non-conservative) Riemann solver

simplifies the computations.
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Using the fact that the transformations w 7→ u(w, v), |v| ≪ 1, are

uniformly bi-Lipschitz, it is only a matter of additional technicalities to

prove that the analysis in the following sections can be repeated for the

standard (entropic) wavefront solution of (3.1). This will be addressed in a

forthcoming paper concerning general systems [8].

For any ε > 0 denote by fε(·, v) be the piecewise affine interpolation of

f(·, v) with grid size ε, as a function of w.

We define the approximate Riemann solver associated to f as follows:

the solution of the Riemann problem

(

(w−, v−), (w+, v+)
)

∈ (Zε)2 × (Zε)2 ⊆ R
2 × R

2

is given by the function (t, x) 7→ (w(t, x), v(t, x)), where

v(t, x) =

{

v−, if x < −t,

v+, if x ≥ −t,

while w(t, x) is the piecewise constant, right continuous solution of the scalar

Riemann problem (w−, w+) with flux function fε(·, v
+).

Let (w̄ε, v̄ε) be an approximation of the initial datum (w̄, v̄) (in the

sense that (w̄ε, v̄ε) → (w̄, v̄) in L1-norm, as ε → 0) of the Cauchy problem

associated to the system (3.2), such that w̄ε, v̄ε have compact support, they

take values in the discrete set Zε, and

Tot.Var.(w̄ε) ≤ Tot.Var.(w̄), Tot.Var.(v̄ε) ≤ Tot.Var.(v̄). (3.3)

Now, by means of the usual wavefront tracking algorithm, one can con-

struct a function

(t, x) 7→ (w(t, x), v(t, x))

defined for all t ≥ 0 and for all x ∈ R, see for example [4], [5]. It is easy to

see that (w(t, ·), v(t, ·)) is right continuous, compacted supported, piecewise

constant and takes values in the set Zε× Zε.

We will call wavefronts the piecewise affine discontinuity curves of the

function (t, x) 7→ (w(t, x), v(t, x)); in particular the discontinuity curves of

v will be called wavefronts of the first family (positive or negative according



✐

“BN09N38” — 2014/8/29 — 15:11 — page 508 — #22
✐

✐

✐

✐

✐

508 STEFANO BIANCHINI AND STEFANO MODENA [September

to the sign of the jump), while those of w will be called wavefronts of the

second family. This is a standard notation used in hyperbolic conservation

laws.

Let {(tj , xj)}, j ∈ {1, 2, . . . , J}, be the points in the t, x-plane where two

(or more) wavefronts collide. Let us suppose that tj < tj+1 and for every

j exactly two wavefronts meet in (tj, xj). This is a standard assumption,

achieved by slightly perturbing the wavefront speed. We also set t0 := 0.

Definition 3.2. For each j = 1, . . . , J , we will say that (tj, xj) is an interac-

tion point (or non transversal interaction point) if the wavefronts colliding

in (tj, xj) are of the second family and have the same sign. An interaction

point will be called positive (resp. negative) if wavefronts which collide in

(tj, xj) are positive (resp. negative).

Moreover we will say that (tj , xj) is a cancellation point if the wavefronts

which collide in (tj, xj) are of the second family and have opposite sign.

Finally we will say that (tj, xj) is a transversal interaction point if one

of the wavefronts which collide in (tj , xj) is of the first family and the other

one is of the second family.

Since, by definition of the Riemann solver, wavefronts of the second

family are not created nor split at times t > 0, the three cases above cover

all possibilities.

Let us denote by {vh}1≤h≤H the wavefronts of the first family generated

at t = 0. For each h, denote by v−h , v
+
h respectively the left and the right

state of the wavefront vh, denote by |vh| := |v+h − v−h | its strength, and

denote by x(t, vh) the position of the wavefront vh at time t. Clearly it holds

x(t, vh) = x(0, vh) − t. Assume x(0, vh) < x(0, vh+1) for each h. Finally if

(tj, xj) is a transversal interaction point, denote by h(j) the index of the

wavefront of the second family vh(j) involved in the transversal interaction.

3.3. Definition of waves (of the second family)

In this section we define the notion of wave (of the second family), the

notion of position of a wave and the notion of speed of a wave. By definition

of wavefront solution, for each time t ≥ 0, wε(t, ·) is a piecewise constant,
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compacted supported function, which takes values in the set Zε. Hence

Tot.Var.(wε(t, ·)) is an integer multiple of ε.

3.3.1. Enumeration of waves

In this section we define the notion of enumeration of waves related to

a function w : Rx → R of the single variable x: in the following sections,

w will be the piecewise constant, compacted supported function wε(t, ·) for

fixed time t, considered as a function of x.

Definition 3.3. Let w : R → R, w ∈ BV (R), be a piecewise constant, right

continuous function, which takes values in the set Zε. An enumeration of

waves for the function w is a 3-tuple (W, x, ŵ), where

W ⊆ N is the set of waves ,

x : W → (−∞,+∞] is the position function,

ŵ : W → Zε is the right state function,

with the following properties:

(1) the restriction x|
x
−1(−∞,+∞) takes values only in the set of discontinuity

points of w;

(2) the restriction x|
x
−1(−∞,+∞) is increasing;

(3) for given x0 ∈ R, consider x−1(x0) = {s ∈ W | x(s) = x0}; then it holds:

(a) if w(x0−) < w(x0), then ŵ|
x
−1(x0) : x

−1(x0) → (w(x0−), w(x0)] ∩ Zε

is strictly increasing and bijective;

(b) if w(x0−) > w(x0), then ŵ|
x
−1(x0) : x

−1(x0) → [w(x0), w(x0−)) ∩ Zε

is strictly decreasing and bijective;

(c) if w(x0−) = w(x0), then x
−1(x0) = ∅.

Given an enumeration of waves as in Definition 3.3, we define the sign

of a wave s ∈ W with finite position (i.e. such that x(s) < +∞) as follows:

S(s) := s ign
[

w(x(s))− w(x(s)−)
]

. (3.4)

We immediately present an example of enumeration of waves which will

be fundamental in the sequel.
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Example 3.4. Fix ε > 0 and let w̄ε ∈ BV (R) be the first component of the

approximate initial datum of the Cauchy problem associated to the system

(3.2), with compact support and taking values in Zε. The total variation of

w̄ε is an integer multiple of ε. Let

W : R → [0,Tot.Var.(w̄ε)], x 7→ W (x) := Tot.Var.(w̄ε; (−∞, x]),

be the total variation function. Then define:

W :=

{

1, 2, . . . ,
1

ε
Tot.Var.(w̄ε)

}

and

x0 : W → (−∞,+∞], s 7→ x0(s) := inf
{

x ∈ (−∞,+∞]
∣

∣

∣
εs ≤ W (x)

}

.

Moreover, recalling (3.4), we define

ŵ : W → R, s 7→ ŵ(s) := w̄ε(x0(s)−) + S(s)
[

εs−W (x0(s)−)
]

.

It is fairly easy to verify that x0, ŵ are well defined and that they provide

an enumeration of waves, in the sense of Definition 3.3.

3.3.2. Interval of waves

In this section we define the notion of interval of waves and some related

notions and we prove some important results about them.

As in previous section, consider a function w : R −→ R, w ∈ BV (R),

piecewise constant, compacted supported, right continuous, taking values in

the set Zε and let (W, x, ŵ) be an enumeration of waves for w.

Definition 3.5. Let I ⊆ W. We say that I is an interval of waves for the

function w and the enumeration of waves (W, x, ŵ) if for any given s1, s2 ∈ I,

with s1 ≤ s2, and for any p ∈ W

s1 ≤ p ≤ s2 =⇒ p ∈ I.

We say that an interval of waves I is homogeneous if for each s, s′ ∈ I,

S(s) = S(s′). If waves in I are positive (resp. negative), we say that I is a

positive (resp. negative) interval of waves.
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Proposition 3.6. Let I ⊆ W be a positive (resp. negative) interval of

waves. Then the restriction of ŵ to I is strictly increasing (resp. decreasing)

and
⋃

s∈I(ŵ(s)− ε, ŵ(s)] (resp.
⋃

s∈I [ŵ(s), ŵ(s) + ε)) is an interval in R.

Proof. Assume I is positive, the other case being similar. First we prove

that ŵ restricted to I is increasing. Let s, s′ ∈ I, with s < s′. Let ξ0 :=

x(s) < ξ1 < · · · < ξK := x(s′) be the discontinuity points of w between

x(s) and x(s′). By definition of ‘interval of waves’ and by the fact that each

wave in I is positive, for any k = 0, 1, . . . ,K, {p | x(p) = ξk} contains only

positive waves. Thus, by Definition 3.3 of enumeration of waves, and by the

fact that for each k = 0, . . . ,K − 1, w(ξk) = w(ξk+1−), the restriction

ŵ :

K
⋃

k=0

{p | x(p) = ξk} → (w(ξ0−), w(ξK)] ∩ Zε (3.5)

is strictly increasing and bijective, and so ŵ(s) < ŵ(s′); hence ŵ|I is strictly

increasing.

In order to prove that
⋃

s∈I(ŵ(s) − ε, ŵ(s)] is a interval in R, it is

sufficient to prove the following: for any s < s′ in I and for any m ∈ Z such

that ŵ(s) < mε ≤ ŵ(s′), there is p ∈ I, s < p ≤ s′ such that ŵ(p) = mε.

