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Abstract

Silverman proved that when the second iterate of a rational function φ is not a

polynomial, there are only finitely many S-integral points in each orbit of a rational point.

We will survey prior results that attempt to generalize this result to higher-dimensions,

and then we will discuss some extensions. More specifically, one new result incorporates

geometric properties from multiple iterates simultaneously, while another generalizes to

maps with some indeterminancy. All of these general theories assume some version of a

very deep Diophantine conjecture by Vojta, but we will give explicit examples for which this

conjecture can be avoided. We will also give some examples of maps for which these general

theories do not apply directly but for which deviations from S-integrality in orbits can be

analyzed unconditionally. We will end by posing many questions still to be answered.

Given a self-map φ : X −→ X, dynamics studies the asymptotic be-

haviors of the n-fold iteration φ(n) = φ ◦ · · · ◦ φ
︸ ︷︷ ︸

n times

. One of the fundamental

objects of interest in dynamics is the orbit Oφ(P ) = {P, φ(P ), φ(2)(P ), . . .}
of a point P . For instance, P is called preperiodic for φ if Oφ(P ) is finite,

and the behaviors around (pre)periodic points are crucial in understanding

the dynamics. In arithmetic dynamics, we assume that X is an algebraic

variety over a number field k and φ a morphism or a rational map over k.

Here, some additional questions arise, such as whether there is a uniform

bound for the number of preperiodic points defined over k as we vary φ in
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some family. Another natural object of study in the arithmetic setup is the

intersection of an orbit with the set of integral points. This was completely

analyzed by Silverman [9] in the case of morphisms on P1, proving that un-

less φ satisfies a special geometric property, the points in an orbit become

further and further away from being integral.

Theorem 1 (Silverman). Let φ ∈ Q(z) be a rational function of degree ≥ 2.

(i) If φ(2) is not a polynomial (i.e. not in Q[z]), then Oφ(P )∩Z is a finite

set for any P ∈ Q.

(ii) Assume that neither φ(2) nor 1
φ(2)(1/z)

is a polynomial. If we write

φ(m)(P ) = am/bm in a reduced form, then for any P with |Oφ(P )| = ∞,

lim
m→∞

log |am|
log |bm|

= 1.

As an attempt to generalize Theorem 1 to higher dimensions, we pose

the following question:

Question 2. Let φ : PN 99K PN be a rational map of degree > 1 defined

over a number field k, D be an effective divisor of PN , S be a finite set of

places of k, and RS be the set of S-integers of k.

(1) What kind of geometric condition pertaining to ramification forcesOφ(P )

∩(PN\D)(RS) to be Zariski-non-dense in PN for any P ∈ PN(k) whose

orbit avoids the indeterminancy locus of φ?

(2) More specifically, can we take the “geometric condition” in (1) to be

not having any completely invariant subvarieties (i.e. possibly reducible

subvariety V of PN such that φ−1(V ) = V set-theoretically) defined over

Q?

In this article, we will discuss previous and new results which can be

viewed as potential answers to the above central question. There are three

main difficulties in generalizing Silverman’s result to higher dimension. First,

Diophantine approximation results are not quite fully developed. Silverman

used Roth theorem, which does not yet have a true analog in higher dimen-

sions, as Schmidt’s subspace theorem only deals with hyperplanes and the

known approximation results for hypersurfaces are still weaker than opti-

mal. Secondly, as discussed at the end of Section 4, the geometry of divisors

is obviously much more complicated in higher dimensions. In dimension 1,
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all irreducible divisors are just points, while an irreducible divisor in higher

dimensions can be non-smooth or can self-intersect. Thirdly, a self-map

on PN can be a rational map, and the presence of indeterminancy causes

complications for degree growths and for height inequalities.

Because of these difficulties, we will resort to assuming a very deep

Diophantine conjecture of Vojta for most of the theoretical results presented

here. This has the unwanted consequence that we can only deal with normal-

crossings divisors; this type of assumption is perhaps not necessary to answer

Question 2, but it is unavoidable if one is using Vojta’s conjecture. We also

present specific examples where this conjecture can be avoided by using the

known special cases of the conjecture. As for rational maps, the results

presented here involve the notion of arithmetic degree, introduced recently

by Silverman. As will be discussed in a remark after Theorem 12, Question 2

is nontrivial only when Oφ(P ) is Zariski-dense, in which case the arithmetic

degree is conjecturally equal to the dynamical degree and thus a geometric

notion.

We now discuss the results in a bit more detail. In Section 2, we quote

the main theorems from [14]. They give some candidates for Question 2 (1)

for morphisms on PN , assuming Vojta’s conjecture. We also quote another

result (Theorem 6) from [14] which avoids this conjecture, by instead using

the known cases of the so-called Lang–Vojta conjecture for integral points.

In Section 3, we prove several new results that generalize prior results. The-

orem 7 incorporates geometric properties from pullbacks by multiple iterates

simultaneously. Theorems 10 and 12 give two attempts at generalizing re-

sults of Section 2 to rational maps, using the notion of arithmetic degree.

Section 4 goes back to analyzing P1, and we show that while there are ex-

amples which indicate that Theorem 7 for dimension 1 is not strong enough

to give Silverman’s theorem, we make a new observation that we can actu-

ally use Theorem 6 to recover the full-strength of the P1 result. Section 5

discusses a special family of rational maps on P2 that have a completely in-

variant point. Although Theorem 7 does not apply to these maps, we prove

its analog (Proposition 15) without assuming any conjecture. This actually

shows that the condition in Question 2 (2) is not a necessary condition, per-

haps indicating that searching for the necessary and sufficient condition in

(1) might be very difficult. In the last section, we mention some examples

that demonstrate why the nonexistence of completely invariant subvarieties
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is a potential candidate for Question 2, and discuss many further related

questions.

1. Background on Heights and Vojta’s Conjecture

In this section, we will set some notations and introduce height functions

and Vojta’s conjecture. We will limit ourselves to working with projective

spaces since this is all we need, but the height theory can be developed for

projective varieties and Vojta’s conjecture can be stated for any smooth pro-

jective variety. For a more complete account of height theory and Diophan-

tine geometry in general, see [1] or [4], and for Vojta’s conjecture specifically,

see the original account [12] or a more recent survey [13].

Let k be a number field, and let Mk be the set of places of k. Given

v ∈Mk, we will use the convention that | · |v restricted to Q is the [kv:Qv]
[k:Q] -th

power of the normalized absolute value on Q, namely the usual absolute

value for archimedean and |p|p = 1
p . This convention makes the product

formula simple:
∏

v∈Mk
|x|v = 1 for x ∈ k∗. We then define a (global) Weil

height on PN (Q) by

h([x0 : · · · : xN ]) =
∑

v∈Mk

log max(|x0|v, . . . , |xN |v),

where k is any field containing the field of definition of the point [x0 : · · · :
xN ]. We can check that this function is well-defined. When φ : PN 99K PM

is a rational map defined by homogeneous polynomials of degree d in each

coordinate, there exists a constant C1 such that

h(φ(P )) ≤ dh(P ) + C1 (1)

for all P ∈ PN (Q), and when φ is a morphism (i.e. well-defined everywhere)

of degree d, there exists a constant C2 such that

h(φ(P )) ≥ dh(P ) − C2

for all P ∈ PN (Q). For a divisor D on PN , we simply define hD(P ) =

(degD)h(P ).

