# TRUNCATED CONVOLUTION OF CHARACTER SHEAVES 

G. LUSZTIG

Department of Mathematics, M.I.T., Cambridge, MA 02139, USA. E-mail: gyuri@math.mit.edu

## ||l| \|


#### Abstract

Let $G$ be a reductive, connected algebraic group over an algebraic closure of a finite field. We define a tensor structure on the category of perverse sheaves on G which are direct sums of unipotent character sheaves in a fixed two-sided cell; we show that this is equivalent to the centre with a known monoidal abelian category (a categorification of the $J$-ring associated to the same two-sided cell).


## Introduction

0.1. Let $\mathbf{k}$ be an algebraically closed field. Let $G$ be a reductive connected group over $\mathbf{k}$. Let $W$ be the Weyl group of $G$ and let $\mathbf{c}$ be a two-sided cell of $W$. Let $\mathcal{C}^{\mathbf{c}} G$ the category of perverse sheaves on $G$ which are direct sums of unipotent character sheaves whose associated two-sided cell (see 1.5) is $\mathbf{c}$ and let $\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}$ be the category of semisimple $G$-equivariant perverse sheaves on $\mathcal{B}^{2}$ (the product of two copies of the flag manifold) which belong to $\mathbf{c}$. Now $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ has a structure of monoidal category (truncated convolution) introduced in [18] such that the induced ring structure on the Grothendieck group is the $J$-ring attached to c, see [19, 18.3]. In this paper, we define and study a structure of braided monoidal category (truncated convolution) on $\mathcal{C}^{\mathbf{c}} G$ in the case where
(a) $\mathbf{k}$ is an algebraic closure of a finite field $\mathbf{F}_{q}$,
thus proving a conjecture in [20]. In the case where $\mathbf{k}$ has characteristic zero such a monoidal structure was defined by Bezrukavnikov, Finkelberg and Ostrik [4] (in the language of $D$-modules), who also proved in that case

[^0](b) the existence of an equivalence between $\mathcal{C}^{\mathbf{c}} G$ and the centre of the monoidal category $\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}$
and conjectured that (b) holds without restriction on the characteristic. Note that (b) is made plausible by the fact that, as a consequence of a conjecture in the last paragraph of [18,3.2] and of the classification of unipotent character sheaves in [15], the simple objects of the centre of $\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}$ should be in bijection with the simple objects of $\mathcal{C}^{\mathrm{c}} G$. (The idea that the derived category of character sheaves with unspecified $\mathbf{c}$ is equivalent to the centre of the derived category of $G$-equivariant sheaves on $\mathcal{B}^{2}$ with unspecified $\mathbf{c}$, appeared in BenZvi and Nadler's paper [2] and in [4], again in characteristic zero; we refer to this case as the "untruncated" case.)

In this paper we prove (b) in the case where $\mathbf{k}$ is as in (a), see Theorem 9.5. (In the remainder of this paper we assume that $\mathbf{k}, \mathbf{F}_{q}$ are as in (a).) Much of the proof involves the definition and study of truncated versions $\underline{\chi}, \underline{\zeta}, \underline{*}$ of several known functors $\chi, \zeta, *$ in the untruncated case. Here $\chi$ is the known induction functor from complexes on $\mathcal{B}^{2}$ to complexes on $G$ which I used in the 1980's in the definition of character sheaves; $\zeta$ is an adjoint of $\chi$ which I used in the late 1980's to characterize the character sheaves (see 2.5); * is the convolution of complexes of sheaves on $G$ defined by Ginzburg [7]. The truncated version $\underline{\chi}$ of $\chi$ has been already used (but not named) in [15]. Note that our definition of the truncated convolution $\underset{\sim}{*}$ and truncated restriction $\underline{\zeta}$ involves in an essential way the weight filtrations; it is not clear how these operations are related to the corresponding operations in characteristic zero considered in [4] where weight filtrations do not appear. (In our definition of $\underline{\chi}$ the consideration of weight filtrations is not necessary.) Much of this paper is concerned with establishing various connections between $\underline{\chi}, \underline{\zeta}, \underline{*}$. One of these connections, the adjointness of $\underline{\chi}$ and $\underline{\zeta}$ (of which the untruncated version holds by definition) is here surprisingly complicated. We first prove a weak form of it (§8) which we use in the proof of Theorem 9.5 and we then use Theorem 9.5 to prove its full form (Theorem 9.8).