This follows immediately from the fact that the map in (3.5) is bijective and

strictly increasing. ���

Let us give the following definitions. We define the strength |I| of an

interval of waves I as

|I| := εcardI.

Let I ⊆ R be an interval in R, such that inf I, sup I ∈ Zε; let g : R −→ R be

a C1,1 function. The quantity

σrh(g, I) :=
g(sup I)− g(inf I)

sup I − inf I

is called the Rankine-Hugoniot speed given to the interval I by the function

g.

Moreover let s be any positive (resp. negative) wave such that (ŵ(s) −
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ε, ŵ(s)) ⊆ I (resp. (ŵ(s), ŵ(s) + ε) ⊆ I). The quantity

σent(g, I, s) :=
d

du
convIgε

(

(ŵ(s)− ε, ŵ(s))
)

(resp. σ(g, I, s) := d
du
concIgε

(

(ŵ(s), ŵ(s) + ε)
)

) is called the entropic speed

given to the wave s by the Riemann problem I and the function g.

If σrh(g, I) = σent(g, I, s) for any s, we will say that I is entropic w.r.t. the

function g.

We will say that the Riemann problem I with flux function g divides s, s′ if

σent(g, I, s) 6= σent(g, I, s′).

Remark 3.7. Let I be any positive (resp. negative) interval of waves at

fixed time t̄. By Proposition 3.6, the set I :=
⋃

s∈I(ŵ(s) − ε, ŵ(s)] (resp.

I =
⋃

s∈I [ŵ(s), ŵ(s) + ε)) is an interval in R. Hence, we will also write

σrh(g,I) instead of σrh(g, I) and call it the Rankine-Hugoniot speed given to

the interval of waves I by the function g; we will write σent(g,I, s) instead

of σent(g, I, s) and call it the entropic speed given to the waves s by the

Riemann problem I with flux function g; we will say that I is entropic if

I is; finally we will say that the Riemann problem I with flux function g

divides s, s′ if the Riemann problem I with flux function g does.

Remark 3.8. Notice that σent is always increasing on I, whatever the sign of

I is, by the monotonicity properties of the derivatives of the convex/concave

envelopes.

Definition 3.9. Given two interval of waves I1,I2, we will write I1 < I2 if

for any s1 ∈ I1, s2 ∈ I2, s1 < s2. We will write I1 ≤ I2 if either I1 < I2 or

I1 = I2.

Remark 3.10. Given a function g and an homogenous interval of waves I,

we can always partition I through the equivalence relation

p ∼ p′ ⇐⇒ p, p′ are not divided by the Riemann problem I with

flux function gε.

As a consequence of Remark 3.8, we have that each element of this partition

is an entropic interval of waves and the relation < introduced in Definition

3.9 is a total order on the partition.
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3.3.3. Position and speed of the waves

Consider the Cauchy problem associated to the system (3.2) and fix

ε > 0; let (t, x) 7→ (wε(t, x), vε(t, x)) be the piecewise constant wavefront

solution, constructed as in Section 3.2. For the first component of the initial

datum wε(0, ·), consider the enumeration of waves (W, x0, ŵ) provided in

Example 3.4; let S be the sign function defined in (3.4) for this enumeration

of waves.

Now our aim is to define two functions

x : [0,+∞)t ×W → Rx ∪ {+∞}, σ : [0,+∞)t ×W → [0, 1] ∪ {+∞},

called the position at time t ∈ [0,+∞) of the wave s ∈ W and the speed

at time t ∈ [0,+∞) of the wave s ∈ W. As one can imagine, we want to

describe the path followed by a single wave s ∈ W as time goes on and the

speed assigned to it by the Riemann problems it meets along the way. Even

if there is a slight abuse of notation (in this section x depends also on time),

we believe that the context will avoid any misunderstanding.

The function x is defined by induction, partitioning the time interval

[0,+∞) in the following way

[0,+∞) = {0} ∪ (0, t1] ∪ · · · ∪ (tj, tj+1] ∪ · · · ∪ (tJ−1, tJ ] ∪ (tJ ,+∞).

First of all, for t = 0 we set x(0, s) := x0(s), where x0(·) is the position

function in the enumeration of waves of Example 3.4. Clearly (W, x(0, ·), ŵ)

is an enumeration of waves for the function wε(0, ·) as a function of x (ŵ

being the right state function, as in the example above).

Assume to have defined x(t, ·) for every t ≤ tj and let us define it for

t ∈ (tj , tj+1] (or t ∈ (tJ ,+∞)). For any t ≤ tj set

σ(t, s) := σent

(

f
(

·, v(x(t, s))
)

, x−1
(

x(t, s)
)

, s

)

, (3.6)

i.e. the Rankine-Hugoniot speed of the wavefront containing s. For t < tj+1

(or tJ < t < +∞) set

x(t, s) := x(tj , s) + σ(tj , s)(t− tj).
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For t = tj+1 set

x(tj+1, s) := x(tj, s) + σ(tj , s)(tj+1 − tj)

if x(tj, s) + σ(tj, s)(tj+1 − tj) is not the point of interaction/cancellation/

transversal interaction xj+1; otherwise for the waves s such that x(tj, s) +

σ(tj , s)(tj+1 − tj) = xj+1 and

S(s)wε(tj+1, xj+1−) ≤ S(s)ŵ(s)− ε ≤ S(s)ŵ(s) ≤ S(s)wε(tj+1, xj+1)

(i.e. the ones surviving the possible cancellation in (tj+1, xj+1)) define

x(tj+1, s) := x(tj , s) + σ(tj , s)(tj+1 − tj) = xj+1.

where S(s) is defined in (3.4), using the enumeration of waves for the initial

datum. To the waves s canceled by a possible cancellation in (tj+1, xj+1) we

assign x(tj+1, s) := +∞.

The following lemma proves that the above procedure produces an enu-

meration of waves.

Lemma 3.11. For any t̄ ∈ (tj , tj+1] (resp. t̄ ∈ (tJ ,+∞)), the 3-tuple

(W, x(t̄, ·), ŵ) is an enumeration of waves for the piecewise constant function

wε(t̄, ·).

Proof. We prove separately that the Properties (1-3) of Definition 3.3 are

satisfied.

Proof of Property (1). By definition of wavefront solution, x(t̄, ·) (re-

stricted to the set of waves where it is finite-valued) takes values only in the

set of discontinuity points of wε(t̄, ·).

Proof of Property (2). Let s < s′ be two waves and assume that

x(t̄, s), x(t̄, s′) < +∞. By contradiction, suppose that x(t̄, s) > x(t̄, s′). Since

by the inductive assumption at time tj, the 3-tuple (W, x(tj , ·), ŵ) is an enu-

meration of waves for the function wε(tj , ·), it holds x(tj , s) ≤ x(tj , s
′). Two

cases arise:

• If x(tj , s) = x(tj , s
′), then it must hold σ(tj , s) > σ(tj , s

′), but this is

impossible, due to Remark 3.8 and equality (3.6).
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• If x(tj , s) < x(tj , s
′), then lines t 7→ x(tj, s) + σ(tj , s)(t − tj) and t 7→

x(tj, s
′)+σ(tj, s

′)(t− tj) must intersect at some time τ ∈ (tj , t̄), but this

is impossible, by definition of wavefront solution and times (tj)j .

Proof of Property (3). For t < tj+1 or t = tj+1 and for discontinuity

points x 6= xj+1, the third property of an enumeration of waves is straight-

forward. So let us check the third property only for time t = tj+1 and for

the discontinuity point xj+1.

Assume first that wavefronts involved in the collision at (tj+1, xj+1) are

of the second family, i.e. (tj+1, xj+1) is an interaction/cancellation point.

Fix any time t̃ ∈ (tj , tj+1); according to the assumption on binary in-

tersections, you can find two points ξ1, ξ2 ∈ R such that for any s with

x(tj, s)+σ(tj , s)(tj+1−tj) = xj+1, either x(t̃, s) = ξ1 or x(t̃, s) = ξ2 and more-

over wε(t̃, ξ1−) = wε(tj+1, xj+1−), wε(t̃, ξ2) = wε(tj+1, xj+1), wε(t̃, ξ1) =

wε(t̃, ξ2−).

We now just consider two main cases: the other ones can be treated

similarly. Recall that at time t̃ < tj+1, the 3-tuple (W, x(t̃, ·), ŵ) is an

enumeration of waves for the piecewise constant function wε(t̃, ·).

If wε(t̃, ξ1−) < wε(t̃, ξ1) = wε(t̃, ξ2−) < wε(t̃, ξ2), then

ŵ|
x
−1(t̃,ξ1)

: x−1(t̃, ξ1) → (wε(t̃, ξ1−), wε(t̃, ξ1)] ∩ Zε

and

ŵ|
x
−1(t̃,ξ2)

: x−1(t̃, ξ2) → (wε(t̃, ξ2−), wε(t̃, ξ2)] ∩ Zε

are strictly increasing and bijective; observing that in this case x−1(tj+1, xj+1)

= x
−1(t̃, ξ1) ∪ x

−1(t̃, ξ2), one gets the thesis.

