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1Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia.

aE-mail: igor.shparlinski@unsw.edu.au

2Department of Mathematics, University of Texas, Austin, TX 78712, USA.

bE-mail: voloch@math.utexas.edu

Abstract

We prove estimates on character sums on the subset of points of an elliptic curve

over Fqn with x-coordinate of the form α+ t where t ∈ Fq varies and fixed α is such that

Fqn = Fq(α). We deduce that, for a suitable choice of α, this subset has a point of maximal

order in E(Fqn). This provides a deterministic algorithm for finding a point of maximal

order which for a very wide class of finite fields is faster than other available algorithms.

1. Introduction

As usual, for a prime power q we use Fq to denote the finite field of q

elements. We study elliptic curves over extensions Fqn of Fq.

Let E be an elliptic curve given by an affine Weierstraß equation

y2 = x3 + ax2 + bx+ c

with some a, b, c ∈ Fqn where q is assumed odd. We recall that the set of

all points on E forms an abelian group with the “point at infinity” O as the

neutral element (see [27] for background). Denoting by E(Fqn) the set of

Fqn-rational points on E, we have

#E(Fqn) ∼= Z/M × Z/L
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for for unique integers M and L with L | M and #E(Fqn) = ML. The

number M is called the exponent of E(Fqn). Points P ∈ E(Fqn) of order M

are called points of maximum order .

We recall, that the celebrated work of Schoof [23] provides an algorithm

that computes #E(Fqn) in deterministic polynomial time, see also [1] for

more recent improvements (both theoretic and practical). Computing the

group structure, that is, the numbers, M and L has also been considered in

the literature and has turned out to be more difficult. In particular, a prob-

abilistic algorithm of Miller [19] runs in expected polynomial time plus the

time needed to factor gcd(#E(Fq), q − 1), see also [4]. Furthermore, Fried-

lander, Pomerance and Shparlinski [12] have shown that for a sufficiently

large prime p and for almost all elliptic curves E over Fp, the factorisation

part of the algorithm is in fact less time consuming than the rest of the com-

putation (since gcd(#E(Fq), q − 1) tends to be rather small). On the other

hand, in some case this greatest common divisor is large and is difficult to

factor.

The deterministic algorithm of [17] computes the group structure of any

elliptic curve over Fq (and in fact produces two generators of the group

of points) in exponential time O(q1/2+o(1)) which is too slow for practical

applications.

Here we show that, for high degree extensions Fqn of finite fields Fq,

one can design a deterministic polynomial time algorithm, which generates

a small set G of points on E(Fqn) such that at least one point P ∈ G is of

maximum order. We remark that this is an elliptic curve analogue of the

results of [7, 24, 25] (see also [26, Theorem 8]).

The idea is to show that if Fqn = Fq(α) for some root α of an irreducible

polynomial of degree n over Fq, then one can find a point P ∈ E(Fqn) of

maximum order with x(P ) = α + t for some t ∈ Fq, where as usual, we

write every point P 6= O on E as P = (x(P ), y(P )). In turn, this result

is based on a new estimate of character sums over points P of an elliptic

curve with x coordinates of the form x(P ) = α + t. These estimates are

analogues of those of Carlitz [5] and Katz [16]. We note that if a finite field

Fr is of the form r = qn with appropriate q and n, then the above argument

immediately gives an explicit construction of a small set of points on E(Fr)

which contains a point of an appropriate order. In the case that r is not of a

suitable form (and thus Fr does not have a desired subfield), we use the same
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approach as in [25]. More precisely, we first build an extension Frm which

has a necessary subfield, apply our construction construction to E(Frm) and

then use the trace map to come back to points on E(Fr).

The setup is similar to Frey’s Weil descent attack on the discrete log-

arithm problem on elliptic curves and related work on the index calculus

on semi-abelian varieties, (see [2, 8, 9, 10, 13, 15] and references therein).

