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Abstract

Let k be a an algebraically closed field of arbitrary characteristic, and we let h :

An(k(t)) −→ R≥0 be the usual Weil height for the n-dimensional affine space corresponding

to the function field k(t) (extended to its algebraic closure). We prove that for any affine

variety V ⊂ An defined over k(t), there exists a positive real number ǫ := ǫ(V ) such that

if P ∈ V (k(t)) and h(P ) < ǫ, then P ∈ V (k).

1. Introduction

In a paper [6] from 1965, Lang asks the following question: what are

the plane irreducible curves C which contain infinitely many points (x, y)

where both x and y are roots of unity? It is easy to see that if C is the

zero set of an equation of the form xmyn = ζ, where m,n ∈ Z and ζ is

a root of unity, then indeed C contains infinitely many points with both

coordinates roots of unity. An old theorem of Ihara-Serre-Tate-Lang says

that indeed C must have the above form. Essentially they prove that if C

contains infinitely many points where both coordinates are roots of unity,

then C must be a (multiplicative) translate of a 1-dimensional torus by a

point with both coordinates roots of unity. This result can be extended

to higher dimensional varieties, and even to subvarieties of abelian varieties

(the latter was formerly known as the Manin-Mumford Conjecture, proven

by Raynaud [8]). The following theorem is due to Laurent [7]; we write it in
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the language of algebraic groups, more precisely for GN
m, which is the N -th

cartesian power of the multiplicative group.

Theorem 1.1 (Laurent). Let V ⊂ GN
m defined over C be an irreducible affine

variety which contains a Zariski dense set of torsion points (i.e., points with

coordinates roots of unity). Then V is a multiplicative translate of a torus

by a torsion point.

The roots of unity are the points of Q
∗
which have (naive) Weil height

equal to 0. The Weil height of x ∈ Q is defined as follows (the set ΩQ stands

for all inequivalent absolute values on Q)

h(x) :=
1

[Q(x) : Q]
·

∑

σ:Q(x)→֒Q

∑

v∈ΩQ

log+ |σ(x)|v ,

where log+(z) := logmax{1, z} for any real number z, and for each absolute

value of Q, we fix an extension of it to Q. Similarly, for any x1, . . . , xN
contained in a number field L we define

h((x1, . . . , xN )) :=
1

[L : Q]
·

∑

σ:L→֒Q

∑

v∈ΩQ

log max{1, |σ(x1)|v , . . . , |σ(xN )|v}.

So, Laurent’s result yields that if V ⊂ GN
m contains a Zariski dense subset

of points of height equal to 0, then V is a torsion translate of an algebraic

subgroup of GN
m.

The same conclusion holds if one weakens the hypothesis and only asks

that V contains a Zariski dense set of points of small height; this was initially

known as the Bogomolov Conjecture. So, for each ǫ ≥ 0, let

Sǫ :=

{

P ∈
(

Q
∗
)N

: h(P ) ≤ ǫ

}

.

Conjecture 1.2 (Bogomolov). Let V ⊂ GN
m be an irreducible subvariety

(defined over Q) such that for each ǫ > 0, we have that V (Q)∩Sǫ is Zariski

dense in V . Then V is a torsion translate of an algebraic subgroup of GN
m.

The Bogomolov conjecture in the context of abelian varieties was proven

by Ullmo [11] for curves V embedded in their Jacobians, and in the gen-

eral case of any subvariety V of an abelian variety A by Zhang [13]. Both
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Ullmo and Zhang proved the Bogomolov conjecture via an equidistribution

statement for points of small height on A. An extension of the Bogomolov

property to semiabelian varieties was obtained by David and Philippon [3].

The case of Bogomolov conjecture for any power of the multiplicative

group (see Conjecture 1.2) was first proved by Zhang in [12]. Other proofs

of the Bogomolov conjecture for Gn
m were given by Bilu [1] and Bombieri

and Zannier [2]. Similarly to Ullmo’s and Zhang’s proofs of the Bogomolov

Conjecture for abelian varieties, Bilu proved that the probability measures

supported on Galois orbits of generic algebraic points of height tending to 0

converge weakly to the Lebesgue measure µ on CN , where C is the complex

unit circle. More precisely, if {Pn}n≥1 ⊂
(

Q
∗
)N

is a sequence of points with

the property that no proper algebraic subgroup of GN
m contains infinitely

many Pn’s, then for each continuous function f , we have

lim
n→∞

1

[Q(Pn) : Q]
·

∑

σ∈Gal(Q/Q)

f (P σ
n ) =

∫

CN

fdµ.