Local height functions are more arithmetic in nature. Given an effective

divisor D on PN and v ∈Mk, choose a homogeneous polynomial Fv of degree
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d defining D such that coefficients are v-adically integral, with one of them

having valuation zero if v is non-archimedean. We then define the v-adic

local height of D to be

λv(D, [x0 : · · · : xN ]) = log
max(|x0|v, . . . , |xN |v)d

|Fv(x0, . . . , xN )|v
.

This function has a logarithmic pole along |D|, it is big when the point

[x0 : · · · : xN ] is v-adically close to the divisor D, and is non-negative for any

non-archimedean v. A key property of local heights is the decomposition

∑

v∈Mk

λv(D,P ) = hD(P ) +O(1) P /∈ |D|. (2)

Note that the sum on the left-hand-side is always finite for all P /∈ |D| and
it only changes by O(1) when we choose different Fv ’s.

Given a rational map φ = [G0 : · · · : GN ] : PM 99K PN defined by

homogeneous polynomials Gj ’s in M + 1 variables of degree e, we have by

definition

λv(D,φ(P )) = log
max(|G0(P )|v , . . . , |GN (P )|v)d

|Fv(G0(P ), . . . , GN (P ))|v

λv(φ
∗(D), P ) = log

max(|x0|v, . . . , |xM |v)de
|Fv(G0(P ), . . . , GN (P ))|v

for P = [x0 : · · · : xM ] /∈ φ−1(|D|). Therefore, it immediately follows from

the triangle inequality that

λv(D,φ(P )) ≤ λv(φ
∗(D), P ) +O(1) P ∈ PM(k)\φ−1(|D|) (3)

for any rational map φ : PM 99K PN , obtaining the local height version

of (1). When φ is further a morphism, we have the full functoriality with

respect to the pullback:

λv(φ
∗D,P ) = λv(D,φ(P )) +O(1) P ∈ PM(k)\φ−1(|D|).

Another useful property of local heights as defined above is that when k′ is
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a finite extension of k, we have

λv(D,P ) =
∑

w∈Mk′

w|v

λw(D,P ) (4)

for all P ∈ PN (k)\|D|. We also note that on P1, one can alternatively define

local heights by

λv(α, x) = max(0,− log |x− α|v), (5)

as one can for example use Lemma 6.2 of [13] to show that the two definitions

differ only by a bounded function and this new definition still satisfies (2).

When D = (XN = 0) and S ⊂ MQ containing the archimedean place,

writing P ∈ PN (Q) as [x0 : · · · : xN ] with xi ∈ Z with gcd 1, we see from the

definition that
∑

v/∈S

λv(D,P ) = log |xN |′S ,

where | · |′S is the prime-to-S part of an integer. More generally, a set of

S-integral points with respect to D is a set of the form

{

P :
∑

v/∈S

λv(D,P ) ≤ C

}

for some constant C, while a set of quasi-(S, ǫ)-integral points as defined in

[5] is a set of the form

{

P :
∑

v/∈S

λv(D,P ) ≤ (1− ǫ)hD(P ) + C

}

(6)

for some 0 < ǫ ≤ 1 and a constant C.

Given a morphism φ : PN −→ PN of degree d ≥ 2, we can mimic

the Néron–Tate construction to give a (dynamical) canonical height. More

precisely,

lim
m→∞

h(φ(m)([x0 : · · · : xN ]))
dm

converges by a telescoping sum, and we call this the canonical height ĥφ([x0 :

· · · : xN ]). It is zero if and only if the point is preperiodic, just as the
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Néron–Tate height distinguishes torsion points. There is a vast literature on

canonical heights and their dynamical applications; see for example [10].

To introduce Vojta’s conjecture, recall that a divisor is said to be normal-

crossings if near each point it is defined by x1 · · · xk = 0, where x1, . . . , xk

is a subsystem of (analytic) coordinates. By definition, the multiplicity of

each irreducible component of a normal-crossings divisor is 1. We are now

ready to state Vojta’s conjecture (restricted to PN ):

Conjecture 3 (Vojta’s Conjecture for PN ). Let D be a normal-crossings

divisor on PN defined over k, and S ⊂ Mk finite. Then given ǫ > 0, there

exist a finite union Zǫ of hypersurfaces and a constant C such that for P ∈
PN(k)\Zǫ,

∑

v∈S

λv(D,P ) < (N + 1 + ǫ)h(P ) + C. (7)

This N +1 comes from the fact that the degree of the canonical divisor

of PN is −(N + 1). Since the local heights are big when P is v-adically

close to D, the conjecture says that the arithmetic property of how close a

rational point P can be to D is controlled by the global geometry of how

negative the canonical divisor is. When N is equal to 1, this conjecture is

equivalent to Roth’s theorem [1, Proposition 14.2.7]. Thus, viewing Roth’s

theorem in the framework of Vojta’s conjecture gives a geometric meaning

to the approximation exponent 2. When D is a union of hyperplanes, this

conjecture is equivalent to the Schmidt subspace theorem. The other cases

are mostly unknown, and it is a very deep and a powerful conjecture.

2. Prior Results

In this section, we briefly quote results from [14] that are relevant for

this article. There are other works dealing with integral points in orbits such

as [2] treating maps on P1 × P1, but we will omit the history here; see the

introduction of [14] for a more thorough account.

Given an effective divisor D on PN defined over Q, we consider all the

normal-crossings subdivisors ofD over Q and the one with the highest degree

will be called a normal-crossings part of D, denoted by Dnc. We denote

the pullback (φ(n))∗D by D(n) and its normal-crossings part by D
(n)
nc when
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the map φ is clear. The following theorem is an improvement of the main

theorem of [15].

Theorem 4 (cf. Theorem 2 in [14]). Let φ : PN −→ PN be a morphism

defined over Q of degree d ≥ 2, and let D be an effective divisor on PN . If

degD
(n)
nc > N + 1 for some n, then Vojta’s conjecture on PN for the divisor

D
(n)
nc implies that for any P ∈ PN (Q), Oφ(P ) ∩ (PN\D)(Z) is Zariski-non-

dense.

The hypothesis in this theorem for N = 1 agrees with the hypothesis

in (i) of Silverman’s theorem (Theorem 1). Indeed, if a rational function

satisfies φ(2) /∈ k[x], then it can be shown from the Riemann–Hurwitz formula

that φ(4) has at least 3 distinct poles. Alternatively, one can use a geometric

lemma of Silverman (see Lemma 14 in Section 4) to show the existence of n

such that φ(n) has at least 3 distinct poles. Conversely, if φ(2) ∈ k[x], then

it is clear that the number of poles for any φ(n) is exactly one. Therefore,

Silverman’s hypothesis is equivalent to the hypothesis in the above theorem

forN = 1, assuming a geometric lemma based on Riemann–Hurwitz formula.