In $\S 10$ we discuss the possibility of a noncrystallographic extension of some of our results, making use of [5].

Throughout this paper we assume that we have a fixed $\operatorname{split} \mathbf{F}_{q}$-structure on $G$.

This paper contains several references to results in 15] which in loc.cit. are conditional on the cleanness of character sheaves; these references are
justified since cleanness is now available (see 24] and its references). This paper also contains several references to [19, §14]; these are justified by the results in [19, §15].

We will show elsewhere that the methods and results of this paper extend to non-unipotent character sheaves on $G$ (at least when the centre of $G$ is connected).

I wish to thank Victor Ostrik for some useful comments.
0.2. Notation. Let $\mathcal{B}$ be the variety of Borel subgroups of $G$, with the $\mathbf{F}_{q}$-structure inherited from $G$. Let $\nu=\operatorname{dim} \mathcal{B}, \Delta=\operatorname{dim}(G), \rho=\operatorname{rk}(G)$. We shall view $W$ as an indexing set for the orbits of $G$ acting on $\mathcal{B}^{2}:=\mathcal{B} \times \mathcal{B}$ by simultaneous conjugation; let $\mathcal{O}_{w}$ be the orbit corresponding to $w \in W$ and let $\overline{\mathcal{O}}_{w}$ be the closure of $\mathcal{O}_{w}$ in $\mathcal{B}^{2}$. Note that $\mathcal{O}_{w}, \overline{\mathcal{O}}_{w}$ are naturally defined over $\mathbf{F}_{q}$. For $w \in W$ we set $|w|=\operatorname{dim} \mathcal{O}_{w}-\nu$ (the length of $w$ ). Define $w_{\max } \in W$ by the condition $\left|w_{\max }\right|=\nu$.

For $B \in \mathcal{B}$, let $U_{B}$ be the unipotent radical of $B$. Then $B / U_{B}$ is independent of $B$; it is "the" maximal torus $T$ of $G$. It inherits a split $\mathbf{F}_{q}$-structure from $G$. Let $\mathcal{X}$ be the group of characters of $T$.

Let Rep $W$ be the category of finite dimensional representations of $W$ over $\mathbf{Q}$; let $\operatorname{Irr} W$ be a set of representatives for the isomorphism classes of irreducible objects of $\operatorname{Rep} W$. For any $E \in \operatorname{Irr} W$ we denote by $E^{\dagger}$ the object of $\operatorname{Irr} W$ which is isomorphic to the tensor product of $E$ and the sign representation.

For an algebraic variety $X$ over $\mathbf{k}$ we denote by $\mathcal{D}(X)$ the bounded derived category of constructible $\overline{\mathbf{Q}}_{l}$-sheaves on $X(l$ is a fixed prime number invertible in $\mathbf{k}$; let $\mathcal{M}(X)$ be the subcategory of $\mathcal{D}(X)$ consisting of perverse sheaves on $X$. If $X$ has a fixed $\mathbf{F}_{q}$-structure $X_{0}$, we denote by $\mathcal{D}_{m}(X)$ what in [1, 5.1.5] is denoted by $\mathcal{D}_{m}^{b}\left(X_{0}, \overline{\mathbf{Q}}_{l}\right)$. Note that any object $K \in \mathcal{D}_{m}(X)$ can be viewed as an object of $\mathcal{D}(X)$ which will be denoted again by $K$. For $K \in \mathcal{D}(X)$ and $i \in \mathbf{Z}$ let $\mathcal{H}^{i} K$ be the $i$-th cohomology sheaf of $K, \mathcal{H}_{x}^{i} K$ its stalk at $x \in X$, and let $K^{i}$ be the $i$-th perverse cohomology sheaf of $K$. For $K \in \mathcal{D}(X)$ (or $K \in \mathcal{D}_{m}(X)$ ) and $n \in \mathbf{Z}$ we write $K[[n]]=K[n](n / 2)$ where $[n]$ is a shift and $(n / 2)$ is a Tate twist; we write $\mathfrak{D}(K)$ for the Verdier dual of $K$. Let $\mathcal{M}_{m}(X)$ be the subcategory of $\mathcal{D}_{m}(X)$ whose objects are in $\mathcal{M}(X)$. If $K \in \mathcal{M}_{m}(X)$ and $j \in \mathbf{Z}$ we denote by $\mathcal{W}^{j} K$ the subobject of $K$ which has weight $\leq j$ and is such that $K / \mathcal{W}^{j} K$ has weight $>j$, see [1, 5.3.5]; let
$g r_{j} K=\mathcal{W}^{j} K / \mathcal{W}^{j-1} K$ be the associated pure perverse sheaf of weight $j$. For $K \in \mathcal{D}_{m}(X)$ we shall often write $K^{\{i\}}$ instead of $g r_{i}\left(K^{i}\right)(i / 2)$.