On the other hand, Bombieri and Zannier’s proof [2] of Conjecture 1.2

followed a different path. In [2, Lemma 1], Bombieri and Zannier show that

that for any polynomial f ∈ Z[X1, . . . ,XN ], and any point (x1, . . . , xN ) ∈ Q,

and for any prime number p sufficiently large, there exists a positive real

number ǫ(p) such that either h((x1, . . . , xN )) ≥ ǫ(p), or f(xp1, . . . , x
p
N ) = 0.

This result allows the authors of [2] to conclude that either the points on

the hypersurface Z(f) have a height larger than some absolute positive lower

bound, or the hypersurface is invariant under the endomorphism of GN
m given

by (X1, . . . ,XN ) 7→ (Xp
1 , . . . ,X

p
N ). In the latter case, one can see that this

means Z(f) is a finite union of torsion translates of subtori of GN
m.

The approach of Bombieri and Zannier from [2] inspired the author to

extend their [2, Lemma 1] in positive characteristic by applying the Frobenius

map to affine subvarieties of AN defined over Fp(t). This allowed the author

to obtain in [5] a Bogomolov type statement for affine varieties defined over

Fp(t). The picture in positive characteristic for the Bogomolov conjecture

is much different due to the varieties defined over finite fields. Indeed, if

V ⊂ GN
m is any subvariety defined over Fp, then V contains a Zariski dense set

of points of height 0 (all its points with coordinates in Fp). So, it is no longer

true that only torsion translates of subtori of GN
m contain a Zariski dense set



644 DRAGOS GHIOCA [December

of points with small height; any constant subvariety has this property as

well. The group structure of the ambient space Gn
m disappears from the

conclusion of a Bogomolov statement for Gn
m; this motivated our approach

from [5] in which the ambient space is simply the affine space, and not an

algebraic torus as in [2].

Motivated by a question of Zinovy Reichstein, we consider in this paper

the same problem with respect to the height constructed with respect to a

function field K/k of arbitrary characteristic. So, let k be an algebraically

closed field of arbitrary characteristic, and let Ωk(t) be all the inequivalent

absolute values on k(t). Each v ∈ Ωk(t) corresponds either to the place at

infinity v∞, i.e.

v∞

(

f

g

)

:= deg(g)− deg(f),

for nonzero f, g ∈ k[t], or to a point α ∈ k, i.e.,

vα

(

f

g

)

:= ordt−α

(

f

g

)

,

where ordt−α(f/g) is the order of vanishing at α of the rational function

f/g.

For each finite extension K of k(t), we let ΩK be the set of all (inequiv-

alent) places of K which lie above the places of k(t). We normalize each

(exponential) valuation w ∈ ΩK so that the function w : K −→ Z is surjec-

tive. In other words, for each nonzero x ∈ k(t), and for each place w ∈ ΩK

lying above a place v ∈ Ωk(t) we have

w(x) = e(w | v) · v(x),

where e(w | v) is the ramification index for w | v. Then for each x ∈ K we

define its height:

h(x) :=
1

[K : k(t)]
·
∑

w∈ΩK

max{0,−w(x)}.

We note that the above definition is independent of the choice of field K

containing x because the places of a function field are coherent, i.e., for each
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finite extensions k(t) ⊂ K ⊂ L, for each v ∈ ΩK , and for each nonzero x ∈ K

we have

v(x) =
1

[L : K]
·
∑

w∈ΩL

w|v

w(x). (1.1)

With the notation from [10], the above condition is that v is defectless; this

follows from the arguments of [10, Chapter 1, Section 4] (Hypothesis (F)

holds for algebras of finite type over fields and so, it holds for localizations

of such algebras; for each v ∈ ΩK we apply [10, Propositions 10 and 11] to

the local ring of v).

Similarly, we define for any n ∈ N, the height of (x1, . . . , xn) ∈ An(K)

be

h((x1, . . . , xn)) :=
1

[K : k(t)]
·
∑

w∈ΩK

max{0,−w(x1), · · · − w(xn)}.

For each ǫ ≥ 0 we let

Sǫ := {P ∈ An(k(t)) : h(P ) ≤ ǫ}.

Then our main result is the following.