This theorem shows that the “existence of n for which degD
(n)
nc > N+1”

is one answer to Question 2 (1), under Vojta’s conjecture. This condition is

related to ramification, as highly ramified maps keep degD
(n)
nc low.

We now state the analog of the second part of Silverman’s theorem:

Theorem 5 (cf. Corollary 1 in [14]). Let c = supn
degD

(n)
nc −(N+1)

dn deg(D) , and let

S ⊂ Mk be finite. Then assuming Vojta’s conjecture for PN , for all ǫ > 0

and P ∈ PN (k),

{

φ(m)(P ) :

∑

v/∈S

λv(D,φ
(m)(P ))

deg(D)h(φ(m)(P ))
≤ c− ǫ

}

(8)

is Zariski-non-dense.

When D is the point at infinity in P1 and S is just the archimedean

place of Q,
∑

v/∈S λv(D,x) is the logarithm of the denominator of x, so this

corresponds to the second part of Theorem 1. Using (6), this theorem states

that the intersection of a set of quasi-(S, 1− (c− ǫ))-integral points with an

orbit is Zariski-non-dense. All the remaining results in this paper are similar
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in the sense that we show the Zariski-non-density of an appropriately-chosen

set of quasi-S-integral points in orbits.

The obvious shortcoming of the above two theorems is the need to as-

sume Vojta’s conjecture. An irreducible divisor in higher dimension can be

highly singular and can even self-intersect, unlike in dimension 1. Since it

is difficult in general to control the pullback of a divisor by an iterate, this

deep conjecture in Diophantine geometry is employed. To compensate for

this problem, we discuss several results in [14] which avoid the usage of this

conjecture. One case is when the normal-crossings part of D(n) is a union of

hyperplanes, since then Schmidt’s subspace theorem can be used in place of

Vojta’s conjecture. This has the additional advantage that the exceptional

set to the height inequality (7) is a union of hyperplanes defined over the

same field as the map and the initial point. This is exploited in Example 1

of [14], but we will not discuss it further as it is not needed in this article.

Instead, we quote the following, which takes advantage of another known

special case of Vojta’s conjecture, known as Lang–Vojta conjecture for inte-

gral points:

Theorem 6 (cf. Proposition 2 of [14]). Let φ : PN −→ PN be a morphism

of degree d ≥ 2 defined over Q. Let D be an effective divisor on PN defined

over Q, and let P ∈ PN(Q). Let k be a number field that contains the fields

of definition of φ, of irreducible components of D over Q, and of P , and let

S ⊂ Mk be a finite subset. Suppose there exists n with (φ(n))∗D = D1 +D2

such that

• D1 contains N + 2 distinct geometrically-irreducible components,

• ∃α<deg(D2) such that
∑

v∈S
λv(D2, φ

(m)(P ))≤αh(φ(m)(P ))+O(1) ∀m≫0.

Then

{

φ(m)(P ) :

∑

v/∈S

λv(D,φ
(m)(P ))

(degD)h(φ(m)(P ))
≤ deg(D2)− α

(degD)dn

}

is Zariski-non-dense.

We now generalize these results, and use them to analyze in some special

examples the deviation from S-integrality in orbits.
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3. A Generalization of Theorems 4 and 5

In this section, we will discuss some generalizations of Theorems 4 and

5. First, we discuss a result that incorporates pullbacks by multiple iterates

simultaneously.

Theorem 7. Let φ : PN −→ PN be a morphism of degree d ≥ 2 and

let D be an effective divisor on PN , both defined over Q. Let n1, . . . , nℓ
be natural numbers and let D′ be the normal-crossings part of the divisor

D(n1)+ · · ·+D(nℓ). Let k be a number field containing the fields of definition

of φ and D′. If c := degD′ − (N + 1) is strictly positive, then Vojta’s

conjecture on PN (k) for the divisor D′ implies that given S ⊂Mk finite and

ǫ > 0,

{

φ(m)(P ) :

∑

v/∈S

λv(D,φ
(m+ni)(P ))

deg(D)h(φ(m+ni)(P ))
≤ c

(degD) (dn1+· · ·+dnℓ)−ǫ ∀i=1, . . . , ℓ

}

(9)

is Zariski-non-dense for any P ∈ PN (k).

Proof. The proof of this is very similar to the proof of Theorem 4 in

[14]. This theorem is obvious if P is preperiodic, so we may assume that

|Oφ(P )| = ∞. In particular, h(φ(m)(P )) → ∞ as m → ∞ since they are all

defined over k. By applying Vojta’s conjecture to the divisor D′,

∑

v∈S

λv(D
′, Q) <

(

N + 1 +
ǫ

2

)

h(Q) +O(1) (10)

for all Q ∈ PN(k) except for points on a finite union Zǫ of hypersurfaces.

Since global heights change only by bounded functions in linear equivalence,

∑

v∈S

λv

(

D(n1) + · · ·+D(nℓ) −D′, Q
)

≤ hD(n1)+···+D(nℓ)−D′(Q) +O(1)

≤ ((dn1 + · · ·+ dnℓ) deg(D)− (c+N + 1)) h(Q) +O(1).

Thus, by adding these two inequalities, for Q /∈ Zǫ,

∑

v∈S

λv(D
(n1)+· · ·+D(nℓ), Q) ≤

(

(dn1+· · ·+dnℓ) deg(D)−c+ ǫ

2

)

h(Q)+O(1).
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Now, note that by (3), λv(D,φ
(ni)(Q)) ≤ λv(D

(ni), Q) +O(1) for each i and

v ∈ S. Therefore, plugging in Q = φ(m)(P ), we obtain

ℓ∑

i=1

∑

v∈S

λv(D,φ
(m+ni)(P ))

≤
(

(dn1 + · · ·+ dnℓ) deg(D)− c+
ǫ

2

)

h(φ(m)(P )) +O(1) (11)

as long as φ(m)(P ) /∈ Zǫ. On the other hand, if m is such that φ(m)(P ) is in

the set (9), we have

ℓ∑

i=1

∑

v/∈S

λv(D,φ
(m+ni)(P ))

≤
ℓ∑

i=1

(
c

(degD) (dn1 + · · · + dnℓ)
− ǫ

)

· degD · h(φ(m+ni)(P )) +O(1)

≤
ℓ∑

i=1

(
c

(degD) (dn1 + · · · + dnℓ)
− ǫ

)

· degD · dnih(φ(m)(P )) +O(1) (12)

<

(
c

(degD) (dn1+· · ·+dnℓ)−ǫ
)

·degD · (dn1+· · ·+dnℓ) h(φ(m)(P ))+O(1)

= (c− degD · (dn1 + · · ·+ dnℓ) ǫ)h(φ(m)(P )) +O(1),

where we used (1) in (12). Combining with (11) and using (2), we conclude

that

ℓ∑

i=1

hD(φ
(m+ni)(P ))−O(1) (13)

≤
(

(dn1+· · ·+dnℓ) deg(D)−
(

degD · (dn1+· · ·+dnℓ)− 1

2

)