If $K \in \mathcal{M}(X)$ and $A$ is a simple object of $\mathcal{M}(X)$ we denote by $(A: K)$ the multiplicity of $A$ in a Jordan-Hölder series of $K$.

For $i \in \mathbf{Z}$ and $K \in \mathcal{D}_{m}(X)$ let $\tau_{\leq i} K \in \mathcal{D}_{m}(X)$ be what in [1] is denoted by ${ }^{p} \tau_{\leq i} K$.

Assume that $C \in \mathcal{D}_{m}(X)$ and that $\left\{C_{i} ; i \in I\right\}$ is a family of objects of $\mathcal{D}_{m}(X)$. We shall write $C \approx\left\{C_{i} ; i \in I\right\}$ if the following condition is satisfied: there exist distinct elements $i_{1}, i_{2}, \ldots, i_{s}$ in $I$, objects $C_{j}^{\prime} \in \mathcal{D}_{m}(X)$ $(j=0,1, \ldots, s)$ and distinguished triangles $\left(C_{j-1}^{\prime}, C_{j}^{\prime}, C_{i_{j}}\right)$ for $j=1,2, \ldots, s$ such that $C_{0}^{\prime}=0, C_{s}^{\prime}=C$; moreover, $C_{i}=0$ unless $i=i_{j}$ for some $j \in[1, s]$. (See [21, 32.15].)

We will denote by $\mathbf{p}$ the variety consisting of one point. For any variety $X$ let $\mathfrak{L}_{X}=\alpha_{!} \overline{\mathbf{Q}}_{l} \in \mathcal{D}_{m} X$ where $\alpha: X \times T \rightarrow X$ is the obvious projection. We sometimes write $\mathfrak{L}$ instead of $\mathfrak{L}_{X}$.

Let $v$ be an indeterminate. For any $\phi \in \mathbf{Q}\left[v, v^{-1}\right]$ and any $k \in \mathbf{Z}$ we write $(k ; \phi)$ for the coefficient of $v^{k}$ in $\phi$. Let $\mathcal{A}=\mathbf{Z}\left[v, v^{-1}\right]$.

## Contents

1. Preliminaries and truncated induction.
2. Truncated restriction.
3. Truncated convolution on $\mathcal{B}^{2}$.
4. Truncated convolution on $G$.
5. Truncated convolution and truncated restriction.
6. Analysis of the composition $\underline{\zeta \chi}$.
7. Analysis of the composition $\underline{\zeta \chi}$ (continued).
8. Adjunction formula (weak form).
9. Equivalence of $\mathcal{C}^{c} G$ with the centre of $\mathcal{C}^{c} \mathcal{B}^{2}$.
10. Remarks on the noncrystallographic case.

## 1. Preliminaries and Truncated Induction

1.1. For $y \in W$ let $L_{y} \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ be the constructible sheaf which is $\overline{\mathbf{Q}}_{l}$ (with the standard mixed structure of pure weight 0 ) on $\mathcal{O}_{y}$ and is 0 on $\mathcal{B}^{2}-\mathcal{O}_{y}$; let $L_{y}^{\sharp} \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ be its extension to an intersection cohomology complex of $\overline{\mathcal{O}}_{y}$ (equal to 0 on $\left.\mathcal{B}^{2}-\overline{\mathcal{O}}_{y}\right)$. Let $\mathbf{L}_{y}=L_{y}^{\sharp}[[|y|+\nu]] \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$.