Theorem 1.3. Let V ⊂ An be an affine subvariety defined over k(t). Let

W ⊆ V be the Zariski closure of V (k). Then there exists ǫ > 0 such that for

all P ∈ (V \W )(k(t)), we have h(P ) ≥ ǫ.

The following result is an alternative reformulation.

Theorem 1.4. Let V ⊂ An be an affine subvariety defined over k(t). If for

each ǫ > 0, the subset V (k(t)) ∩ Sǫ is Zariski dense in V , then V is defined

over k.

Indeed, Theorem 1.4 follows immediately from Theorem 1.3 since then

(by Theorem 1.3) there exists ǫ > 0 such that h(P ) ≥ ǫ for all P ∈ (V \

W )(k(t)). But if V is not defined over k, then W is a proper subvariety of

V , and therefore the Zariski closure of V (k(t))∩ S ǫ
2
is contained in W ; thus

Theorem 1.4 holds. Conversely, using Theorem 1.4 yields that if V is not

defined over k then there exists ǫ1 > 0 such that

V1 := V (k(t)) ∩ Sǫ1 6= V.
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Now, if V1 is defined over k, then Theorem 1.3 is proven. Assume V1 is not

defined over k; then again applying Theorem 1.4 there exists a positive ǫ2
(less than ǫ1) such that

V2 := V1(k(t)) ∩ Sǫ2 6= V1.

Now if V2 is defined over k, then Theorem 1.3 holds with ǫ := ǫ2. If not,

then we continue the above process. At one moment this process must end

with finding a subvariety Vm defined over k, and then Theorem 1.3 holds

with ǫ := ǫm. Otherwise we would have constructed an infinite descending

chain of varieties which contradicts the Noetherian property of the Zariski

topology; so indeed the above theorems are equivalent.

Remark 1.5. The result of Theorem 1.3 (and its reformulation) extends to

any closed projective subvariety V of a projective space Pn. Indeed, we cover

Pn by finitely many open affine spaces {Ui}i, and then apply Theorem 1.3

to each V ∩ Ui (which is a closed subvariety of the affine space Ui).

We prove Theorem 1.3 using the same strategy employed in [5], only

that this time we replace the Frobenius endomorphism by a suitable auto-

morphism σ of k(t). We show that for any point P ∈ V (k(t)), either h(P ) is

uniformly bounded from below away from 0, or P σ ∈ V (k(t)). If the latter

occurs generically, then V is invariant under σ and therefore it is defined

over the fixed field of σ, which is k. There are technical difficulties in our

setting, compared to [5], since our automorphism σ has a more complicated

action on k(t) compared to the action on Fp(t) by the classical Frobenius.

Theorem 1.3 yields a similar result for an arbitrary (finite) transcendence

degree function field. Indeed, let k be an algebraically closed field, and let

K/k be a finite transcendence degree function field. Let t1, . . . , tr ∈ K be

algebraically independent elements such thatK/k(t1, . . . , tr) is a finite exten-

sion. For each i = 1, . . . , r we let Ki be the algebraic closure of k(t1, . . . , ti)

in K. Then Kr = K; we also let K0 := k. Let V ⊂ An be an affine variety

defined over K, and assume it is not defined over k (otherwise Theorem 1.3

and its consequences hold trivially). Then there exists a smallest (positive)

integer i such that V is defined over Ki (but it is not defined over Ki−1).

We let h be the Weil height constructed with respect to the function field

Ki/Ki−1 (which is a function field of transcendence degree equal to 1). Then

Theorem 1.3 applied to Ki−1Ki/Ki−1 yields that there exists a positive real
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number ǫ := ǫ(V ) such that if P ∈ V (Ki) and h(P ) < ǫ, then P ∈ W (Ki),

where W is the largest subvariety of V defined over Ki−1.
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2. Proof of Our Main Result

Our proof follows the strategy from [5]; when the proof is identical with

the one from [5] we refer to our earlier paper, otherwise we present the

argument entirely. Unless otherwise stated, all our subvarieties are closed;

we continue with our notation from Theorem 1.3. We start with a definition.

Definition 2.1. We call reduced a non-constant polynomial

f ∈ k[t][X1, . . . ,Xn],

whose coefficients ai have no non-constant common divisor in k[t]. We define

the height h(f) of the polynomial f as the maximum of the degrees of the

coefficients ai ∈ k[t] of f .

For some integer M > 1, let σ := σM be an automorphism of k(t) which

fixes the elements of k, and maps t into tM .