If wε(t̃, ξ1−) < wε(t̃, ξ2) < wε(t̃, ξ1) = wε(t̃, ξ2−), then

ŵ|
x
−1(t̃,ξ1)

: x−1(t̃, ξ1) → (wε(t̃, ξ1−), wε(t̃, ξ1)] ∩ Zε

is strictly increasing and bijective; observing that in this case

x
−1(tj+1, xj+1) =

{

s ∈ x
−1(t̃, ξ1) | ŵ(s) ∈ (wε(t̃, ξ1−), wε(t̃, ξ2)]

}

,

one gets the thesis.
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Now assume that (tj+1, xj+1) is a transversal interaction point. In this

case, by the definition of the Riemann solver we are using, you can easily

find a time t̃ < tj+1 and a point ξ̃ ∈ R such that

{s | x(t̃, s) = ξ̃} = {s | x(tj+1, s) = xj+1}

and

wε(t̃, ξ̃−) = wε(tj+1, xj+1−), wε(t̃, ξ̃) = wε(tj+1, xj+1).

From the fact that at time t̃ the 3-tuple (W, x(t̃, ·), ŵ) is an enumeration of

waves for the function wε(t̃, ·), one gets the thesis. ���

Remark 3.12. For fixed wave s, t 7→ x(t, s) is Lipschitz, while t 7→ σ(t, s)

is right-continuous and piecewise constant.

To end this section, we introduce the following notations. Given a time

t ∈ [0,+∞) and a position x ∈ (−∞,+∞], we set

W(t) := {s ∈ W | x(t, s) < +∞}, W(t, x) := {s ∈ W | x(t, s) = x}.

We will call W(t) the set of the real waves, while we will say that a wave s

is removed or canceled at time t if x(t, s) = +∞. It it natural to define the

interval of existence of s ∈ W(0) by

T (s) := sup
{

t ∈ [0,+∞) | x(t, s) < +∞
}

.

If I ⊆ W(t) is an interval of waves for the function wε(t, ·) and the enumer-

ation of waves (W, x(t, ·), ŵ), we will say that I is an interval of waves at

time t.

3.4 The effective flux function f
eff

As in the previous sections, let (t, x) 7→ wε(t, x) be the first component

of the ε-wavefront solution of the Cauchy problem (1.1) constructed before;

consider the enumeration of waves and the related position function (t, s) 7→

x(t, s) and speed function (t, s) 7→ σ(t, s) defined in previous section.

Fix any time t̄. Partitioning W(t̄) with respect to the equivalence rela-

tion

s ∼ s′ ⇐⇒ [s, s′] ∩W(t̄) is an homogeneous interval of waves,
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it is possible to write W(t̄) as a finite union of mutually disjoint, maximal

(with respect to set inclusion) homogenous interval of waves Ml,

W(t̄) =
L
⋃

l=1

Ml.

Observe that the partition changes only at cancellation times.

Fix time t̄ and fix a maximal homogeneous positive (resp. negative) in-

terval of waves Ml. Let us define the effective flux function f
eff
t̄

:
⋃

s∈Ml
(ŵ(s)

−ε, ŵ(s)] −→ R (resp. feff
t̄

:
⋃

s∈Ml
[ŵ(s), ŵ(s) + ε) −→ R) as any C1,1 func-

tion satisfying the following condition:

d2feff
t̄

dw2
(w) :=

∂2f

∂w2
(w, v) for a.e. w, (3.7)

where v = v(t̄, x(t̄, s)) for any s such that w ∈ (ŵ(s) − ε, ŵ(s)] (resp. w ∈

[ŵ(s), ŵ(s) + ε)).

Remark 3.13. Let us observe what follows.

(1) To simplify the notation we do not write the explicit dependence of feff
t̄

on the homogeneous interval Ml. No confusion should occur in the

following.

(2) The effective flux function f
eff
t̄

is defined up to affine functions.

(3) Let I ⊆ Ml be a positive (resp. negative) interval of waves at time

t̄. Assume that I ∋ s 7→ v(t̄, x(t̄, s)) is identically equal to some v̄

on I. Then f
eff
t̄

coincides with f(·, v̄) on
⋃

s∈I(ŵ(s) − ε, ŵ(s)] (resp.
⋃

s∈I [ŵ(s), ŵ(s)+ε)) up to affine functions. Hence, by Proposition 2.13,

s, s′ ∈ I are divided by the Riemann problem I with flux function f
eff
t̄

if and only if they are divided by the same Riemann problem with flux

function f(·, v̄). More precisely

σent(fefft̄ ,I, s′)− σent(fefft̄ ,I, s) = σent(f(·, v̄),I, s′)− σent(f(·, v̄),I, s).

Similarly, if I,I1,I2 ⊆ Ml are intervals of waves at time t̄ such that

I1,I2 ⊆ I and I ∋ s 7→ v(t̄, x(t̄, s)) is identically equal to some v̄, then

σrh(fefft̄ ,I2)− σrh(fefft̄ ,I1) = σrh(f(·, v̄),I2)− σrh(f(·, v̄),I1).
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3.5. The transversal interaction functional Qtrans

In this section we define the standard Glimm transversal interaction

functional Qtrans which will be frequently used in the following:

Qtrans(t) :=

H
∑

h=1

∑

s∈W(t)
x(t,s)<x(t,vh)

|vh||s|.

Recall that |vh| is the strength of the wavefront vh and |s| = ε is the strength

of the wave s. The following proposition is standard, see for example [9].

Proposition 3.14. The following hold:

(1) Qtrans(0) ≤ Tot.Var.(v(0, ·))Tot.Var.(w(0, ·));

(2) Qtrans is positive, piecewise constant, right continuous and not increas-

ing; moreover, at each transversal interaction times tj, it holds

Qtrans(tj)−Qtrans(tj−1) = −|vh(j)||W(tj , xj)|,

where vh(j) is the wavefront of the first family involved in the transversal

interaction at time tj .

4. The Main Theorem

The rest of the paper is devoted to prove our main result, namely The-

orem 1. For easiness of the reader we will repeat the statement below.

As in the previous section, let (t, x) 7→ (wε(t, x), vε(t, x)) be an ε-

wavefront solution of the Cauchy problem (1.1); consider the enumeration of

waves for the function wε(t, ·) and the related position function x = x(t, s)

and speed function σ = σ(t, s) constructed in previous section. Fix a wave

s ∈ W(0) and consider the function t 7→ σ(t, s). By construction it is finite

valued until the time T (s), after which its value becomes +∞; moreover it

is piecewise constant, right continuous, with jumps possibly located at times

t = tj, j ∈ 1, . . . , J .

The results we are going to prove is
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Theorem 1. The following holds:

J
∑

j=1

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤

[

3‖D2
wwf‖+ 12 log(2)‖D3

wwvf‖Tot.Var.(v(0, ·))

]

Tot.Var.(w(0, ·))2

+‖D2
wvf‖Tot.Var.(w(0, ·))Tot.Var.(v(0, ·)),

where |s| := ε is the strength of the wave s.

The first step in order to prove Theorem 1 is to reduce the quantity we

want to estimate, namely

J
∑

j=1

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|,

to three different quantities, which requires three separate estimates, ac-

cording to (tj, xj) being an interaction/cancellation/transversal interaction

point:

J
∑

j=1

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

=
∑

(tj ,xj)
interaction

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

+
∑

(tj ,xj)
cancellation

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

+
∑

(tj ,xj)
transversal
interaction

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|.

The estimates on transversal interaction and cancellation points are

fairly easy. Let us begin with the one related to transversal interaction

points.
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Proposition 4.1. Let (tj , xj) be a transversal interaction point. Then

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wvf‖L∞ |vh(j)||W(tj , xj)|,

where |vh(j)| is the wavefront of the first family involved in the transversal

interaction at time tj.

Proof. Set wL := wε(tj , xj−), wR := wε(tj, xj). Assume by simplicity

wL < wR, the other case being similar. Recall that v−
h(j), v

+
h(j) are the left

and right state respectively of the wavefront vh(j). By Proposition 2.12, for

any s ∈ W(tj , xj),

|σ(tj , s)− σ(tj−1, s)|

=

(

d

dw
conv[wL,wR]fε

)

(

(ŵ(s)− ε, ŵ(s)), v+
h(j)

)

−

(

d

dw
conv[wL,wR]fε

)

(

(ŵ(s)− ε, ŵ(s)), v−
h(j)

)

(Prop. 2.12)

≤

∥

∥

∥

∥

∂

∂w
f( · , v+

h(j))−
∂

∂w
f( · , v−

h(j))

∥

∥

∥

∥

L∞

≤ ‖D2
wvf‖L∞ |v+

h(j) − v−
h(j)|.

Hence, observing that the only waves which change speed are those in

W(tj , xj),

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| =
∑

s∈W(tj ,xj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ ‖D2
wvf‖L∞ |v+

h(j) − v−
h(j)|

∑

s∈W(tj)

|s|

= ‖D2
wvf‖L∞ |vh(j)||W(tj , xj)|. ���

Corollary 4.2. It holds

∑

(tj ,xj)
transversal
interaction

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ ‖D2
wvf‖L∞Tot.Var.(w(0, ·))Tot.Var.(v(0, ·)).
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Proof. The proof is an easy consequence of Proposition 3.14 and the fact

that, by previous proposition, for any transversal interaction time tj,

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wvf‖L∞ |vh(j)||W(tj , xj)|

= ‖D2
wvf‖L∞

(

Qtrans(tj−1)−Qtrans(tj)
)

.

���

Let us now prove the estimate related to the cancellation points. First

of all define for each cancellation point (tj , xj) the amount of cancellation

as follows:

C(tj , xj) := Tot.Var.(wε(tj−1, ·)) − Tot.Var.(wε(tj , ·)). (4.1)

Proposition 4.3. Let (tj , xj) be a cancellation point. Then

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))C(tj , xj).