Namely, there they consider a curve inside an abelian variety and use the

set of rational points of the curve as a factor base for the index calculus

algorithm. In initial works on this problem it simply has been assumed that

the factor base generated the group or at least its reasonable “massive” sub-

group (which is also quite enough for the index calculus applications). The

first rigorous proof that this is so for curves embedded in their Jacobians,

under suitable conditions, has been given in [29] and then reproved in [15]

(see also [20, Theorem 4]). We also prove this in our setup, but we are actu-

ally proving a much stronger statement. Namely, when the group is cyclic,

we prove that a single point from the curve is a generator (rather than just

that the points on the curve is a generating set) and, in general, that there

is a point on the curve with maximal order on the group. Our approach to

prove this is based on bounds for character sums, which is a classical idea in

number theory that dates back to Vinogradov [28], (see also [21, Chapter 2]

for an outline of several related results).

Throughout the paper, the implied constants in the symbols ‘O’, and ‘≪’

are absolute (we recall that the notation U ≪ V is equivalent to U = O(V )).

2. Character Sum Bound

Denote by RFqn/Fq
the Weil restriction of scalars functor (see, for ex-

ample, [11]) which, for a variety X/Fqn , gives a variety RFqn/Fq
(X) over

Fq. The choice of a basis for Fqn/Fq defines an isomorphism of varieties

defined over Fq, between RFqn/Fq
(A1) (where the affine line A

1 is viewed as

one-dimensional variety over Fqn) and A
n over Fq.

Let α be such that Fqn = Fq(α). The basis 1, α, . . . , αn−1 then gives

us an isomorphism as above and we consider the map of varieties over Fq,

A
1 → RFqn/Fq

(A1) given by t 7→ α+ t.
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This map, t 7→ α+ t extends to a map of projective varieties over Fq:

ψα : P
1 → RFqn/Fq

(P1)

where P1 is a projective line over Fqn . We remark that, over Fqn , we have

the isomorphism RFqn/Fq
(P1) ≃ (P1)n.

We denote A = RFqn/Fq
(E) and let π : A → RFqn/Fq

(P1) be the map,

defined over Fq, induced by x : E → P
1. Let also Cα ⊆ A be the curve

Cα = π−1(ψα(P
1)). (1)

The curve Cα is defined over Fq. Over Fqn the cover Cα → P
1 is given by

the system of equations

y2i = hi(t), i = 1, . . . , n,

where

hi(T ) = (T + α(i))3 + a(i)(T + α(i))2 + b(i)(T + α(i)) + c(i) ∈ Fqn [T ], (2)

and we denote by γ(i), i = 1, . . . , n, the conjugates of γ ∈ Fqn over Fq, that

is, γ(i) = γq
i

. We also use A(Fq) and Cα(Fq) to denote the set of Fq-rational

points on A and Cα respectively.

Theorem 1. If the polynomials h1, . . . , hn given by (2) are pairwise rela-

tively prime then, for any non-trivial character χ of A(Fq), we have

∑

P∈Cα(Fq)

χ(P ) ≪ n2nq1/2.

Proof. If h1, . . . , hn are pairwise relatively prime, then the cover Cα →

P
1 has geometric Galois group (Z/2)n, as the polynomials h1, . . . , hn are

independent modulo squares. It follows that Cα is absolutely irreducible

under these conditions. Furthermore, the zeros of each hi and the point at

infinity have 2n−1 pre-images in Cα all with ramification index 2. We check

this at infinity, the other cases are similar and easier. On the curve given by

y21 = h1(t), the function u = t/y1 is a local parameter at the unique point

at infinity and t = u−2 + . . . there. So infinity is ramified with ramification

index 2 on the cover of this curve to P
1. For each of 2n−1 choices of sign,
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there is a solution to y2i = hi(t), i > 1, in power series in u of the form

yi = ±u−3 + . . ., which give the 2n−1 pre-images of infinity in Cα. It follows

from the Hurwitz formula that the genus of (the normalization of) Cα is

2n−1(3n − 1) + 1.

If we prove that χ induces a non-trivial character on the divisor class

group of Cα with trivial conductor, the bound on the theorem follows from

this and the Weil bound (see, for example, [17]).

Let J be the Jacobian of (the normalization of) Cα. The inclusion

Cα → A induces f∗ : J → A, f∗ : A→ J with f∗ ◦ f∗ = [2n−1] on A (see [8,

Theorem 1]). If χ has odd order, it automatically follows from this that

χ ◦ f∗ is non-trivial.