Lemma 2.2. For each x ∈ k(t), we have h(σ(x)) = M · h(x).

Proof. Let

L :=
⋃

n≥1

k
(

t
1

Mn

)

.

We claim that σ restricts to an automorphism of L. First of all, it is clear

that for each positive integer n, there exists an Mn-th root of unity ζn ∈ k

such that σ(t1/M
n

) = ζnt
1/Mn−1

. So, σ(ζ−1
n t1/M

n

) = t1/M
n−1

showing that
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indeed σ restricts to an automorphism of L (note that k is algebraically

closed).

Clearly, we may assume x 6= 0. Let f ∈ L[z] be a nonzero polynomial

of minimal degree such that f(x) = 0. Since f has finitely many coefficients

(say, deg(f) = d ≥ 1), then there exists N ∈ N such that f has all its

coefficients in k
(

t1/M
N
)

. For the sake of simplifying the notation, we let

T := t1/M
N

. Since k[T ] is a PID, we may assume f ∈ k[T ][z] and moreover,

the coefficients of f are all relatively prime. Furthermore, f is irreducible in

k[T ][z]; also let D := hT (f) be the maximum of the degrees (in T ) of the

coefficients of f . So, applying [4, Lemma 2.1], we conclude that

h(x) =
D

dMN
.

An observation regarding our formula above and [4, Lemma 2.1]: because

our height is defined relative to k(t), while in [4, Lemma 2.1] the height is

computed relative to the field k(T ) = k
(

t1/M
N
)

, the factor MN appears in

the denominator of our formula.

On the other hand, we claim that fσ ∈ L[z] is also irreducible, where fσ

is the polynomial obtained by applying σ to each coefficient of f . Indeed, if

fσ were reducible over L, then there exist nonconstant polynomials g, h ∈

L[z] such that fσ = g · h. But then f = gσ
−1

· hσ
−1
, and gσ

−1
, hσ

−1
∈ L[z]

which thus contradicts the hypothesis that f is irreducible in L[z]. Moreover,

the coefficients of fσ are relatively prime. Indeed, because the coefficients

{ai}0≤i≤d of f are relatively prime there exist bi ∈ k[T ] such that
∑d

i=0 aibi =

1, and so,
∑d

i=0 σ(ai)σ(bi) = 1 showing that also the coefficients σ(ai) of f
σ

are relatively prime. Hence, applying again [4, Lemma 2.1] we conclude that

h(σ(x)) =
M ·D

dMN
,

since degT (σ(ai)) = M · degT (ai) for each i. Thus h(σ(x)) = M · h(x), as

desired. ���

Corollary 2.3. For each x1, . . . , xn ∈ k(t) we have

h((σ(x1), . . . , σ(xn))) ≤ nM · h((x1, . . . , xn)).
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Proof. Let K be a finite extension of k(t) containing each xi and each σ(xi).

Using Lemma 2.2, we obtain

h((σ(x1), . . . , σ(xn))) =
1

[K : k(t)]

∑

w∈ΩK

max{0,−w(σ(x1)), . . . ,−w(σ(xn))}

≤
1

[K : k(t)]

∑

w∈ΩK

n
∑

i=1

max{0,−w(σ(xi))

=

n
∑

i=1

h(σ(xi))

= M ·
n
∑

i=1

h(xi)

=
M

[K : k(t)]

∑

w∈ΩK

n
∑

i=1

max{0,−w(xi)}

≤
Mn

[K : k(t)]

∑

w∈ΩK

max{0,−w(x1), . . . ,−w(xn)}

= Mnh((x1, . . . , xn)),

as desired. ���

The following result is also an easy corollary of Lemma 2.2.

Lemma 2.4. The fixed field of σ is k.

Proof. Let x ∈ k(t) such that σ(x) = x. Then by Lemma 2.2 we have that

h(x) = h(σ(x)) = Mh(x); so h(x) = 0 (because M > 1). Therefore x ∈ k

since they are the only points in k(t) of height equal to 0. ���

The following result is key for our proof, and it is similar to [5, Lemma 3.2].