ǫ

)

h(φ(m)(P ))

if φ(m)(P ) is in (9) but outside of Zǫ. We now use the assumption that

φ is a morphism, so that we have the height inequality h(φ(m+ni)(P )) ≥
dnih(φ(m)(P )) + O(1) for each i. As h(φ(m)(P )) → ∞ as m → ∞, we have

a contradiction for sufficiently large m. Thus, φ(m)(P ) in (9) either comes

from a finite set or is in Zǫ, finishing the proof. ���
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Remark. Of course, one would like to conclude that

{

φ(m)(P ) :

∑

v/∈S

λv(D,φ
(m)(P ))

deg(D) · h(φ(m)(P ))
≤ c

(degD)dnℓ
− ǫ

}

is Zariski-non-dense even when we use the normal-crossings part of D(n1) +

· · ·+D(nℓ); this could mean that

the existence of n1, . . . , nℓ such that deg
(

D(n1) + · · ·+D(nℓ)
)

nc
> N + 1

is an answer for Question 2 (1). On the other hand, this type of conclusion

seems beyond reach by our method: to get a contradiction at the end, we

must have
∑

v/∈S

λv(D,φ
(m+ni)(P )) to be sufficiently small for each i, necessi-

tating a condition for each φ(m+ni)(P ) in (9).

Example 8. Let φ = [Z2(X + Y + Z) : F1 : XY 2] be a morphism on P2,

where F1 ∈ Q[X,Y,Z] is homogeneous of degree 3 such that F1 at [0 : 1 : 0],

[0 : 1 : −1], [1 : 0 : 0], and [1 : 0 : −1] are nonzero. For D = (Z = 0),

φ∗(D) is defined by XY 2 and (φ(2))∗(D) is defined by Z2(X + Y + Z)F 2
1 .

Assume that F1 is geometrically irreducible, and F1 = 0 goes through the

point [1 : −1 : 0] and has a cusp there. Then D
(1)
nc = (XY = 0) and

D
(2)
nc = (Z(X + Y + Z) = 0). Neither of these produce enough normal-

crossings parts, and in general, D
(n)
nc for n ≥ 3 will be a divisor for which

Vojta’s conjecture is not yet known. Therefore, Theorems 4 and 5 do not

give us unconditional results. On the other hand, D(1) +D(2) contains the

divisor D′ = (XY Z(X + Y + Z) = 0), which is linear of degree 4. Since

Vojta’s conjecture for D′ is known by the Schmidt subspace theorem, given

ǫ > 0 and S ⊂ MQ finite, we can unconditionally conclude from Theorem 7

that
{

φ(m)(P ) :
log |cm|′S

log max(|am|, |bm|, |cm|)
≤ 1

12
− ǫ

and
log |cm+1|′S

log max(|am+1|, |bm+1|, |cm+1|)
≤ 1

12
− ǫ

}

is Zariski-non-dense, where we write φ(m)(P ) = [am : bm : cm] with integer

coordinates without common divisor. Further, since the exception to the in-

equality of the subspace theorem is contained in a finite union of hyperplanes
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defined over Q, we can even conclude finiteness of the above set if no line

defined over Q contains an infinite subset of the orbit of P (cf. Proposition

1 and Example 1 of [14]).

Next, we discuss some extensions of Theorem 7 to rational maps. For

this, we will first recall the notion of dynamical degree and arithmetic degree.

Given a rational map φ : PN 99K PN , deg φ(n) may not be equal to (deg φ)n.

The (first) dynamical degree, introduced by Russakovskii and Shiffmann [8],

is

δφ = lim
n→∞

(deg(φ(n)))1/n.

When φ is a morphism, δφ = deg φ, so δφ gives some indication of how far φ

is from being a morphism.

The arithmetic degree αφ(P ) of a point P is defined to be

αφ(P ) = lim sup
m→∞

h(φ(m)(P ))1/m

whenever the orbit of P does not intersect the indeterminancy locus of φ.

This is a very new concept introduced by Silverman [11], intending to capture

the arithmetic complexity of the orbit, and it has already been intensely

studied. Many conjectures have been raised by Silverman in connection

with the arithmetic degree, including the conjecture that we can use the

limit rather than limsup in the definition of αφ(P ). In this article, what is

relevant is the following.

Conjecture 9 (Silverman). Let φ : PN 99K PN be a dominant rational map

defined over Q. If P ∈ PN(Q) is such that Oφ(P ) is Zariski-dense, then

αφ(P ) = δφ.

This conjecture is nontrivial even for morphisms. It has been verified

for monomial maps and regular affine automorphisms [11], and its general-

ization to projective varieties has been proved for endomorphisms on abelian

varieties [6].

Now we are ready to state the extensions of Theorems 4 and 5 to rational

maps. In fact, we will prove two results. Theorem 10 is actually a special

case of Theorem 12, but the conditions in Theorem 12 are difficult to check

in explicit examples, so we highlight one specific case in Theorem 10 and

then discuss an explicit example (Example 11).
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Note that one extension to rational maps was already proposed in Theo-

rem 5 of [14], using the notion of D-ratio introduced by Lee [7]. The D-ratio

gives a useful height inequality, but its drawback is that it only applies to

rational maps whose indeterminancy is contained in a hyperplane. The con-

dition in the following theorems involves the arithmetic degree, and thus it

might be possible to prove deviations from S-integrality in orbits for certain

points even when the map overall is very complicated. The multiple-iterate

version similar to Theorem 7 is also possible, but to keep the statement

relatively simple, we only state here for one iterate.

Theorem 10. Let φ : PN 99K PN be a rational map of degree d ≥ 2 defined

over a number field k such that deg(φ(n)) = dn. Let D be an effective divisor

on PN defined over Q. Let us suppose that P ∈ PN (k) and a natural number

n satisfy:

(i) Oφ(P ) does not intersect the indeterminancy locus of φ.

(ii) Writing h(φ(m)(P )) = (dam)
m, lim am = 1 (in particular, αφ(P ) can

be defined by the limit and is equal to d = δφ).

(iii) c := deg(D
(n)
nc )− (N + 1) is strictly positive.

(iv) For any δ > 0,
am+n
m+n

amm
> 1− δ for all sufficiently large m.

Then Vojta’s conjecture on PN for the divisor D
(n)
nc implies that given S ⊂

Mk finite and ǫ > 0,

{

φ(m)(P ) :

∑

v/∈S

λv(D,φ
(m)(P ))

deg(D)h(φ(m)(P ))
≤ c

(degD)dn
− ǫ

}

(14)

is Zariski-non-dense.

Remark. Of course, as a corollary of Theorem 10, we now have Theorem 4

for rational maps on PN and points P satisfying (i)–(iv). Indeed, if Oφ(P )

is not Zariski-dense, then the statement is obvious, so we may assume that

h(φ(m)(P )) → ∞ as m → ∞. The sum of local heights outside S are

bounded for S-integral points, so by taking ǫ = c
2(degD)dn , every φ(m)(P )

which is S-integral will be in (14) for all sufficiently large m. Thus, we can

conclude that S-integral points in an orbit are Zariski-non-dense.
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Remark. When Oφ(P ) is Zariski-dense, (ii) should be automatic according

to the conjecture of Silverman. Therefore, assumption (ii) is quite natural.

On the other hand, assumption (iv) is unwanted.