Proof. Let wL, wM be respectively the left and the right state of the left

wavefront involved in the collision at point (tj , xj) and let wM , wR be respec-

tively the left and the right state of the right wavefront involved in the colli-

sion at point (tj , xj), so that wL = lim
xրxj

wε(tj , x) and wR = wε(tj , xj). With-

out loss of generality, assume wL < wR < wM . Finally set v̄ := v(tj , xj).

Then we have

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

=
∑

s∈W(tj)

[(

d

dw
conv[wL,wR]fε

)

(

(ŵ(s)− ε, ŵ(s)), v̄
)

−

(

d

dw
conv[wL,wM ]fε

)

(

(ŵ(s)− ε, ŵ(s)), v̄
)

]

|s|

(Prop. 2.9)

≤
∑

s∈W(tj)

[(

d

dw
conv[wL,wR]fε

)

(wR−, v̄)

−

(

d

dw
conv[wL,wM ]fε

)

(wR−, v̄)

]

|s|
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=

[(

d

dw
conv[wL,wR]fε

)

(wR−, v̄)−

(

d

dw
conv[wL,wM ]fε

)

(wR−, v̄)

]

∑

s∈W(tj)

|s|

≤

[(

d

dw
conv[wL,wR]fε

)

(wR−, v̄)−

(

d

dw
conv[wL,wM ]fε

)

(wR−, v̄)

]

Tot.Var.(w(0, ·)). (4.2)

Now observe that, by Proposition 2.11,

(

d

dw
conv[wL,wR]fε

)

(wR−, v̄)−

(

d

dw
conv[wL,wM ]fε

)

(wR−, v̄)

≤
∥

∥

∥

d2f(·, v̄)

dw2

∥

∥

∥

L∞

(wM −wR)

≤ ‖D2
wwf‖L∞(wM − wR)

≤ ‖D2
wwf‖L∞C(tj , xj). (4.3)

Hence, from (4.2) and (4.3), we obtain

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))C(tj , xj). ���

Corollary 4.4. It holds

∑

(tj ,xj)
cancellation

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))2 .

Proof. From (3.3), (4.1) and Proposition 4.3 we obtain

∑

(tj ,xj)
cancellation

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))

J
∑

j=1

[

Tot.Var.(wε(tj−1, ·)) − Tot.Var.(wε(tj , ·))
]

≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))

[

Tot.Var.(wε(0, ·)) − Tot.Var.(wε(tJ , ·))
]

≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))2,

thus concluding the proof of the corollary. ���
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From now on, our aim is to prove that

∑

(tj ,xj)
interaction

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

≤ 2
[

‖D2
wwf‖+ 6 log(2)‖D3

wwvf‖Tot.Var.(v(0, ·))
]

Tot.Var.(w(0, ·))2 .

As outlined in Section 1.2, the idea is the following: we define a positive

valued functional Q = Q(t), t ≥ 0, such that Q is piecewise constant in time,

right continuous, with jumps possibly located at times tj, j = 1, . . . , J and

such that

Q(0) ≤ ‖D2
wwf‖L∞Tot.Var.(w(0, ·))2 . (4.4)

Such a functional will have three properties:

(1) for each j such that (tj, xj) is an interaction point, Q is decreasing at

time tj and its decrease bounds the quantity we want to estimate at time

tj as follows:

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2
[

Q(tj−1)−Q(tj)
]

; (4.5)

this is proved in Corollary 4.19;

(2) for each j such that (tj , xj) is a cancellation point, Q is decreasing; this

will be an immediate consequence of the definition of Q;

(3) for each j such that (tj , xj) is a transversal interaction point, Q can

increase at most by

Q(tj)−Q(tj−1)≤6 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·));

(4.6)

this is proved in Theorem 4.20.

Using the two estimates above, we obtain the following proposition, which

completes the proof of Theorem 1.

Proposition 4.5. It holds

∑

(tj ,xj)
interaction

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|
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≤ 2
[

‖D2
wwf‖+ 6 log(2)‖D3

wwvf‖Tot.Var.(v(0, ·))
]

Tot.Var.(w(0, ·))2.

Proof. By direct computation,

∑

(tj ,xj)
interaction

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|

(by (4.5)) ≤ 2
∑

(tj ,xj)
interaction

[

Q(tj−1)−Q(tj)
]

≤ 2

[

∑

(tj ,xj)
interaction

[

Q(tj−1)−Q(tj)
]

+
∑

(tj ,xj)
cancellation

[

Q(tj−1)−Q(tj)
]

−
∑

(tj ,xj)
cancellation

[

Q(tj−1)−Q(tj)
]

]

+
∑

(tj ,xj)
transversal

[

Q(tj−1)−Q(tj)
]

−
∑

(tj ,xj)
transversal

[

Q(tj−1)−Q(tj)
]

]

(Q decreases at cancellations)

≤ 2

[

J
∑

j=1

[

Q(tj−1)−Q(tj)
]

+
∑

(tj ,xj)
transversal

[

Q(tj)−Q(tj−1)
]

]

(by (4.6)) ≤ 2

[

J
∑

j=1

[

Q(tj−1)−Q(tj)
]

+6 log(2)‖D3
wwvf‖L∞Tot.Var.(w(0, ·))

∑

(tj ,xj)
transversal

|vh(j)||W(tj , xj)|

]

= 2

[

J
∑

j=1

[

Q(tj−1)−Q(tj)
]

+6 log(2)‖D3
wwvf‖L∞Tot.Var.(w(0, ·))

∑

(tj ,xj)
transversal

(

Qtrans(tj−1)−Qtrans(tj)
)

]

(by Proposition 3.14)

≤ 2
[

Q(0) + 6 log(2)‖D3
wwvf‖L∞Tot.Var.(w(0, ·))Qtrans(0)

]
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(by (4.4) an d Proposition 3.14)

≤ 2
[

‖D2
wwf‖+ 6 log(2)‖D3

wwvf‖Tot.Var.(v(0, ·))
]

Tot.Var.(w(0, ·))2 ,

thus concluding the proof of the proposition. ���

In the remaining part of the paper we prove estimates (4.5) and (4.6).

4.1. Analysis of waves collisions

In this section we define the notion of pairs of waves which have never

interacted before a fixed time t and pairs of waves which have already inter-

acted and, for any pair of waves which have already interacted, we associate

an interval of waves and a partition of this interval, which in some sense

summarize their past common history.

Definition 4.6. Let t̄ be a fixed time and let s, s′ ∈ W(t̄). We say that s, s′

interact at time t̄ if x(t̄, s) = x(t̄, s′).

We also say that they have already interacted at time t̄ if there is t ≤ t̄

such that s, s′ interact at time t. Moreover we say that they have never

interacted at time t̄ if for any t ≤ t̄, they do not interact at time t.

Lemma 4.7. Assume that the waves s, s′ have already interacted at time t̄.

Then they have the same sign.

Proof. Easy consequence of definition of enumeration of waves and the fact

that S(s) is independent of t. ���

Lemma 4.8. Let t̄ be a fixed time, s, s′ ∈ W(t̄), s < s′. Assume that s, s′

have already interacted at time t̄. If p, p′ ∈ W(t̄) and s ≤ p ≤ p′ ≤ s′, then

p, p′ have already interacted at time t̄.

Proof. Let t be the time such that s, s′ interact at time t. Clearly s, s′, p, p′ ∈

W(t) ⊇ W(t̄). Since for t fixed, x is increasing on W(t), it holds x(t, s) =

x(t, p) = x(t, p′) = x(t, s′). ���

Definition 4.9. Let s, s′ ∈ W(t̄) be two waves which have already interacted

at time t̄. We say that s, s′ are divided in the real solution at time t̄ if

(x(t̄, s), σ(t̄, s)) 6= (x(t̄, s′), σ(t̄, s′)),
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i.e. if at time t̄ they have either different position, or the same position but

different speed.

If they are not divided in the real solution, we say that they are joined in

the real solution.

Remark 4.10. It t̄ 6= tj for each j, then two waves are divided in the real

solution if and only if they have different position. The requirement to have

different speed is needed only at cancellation and transversal interaction

times.

Fix a time t̄ and two waves s < s′ which have already interacted at time

t̄ and assume that s, s′ are divided in the real solution at time t̄. Define the

time of last interaction T(t̄, s, s′) by the formula

T(t̄, s, s′) := max{t ≤ t̄ | x(t, s) = x(t, s′)}. (4.7)

Moreover set

X(t̄, s, s′) := x(T(t̄, s, s′), s) = x(T(t̄, s, s′), s′).

Finally define

I(t̄, s, s′) := W
(

T(t̄, s, s′), X(t̄, s, s′)
)

∩W(t̄). (4.8)

It is easy to see that I(t̄, s, s′) is an interval of waves at time t̄ (i.e. with re-

spect to the function wε(t̄, ·) and the related enumeration of waves). Observe

also that it changes only at interaction/cancellation/transversal interaction

times. It is immediate to see that if x(t̄, s) = x(t̄, s′), but s, s′ are divided in

the real solution at time t̄ (i.e. σ(t̄, s) < σ(t̄, s′)), then t̄ = T(t̄, s, s′) and

I(t̄, s, s′) = W(t̄, x(t, s)) = W(t̄, x(t, s′)).

The interesting case we are interested in is for t̄ > T(t̄, s, s′).