Lemma 2.5. Let f ∈ k[t][X1, . . . ,Xn] be a reduced polynomial of total degree

d. Let M be an integer satisfying M ≥ 2 · max{1,h(f)}, and let σ be an

automorphism of k(t) such that σ restricts to the identity morphism on k,

and σ(t) = tM . If (x1, . . . , xn) ∈ An
k(t)

satisfies f(x1, . . . , xn) = 0, then either

h((x1, . . . , xn)) ≥
1

2dn
or

f(σ(x1), . . . , σ(xn)) = 0.
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Proof. Let (x1, . . . , xn) ∈ An
k(t)

be a zero of f . We let f =
∑

i aiMi, where

the ai’s are the nonzero coefficients of f and the Mi’s are the corresponding

monomials of f . For each i, we let mi := Mi(x1, . . . , xn).

Assume f(σ(x1), . . . , σ(xn)) 6= 0. We let K be a finite extension of k(t)

containing each xi and each σ(xi). If ζ = f(σ(x1), . . . , σ(xn)), then (because

ζ 6= 0) the product formula for ζ ∈ K yields

∑

w∈MK

w(ζ) = 0. (2.1)

Note that there are no extra factors in (2.1) because k is algebraically closed

and thus each place has degree equal to 1.

Because f(x1, . . . , xn) = 0, we get ζ = ζ − σ(f(x1, . . . , xn)) and so,

ζ =
∑

i

(ai − σ(ai)) · σ(mi). (2.2)

Claim 2.6. For every g ∈ k[t],
(

tM − t
)

| (σ(g) − g).

Proof. [Proof of Claim 2.6.] Let g :=
∑m

j=0 bjt
j , with bj ∈ k. Then

σ(g) =
∑m

j=0 bjt
jM . The proof is immediate because

(

tM − t
)

|
(

tjM − tj
)

.

���

Using the result of Claim 2.6 and equation (2.2), we get

ζ = (tM − t) ·
∑

i

biσ(mi), (2.3)

where bi =
ai−σ(ai)
tM−t

∈ k[t]. Let S be the set of valuations w ∈ MK such that

w lies above each place of k(t) corresponding to a root of tM − t. For each

w ∈ S,

w(ζ) ≥ w(tM − t)− dmax{0,−w(σ(x1)), . . . ,−w(σ(xn))}, (2.4)

because for each i, w(bi) ≥ 0 (as bi ∈ k[t] and w does not lie over v∞) and

the total degree of Mi is at most d.

For each w ∈ MK \ S, because ζ =
∑

i aiσ(mi), we have

w(ζ) ≥ −max{0,max
i

−w(ai)} − dmax{0,−w(σ(x1)), . . . ,−w(σ(xn))}.

(2.5)
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Adding all inequalities from (2.4) and (2.5) we obtain

0 =
∑

w∈MK

w(ζ)

[K : k(t)]
≥ −h(f)−dh((σ(x1), . . . , σ(xn)))+

∑

w∈MK

w(tM−t)>0

w(tM − t)

[K : k(t)]
.

(2.6)

Indeed, note that

1

[K : k(t)]
·
∑

w∈ΩK

max{0,−max
i

w(ai)} = h
(

(ai)0≤i≤deg(f)

)

= h(f),

by the definition of the Weil height on the affine space of dimension deg(f)+

1, and by the Definition 2.1. Now, by the coherence of the valuations on K

(see (1.1)), we have

∑

w∈MK

w(tM−t)>0

w(tM − t)

[K : k(t)]
=

∑

v∈Mk(t)

v(tM−t)>0

v(tM − t) = −v∞(tM − t) = M.

Thus, inequality (2.6) yields

0 ≥ −h(f)− dh((σ(x1), . . . , σ(xn))) +M

and so, using Corollary 2.3 we obtain

dnMh((x1, . . . , xn)) ≥ M − h(f). (2.7)

Because M was chosen such that M ≥ 2h(f), we conclude that

h((x1, . . . , xn)) ≥
1

2dn
. (2.8)

as desired. ���

Remark 2.7. The above proof (more precisely Claim 2.6) shows why it

is essential to work with a function field of transcendence degree equal to

1; otherwise we would not be able to conclude that there exists a positive

contribution for the same set of valuations for all σ(a) − a, where a ∈ k[B]

(for some transcendence basis B for the function field K/k). If |B| > 1, say
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B = {s, t}, then σ(s)−s and σ(t)−t are relatively prime for an automorphism

σ which maps t to tM and maps s to sM .

The proof of the next result is identical with the proof of [5, Lemma 3.4].

Essentially, if f | fσ−1
, then the hypersurface Z = Z(f) is invariant under

σ and thus defined over the fixed field of σ. We also include an alternative

elementary proof of this result.