If we assume (ii) and {am} is an eventually-monotone increasing se-

quence, then (iv) is unnecessary. Indeed, for large enough m, am > n
√
1− δ,

and so

am+n
m+n

amm
=

(
am+n

am

)m

· anm+n > 1− δ.

On the other hand, there are sequences that satisfy (ii) but not (iv): let

n = 1, and define the sequence {am} inductively by

a2m = e−
1

20m a2m−1

a2m+1 = e
1

20m bma2m,

where a1
∏
bm converges to 1. This sequence satisfies (ii) but

a2m2m
a2m−1
2m−1

=

(
a2m
a2m−1

)2m−1

· a2m = exp

(

− 1

10
+

1

20m

)

· a2m,

which goes to exp(−1/10) < 1. We would of course like to remove assump-

tion (iv), but the condition αφ(P ) = δφ does not seem to be quite enough

to obtain the result. We note that Theorem 12 below can handle a sequence

like this.

Proof. We note that the proof of Theorem 7 holds for rational maps until

the last paragraph when we obtain the contradiction. Everything before

uses just (1) and (3), which are true for rational maps. So we still have (13),

using Q = φ(m−n)(P ):

hD(φ
(m)(P )) ≤

(

dn deg(D)−
(

degD · dn − 1

2

)

ǫ

)

h(φ(m−n)(P )) +O(1)

(15)

for φ(m−n)(P ) /∈ Zǫ. By assumption (ii), we have

h(φ(m)(P ))

h(φ(m−n)(P ))
= dn

amm
am−n
m−n

.
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By (iv), for sufficiently largem, this is greater than dn−ǫ, so by dividing (15)

by deg(D) throughout, we see that h(φ(m)(P )) must be bounded. Hence, we

conclude that the set (14) comes from a finite set of m’s plus φ(n)(Zǫ). ���

Example 11. Let φ = [256X2 : (X + Y )(X + 2Y + Z) : Y Z] on P2. It is

a rational map undefined at [0 : 0 : 1], but because of the first coordinate,

it is clear that deg φ(n) = 2n. The divisor (φ(2))∗(Z = 0) is defined by

(X + Y )(X + 2Y + Z)Y Z, so it is a normal-crossings union of four lines.

Note that [a : a : 1] gets mapped to [256a : 6a+2 : 1], so there is no constant

C such that h(φ(P )) ≥ 2h(P ) − C for all P . On the other hand, if we look

at P = [4 : 1 : 1], φ(P ) = [46 : 35 : 1], and it is easy to see by induction

that the first coordinate of φ(m)(P ) is always a power of 2 while the last two

coordinates are odd. In particular, there is never a common factor when

computing the orbit. Moreover, one can easily prove by induction that the

first coordinate of φ(m)(P ) is always at least six times as large as the second

coordinate for all m ≥ 1. Thus, the height comes from the first coordinate,

and we see by induction that

amm =
h(φ(m)(P ))

2m
=

((1 + 2 + · · ·+ 2m−1) · 8 + 2m · 2) log 2
2m

=

(

6 + 2 + 1 +
1

2
+ · · ·+ 1

2m−3

)

log 2 ≤ 10 log 2.

It is now easy to see that both (ii) and (iv) are satisfied in this case. More-

over, we can use Schmidt’s subspace theorem in place of Vojta’s conjecture,

so we unconditionally conclude that for any finite set S of primes and ǫ > 0,

{

φ(m)(P ) :
log |cm|′S

log max(|am|, |bm|, |cm|)
≤ 1

4
− ǫ

}

is Zariski-non-dense, where we write φ(m)(P ) = [am : bm : cm] with integers

with gcd 1. In this example, from the analysis of the 2-adic behavior of orbit

points (together with global height computations), we obtain information

about arithmetic of orbit points with respect to other primes.

As mentioned earlier, we end this section with a generalization of The-

orem 10. There are fewer hypotheses, but as a consequence, the conclusion

might be vacuous in certain cases. Since one needs to know the Weil height

of orbit points in advance, it is probably of little practical use, but this

indicates what we can say using the arguments of this article.
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Theorem 12. Let φ : PN 99K PN be a rational map of degree d ≥ 2 defined

over a number field k. Let D be an effective divisor on PN defined over Q.

Let n be such that deg(D
(n)
nc ) > (N +1). Let P ∈ PN(k) be a non-preperiodic

point such that Oφ(P ) does not intersect the indeterminancy locus of φ, and

let α = αφ(P ). Define the sequence {am} by h(φ(m)(P )) = (αam)
m. Finally,

let σ be such that

σ < 1− deg(φ(n)) · deg(D)− deg(D
(n)
nc ) + (N + 1)

αn deg(D) lim inf
m

am+n
m+n/a

m
m

. (16)

Then Vojta’s conjecture on PN for the divisor D
(n)
nc implies that for any

S ⊂Mk finite,

{

φ(m)(P ) :

∑

v/∈S

λv(D,φ
(m)(P ))

deg(D)h(φ(m)(P ))
≤ σ

}

(17)

is Zariski-non-dense.

Remark. Theorem 10 is a special case. Indeed, we have lim inf am+n
m+n/a

m
m =

1: ≥ 1 follows immediately from (iv), while if the liminf is β > 1, then one

can easily show by induction that there exists a nonzero constant C such

that amm > C

(

n

√

1 + β−1
2

)m

for all sufficiently large m, contradicting (ii).

Therefore, using deg(φ(n)) = dn = αn and dividing both the numerator and

the denominator of (16) by dn deg(D),

σ < 1−
1− deg(D

(n)
nc )−(N+1)

dn deg(D)

lim inf
=

deg(D
(n)
nc )− (N + 1)

dn deg(D)
.

More generally, (16) indicates that if deg(φ(n)) is sufficiently smaller than

αn, then σ can be chosen positive and this theorem becomes nontrivial.

So in this sense, the deviation from S-integrality in orbits is connected to

questions about the arithmetic and the dynamical degrees.

Remark. As noted in the introduction, the condition (16) can be viewed as

a first step toward answering Question 2 for rational maps. Indeed, when

the entire orbit Oφ(P ) is not Zariski-dense, the theorem is trivial; otherwise,

α is conjecturally equal to the δφ, which is a global geometric invariant that

does not depend on the arithmetic of the initial point. On the other hand,
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because of the liminf term in (16), the condition as of right now depends

heavily on the arithmetic of the initial point and thus is not geometric.

Proof. The structure of the proof is very close to the proofs of Theorems 7

and 10, but we need to be more careful with the inequality estimates. Since

the condition on σ is a strict inequality, we can choose ǫ > 0 so that

1− σ >
deg(φ(n)) · deg(D)− deg(D

(n)
nc ) + (N + 1) + ǫ

deg(D)αn lim inf
m

am+n
m+n/a

m
m

.

As a result, a similar adjustment shows that there exists an M such that for

all m ≥M , we have

1− σ >
deg(φ(n)) · deg(D)− deg(D

(n)
nc ) + (N + 1) + ǫ

deg(D)αnam+n
m+n/a

m
m

.