Let $r \geq 1$. For $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{r}\right) \in W^{r}$ we set $|\mathbf{w}|=\left|w_{1}\right|+\cdots+\left|w_{r}\right|$.
For any $i<i^{\prime}$ in $[1, r]$ let $p_{i, i^{\prime}}: \mathcal{B}^{r+1} \rightarrow \mathcal{B}^{2}$ be the projection to the $i, i^{\prime}$ factors. From the definitions we see that

$$
L_{\mathbf{w}}^{[1, r]}:=p_{01}^{*} L_{w_{1}}^{\sharp} \otimes p_{12}^{*} L_{w_{2}}^{\sharp} \otimes \ldots \otimes p_{r-1, r}^{*} L_{w_{r}}^{\sharp} \in \mathcal{D}_{m}\left(\mathcal{B}^{r+1}\right)
$$

is the intersection cohomology complex of the projective variety

$$
\mathcal{O}_{\mathbf{w}}^{[1, r]}=\left\{\left(B_{0}, B_{1}, \ldots, B_{r}\right) \in \mathcal{B}^{r+1} ;\left(B_{i-1}, B_{i}\right) \in \overline{\mathcal{O}}_{w_{i}} \forall i \in[1, r]\right\}
$$

extended by 0 on $\mathcal{B}^{r+1}-\mathcal{O}_{\mathbf{w}}^{[1, r]}$ (it has the standard mixed structure of pure weight 0 ). For any $J \subset[1, r]$ we set

$$
\begin{aligned}
\mathcal{O}_{\mathbf{w}}^{J}=\left\{\left(B_{0}, B_{1}, \ldots, B_{r}\right) \in \mathcal{B}^{r+1} ;\left(B_{i-1}, B_{i}\right) \in \overline{\mathcal{O}}_{w_{i}} \forall i \in J,( \right. & \left.B_{i-1}, B_{i}\right) \in \mathcal{O}_{w_{i}} \\
& \forall i \in[1, r]-J\}
\end{aligned}
$$

Let $i_{J}: \mathcal{O}_{\mathbf{w}}^{J} \rightarrow \mathcal{O}_{\mathbf{w}}^{[1, r]}\left(\right.$ resp. $\left.i_{J}^{\prime}: \mathcal{O}_{\mathbf{w}}^{[1, r]}-\mathcal{O}_{\mathbf{w}}^{J} \rightarrow \mathcal{O}_{\mathbf{w}}^{[1, r]}\right)$ be the obvious open (resp. closed) imbedding and let $L_{\mathbf{w}}^{J} \in \mathcal{D}_{m}\left(\mathcal{B}^{r+1}\right)$ (resp. $\dot{L}_{\mathbf{w}}^{J} \in \mathcal{D}_{m}\left(\mathcal{B}^{r+1}\right)$ ) be $i_{J}^{*} L_{\mathbf{w}}^{[1, r]}\left(\right.$ resp. $\left.i_{J}^{\prime}{ }^{*} L_{\mathbf{w}}^{[1, r]}\right)$ extended by 0 on $\mathcal{B}^{r+1}-\mathcal{O}_{\mathbf{w}}^{J}$ (resp. $\mathcal{B}^{r+1}-\left(\mathcal{O}_{\mathbf{w}}^{[1, r]}-\right.$ $\left.\mathcal{O}_{\mathrm{w}}^{J}\right)$ ); we have a distinguished triangle

> (a)

$$
\left(L_{\mathbf{w}}^{J}, L_{\mathbf{w}}^{[1, r]}, \dot{L}_{\mathbf{w}}^{J}\right)
$$

in $\mathcal{D}_{m}\left(\mathcal{B}^{r+1}\right)$. We have the following result.
(b) For any $h \in \mathbf{Z}$, any composition factor of $\left(\dot{L}_{\mathbf{w}}^{J}\right)^{h} \in \mathcal{M}\left(\mathcal{B}^{r+1}\right)$ is of the form $L_{\mathbf{w}^{\prime}}^{[1, r]}\left[\left|\mathbf{w}^{\prime}\right|+\nu\right]$ for some $\mathbf{w}^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r}^{\prime}\right) \in W^{r}$ such that $w_{i}=w_{i}^{\prime}$ for all $i \in J$.