Lemma 2.8. Let f ∈ k(t)[X1, . . . ,Xn] be a nonzero polynomial, and let σ

be an automorphism of k(t) fixing pointwise k and mapping t into tM (for

some integer M > 1). If f(X1, . . . ,Xn) | f
σ−1

(X1, . . . ,Xn), then there exists

a nonzero a ∈ k(t) such that a · f ∈ k[X1, . . . ,Xn].

Proof. Let τ := σ−1. Since f and f τ are polynomials of same degree in

each variable, then f | f τ if and only if there exists a nonzero α ∈ k(t) such

that f τ = α ·f . So, for each nonzero coefficient ci of f , we have τ(ci) = α ·ci.

Hence for any two coefficients ci and cj we obtain τ
(

cj
ci

)

=
cj
ci
, i.e.

cj
ci

∈ k

(see Lemma 2.4). Therefore Lemma 2.8 holds with a := ci (for any nonzero

coefficient of f). ���

The proof of the next result is similar to [5, Lemma 3.5], but there are

some technical complications due to our general setting for the automor-

phism σ as opposed to the Frobenius endomorphism.

Lemma 2.9. Let V ⊂ An be a proper affine k(t)-subvariety. Then there

exists a positive constant C, depending only on V , and there exists a proper

affine k-subvariety Z ⊂ An, which also depends only on V , such that for

every P ∈ V (k(t)), either P ∈ Z(k(t)) or h(P ) ≥ C.

Remark 2.10. The only difference between Lemma 2.9 and Theorem 1.3 is

that we do not require Z be contained in V .

Proof. [Proof of Lemma 2.9.] We proceed by induction on n. The case

n = 1 is obvious, because any subvariety of A1, different from A1, is a

finite union of points. Thus we may take Z = V (k), (which is also a finite

union of points) and C := minP∈(V \Z)(k(t)) h(P ) (if there are no points in

V (k(t)) \ V (k), then we may take C = 1, say). We note that in this case

(n = 1) we actually proved Theorem 1.3, because the variety Z that we

chose is a subvariety of V .
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We assume Lemma 2.9 holds for n − 1 and we prove it for n (n ≥ 2).

Let K be a finite field extension of k(t) (of minimal degree) such that V is

defined over K. Let pm be the inseparable degree of the extension K/k(t)

(m ≥ 0). Let

V1 =
⋃

σ

V σ,

where σ denotes any field homomorphism K → k(t) which fixes k(t). The

variety V1 is a k(t1/p
m

)-variety (note that k is algebraically closed). Also,

V1 depends only on V . Thus, if we prove Lemma 2.9 for V1, then our result

will hold also for V ⊂ V1. Hence we may and do assume that V is defined

over k(t1/p
m

).

Assume m > 0; then k has positive characteristic. We let F be the

Frobenius corresponding to Fp. The variety V ′ = FmV is a k(t)-variety,

which depends only on V . Assume we proved Lemma 2.9 for V ′ and let C ′

and Z ′ be the positive constant and the k-variety, respectively, associated

to V ′, as in the conclusion of Lemma 2.9. Let P ∈ V (k(t)). Then P ′ :=

Fm(P ) ∈ V ′(k(t)). Thus, either

h(P ′) ≥ C ′ or

P ′ ∈ Z ′(k(t)).

In the former case, because h(P ) = 1
pmh(P ′), we obtain a lower bound for the

height of P , depending only on V (note that m depends only on V ). In the

latter case, if we let Z be the k-subvariety of An, obtained by extracting the

pm-th roots of the coefficients of a set of polynomials (defined over k) which

generate the vanishing ideal for Z ′, we get P ∈ Z(k(t)). By its construction,

Z depends only on V and so, we obtain the conclusion of Lemma 2.9.

Thus, from now on in this proof, we assume V is a k(t)-variety. We

fix a set of defining polynomials for V which contains polynomials Pi ∈

k(t)[X1, . . . ,Xn] for which

max
i

deg(Pi)

is minimum among all possible sets of defining polynomials for V (where

degPi is the total degree of Pi). If all of them have coefficients in k, then
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Lemma 2.9 holds with Z = V and C any positive constant. Once again, in

this case, Theorem 1.3 holds.