Let us now define a partition P(t̄, s, s′) of the interval of waves I(t̄, s, s′)

by recursion on t̄ = t0, . . . , tJ , t̄ ≥ T(t̄, s, s′), s, s′ divided in the real solution

at time t̄, as follows.
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For t̄ = T(t̄, s, s′) = tj̄, for some j̄ ∈ {0, . . . , J}, then P(tj̄ , s, s
′) is given

by the equivalence relation

p ∼ p′ ⇐⇒ p, p′ are not divided in the real solution at time tj̄ or,

equivalently, they are not divided by the Riemann

problem W(tj̄ , x(tj̄ , s)) with flux function f
eff
tj̄
.

On the other hand, if t̄ = tj̄ > T(t̄, s, s′) for some j̄ ∈ {1, . . . , J} (i.e. s, s′

are divided in the real solution also at time tj̄−1), then P(tj̄ , s, s
′) is given

by the equivalence relation

p ∼ p′ ⇐⇒ p, p′ belong to the same equivalence class J ∈ P(tj̄−1, s, s
′)

at time tj̄−1 and the Riemann problem J ∩W(tj̄) with

flux function f
eff
tj̄

does not divide them.

As a consequence of Remark 3.10 and the fact that both W(tj̄ , x(tj̄ , s)) and

J ∩ W(tj̄) are interval of waves at time tj̄, we immediately see that each

element of the partition P(tj̄ , s, s
′) is an entropic interval of waves (w.r.t.

flux function f
eff
tj̄
) and the relation < introduced in Definition 3.9 is a total

order on P(tj̄ , s, s
′).

Proposition 4.11. For any j = 0, . . . , J such that s, s′ are divided at time

tj in the real solution, if r, r′ ∈ I(tj, s, s
′) are not divided by the partition

P(tj , s, s
′), then they are not divided in the real solution at time tj.

Proof. We prove the proposition by induction. Clearly we have only to

consider the the case tj > T(tj, s, s
′), since the case tj = T(tj , s, s

′) is imme-

diate.

Assume thus s, s′ already divided at time tj−1. Take r, r′ ∈ I(tj, s, s
′),

not divided by the partition P(tj , s, s
′). By definition, this means that r, r′

belong to the same equivalence class J ∈ P(tj−1, s, s
′) at time tj−1 and the

Riemann problem J ∩ W(tj) with flux function f
eff
tj

does not divide them.

Assume by contradiction that they are divided in the real solution at time tj.

This means that x(tj, r) = x(tj, r
′) = xj and the Riemann problem W(tj , xj)

with flux function f
eff
tj

(see Remark 3.13, Point (3.13)) divides r, r′. Since by

inductive assumption waves in J are not divided in the real solution at time

tj−1 and r, r′ ∈ J ∩ W(tj , xj), then J ∩ W(tj) ⊆ W(tj , xj). By Corollary

2.10, this is a contradiction. ���



✐

“BN09N38” — 2014/8/29 — 15:11 — page 528 — #42
✐

✐

✐

✐

✐

528 STEFANO BIANCHINI AND STEFANO MODENA [September

Definition 4.12. Let A,B two sets, A ⊆ B. Let P be a partition of B.

We say that P can be restricted to A if for any C ∈ P, either C ⊆ A or

C ⊆ B \ A. We also write

P|A :=
{

C ∈ P
∣

∣

∣
C ⊆ A

}

.

Clearly P can be restricted to A if and only if it can be restricted to

B \ A.

Proposition 4.13. Let j = 0, . . . , J fixed. Let s, s′, p, p′ ∈ W(tj), p ≤ s <

s′ ≤ p′; assume that p, p′ have already interacted at time tj and s, s′ are

divided in the real solution at time tj . Then P(tj , p, p
′) can be restricted both

to I(tj, s, s
′) ∩ I(tj, p, p

′) and to I(tj, p, p
′) \ I(tj, s, s

′).

Moreover if p, p′ ∈ I(tj, s, s
′), then I(tj, p, p

′) = I(tj, s, s
′) and P(tj , p, p

′) =

P(tj , s, s
′).

Proof. Let us prove the first part of the proposition. Assume first that

either j = 0 or s, s′ are joined in the real solution at time tj−1. Let J ∈

P(tj , p, p
′) such that J ∩ I(tj, s, s

′) 6= ∅. Since I(tj, s, s
′) = W(tj , x(tj , s)),

by Proposition 4.11 applied to I(tj, p, p
′) and waves in J , it must hold

J ⊆ W(tj , xj).

Now assume that s, s′ are divided in the real solution at time tj−1. Take

J ∈ P(tj , p, p
′) and assume that J ∩ I(tj, s, s

′) 6= ∅. By definition of the

equivalence classes, there is K ∈ P(tj−1, p, p
′) such that J ⊆ K. Clearly

K ∩ I(tj−1, s, s
′) 6= ∅, and so, by inductive assumption, K ⊆ I(tj−1, s, s

′).

Hence

J ⊆ K ∩W(tj) ⊆ I(tj−1, s, s
′) ∩W(tj) = I(tj, s, s

′).

Let us now prove the second part of the proposition by recursion. If

either j = 0 or at time tj−1, waves s, s′ are joined in the real solution, then

the conclusion is obvious. Assume now that at time tj−1 waves s, s′ are

divided in the real solution and assume that I(tj−1, p, p
′) = I(tj−1, s, s

′).

Thus

I(tj, p, p
′) = I(tj−1, p, p

′) ∩W(tj) = I(tj−1, s, s
′) ∩W(tj) = I(tj, s, s

′).
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Finally assume that r, r′ ∈ I(tj, s, s
′) = I(tj, p, p

′). Then it holds

r ∼ r′ w.r.t. the partition P(tj , p, p
′)

⇐⇒ r, r′ belong to the same equivalence class J ∈ P(tj−1, p, p
′)

at time tj−1 and the Riemann problem J ∩W(tj) with flux

function f
eff
tj

does not divide them

⇐⇒ r, r′ belong to the same equivalence class J ∈ P(tj−1, s, s
′)

at time tj−1 and the Riemann problem J ∩W(tj) with flux

function f
eff
tj

does not divide them

⇐⇒ r ∼ r′ w.r.t. the partition P(tj , s, s
′).

Hence P(tj , p, p
′) = P(tj , s, s

′). ���

4.2. Definition of Q

We can finally define the functional Q and prove that it satisfies inequal-

ities (4.5) and (4.6).

Let s < s′ be two waves. Let tj be a transversal interaction time; assume

that s, s′ are divided in the real solution both at tj−1 and at tj , and have

already interacted. For any p, p′ ∈ I(tj−1, s, s
′) = I(tj, s, s

′), let Jp,Jp′ be

the element of P(tj−1, s, s
′) containing p, p′ respectively. Define

M(tj , s, s
′)[p, p′] :=

∑

J∈P(tj−1,s,s
′)

Jp≤J≤Jp′

J⊆W(tj ,xj)

|J |.

The above number is the length of the minimal interval containing p, p′, ob-

tained by union of components of P(tj−1, s, s
′) which are subsets ofW(tj , xj).

Let s < s′ be two waves. For any time tj < min{T (s), T (s′)} such that

s, s′ are divided at time tj in the real solution and have already interacted,

define by recursion the map

π(tj, s, s
′) :

(

I(tj, s, s
′)× I(tj, s, s

′)
)

∩ {p < p′} −→ R

as follows:
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(1) if either j = 0 or s, s′ are joined in the real solution at time tj−1, set

π(tj , s, s
′)[p, p′] = 0 for any (p, p′) ∈

(

I(tj, s, s
′)×I(tj, s, s

′)
)

∩{p < p′};

(2) if s, s′ are divided in the real solution at time tj−1,

(a) if tj is an interaction or a cancellation point, set π(tj, s, s
′)[p, p′] :=

π(tj−1, s, s
′)[p, p′] ;

(b) if tj is a transversal interaction point, set

π(tj , s, s
′)[p, p′] := π(tj−1, s, s

′)[p, p′]+2‖D3
wwvf‖L∞ |vh(j)|M(tj , s, s

′)[p, p′].

(4.9)

Now for any time tj and for any pair of wave (s, s′), s < s′, define the

weight q(tj , s, s
′) of the pair of waves s, s′ at time tj in the following way:

q(tj , s, s
′) :=















0 s, s′ joined at time tj in the real solution

π(tj ,s,s′)[s,s′]
|ŵ(s′)−(ŵ(s)−S(s)ε)| s, s′ divided at time tj and already interacted,

‖D2
wwf‖L∞ s, s′ never interacted.

(4.10)

Finally set

Q(tj) :=
∑

s,s′∈W(tj )
s<s′

q(tj , s, s
′)|s||s′|, (4.11)

and Q(t) = Q(tj) for t ∈ [tj, tj+1) (or [tJ ,+∞)). Recall that |s| = |s′| = ε is

the strength of the waves s, s′ respectively.

It is immediate to see that Q is positive, piecewise constant, right con-

tinuous, with jumps possibly located at times tj , j = 1, . . . , J , and Q(0) ≤

‖D2
wwf‖L∞Tot.Var.(w(0, ·))2 . In the next two sections we prove that it also

satisfies inequality (4.5) and (4.6). This completes the proof of Proposition

4.5.

Indeed, the fact that Q decreases at cancellation is simply due to the

fact that the weights are not increasing, and some terms of the sum (4.11)

are canceled.

4.3. Decreasing part of Q

This section is devoted to prove inequality (4.5). We will prove it only

in the case of a positive interaction point, the negative case being completely
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similar.