We show that our condition on χ is satisfied if q1/2 ≫ n2n. Note that

the bound in the theorem is trivial otherwise. To handle the case of general

χ, it is enough to consider the case of characters of order two. As A(Fq) ≃

E(Fqn), the set of characters of order two has zero, one or three elements

and corresponds to maps E(Fqn) → F
∗
qn/(F

∗
qn)

2, (x, y) 7→ (x− β)mod(F∗
qn)

2,

where β is a root of x3 + ax2 + bx+ c in Fqn .

It is enough to show that there exists t ∈ Fq with t+α−β not a square

in Fqn and such that t+ α lifts to a point P in Cα, since we have χ(P ) 6= 1

by construction. We must show that the cover of Cα given by the additional

equation y2 = k(t) has an affine point with y 6= 0, where

k(t) = c
n−1
∏

i=0

(t+ (α− β)q
i

)

and c is not a square in Fq. The condition that the hi are pairwise relatively

prime implies that k(t) has distinct roots and this cover is an unramified

double cover of Cα. Thus it has genus O(n2n), so a point as required exists

by the Weil bound if q1/2 ≫ n2n. As noted above, this suffices. ���

Remark 2. The curve Cα is not always absolutely irreducible. Here is an

example

q = n = 3, E : y2 = x3 − x, α3 − α = −1.

Then h1 = h2 and Cα(F3) = {O}, so some condition on α is needed.
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Using an elliptic curve of the same equation but now q = n = p > 3, p

prime, αp−α = c, where c is a non-square in Fp, we get an example where Cα

is absolutely irreducible and, yet, we still have Cα(Fp) = {O}. The reason

this time is that NormFpp/Fp
((t+ α)3 − (t+ α)) = c3, t ∈ Fp, so E(Fpp) has

no point with x-coordinate t+ α, t ∈ Fp.

3. Construction

We always assume that we are given an element ϑ ∈ Fqn with Fq(ϑ) =

Fqn .

Theorem 3. For any ε > 0, sufficiently large prime power q, and integer n

with

n ≤
( 1

2 log 2
− ε

)

log q

and any set R ⊂ Fq of size #R = 9n+1 there is r ∈ R such that for α = rϑ

there is P ∈ Cα(Fq) of maximum order as an element of A(Fq).

Proof. For α ∈ Fqn we denote by N∗
α the number of points P ∈ Cα(Fq) of

maximum order M as an element of A(Fq). Furthermore, for d |M , we also

use Lα,d to denote the number of points of order dividing M/d.

Then, using the inclusion-exclusion principle, we see that for any integer

k ≥ 1, the following inequality holds:

N∗
α ≥ #Cα(Fq) +

2k+1
∑

ν=1

∑

d|M
ω(d)=ν

µ(d)Lα,d. (3)

where ω(d) and µ(d) denote the number of distinct prime factors and the

Möbius function of d, respectively.

Let Xd be the set of characters χ of A(Fq) of order dividing d; that is,

such that χd = χ0, where χ0 is the principal character. By the orthogonality

property of characters,

1

#Xd

∑

χ∈Xd

χ(P ) =

{

1, if P = dQ for some Q ∈ A(Fq),

0, otherwise.
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we write

Lα,d =
1

#Xd

∑

χ∈Xd

∑

P∈Cα(Fq)

χ(P ).

Separating the contribution of the principal character, we derive

∣

∣

∣

∣

Lα,d −
1

#Xd
#Cα(Fq)

∣

∣

∣

∣

≤
1

#Xd

∑

χ∈Xd

χ 6=χ0

∣

∣

∣

∣

∣

∣

∑

P∈Cα(Fq)

χ(P )

∣

∣

∣

∣

∣

∣

. (4)

To apply Theorem 1 to the character sums in (4) we need to find α such

that the polynomials h1, . . . , hn given by (2) are pairwise relatively prime. If

βj, j = 1, 2, 3 are the roots of x3+ax2+ bx+ c, this leads us to the condition

on α that

α(i) − α 6= β
(i)
j − βk, 1 ≤ i < n, j, k = 1, 2, 3,

(recall that α(n) = αqn = α).

Recall that Fq(ϑ) = Fqn , implies that ϑ(i) − ϑ 6= 0 for 1 ≤ i < n.