Therefore, by the definition of {am}, it immediately follows that

(1− σ) deg(D)h(φ(m+n)(P )) (18)

>
(

deg(φ(n)) · deg(D)− deg(D(n)
nc ) + (N + 1) + ǫ

)

h(φ(m)(P )).

Now, we argue as before. From Vojta’s conjecture on D
(n)
nc and degree con-

siderations (cf. the argument up to (11)), we have

∑

v∈S

λv(D,φ
(m+n)(P )) (19)

≤
(

deg(φ(n)) deg(D)− deg(D(n)
nc ) + (N + 1) +

ǫ

2

)

h(φ(m)(P )) +O(1)

if φ(m)(P ) /∈ Zǫ. On the other hand, if φ(m+n)(P ) is in the set (17), we have

∑

v/∈S

λv(D,φ
(m+n)(P )) ≤ σ deg(D)h(φ(m+n)(P )).

Combining with (19) and rearranging using (2), we obtain

(1− σ) deg(D)h(φ(m+n)(P ))

≤
(

deg(φ(n)) deg(D)− deg(D(n)
nc ) + (N + 1) +

ǫ

2

)

h(φ(m)(P )) +O(1).
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By possibly making M larger, this contradicts (18) for all m ≥M . Thus, if

φ(m+n)(P ) is in the set (17), then m < M or φ(n+m)(P ) /∈ φ(n)(Zǫ). ���

4. The Case of P1

We have noted after Theorem 4 that its hypothesis for N = 1 agrees with

Silverman’s Theorem (i). In contrast, Silverman’s theorem (ii) is different

from Theorem 5 for N = 1. We now discuss an example that demonstrates

that Silverman’s conclusion is strictly stronger. To remedy this situation,

we will show after the example that Theorem 6 for N = 1 can be used to

show the full strength of Silverman’s Theorem (ii). This enables us to view

Silverman’s result in the framework of a higher-dimensional theory.

Example 13. We create rational functions of degree d ≥ 3 which do not

become polynomials upon iterations but for which

sup
n

deg
((
φ(n)

)∗
(a)

)

nc
−2

dn
= sup

n

(# of distinct preimages of a via φ(n))−2

dn

is not 1. Intuitively, although Silverman’s lemma (see Lemma 14 below)

shows that the maximum ramification is not very big, the number of critical

points can also grow exponentially upon iteration, slowing the growth of the

number of distinct preimage points.

More specifically, suppose that a rational map only has 0 and ∞ as the

preimages of 1. Since preimages of any point via φ are at most d points, the

number of distinct preimages of 1 via φ(n) is at most 2dn−1. Then the above

expression is at most

2dn−1 − 2

dn
<

2

d
< 1.

We can also create φ such that the number of distinct preimages of 1 by

φ(n) is precisely 2dn−1. For example, let φ be a degree-4 rational map of the

form g(x)+x2

g(x) . This φ has just 0 and ∞ as preimages of 1. Differentiating,

we obtain

(g′(x) + 2x)g(x) − (g(x) + x2)g′(x)

g(x)2
=

2xg(x) − x2g′(x)

g(x)2
.
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Thus, we find that x = ∞ and x = 0 are both critical points, and there should

be four others (counting with multiplicity). Note that since 2g(x) − xg′(x)

does not have a quadratic term, the location of three other critical points

determines the last. Letting 2, 3, and 4 to be critical, we see that the last

one is −26
9 . Solving

2g(x) − xg′(x) = (x− 2)(x− 3)(x − 4)
(

x+
26

9

)

,

g(x) = −1
2x

4+ 55
9 x

3+ 460
9 x− 104

3 . If P is a preimage of 1 via φ(k−1) for k ≥ 2

and φ−1(P ) does not split into d points, then there is a Q ∈ φ−1(P ) which

is a critical point. So Q is 0, 2, 3, 4,−26
9 or ∞. In particular, Q is a rational

point, so so are all the points in the orbit of Q. Since φ(k)(Q) = 1, φ(k−1)(Q)

must be 0 or ∞. On the other hand, neither g(x) nor g(x)+x2 has a rational

root, contradicting the fact that φ(k−2)(Q) is rational. Thus, after the first

step, all the preimages split up completely, making the number of distinct

preimages of 1 via φ(n) to be precisely 2dn−1, as desired.

Thus, Theorem 5 for N = 1 does not directly show Theorem 1 (ii).

However, we will now derive this using Theorem 6. In fact, we will prove

the S-version: if φ is a rational function such that φ(2) /∈ k[x] and P ∈ k is

not preperiodic, then

lim
m→∞

∑

v/∈S

λv(∞, φ(m)(P ))

h(φ(m)(P ))
= 1. (20)

We will still use the following geometric lemma of Silverman [10, Lemma

3.52], giving a bound on the worst ramification. This lemma is based on the

Riemann–Hurwitz formula and combinatorics, and it does not involve any

arithmetic.

Lemma 14 (Silverman). Suppose that φ is a rational function of degree

d ≥ 2 such that φ(2) /∈ k[x]. Then letting en denote the maximum of the

ramification indices at the poles of φ(n), we have

lim
n→∞

en
dn

= 0.
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Given ǫ > 0, Lemma 14 allows us to fix n such that 3en
dn < ǫ. Because

of (4), we can extend k and S if necessary to assume that k contains the

fields of definition of Q1, . . . , Qℓ, the distinct poles of φ(n). Given v ∈ S, let

Cv be the half of the minimum v-adic distance between Qi and Qj; here we

use the v-adic absolute value that is an extension of the normalized one on

Q, so that we are guaranteed to have the triangle inequality. Given a point

Q ∈ P1(k), there is a Qiv which is the closest to Q in the v-adic distance, and

this may occur with multiplicity en in (φ(n))∗(∞). The rest of the points Qj

are at least Cv away from Q, so using the definition of local heights (5), we

can estimate

λv(Qj, Q) ≤ max

(

0, − [kv : Qv]

[k : Q]
logCv

)

.

We have a maximum of dn − 1 of these in (φ(n))∗(∞) for each v, excluding

the closest Qiv . We next deal with the closest one. For each {Qiv}v∈S ∈
{Q1, . . . , Qℓ}|S|, we apply (with ǫ = 1) the following Lang’s version of Roth’s

theorem [1, Theorem 6.2.3], which is equivalent to Vojta’s conjecture on P1:

∑

v∈S

λv(Qiv , Q) < 3h(Q) +O(1), ∀Q ∈ P1(k)\{Q1, . . . , Qℓ}.