By a standard argument this can be reduced to the case where $r=1$. We then use the fact that $\left(\dot{L}_{\mathbf{w}}^{J}\right)^{h} \in \mathcal{M}\left(\mathcal{B}^{2}\right)$ is equivariant for the diagonal $G$-action and all $G$-equivariant simple perverse sheaves on $\mathcal{B}^{2}$ are of the form $\mathbf{L}_{y}$ for some $y \in W$.

We show:
(c) $\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu-1]\right)^{j}=0$ for any $j>0$.

It is enough to show that $\operatorname{dim} \operatorname{supp} \mathcal{H}^{h}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu-1]\right) \leq-h$ for any $h \in \mathbf{Z}$. Assume first that $h \leq-|\mathbf{w}|-\nu$. Since $L_{\mathbf{w}}^{[1, r]}$ is an intersection cohomology complex, we have

$$
\operatorname{dim} \operatorname{supp} \mathcal{H}^{h-1}\left(L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|+\nu]\right)<-h+1
$$

hence

$$
\operatorname{dimsupp} \mathcal{H}^{h-1}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu]\right)<-h+1
$$

hence

$$
\operatorname{dim} \operatorname{supp} \mathcal{H}^{h-1}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu]\right) \leq-h
$$

hence

$$
\operatorname{dim} \operatorname{supp} \mathcal{H}^{h}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu-1]\right) \leq-h
$$

Next we assume that $h=-|\mathbf{w}|-\nu+1$. Then

$$
\operatorname{dimsupp} \mathcal{H}^{h-1}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu]\right) \leq \operatorname{dim}\left(\mathcal{O}_{\mathbf{w}}^{[1, r]}-\mathcal{O}_{\mathbf{w}}^{J}\right) \leq|\mathbf{w}|+\nu-1=-h
$$

hence $\operatorname{dim} \operatorname{supp} \mathcal{H}^{h}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu-1]\right) \leq-h$. Now assume that $h \geq-|\mathbf{w}|-$ $\nu+2$. Then $\mathcal{H}^{h-1}\left(L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|+\nu]\right)=0$ hence $\mathcal{H}^{h-1}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu]\right)=0$ hence $\mathcal{H}^{h}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu-1]\right)=0$. This proves (c).
1.2. For ${ }^{1} L,{ }^{2} L, \ldots,{ }^{r} L$ in $\mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ we set

$$
{ }^{1} L \bullet{ }^{2} L \bullet \ldots \bullet{ }^{r} L=p_{0 r!}\left(p_{01}^{*}{ }^{1} L \otimes p_{12}^{*} L \otimes \ldots \otimes p_{r-1, r}^{*}{ }^{r} L\right) \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)
$$

If $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{r}\right)$ is as in 1.1 we set

$$
L_{\mathbf{w}}^{\bullet}=p_{0 r!} L_{\mathbf{w}}^{[1, r]}=L_{w_{1}}^{\sharp} \bullet L_{w_{2}}^{\sharp} \bullet \ldots \bullet L_{w_{r}}^{\sharp} \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right) .
$$

If $J$ is as in 1.1, then

$$
\begin{equation*}
p_{0 r!} L_{\mathbf{w}}^{J}={ }^{1} L \bullet{ }^{2} L \bullet \ldots \bullet{ }^{r} L \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right) \tag{a}
\end{equation*}
$$

where ${ }^{i} L=L_{w_{i}}^{\sharp}$ for $i \in J,{ }^{i} L=L_{w_{i}}$ for $i \in[1, r]-J$.