Lemma 4.14. Let tj be a fixed time. Let s < s′ be two waves, divided in

the real solution at time tj, but which have already interacted. Assume s, s′

positive. Let J ,J ′ ∈ P(tj , s, s
′), J < J ′, and p ∈ J , p′ ∈ J ′. It holds

σrh(fefftj ,J )− σrh(fefftj ,J
′) ≤ π(tj , s, s

′)[p, p′]. (4.12)

Proof. The proof is by induction on times (tj)j=0,...,J . Notice that the r.h.s.

of (4.12) is greater or equal than 0. If either j = 0 or at time tj−1 waves s, s
′

are joined in the real solution, the l.h.s. of (4.12) is negative, hence (4.12)

holds.

Assume now that at time tj−1 waves s, s
′ are divided in the real solution.

Case 1. Assume tj is an interaction point. In this case I(tj, s, s
′)=I(tj−1, s, s

′),

P(tj , s, s
′) = P(tj−1, s, s

′), π(tj , s, s
′) = π(tj−1, s, s

′), fefftj = f
eff
tj−1

; hence by

inductive assumption we are done.

Case 2. Assume that tj is a cancellation point and w.l.o.g. suppose that

the cancellation is on the right of I(tj−1, s, s
′). It is not difficult to see that

there is at most one interval K ∈ P(tj−1, s, s
′) which is reduced (but not

completely canceled) and possibly split by the cancellation.

• If J ,J ′ ⊆ K, the l.h.s. of (4.12) is negative and we are done.

• If J < K and J ′ ⊆ K, σrh(fefftj−1
,J ) = σrh(fefftj ,J ), while, by Proposition

2.8, σrh(fefftj−1
,K) ≤ σrh(fefftj ,J

′). Hence

σrh(fefftj ,J )− σrh(fefftj ,J
′) ≤ σrh(fefftj−1

,J )− σrh(fefftj−1
,K)

≤ π(tj−1, s, s
′)[p, p′] = π(tj , s, s

′)[p, p′],

where the second inequality comes from the inductive assumption at time

tj−1.

• If J ,J ′ < K, then, as before,

σrh(fefftj ,J )− σrh(fefftj ,J
′) = σrh(fefftj−1

,J )− σrh(fefftj−1
,J ′)

≤ π(tj−1, s, s
′)[p, p′] = π(tj , s, s

′)[p, p′].

Case 3. Assume that tj is a transversal interaction point. There exist

K, K′ ∈ P(tj−1, s, s
′) containing J ,J ′ respectively. If J , J ′ < W(tj , xj)
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(or J ,J ′ > W(tj , xj)), then J = K, J ′ = K′ and we can use inductive

assumption to conclude:

σrh(fefftj ,J )− σrh(fefftj ,J
′) = σrh(fefftj−1

,J )− σrh(fefftj−1
,J ′)

≤ π(tj−1, s, s
′)[p, p′] = π(tj , s, s

′)[p, p′].

Assume thus

(

J <W(tj, xj) or J ⊆W(tj , xj)
)

and
(

J ′⊆W(tj , xj) or J
′>W(tj , xj)

)

.

We can also assume K < K′, otherwise the l.h.s. of (4.12) is less or equal

than 0. Set J :=
⋃

r∈J (ŵ(r)−ε, ŵ(r)] and similarly define J ′,K,K ′,W ⊆ R

as the union of the waves segments in J ′,K,K′,W(tj , xj), respectively. Let

a be any point such that supK ≤ a ≤ infK ′. Since f
eff is defined up to

affine function on each maximal monotone interval of waves, we can choose

f
eff
tj
, fefftj−1

such that, d
dw

f
eff
tj−1

(a) = d
dw

f
eff
tj
(a) = 0.

For any w ∈ K, it holds

∣

∣

∣

∣

d

dw
f
eff
tj
(w)−

d

dw
f
eff
tj−1

(w)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ a

w

d2

dw2
f
eff
tj
(τ)dτ −

∫ a

w

d2

dw2
f
eff
tj−1

(τ)dτ

∣

∣

∣

∣

≤

∫

(w,a)∩W

∣

∣

∣

∣

∂2

∂w2
f(τ, v(tj , xj))−

∂2

∂w2
f(τ, v(tj , xj−))

∣

∣

∣

∣

dτ

≤

∫

(w,a)∩W

∫ v+
h(j)

v−
h(j)

∣

∣

∣

∣

∂3f

∂w2∂v
(τ, v)

∣

∣

∣

∣

dvdτ

≤
∥

∥D3
wwvf

∥

∥

L∞

∣

∣vh(j)
∣

∣

∣

∣(w, a) ∩W
∣

∣

≤
∥

∥D3
wwvf

∥

∥

L∞

∣

∣vh(j)
∣

∣M(tj, s, s
′)[p, p′],

and thus
∥

∥

∥

∥

d

dw
f
eff
tj

−
d

dw
f
eff
tj−1

∥

∥

∥

∥

L∞(K)

≤
∥

∥D3
wwvf

∥

∥

L∞

∣

∣vh(j)
∣

∣M(tj , s, s
′)[p, p′]. (4.13)
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Now observe that for any w ∈ J ,

∣

∣

∣
σrh(fefftj ,J )− σrh(fefftj−1

,K)
∣

∣

∣
=

∣

∣

∣

∣

d

dw
convKf

eff
tj ,ε

(w)−
d

dw
convKf

eff
tj−1,ε

(w)

∣

∣

∣

∣

(by Proposition 2.12) ≤

∥

∥

∥

∥

d

dw
f
eff
tj

−
d

dw
f
eff
tj−1

∥

∥

∥

∥

L∞(K)

(by (4.13)) ≤
∥

∥D3
wwvf

∥

∥

L∞

∣

∣vh(j)
∣

∣M(tj , s, s
′)[p, p′].

(4.14)

A similar computation yields

∣

∣

∣
σrh(fefftj ,K

′)− σrh(fefftj−1
,J ′)

∣

∣

∣
≤

∥

∥D3
wwvf

∥

∥

L∞

∣

∣vh(j)
∣

∣M(tj, s, s
′)[p, p′]. (4.15)

Using (4.14), (4.15) and the inductive assumption, we obtain

σrh(fefftj ,J )− σrh(fefftj ,J
′)

=
[

σrh(fefftj ,J )− σrh(fefftj−1
,K)

]

+
[

σrh(fefftj−1
,K) − σrh(fefftj−1

,K′)
]

+
[

σrh(fefftj−1
,K′)− σrh(fefftj ,J

′)
]

≤π(tj−1, s, s
′)[p, p′] + 2

∥

∥D3
wwvf

∥

∥

L∞

∣

∣vh(j)
∣

∣M(tj , s, s
′)[p, p′]

= π(tj , s, s
′)[p, p′]. ���

Lemma 4.15. Let tj be a fixed time. Let s < s′ be two waves, divided in

the real solution at time tj, but which have already interacted. Let p, p′ ∈

I(tj, s, s
′), p ≤ s < s′ ≤ p′. Then for each r, r′ ∈ I(tj, s, s

′) = I(tj, p, p
′),

π(tj , s, s
′)[r, r′] = π(tj , p, p

′)[r, r′].

Proof. By the second part of Proposition 4.13, I(tj, s, s
′) = I(tj, p, p

′) and

P(tj , s, s
′) = P(tj , p, p

′). The conclusion follows just observing that in the

definition of π(tj, s, s
′), π(tj , p, p

′) only the partitions P(tj , s, s
′),P(tj , p, p

′)

are used. ���

Theorem 4.16. Let (tj , xj) be a positive interaction point. Let L, R be the

two wavefronts (considered as sets of waves) interacting in (tj , xj), L < R.

It holds

σrh(fefftj−1
,L)− σrh(fefftj−1

,R)|L||R|
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≤
∑

(s,s′)∈L×R
(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|+

∑

(s,s′)∈L×R
(s,s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|.

Proof. First let us introduce some useful tools. For any rectangle C :=

L̃ × R̃ ⊆ L ×R, define (see Figure 1):

Φ0(C) :=































∅, C = ∅,
[

L̃ ∩ I(tj−1,max L̃,min R̃)
]

×
[

R̃ ∩ I(tj−1,max L̃,min R̃)
]

,

max L̃,min R̃ already interacted,

{(max L̃,min R̃)}, max L̃,min R̃ never interacted,

Φ1(C) :=



































∅, C = ∅,
[

L̃ ∩ I(tj−1,max L̃,min R̃)
]

×
[

R̃ \ I(tj−1,max L̃,min R̃)
]

,

max L̃,min R̃ already interacted,

{max L̃} ×
[

R̃ \ {min R̃}
]

, max L̃,min R̃ never interacted,

Φ2(C) :=











































∅, C = ∅,
[

L̃ \ I(tj−1,max L̃,min R̃)
]

×
[

R̃ \ I(tj−1,max L̃,min R̃)
]

,

max L̃,min R̃ already interacted,
[

L̃ \ {max L̃}
]

×
[

R̃ \ {min R̃}
]

,

max L̃,min R̃ never interacted,

Φ3(C) :=



































∅, C = ∅,
[

L̃ \ I(tj−1,max L̃,min R̃)
]

×
[

R̃ ∩ I(tj−1,max L̃,min R̃)
]

,

max L̃,min R̃ already interacted,
[

L̃ \ {max L̃}
]

× {min R̃}, max L̃,min R̃ never interacted.

Clearly
{

Φ0(C),Φ1(C),Φ2(C),Φ3(C)
}

is a disjoint partition of C.