By making O(1) larger, we have the above inequality for any choice of

{Qiv}v∈S and Q. Hence, in total we must have

∑

v∈S

λv(∞, φ(m)(P )) ≤
∑

v∈S

λv((φ
(n))∗(∞), φ(m−n)(P )) +O(1)

≤ 3enh(φ
(m−n)(P )) + (dn − 1)

∑

v∈S

max

(

0, − [kv : Qv]

[k : Q]
logCv

)

+O(1)

≤ 3enh(φ
(m−n)(P )) +O(1),

where this O(1) only depends on n (not on m). Therefore,

∑

v/∈S

λv(∞, φ(m)(P )) ≥ h(φ(m)(P )) − 3enh(φ
(m−n)(P )) −O(1)

≥
(

1− 3en
dn

)

h(φ(m)(P )) −O(1) > (1− ǫ)h(φ(m)(P )) −O(1).
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Since h(φ(m)(P )) → ∞ as m → ∞, this finishes the proof that Vojta’s

conjecture on P1 together with a geometric lemma (Lemma 14) shows the

S-version of Theorem 1 (ii). �

Remark. Of course, the above discussion did not prove anything new. The

hope is that it illustrated what is special about dimension 1, namely Lemma

14. The Diophantine content even in dimension 1 is precisely Vojta’s con-

jecture, agreeing with the framework set forth for higher dimensions in The-

orems 4, 5, and 7. To elucidate this point further, one can actually use The-

orem 6 to prove (20): we let D1 be three distinct points of (φ(n))∗(∞) and

D2 be the rest and employ the above argument with D2. What distinguishes

dimension 1 is that divisors are simply bunch of points with various multi-

plicities, and that the multiplicity can be controlled via Riemann–Hurwitz.

In contrast, in higher dimensions, irreducible divisors are much more com-

plicated geometrically, and one cannot for example estimate the distance of

a point to a divisor by the “worst” contribution. As a result, it is more

difficult to obtain a sharp result in higher-dimensions.

5. Maps on P2 with a Totally Ramified Fixed Point

In this section, we analyze rational maps on P2 which have a totally

ramified fixed point, that is, a point P which is completely invariant. In

Example 5 of [14], we treated an example of this type to demonstrate that

the hypothesis in Theorem 4 is not a necessary condition. In fact, Theo-

rems 4, 5, and 7 do not apply to these maps because there are not enough

normal-crossings part. Instead, we will use Silverman’s theorem (Theorem 1)

to obtain the following result on deviations from integrality in orbits, with-

out needing to assume Vojta’s conjecture. Note that we can even conclude

finiteness rather than just Zariski-non-density in this case.

Proposition 15. Let φ = [F0(X,Y,Z) : F1(Y,Z) : F2(Y,Z)] be a rational

map on P2 defined over Q, where F1 and F2 are homogeneous polynomials in

just Y and Z without a common factor over Q. Write P ∈ P2(Q) as [a : b : c],

where a, b, c ∈ Z with gcd 1, and similarly φ(m)(P ) = [am : bm : cm]. Let

ψ = [F1(Y,Z) : F2(Y,Z)] be the map on the P1 defined by X = 0, and assume

that Oψ([b : c]) is infinite and that ψ(2) is not a polynomial, i.e. does not
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have a totally ramified fixed point at [1 : 0]. Let S be a finite set of primes.

Then there exists a positive constant c > 0 such that

log |cm|′S
logmax(|am|, |bm|, |cm|)

> c

for all m sufficiently large.

Remark. We can easily conclude even finiteness of (P2\(Z = 0))(Z)∩Oφ(P )

from Silverman’s theorem. Indeed, since ψ(2) is not a polynomial, Oψ([b : c])

only has finitely many integral points. Since the orbit of [b : c] under ψ is

infinite, this means that cm|bm for only finitely many m’s, so we do not even

need to consider the first coordinate to conclude finiteness of integral points.

On the other hand, the comparison of the number of digits of coordinates

is not entirely obvious. There can be less cancelation for [am : bm : cm]

compared with points of Oψ([b : c]), and the ratio of the number of digits is

affected by the amount of cancelation between coordinates.

Remark. It is necessary to assume that Oψ([b : c]) is infinite. If φ =

[X2 : Y Z : Y 2 − 3Z2] and P = [4 : 2 : 1], then ψ fixes [2 : 1] while

h(φ(m)(P )) = 2m log 4. Of course, in this case, the orbit points are on the

line Y = 2Z. The assumption of |Oψ([b : c])| = ∞ can be removed if we

change the conclusion to just Zariski-non-density. This theorem thus shows

that the nonexistence of completely invariant subvarieties is not a necessary

condition for having Zariski-non-dense integral points in orbits, so even if

Question 2 (2) is proved in the affirmative, this geometric condition will not

be the necessary and sufficient condition.

Remark. We can generalize this theorem from Q to a number field k, re-

placing log |cm|′S by
∑

v/∈S λv((Z = 0), φ(m)(P )).

Proof. Since Oψ([b : c]) is infinite, ĥψ([b : c]) 6= 0. We also note that

degψ = d, as F1 and F2 do not have a common factor. Let us denote

ψ(m)([b : c]) by [b′m : c′m] in the reduced form. Then Silverman’s theorem in

the form of (20) tells us that

lim
m→∞

log |c′m|′S
log max(|b′m|, |c′m|)

= 1,
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while the definition of canonical height tells us that

lim
m→∞

logmax(|b′m|, |c′m|)
dm

= ĥψ([b : c]).

Combined,
log |c′m|′

S

dm goes to ĥψ([b : c]), so for sufficiently small δ > 0, we have

log |c′m|′S > dm(ĥψ([b : c])− δ) m≫ 0. (21)

We note that because there can be less cancelation among coordinates of

φ(m)(P ) compared with ψ(m)([b : c]), log |cm|′S ≥ log |c′m|′S .
From the height inequality h(φ(R)) ≤ dh(R) + C, we obtain

h(φ(m)(P )) ≤ dmh(P ) + dm−1C + dm−2C + · · · + C for all m. (22)

Therefore, using (21), for all sufficiently large m,

log |cm|′S
h(φ(m)(P ))

≥ log |c′m|′S
h(φ(m)(P ))

=
log |c′m|′S
dm

· dm

h(φ(m)(P ))

>
ĥψ([b : c]) − δ

h(P ) + C
d + · · · + C

dm

>
ĥψ([b : c])− δ

h(P ) + C
d−1

=: c,

where c is visibly independent of m. Since C can be assumed to be positive,

we note that c > 0. This concludes the proof. ���

Remark. By choosing δ appropriately, we can actually make c in the state-

ment of the theorem to be any number strictly less than
ĥψ([b:c])(d−1)
(d−1)h(P )+C , where

C is the minimum of h(φ(R))− dh(R) as R runs through P2(Q) (or actually

Oφ(P )).

6. Question 2 and Further Problems

In this final section, we discuss Question 2 and pose a few related prob-

lems for further study. Some of them are completely new and some of them

are more refined versions of the questions raised at the end of [14].

6.1. Completely invariant subvarieties

We now discuss why the nonexistence of completely invariant subvari-

eties can be a candidate for Question 2. Although the normal-crossings part
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of (φ(n))∗(D) discussed in this article is a geometric and dynamical notion,

it is in some sense more natural dynamically to think of completely invariant

subvarieties, i.e. (possibly reducible) subvarieties V such that φ−1(V ) = V

set-theoretically (in the terminology of classical dynamics, V is an excep-

tional set). In dimension 1, φ(2) ∈ k[x] is equivalent to φ(n) ∈ k[x] for some

n, which in turn is equivalent to the condition that {∞, φ(∞)} is completely

invariant.