Using the decomposition theorem [1] for the proper map $p_{0 r}$, we see that

$$
\begin{equation*}
L_{\mathbf{w}}^{\bullet}[|\mathbf{w}|] \cong \oplus_{w \in W, k \in \mathbf{Z}}\left(L_{w}^{\sharp}[k+|w|]\right)^{\oplus N(w, k)} \tag{b}
\end{equation*}
$$

in $\mathcal{D}\left(\mathcal{B}^{2}\right)$ where $N(w, k) \in \mathbf{N}$.
1.3 Let $\mathbf{H}$ be the Hecke algebra of $W$ (see $[19,3.2]$ with $L(w)=|w|$ ) over $\mathcal{A}$ and let $\left\{c_{w} ; w \in W\right\}$ be the "new" basis of $\mathbf{H}$, see [19, 5.2]. As in [19, 13.1], for $x, y \in W$ we write $c_{x} c_{y}=\sum_{z \in W} h_{x, y, z} c_{z}$ where $h_{x, y, z} \in \mathcal{A}$. For $x, z \in W$ we write $z \preceq x$ if there exists $\xi \in \mathbf{H} c_{x} \mathbf{H}$ such that $c_{z}$ appears with $\neq 0$ coefficent in the expansion of $\xi$ in the new basis. This is a preorder on $W$. Recall that the two-sided cells of $W$ are the equivalence classes associated to this preorder. For $x, y \in W$ we write $x \sim y$ if $x, y$ belong to the same two-sided cell, that is $x \preceq y$ and $y \preceq x$. For $x, y \in W$ we write $x \sim_{L} y$ if $x, y$ belong to the same left cell of $W$, see [19, 8.1]. If $\mathbf{c}$ is a two-sided cell and $w \in W$ we write $w \preceq \mathbf{c}($ resp. $\mathbf{c} \preceq w)$ if $w \preceq w^{\prime}\left(\right.$ resp. $\left.w^{\prime} \preceq w\right)$ for some $w^{\prime} \in \mathbf{c}$; we write $w \prec \mathbf{c}($ resp. $\mathbf{c} \prec w)$ if $w \preceq \mathbf{c}($ resp. $\mathbf{c} \preceq w)$ and $w \notin \mathbf{c}$. If $\mathbf{c}, \mathbf{c}^{\prime}$ are two-sided cells we write $\mathbf{c} \preceq \mathbf{c}^{\prime}$ (resp. $\mathbf{c} \prec \mathbf{c}^{\prime}$ ) if $w \preceq w^{\prime}$ (resp. $w \prec w^{\prime}$ ) for some $w \in \mathbf{c}, w^{\prime} \in \mathbf{c}^{\prime}$. Let $\mathbf{a}: W \rightarrow \mathbf{N}$ be the a-function in 19, 13.6].

If $\mathbf{c}$ is a two-sided cell, then for all $w \in \mathbf{c}$ we have $\mathbf{a}(w)=\mathbf{a}(\mathbf{c})$ where $\mathbf{a}(\mathbf{c})$ is a constant. Note that the numbers $N(w, k)$ in $1.2(\mathrm{~b})$ satisfy:
(a) $\quad c_{w_{1}} c_{w_{2}} \ldots c_{w_{r}}=\sum_{w \in W} \phi_{w} c_{w}$ where $\phi_{w}=\sum_{k \in \mathbf{Z}} N(w, k) v^{k}$.

If $x, y, z \in W$ then

$$
\begin{aligned}
& h_{x, y, z}=h_{x, y, z}^{*} v^{-\mathbf{a}(z)}+\text { higher powers of } v \\
& h_{x, y, z}=h_{x, y, z}^{*} v^{\mathbf{a}(z)}+\text { lower powers of } v
\end{aligned}
$$

where $h_{x, y, z}^{*} \in \mathbf{N}$; moreover, if $h_{x, y, z} \neq 0$ then $\mathbf{a}(x) \leq \mathbf{a}(z), \mathbf{a}(y) \leq \mathbf{a}(z)$ (see [19, P4]); if $h_{x, y, z}^{*} \neq 0$ then $x \sim y \sim z$ (see [19, P8]) hence $\mathbf{a}(x)=\mathbf{a}(y)=\mathbf{a}(z)$.