Assume there exists a polynomial f /∈ k[X1, . . . ,Xn] in the fixed set

of defining equations for V . Let L :=
⋃

ℓ≥1 k
(

t1/ℓ!
)

, and let {fi}i be the

set of all the L-irreducible factors of f . For each i let Hi be the zero set

of fi. Then V is contained in the finite union ∪iHi. The polynomials fi
depend only on f . Thus it suffices to prove Lemma 2.9 for each Hi. Hence

we may and do assume V is the zero set of an L-irreducible polynomial f /∈

k[X1, . . . ,Xn]. Let ℓ be the smallest positive integer such that (after clearing

the denominators of the coefficients of f we have) f ∈ k
[

t1/ℓ!
]

[X1, . . . ,Xn];

in particular, ℓ depends only on V . For the sake of simplifying our notation,

we let T := t1/ℓ!, and moreover we may assume f ∈ k[T ][X1, . . . ,Xn] is

reduced (over k[T ]). Let M and σ be as in Lemma 2.5 with respect to the

polynomial f defined over k[T ] (note that σ(T ) = TM also yields σ(t) = tM ).

Let P = (x1, . . . , xn) ∈ V (k(t)) = V (k(T )). We apply Lemma 2.5 to f

and P and conclude that either

h(P ) ≥
1

2nℓ! deg(f)
(2.9)

or

f(σ(x1), . . . , σ(xn)) = 0. (2.10)

Note that in (2.9), the factor ℓ! comes from the definition of the Weil height

and the fact that f is defined over k[T ], while [k(T ) : k(t)] = ℓ!.

If (2.9) holds, then we obtained a good lower bound for the height of P

(depending only on V ).

Assume (2.10) holds. Because f is an irreducible and reduced polyno-

mial, whose coefficients are not all in k, Lemma 2.8 yields that f(X1, . . . ,Xn)

cannot divide fσ−1
(X1, . . . ,Xn). Indeed, if f | fσ−1

then there exists a ∈ k(t)

(actually in k(T )) such that af ∈ k[X1, . . . ,Xn]. But this contradicts the

assumption that f is reduced (with coefficients in k[T ]), and not all of its

coefficients are in k.

We know f has more than one monomial because it is reduced and not

all of its coefficients are in k. Without loss of generality, we may assume

f has positive degree in Xn. Because f is L-irreducible and f does not

divide fσ−1
(which is also defined over L), we conclude that f and fσ−1

are
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relatively prime. So, the resultant R of the polynomials f(X1, . . . ,Xn) and

fσ−1
(X1, . . . ,Xn) with respect to the variable Xn is nonzero. Moreover, R

depends only on f and on σ (which ultimately depends on f).

The nonzero polynomial R ∈ k(t1/Mℓ!)[X1, . . . ,Xn−1] (since fσ−1
is de-

fined over k(t1/Mℓ!)) vanishes on (x1, . . . , xn−1). Applying the induction

hypothesis to the hypersurface R = 0 in An−1, we conclude there exists a

proper k-subvariety Z1 ⊂ An−1, depending only on R (and so, only on V )

and there exists a positive constant C, depending only on R (and so, only

on V ) such that either

h(x1, . . . , xn−1) ≥ C or (2.11)

(x1, . . . , xn−1) ∈ Z1(k(t)). (2.12)

If (2.11) holds, then h(x1, . . . , xn−1, xn) ≥ h(x1, . . . , xn−1) ≥ C and we have

a height inequality as in the conclusion of Lemma 2.9. If (2.12) holds, then

(x1, . . . , xn) ∈
(

Z1 × A1
)

(k(t)) and Z1×A1 is a k-variety, strictly contained

in An, as desired in Lemma 2.9. This proves the inductive step and concludes

the proof of Lemma 2.9. ���

The following result is proved in [5, Corollary 2.4]; essentially the proof

relies on the fact that if (Ci, Zi) are two pairs as in the conclusion of

Lemma 2.9 (for i = 1, 2), then (min{C1, C2}, Z1 ∩ Z2) is another pair satis-

fying the conclusion of Lemma 2.9.

Corollary 2.11. Let V be a proper subvariety of An defined over k(t). There

exists a positive constant C and a proper subvariety Z ⊂ An defined over k,

such that the pair (C,Z) satisfies the conclusion of Lemma 2.9, and moreover

Z is minimal with this property (with respect to the inclusion of subvarieties

of An).

Then Theorem 1.3 follows from Corollary 2.11 exactly as the proof of

[5, Theorem 2.2]; the only difference is that Fp is replaced by k.
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