We now discuss some examples of maps which have completely invariant

subvarieties and whose orbits can contain Zariski-dense integral points. Let

φ1 = [F0 : · · · : F3] on P3 be such that F1, F2 are degree-d homogeneous

polynomials in Z[X1,X2] without any common factors and F3 = X2X
d−1
3 .

In this case, the line defined by X1 = X2 = 0 is completely invariant. When

F1 = Xd
1 ,

|Oφ1([a0 : 1 : a2 : a3]) ∩ (P3\(X1 = 0))(Z)|

is obviously infinite when ai ∈ Z. This set is also Zariski-dense when F0 and

F2 are chosen generically.

Some may give an objection to the above example that the hyperplane

X1 = 0 with respect to which integrality is defined is completely invariant,

so we provide another example. As discussed in Example 6 of [14], the orbit

of [2N : 2N−1 : · · · : 2 : 1] under the rational map φ2 = [X3
0 : X3

1 : X1X
2
2 :

X2X
2
3 : · · · : XN−1X

2
N ] has Zariski-dense (in particular, infinitely many)

integral points with respect to XN = 0. Here, the hyperplane XN = 0 with

respect to which integrality is defined is not completely invariant, though

hyperplanes X0 = 0 and X1 = 0 are completely invariant.

As a further example, monomial maps can have infinitely many S-

integral points in orbits. In fact, based on some explicit conditions on the

eigenvalues of the tangent map at the identity, monomial maps on P2 having

just finitely many integral points in orbits have been classified completely [3,

Theorem 2]. In dimensions greater than 2, a complete classification becomes

harder as the number of possible Jordan decompositions grows rapidly, but

it is easy to create monomial maps having Zariski-dense integral points in

orbits. As an example, ψ = (x1/x2, x
5
1x2) on (Gm)

2 has some orbit contain-

ing infinitely many integral points because it corresponds to a matrix with

complex eigenvalues [3, Theorem 2], and so φ = (x1/x2, x
5
1x2, x

2
3, x

2
4, . . . , x

2
N )
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on (Gm)
N ⊂ PN has the property that Oφ(P )∩(PN\(X0 = 0))(Z) is Zariski-

dense for some P . Of course, all monomial maps on PN satisfy φ−1(D) = D

set-theoretically for the divisor D = (X0 · · ·XN = 0), so they always contain

a (reducible) completely invariant subvariety.

We have so far discussed maps having completely invariant subvarieties

and having Zariski-dense integral points in orbits. The examples like φ1 and

φ2 above seem possible only when some completely invariant subvarieties are

present, serving as evidences for Question 2 (2). We can even go further,

and expect the true analog of the quasi-S-integral version of Silverman’s

Theorem (Theorem 1 (ii)) to hold in higher-dimensions: if φ does not have

any completely invariant subvarieties over Q, then for all ǫ > 0,

{

φ(m)(P ) :

∑

v/∈S

λv(D,φ
(m)(P ))

deg(D)h(φ(m)(P ))
≤ 1− ǫ

}

is Zariski-non-dense. Either an affirmative or a negative answer to this

statement would be an important step in understanding integrality in orbits

in higher-dimensions.

Of course, as indicated already, having a completely invariant subvariety

will not prevent orbits from being Zariski-non-dense. Proposition 15 is one

example, and there are many monomial maps on P2 having just finitely many

integral points in orbits. Even in dimensions higher than 2, the monomial

map (x2/x1, x1, x
2
3, . . . , x

2
N ) on PN for example has just finitely many integral

points in orbits. Further, when the second iterate of [F1 : F2] of φ1 above

does not have a totally ramified fixed point on the line defined by X0 =

X3 = 0, it follows immediately from Silverman’s theorem that orbit points in

(P3\(X1 = 0))(RS) are finite (just by looking at the middle two coordinates).

So even if Question 2 (2) were answered in the affirmative, this will not be

a necessary condition in higher-dimensions.

6.2. Extensions and complements

Here we collect together various possible extensions and complements

to the results of this article. Since Theorem 4 shows that the existence of n

such that degD
(n)
nc > N +1 is a candidate for Question 2 (1), it is natural to

ask what happens when supn degD
(n)
nc is less than or equal to N + 1. This
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would be complementary to Theorem 4, and would help us with the search

for a necessary condition for the Zariski-non-density of integral points in

orbits. We will assume that D is geometrically irreducible; we are mostly

interested in the case when D is a hyperplane.

We can create a map φ on PN satisfying supn degD
(n)
nc = 2 as follows,

just as in Proposition 15: we let FN−1 and FN be homogeneous of XN−1

and XN , where φ = [F0 : · · · : FN ]. Note that for these maps, even finiteness

of integral points in orbits is immediate from Silverman’s theorem as long

as the second iterate of the restriction to the P1 defined by X0 = · · · =

XN−2 = 0 is not a polynomial. In contrast, as remarked earlier, Theorem-

5-like results analyzing the deviation from S-integrality in orbits are not as

obvious. Proposition 15 is an example of what we can show in this case.

To create a map with sup degD
(n)
nc = 3, we let FN be the product of

powers of XN−1 and XN , and then let FN−2 and FN−1 be homogeneous

in XN−2 and XN−1. Then (φ(n))∗(XN = 0) is defined by the product of a

power of XN and a homogeneous polynomial in XN−2 and XN−1. Thus,

this divisor always factors into linear components over Q and the degree of

the normal-crossings part is 3 for all n. It would be interesting to determine

whether S-integral points in orbits are Zariski-dense. We would also like

results pertaining to deviation from S-integrality in orbits for maps of this

type.

So far, the author has not been able to construct a map on PN with

N ≥ 4 such that D
(n)
nc is always linear and supdegD

(n)
nc = N . The author

believes that this is possible, while there might not exist morphisms on PN

with supdegD
(n)
nc = N + 1. In fact, even for N = 1, supdegD

(n)
nc = 2 never

happens: when φ(2) is not a polynomial, Lemma 14 shows that there exists

n such that degD
(n)
nc ≥ 3, and when φ(2) is a polynomial, degD

(n)
nc is always

1. It would be worthwhile to create various maps for which supn degD
(n)
nc ≤

N + 1, so that we have a better idea of when integral points in orbits are

Zariski-dense.

Another desired complementary result would be a generalization of

Proposition 15. In particular, we would like to have similar examples in

higher-dimensions, such as φ1 = [F0 : F1(X1,X2) : F2(X1,X2) : X2X
d−1
3 ]

discussed above. Because of the insufficiency of the normal-crossings part,

results such as Theorem 7 do not apply to these examples. The maps sat-

isfying supn degD
(n)
nc ≤ N +1 and the examples generalizing Proposition 15



630 YU YASUFUKU [December

should help us obtain a condition closer to a necessary condition for Question

2.

As for extensions, we would like to strengthen Theorems 10 and 12. Both

of them require knowing the heights of orbit points, so it would be much

better if we can instead come up with a condition that relies solely on the

arithmetic degree, regardless of how the limsup (or the limit, conjecturally)

is attained. Even if we can only conclude smaller σ, we would like to have a

hypothesis that is more easily verifiable and that only uses notions that do

not depend on the arithmetic of the initial point. This would enable us to

obtain a potential candidate for Question 2 (1) for rational maps.
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