Denote by ∆σrh(fefftj−1
, C) := σrh(fefftj−1

, L̃) − σrh(fefftj−1
, R̃) the difference in

speed assigned to the first and the second edge of C by the effective flux

function at time tj−1. Set |C| := |L||R| = card(C)ε2. By conservation it
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Figure 1: Partition of L̃ × R̃.

holds ∆σrh(fefftj−1
, C)|C| =

∑3
a=0 ∆σrh(fefftj−1

,Φa(C))|Φa(C)|.

For any set A, denote by A<N the set of all finite sequences taking values in

A. We assume that ∅ ∈ A<N and it is called the empty sequence. There is a

natural ordering E on A<N: given α, β ∈ A<N,

αE β ⇐⇒ β is obtained from α by adding a finite sequence.

A subset D ⊆ A<N is called a tree if for any α, β ∈ A<N, α E β, if β ∈ D,

then α ∈ D.

Define a map Ψ : {1, 2, 3}<N −→ 2L×R, by setting

Ψα =

{

L ×R, if α = ∅,

Φan ◦ · · · ◦ Φa1(L ×R), if α = (a1, . . . , an) ∈ {1, 2, 3}<N \ {∅}.

For α ∈ {1, 2, 3}<N, let Lα,Rα defined by the relation Ψα = Lα ×Rα.

Define a tree in {1, 2, 3}<N setting α ∈ D ⇐⇒ Ψα 6= ∅. See Figure 2.

The idea of the proof is to show that for each α ∈ D, on the rectangle
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Figure 2: Example of partition of L×R using the tree D.

Ψα it holds

∆σrh(fefftj−1
,Ψα)|Ψα|

≤
∑

(s,s′)∈Ψα

(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|+

∑

(s,s′)∈Ψα

(s,s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|.

The conclusion will follow just considering that ∅ ∈ D and Ψ∅ = L×R. We

need the following two lemmas.

Lemma 4.17. For any α ∈ D, if maxLα,minRα have already interacted at

time tj−1, then the partition P(tj−1,maxLα,minRα) of I(tj−1,maxLα,min

Rα) can be restricted to

Lα ∩ I(tj−1,maxLα,minRα)

and to

Rα ∩ I(tj−1,maxLα,minRα).

Proof. Let us prove only the first part of the statement, the second one being
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completely similar. We prove (by induction) the following stronger claim: for

each βEα, the partition P(tj−1,maxLα,minRα) of I(tj−1,maxLα,minRα)

can be restricted to Lβ ∩ I(tj−1,maxLα,minRα).

For β = ∅, by definition L∅ = L and thus the proof is an easy consequence

of Proposition 4.11.

Thus assume the claim is true for some β⊳α and let us prove it for βa, with

a ∈ {1, 2, 3}. If a = 1, by definition it holds

Lβ1 = Lβ ∩ I(tj−1,maxLβ,minRβ).

Hence

Lβ1 ∩ I(tj−1,maxLα,minRα)

= Lβ ∩ I(tj−1,maxLβ,minRβ) ∩ I(tj−1,maxLα,minRα).

By inductive assumption, the partition P(tj−1,maxLα,minRα) of I(tj−1,

maxLα,minRα) can be restricted to Lβ ∩ I(tj−1,maxLα,minRα), while,

by Proposition 4.13, since β ⊳α, it can be restricted also to I(tj−1,maxLβ,

minRβ) ∩ I(tj−1,maxLα,minRα), and thus we are done.

If a = 2, 3, by definition it holds

Lβa = Lβ \ I(tj−1,maxLβ,minRβ).

Hence

Lβa ∩ I(tj−1,maxLα,minRα)

=
(

Lβ \ I(tj−1,maxLβ,minRβ)
)

∩ I(tj−1,maxLα,minRα)

=
(

Lβ ∩ I(tj−1,maxLα,minRα)
)

∩
(

I(tj−1,maxLα,minRα) \ I(tj−1,maxLβ,minRβ)
)

.

As in the case a = 1, by inductive assumption, the partition P(tj−1,maxLα,

minRα) of I(tj−1,maxLα,minRα) can be restricted to Lβ∩I(tj−1,maxLα,

minRα), while, by Proposition 4.13, since β ⊳ α, it can be restricted also

to I(tj−1,maxLα,minRα) \ I(tj−1,maxLβ,minRβ), and thus we are done

also in this case. ���
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Lemma 4.18. For each α ∈ D, if maxLα,minRα have already interacted

at time tj−1, then on Φ0(Ψα) it holds

∆σrh(fefftj−1
,Φ0(Ψα))|Φ0(Ψα)| ≤

∑

(s,s′)∈Φ0(Ψ(α))

π(tj−1, s, s
′)[s, s′]|s||s′|.

Proof. By definition of Φ0,

Φ0(Ψα) =
[

Lα∩I(tj−1,maxLα,minRα)
]

×
[

Rα∩I(tj−1,maxLα,minRα)
]

.

By previous lemma,

P(tj−1,maxLα,minRα)|Lα∩I(tj−1,maxLα,minRα)
=

{

J1, . . . ,JL

}

,

P(tj−1,maxLα,minRα)|Rα∩I(tj−1,maxLα,minRα)
=

{

K1, . . . ,KN

}

.

Hence,

∆σrh(fefftj−1
,Φ0(Ψα))|Φ0(Ψα)|

(by conservation) =

L
∑

l=1

N
∑

n=1

∆σrh(fefftj−1
,Jl ×Kn)|Jl ×Kn|

=

L
∑

l=1

N
∑

n=1

∆σrh(fefftj−1
,Jl ×Kn)

∑

(s,s′)∈Jl×Kn

|s||s′|

(by Lemma 4.14) ≤

L
∑

l=1

N
∑

n=1

∑

(s,s′)∈Jl×Kn

π(tj−1,maxLα,minRα)[s, s
′]|s||s′|

≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1,maxLα,minRα)[s, s
′]|s||s′|

(by Lemma 4.15) ≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1, s, s
′)[s, s′]|s||s′|. �

Conclusion of the proof of Theorem 4.16. As said before, to conclude

the proof of the theorem it is sufficient to show that for each α ∈ D, on Ψα

it holds

∆σrh(fefftj−1
,Ψα)|Ψα| (4.16)
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≤
∑

(s,s′)∈Ψα

(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|+

∑

(s,s′)∈Ψα

(s,s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|.

This is proved by (inverse) induction on the tree D. If α ∈ D is a leaf

of the tree (i.e. αa /∈ D for each a ∈ {1, 2, 3}), then Ψα = Φ0(Ψα). If

maxLα,minRα have never interacted at time tj−1, then Ψα = Φ0(Ψα) =

{(maxLα,minRα)} and inequality (4.16) follows fromMean Value Theorem;

if maxLα,minRα have already interacted at time tj−1, then each wave in

Lα have interacted with any wave in Rα and thus inequality (4.16) is a

consequence of Lemma 4.18.

Now take α ∈ D, α not a leaf. Then Φ1(Ψα) = Ψα1, Φ2(Ψα) = Ψα2,

Φ3(Ψα) = Ψα3 and

∆σrh(fefftj−1
,Ψα)|Ψα|

(by conservation) = ∆σrh(fefftj−1
,Φ0(Ψα))|Φ0(Ψα)|

+
3

∑

a=1

∆σrh(fefftj−1
,Φa(Ψα))|Φa(Ψα)|

= ∆σrh(fefftj−1
,Φ0(Ψα))|Φ0(Ψα)|

+
3

∑

a=1

∆σrh(fefftj−1
,Ψαa)|Ψαa|

(by Lemma 4.18) ≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1, s, s
′)[s, s′]|s||s′|

+
3

∑

a=1

∆σrh(fefftj−1
,Ψαa)|Ψαa|

(by inductive assumption)

≤
∑

(s,s′)∈Φ0(Ψα)

π(tj−1, s, s
′)[s, s′]|s||s′|

+
3

∑

a=1

(

∑

(s,s′)∈Ψαa

(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|



✐

“BN09N38” — 2014/8/29 — 15:11 — page 540 — #54
✐

✐

✐

✐

✐

540 STEFANO BIANCHINI AND STEFANO MODENA [September

+
∑

(s,s′)∈Ψαa

(s,s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|

)

=
∑

(s,s′)∈Ψα

(s,s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

+
∑

(s,s′)∈Ψα

(s,s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|,

thus concluding the proof of the theorem. ���

Corollary 4.19. For any interaction point (tj, xj), it holds

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| ≤ 2
[

Q(tj−1)−Q(tj)
]

.

By direct inspection of the proof one can verify that the constant 2 is

sharp.

Proof. As said at the beginning of this section, we assume w.l.o.g. that

all the waves in W(tj , xj) are positive. Let L, R be the two wavefronts

(considered as sets of waves) interacting in (tj , xj), L < R. With standard

arguments, observing that the waves which change speed after the interaction

are those in L ∪R, one can see that

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s| = 2
|σrh(fefftj−1

,L)− σrh(fefftj−1
,R)||L||R|

|L|+ |R|

= 2

(

σrh(fefftj−1
,L)− σrh(fefftj−1

,R)
)

|L||R|

|L|+ |R|
,

where the last equality is justified by the fact that, since L and R are inter-

acting and L < R, then σrh(fefftj−1
,L) > σrh(fefftj−1

,R). Hence, using Theorem

4.16, we obtain

∑

s∈W(tj)

|σ(tj , s)− σ(tj−1, s)||s|
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= 2

(

σrh(fefftj−1
,L)− σrh(fefftj−1

,R)
)

|L||R|

|L|+ |R|

≤
2

|L|+ |R|

[

∑

(s,s′)∈L×R
(s, s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

+
∑

(s,s′)∈L×R
(s, s′) never
interacted

‖D2
wwf‖L∞

(

|L|+ |R|
)

|s||s′|

]

≤ 2

[

∑

(s,s′)∈L×R
(s, s′) already
interacted

π(tj−1, s, s
′)[s, s′]|s||s′|

ŵ(s′)− (ŵ(s)− ε)
+

∑

(s,s′)∈L×R
(s, s′) never
interacted

‖D2
wwf‖L∞ |s||s′|

]

= 2
∑

(s,s′)∈L×R

q(tj−1, s, s
′)|s||s′|

= 2
[

Q(tj−1)−Q(tj)
]

,

which is what we wanted to get. ���

4.4. Increasing part of Q

This section is devoted to prove inequality (4.6), more precisely we will

prove the following theorem.