Consider α = rϑ with r ∈ F
∗
q. Then α

(i) − α = r(ϑ(i) − ϑ). If #R > 9n, by

inspection of 9n + 1 values of r ∈ R we can find at least one with

r 6= (β
(i)
j − βk)/(ϑ

(i) − ϑ), 1 ≤ i < n, j, k = 1, 2, 3.

With this r, for α = rϑ we apply Theorem 1 and derive from (4)

∣

∣

∣

∣

Lα,d −
1

#Xd
#Cα(Fq)

∣

∣

∣

∣

≪ n2nq1/2.

Hence, after the substitution of the above inequality in (3), we obtain

N∗
α ≥ #Cα(Fq)

(

1 +
2k+1
∑

ν=1

∑

d|M
ω(d)=ν

µ(d)

#Xd

)

+O(ω(M)2k+1n2nq1/2).

Finally, we rewrite this as

N∗
α ≥ #Cα(Fq)ρ+O(∆#Cα(Fq) + ω(M)2k+1n2nq1/2), (5)
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where

ρ =
∑

d|M

µ(d)

#Xd

and

∆ =

∣

∣

∣

∣

∣

∑

ν≥2k+2

∑

d|M
ω(d)=ν

µ(d)

#Xd

∣

∣

∣

∣

∣

.

Using the same inclusion-exclusion principle, to count the number N∗ of

points of order M on the whole curve E(Fqn), we derive

N∗ = ρ#E(Fqn).

Now it follows that

ρ ≥
ϕ(M)

M
, (6)

with equality unless L =M , where ϕ(M) is the Euler function.

We now concentrate on ∆. Since, for d |M , we have #Xd ≥ d, we derive

∆ ≤
∑

ν≥2k+2

∑

d|M
ω(d)=ν

1

d
≤

∑

ν≥2k

1

ν!
σ(M)ν ,

where

σ(M) =
∑

ℓ|M
ℓ prime

1

ℓ
.

We now assume that

k ≥ eσ(M). (7)

Then, by the well-known inequality

ν! ≥ (ν/e)ν ,

we have

∑

ν≥2k+2

1

ν!
σ(M)ν ≤

∑

ν≥2k+2

(eσ(M)

ν

)ν
≤

∑

ν≥2k+2

2−ν = 2−2k+1.
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Recalling (5) and (6) we now infer

N∗
α ≥ #Cα(Fq)

ϕ(M)

M
+O(#Cα(Fq)2

−2k + ω(M)2k+1n2nq1/2).

It follows easily from the Prime Number Theorem that

σ(M) ≤ log log logM +O(1).

We now set

k =
⌊

√

log logM + C
⌋

,

where the constant C is chosen to satisfy (7). It is also obvious that that

ω(M) = O(logM). Thus with the above choice of parameters we have

ω(M)2k+1 = qo(1)

as q → ∞, which yields

N∗
α ≥ #Cα(Fq)

ϕ(M)

M
+O(e−

√
log logM#Cα(Fq) + n2nq1/2+o(1)). (8)

As we have seen in the proof of Theorem 1, Cα is an absolutely irre-

ducible curve of genus O(n2n). So, from the Weil bound we derive

#Cα(Fq) = q +O(n2nq1/2).

Using this bound together the well-known estimate of the Euler function

M

ϕ(M)
≪ log logM (9)

as M → ∞, see [14, Theorem 328], we now conclude from (8) that N∗
α > 0

under the conditions of the theorem. ���

In particular, we see that if r = pk for a prime p ≥ 3 and the integer

k → ∞ then for an elliptic curve E over Fr, in polynomial time, one can find

a set of ro(1) points P ∈ E(Fr) such that at least one of them is of maximum

order, provided that k contains a divisor n in an appropriate range.

We now show that in fact a similar set can be constructed over any finite

field of small characteristic. First we need the following auxiliary statement.
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Lemma 1. The trace map TrF
qk

/Fq
: A(Fqk) → A(Fq) sending a point to the

sum of its Fqk/Fq-conjugates, is surjective.

Proof. Consider first the map A(Fqk) → A(Fqk) given by P 7→ Fr(P ) − P ,

where Fr is the Fq-Frobenius and let G denote its image. Since the kernel of

this map is visibly A(Fq), we have #G = #A(Fqk)/#A(Fq). We abbreviate

Tr = TrF
qk

/Fq
and note that Tr =

∑k−1
j=0 Fr

j .

We now show that G is the kernel of Tr and cardinality considerations

then implies the result. It is clear that G is contained in the kernel of Tr.

Let now P ∈ A(Fqk), Tr(P ) = O. By a result of Lang [18], there exists

Q ∈ A(Fq), where Fq is the algebraic closure of Fq, with Fr(Q) − Q = P .

Now

O = Tr(P ) = Tr(Fr(Q)−Q) = Frk(Q)−Q,

therefore Q ∈ A(Fqk) and P ∈ G. ���

Theorem 4. For any fixed ε > 0 and sufficiently large prime power r = pn

where p is prime and n ≥ 1 is an integer for an elliptic curve E over Fr, in

time O(p2(2+ε)n), one can compute a set of O(p2(2+ε)n) points Q ∈ E(Fr)

such that at least one of them is of maximum order.

Proof. Fix some small ε > 0 and choose m as the smallest positive integer

satisfying the inequality

n ≤
( 1

2 log 2
− ε/2

)

m log p. (10)

We see from the definition of m that

( 1

2 log 2
− ε/2

)

(m− 1) log p < n.

Thus

pm−1 ≤ 22n/(1−ε log 2) ≤ 2(2+ε)n, (11)

provided that ε is sufficiently small. We now put q = pm, and construct an

irreducible polynomial of degree n over Fq (which can be done determinis-

tically in time p1/2(mn)O(1) = p1/2nO(1), see [24]). Thus for any root ϑ of

the polynomial we have Fq(ϑ) = Fqn = Fpmn . We can consider the abelian

variety A = RFqn/Fq
(E) as before. However, we note that, since E is defined
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over Fr, we have that A is defined over Fp and that it is independent of way

the field extension Fqn/Fq is represented. We also consider, as before, the

curve Cα defined over Fq, for a suitable choice of α as afforded by Theorem

3. Unlike A, Cα does not necessarily descend to Fp, but we only consider it

over Fq. We now examine the set of points

Qα = {TrFq/Fp
P : P ∈ Cα(Fq)}

where TrFq/Fp
is the Fq/Fp-trace as in Lemma 1.

Clearly Qα ⊆ A(Fp) ≃ E(Fr). Furthermore, recalling (11), we derive

#Qα ≪ q ≤ pm ≤ p2(2+ε)n.

We also remark that finding points on an elliptic curve with a given

x-coordinate involves taking square roots. Using an algorithm of [26] one

can find a quadratic nonresidue of Fqn = Fpmn in time

p1/2(mn log p)O(1) = p1/2(n log p)O(1)

(as the set of [26] contains a primitive root it also contains a quadratic

nonresidue and that property can be tested in polynomial time). After this,

using the Tonelli-Shanks algorithm (see [3, Sections 7.1 and 7.2]) one can

extract square roots in polynomial time.

So it remains to show that Qα contains a point of maximum order.

First we notice that the exponent M of E(Fr) is a divisor of the exponent

of E(Fqn) = E(Frm).

Furthermore, in the notation of the proof of Theorem 3, for any non-

trivial character χ of A(Fq) we have

∑

P∈Cα(Fq)

χ(TrP ) ≪ n2nq1/2. (12)

Indeed we only need to notice that P 7→ χ(TrP ) is a non-trivial character

of A(Fq). and this follows from Lemma 1.

Using the bound (12) in the same way as Theorem 1 is used in the proof

of Theorem 3 (and noting that (10) is essentially equivalent to the condition

of Theorem 3) we conclude the proof, provided that r is large enough. ���
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4. Comments

We note that the result of Theorem 4, in wide range of p and n gives

a much faster deterministic algorithm and a much smaller set containing a

point of maximum order on E(Fr) than that of [17].

On the other hand, it has an exponential dependence on n, while its

finite field analogues [24, 25, 26] depend on n polynomially. The reason is

the exponential factor 2n in the bound of Theorem 1, which in turn comes

from the evaluation of the genus of Cα and seems to be unavoidable.