Theorem 4.20. If (tj , xj) is a transversal interaction point, then

Q(tj)−Q(tj−1) ≤ 6 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)),

where |vh(j)| is the strength of the wavefront of the first family involved in

the transversal interaction at time tj.

Proof. Assume for simplicity that W(tj , xj)=[p1, p2] and waves inW(tj , xj)

are positive. First of all, let us split the quantity we want to estimate as

follows. Recall that given s < s′ in W(tj), their weight can increase only if

they are divided both before and after the transversal interaction and have

already interacted before the transversal interaction.

Q(tj)−Q(tj−1)
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=
∑

s,s′∈W(tj)
s<s′

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

=
∑

s<W(tj ,xj)

∑

s′∈W(tj ,xj)
s′ already interacted

with s

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

+
∑

s<W(tj ,xj)

∑

s′>W(tj ,xj)
s′ already interacted

with s

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

+
∑

s∈W(tj ,xj)

∑

s′>W(tj ,xj)
s′ already interacted

with s

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|. (4.17)

Let us begin with the estimate on the first term of the summation. Fix

s < W(tj , xj) and assume that s has interacted with p1. Set

rs := max
{

p ∈ W(tj , xj)
∣

∣

∣
p has interacted with s at time tj−1

}

.

We need the following lemma.

Lemma 4.21. There exists a partition Ps = {K1, . . . ,KK} of [p1, rs], with

Kk < Kk+1 such that for any s′ ∈ [p1, rs], if Kk(s′) is the element of the

partition Ps containing s′, it holds

M(tj , s, s
′)[s, s′] =

k(s′)
∑

k=1

Kk.

The remarkable point in this lemma is the fact that the partition Ps depends

only on s and not on s′.

Proof. Define N ∈ N and a finite sequence (sn)n=1,...,N+1 as follows.

Set s1 := p1. Now assume to have defined sn ∈ [p1, rs]; set sn+1 :=

max I(tj−1, s, sn) + 1. If sn+1 ≤ rs, keep on the recursive procedure, other-

wise set N := n and stop the procedure. Clearly s1 < · · · < sN .

Now observe that for each n = 1, . . . N , the partition P(tj−1, s, sn) can

be restricted to I(tj−1, s, sn) ∩ [sn, sn+1 − 1]. Namely for n = 1 this follows

from Proposition 4.11, while for n ≥ 2, it is a consequence of Proposition
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4.13, just observing that

I(tj−1, s, sn) ∩ [sn, sn+1 − 1] = I(tj−1, s, sn) \ I(tj−1, s, sn−1)

and s < sn−1 ≤ sn. Hence we can set

Ps :=
N
⋃

n=1

P(tj−1, s, sn)|I(tj−1,s,sn)∩[sn,sn+1−1]

Observe also that for each s′ ∈ [sn, sn+1 − 1] ⊆ I(tj−1, s, sn), by the sec-

ond part of Proposition 4.13, it holds I(tj−1, s, s
′) = I(tj−1, s, sn) and

P(tj−1, s, s
′) = P(tj−1, s, sn).

Hence for any s′ ∈ [sn, sn+1 − 1], denoting by Js,Js′ the elements of

P(tj−1, s, s
′) containing s, s′ respectively, we have

M(tj , s, s
′)[s, s′] =

∑

J∈P(tj−1,s,s
′)

Js≤J≤Js′

J⊆W(tj ,xj)

|J | =
∑

J∈P(tj−1,s,sn)
Js≤J≤Js′

J⊆W(tj ,xj)

|J |

=
∑

J∈P(tj−1,s,sn)
J<sn

J⊆W(tj ,xj)

|J |+
∑

J∈P(tj−1,s,sn)
J⊆[sn,sn+1−1]

J≤Js′

|J |

=
∣

∣

∣
[s1, sn − 1]

∣

∣

∣
+

∑

K∈Ps

K⊆[sn,sn+1−1]
K≤Kk(s′)

|K|

=
∑

K∈Ps

K<{sn}

|K| +
∑

K∈Ps

K⊆[sn,sn+1−1]
K≤Kk(s′)

|K|

=

k(s′)
∑

k=1

|K|. �

Now for fixed s < W(tj , xj), s already interacted with p1, consider the

partition Ps = {K1, . . . ,KK} of [p1, rs], with Kk < Kk+1 constructed in

previous lemma and, as before, for any s′ ∈ [p1, rs] denote by Kk(s′) the
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element of the partition Ps containing s′. We have

∑

s′∈[p1,rs]

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

= 2‖D3
wwvf‖L∞|vh(j)||s|

rs
∑

s′=p1

1

ŵ(s′)− (ŵ(s)− ε)
M(tj , s, s

′)[s, s′]|s′|

(by Lemma 4.21)

= 2‖D3
wwvf‖L∞|vh(j)||s|

rs
∑

s′=p1

1

ŵ(s′)− (ŵ(s)− ε)
|s′|

k(s′)
∑

k=1

|Kk|

= 2‖D3
wwvf‖L∞|vh(j)||s|

K
∑

l=1

∑

s′∈Kl

1

ŵ(s′)− (ŵ(s)− ε)
|s′|

l
∑

k=1

|Kk|

= 2‖D3
wwvf‖L∞|vh(j)||s|

K
∑

k=1

K
∑

l=k

∑

s′∈Kl

1

ŵ(s′)− (ŵ(s)− ε)
|s′||Kk|

≤ 2‖D3
wwvf‖L∞|vh(j)||s|

K
∑

k=1

|Kk|

rs
∑

s′=p1

|s′|

ŵ(s′)− (ŵ(s)− ε)

≤ 2‖D3
wwvf‖L∞|vh(j)||s||W(tj , xj)|

∫ ŵ(p2)

ŵ(p1)−ε

dw′

w′ − (ŵ(s)− ε)
.

Now we sum over all s < W(tj , xj) which have interacted with p1.

∑

s<W(tj ,xj)
s interacted with p1

∑

s′∈[p1,rs]

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

≤ 2‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|

∑

s<W(tj ,xj)
s interacted with p1

|s|

∫ ŵ(p2)

ŵ(p1)−ε

dw′

w′ − (ŵ(s)− ε)

≤ 2‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|

∫ ŵ(p1)−ε

a

∫ ŵ(p2)

ŵ(p1)−ε

dw′dw

w′ − w
,

where a := ŵ
(

min
{

s
∣

∣ s has interacted with p1
})

−ε. An easy computation

shows that
∫ ξ

a

∫ b

ξ

dw′dw

w′ − w
≤ log(2)(b− a). (4.18)

Hence,

∑

s<W(tj ,xj)

∑

s′∈W(tj ,xj)

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|
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≤ 2 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)). (4.19)

A similar computation holds for the third term in the summation (4.17)

and gives

∑

s∈W(tj ,xj)

∑

s′>W(tj ,xj)
s′ already interacted with s

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

≤ 2 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)). (4.20)

The estimate on the second term of the summation in (4.17) is similar,

but easier.

∑

s<W(tj ,xj)

∑

s′>W(tj ,xj)
s′ already interacted

with s

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

≤
∑

s<W(tj ,xj)

∑

s′>W(tj ,xj)
s′ already interacted

with s

2‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|

|s||s′|

ŵ(s′)− (ŵ(s)− ε)

≤ 2‖D3
wwvf‖L∞|vh(j)||W(tj , xj)|

∫ ŵ(p1)−ε

a

∫ b

ŵ(p2)

dw′dw

w′ − w
,

where a := ŵ(minM)−ε, b := ŵ(maxM) and M is the maximal monotone

interval in which W(tj , xj) is contained. Thus, using again (4.18),

∑

s<W(tj ,xj)

∑

s′>W(tj ,xj)
s′ already interacted

with s

[

q(tj , s, s
′)− q(tj−1, s, s

′)
]

|s||s′|

≤ 2 log(2)‖D3
wwvf‖L∞ |vh(j)||W(tj , xj)|Tot.Var.(w(0, ·)). (4.21)

Summing up inequalities (4.19), (4.20), (4.21), we conclude the proof. ���

Corollary 4.22. It holds

∑

tj transversal
interaction

Q(tj)−Q(tj−1)

≤ 6 log(2)‖D3
wwvf‖L∞Tot.Var.(w(0, ·))2Tot.Var.(v(0, ·)).
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Proof. By previous theorem,

Q(tj)−Q(tj−1)

≤ 6 log(2)‖D3
wwvf‖L∞Tot.Var.(w(0, ·))

[

Qtrans(tj−1)−Qtrans(tj)
]

.

Using Proposition 3.14 we get the thesis. ���
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