On the other hand, one can try to get an analogue of Theorem 1 for

incomplete sums (in the style of [22]) and then reduce the dependence on p

in Theorem 4 from linear to p1/2 (as it is done in [26, Theorem 8] in the case

of primitive roots of finite fields).

Finally, we notice that actually identifying a point of maximum order in

any set requires computing and factoring the cardinality of E(Fr), we refer

to [1] and [6] for a description of the state-of-art in both areas.

Acknowledgments

The authors would like to thank the referees for a careful reading of the

manuscript and several useful comments.

The first author was supported by ARC Grant DP130100237. The sec-

ond author would like to thank Macquarie University and the University of

Canterbury for their hospitality during the period in which this paper was

written and the NSA for its support through Grant MDA904-H98230-09-1-

0070.

References

1. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren,
Elliptic and Hyperelliptic Curve Crytography: Theory and Practice, CRC Press, 2005.

2. L. M. Adleman, J. DeMarrais and M.-D. Huang, A subexponential algorithm for dis-
crete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic
curves over finite fields, Lect. Notes in Comp. Sci., 877, Springer-Verlag, Berlin, 1994,
28-40.

3. E. Bach and J. Shallit, Algorithmic Number Theory , MIT Press, 1996.



2014] GENERATORS OF ELLIPTIC CURVES OVER FINITE FIELDS 669

4. I. F. Blake, V. K. Murty and G. Xu, Refinements of Miller’s algorithm for computing
the Weil/Tate pairing, J. Algorithms, 58 (2006), 134-149.

5. L. Carlitz, Distribution of primitive roots in a finite field, Quart. J. Math. Oxford , 4
(1953), 4-10.

6. R. Crandall and C. Pomerance, Prime numbers: A Computational Perspective,
Springer-Verlag, Berlin, 2005.

7. H. Davenport, On primitive roots in finite fields, Quart. J. Math. (Oxford Ser.), 8
(1937), 308-312.

8. C. Diem, The GHS Attack in odd characteristic, J. Ramanujan Math. Soc., 18 (2003),
1-32.

9. C. Diem, On the discrete logarithm problem in elliptic curves, Compos. Math., 147
(2011), 75-104.

10. C. Diem, The GHS Attack in odd characteristic. II, Preprint, 2011.

11. C. Diem and N. Naumann, On the structure of the Weil restriction of Abelian varieties,
J. Ramanujan Math. Soc., 18 (2003), 153-174.

12. J. B. Friedlander, C. Pomerance and I. E. Shparlinski, Finding the group structure of
elliptic curves over finite fields, Bull. Aust. Math. Soc., 72 (2005), 251-263.

13. P. Gaudry, F. Hess, and N. Smart, Constructive and destructive facets of Weil descent,
J. Cryptology , 15, (2002), 19-46.

14. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford
Univ. Press, Oxford, 1979.

15. F. Hess, Computing relations in divisor class groups of algebraic curves over finite
fields, Preprint, 2005.

16. N. M. Katz, An estimate for character sums, J. Amer. Math. Soc., 2 (1989), 197-200.

17. D. R. Kohel and I. E. Shparlinski, Exponential sums and group generators for elliptic
curves over finite fields, Lect. Notes in Comp. Sci., 1838 Springer-Verlag, Berlin, 2000,
395-404.

18. S. Lang, Algebraic groups over finite fields, Amer. J. Math., 78 (1956), 555-563.

19. V. S. Miller, The Weil pairing, and its efficient calculation, J. Cryptology , 17 (2004),
235-261.

20. V. Müller, A. Stein and C. Thiel, Computing discrete logarithms in real quadratic
congruence function fields of large genus, Math. of Comp., 68 (1999), 807-822.

21. W. Narkiewicz, Classical problems in number theory , Polish Sci. Publ., Warszawa,
1986.

22. G. I. Perel’muter and I. Shparlinski, On the distribution of primitive roots in finite
fields, Uspechi Matem. Nauk , 45, no.1 (1990), 185-186 (in Russian).

23. R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,
Math. of Comp., 44 (1985), 483-494.



670 IGOR E. SHPARLINSKI AND JOSÉ FELIPE VOLOCH [December
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