If $\mathbf{c}$ is a two-sided cell of $W$ then the subquotient

$$
\left(\oplus_{w \in W ; w \preceq \mathbf{c}} \mathbf{Q} c_{w}\right) /\left(\oplus_{w \in W ; w \prec \mathbf{c}} \mathbf{Q} c_{w}\right)
$$

of the group algebra $\mathbf{Q}[W]$ is naturally an object $[\mathbf{c}]$ of $\operatorname{Rep} W$. If $\Lambda$ is a left cell of $W$ contained in $\mathbf{c}$ then the subquotient

$$
\left(\oplus_{\left.\left.w \in W ; w \in \Lambda \text { or } w \prec \mathbf{~} \mathbf{Q} c_{w}\right) /\left(\oplus_{w \in W ; w \prec \mathbf{Q}} \mathbf{Q} c_{w}\right)\right) .}\right.
$$

of the group algebra $\mathbf{Q}[W]$ is naturally an object $[\Lambda]$ of $\operatorname{Rep} W$.
For $E \in \operatorname{Irr} W$, there is a unique two-sided cell $\mathbf{c}_{E}$ of $W$ such that $\left[\mathbf{c}_{E}\right]$ contains $E$. (This differs from the usual definition of two -sided cell attached to $E$ by multiplication on the left or right by $w_{\max }$.)

Until the end of $\S 9$ we fix a two-sided cell $\mathbf{c}$ of $W$ and we set $a=\mathbf{a}(\mathbf{c})$. Since for $w \in \mathbf{c}$ we have (in (a)):

$$
\phi_{w}=\sum_{z_{2}, z_{3}, \ldots, z_{r-1} \text { in } W} h_{w_{1}, w_{2}, z_{2}} h_{z_{2}, w_{3}, z_{3}} \ldots h_{z_{r-1}, w_{r}, w},
$$

we see that
$N(w, k) \neq 0 \Longrightarrow k \geq-(r-1) a ; N(w,-(r-1) a) \neq 0 \Longrightarrow w_{i} \in \mathbf{c}$ for all $i$.
In addition, if $w_{1}, w_{2}, \ldots, w_{r}$ are in $\mathbf{c}$, then

$$
\begin{equation*}
N(w,-(r-1) a)=\sum h_{w_{1}, w_{2}, z_{2}}^{*} h_{z_{2}, w_{3}, z_{3}}^{*} \ldots h_{z_{r-1}, w_{r}, w}^{*} \tag{c}
\end{equation*}
$$

where the sum is taken over all $z_{2}, z_{3}, \ldots, z_{r-1}$ in $\mathbf{c}$.

Let $\mathbf{J}$ be the free $\mathbf{Z}$-module with basis $\left\{t_{z} ; z \in W\right\}$. It is known (see 19, 18.3]) that there is a well defined structure of associative ring (with 1) on $\mathbf{J}$ such that if $x, y \in W$ then $t_{x} t_{y}=\sum_{z \in W} h_{x, y, z}^{*} t_{z}$. For each two-sided cell $\mathbf{c}^{\prime}$ let $\mathbf{J}^{\mathbf{c}^{\prime}}$ be the subgroup of $\mathbf{J}$ generated by $\left\{t_{z} ; z \in \mathbf{c}^{\prime}\right\}$. Then $\mathbf{J}^{\mathbf{c}^{\prime}}$ is a subring of $\mathbf{J}$ and we have $\mathbf{J}=\oplus_{\mathbf{c}^{\prime}} \mathbf{J}^{\mathbf{c}^{\prime}}$ (as rings) where $\mathbf{c}^{\prime}$ runs over the two-sided cells of $W$.

If $w_{1}, w_{2}, \ldots, w_{r}$ above are in $\mathbf{c}$ then clearly,

$$
\begin{equation*}
t_{w_{1}} t_{w_{2}} \ldots t_{w_{r}}=\sum_{w \in \mathbf{c}} N(w,-(r-1) a) t_{w} \tag{d}
\end{equation*}
$$

where $N(w,-(r-1) a)$ is as in (c).

The unit element of $\mathbf{J}^{\mathbf{c}^{\prime}}$ is $\sum_{d \in \mathbf{D}_{\mathbf{c}^{\prime}}} t_{d}$ where $\mathbf{D}_{\mathbf{c}^{\prime}}$ is the set of distinguished involutions of $\mathbf{c}^{\prime}$. Let $\mathbf{D}=\cup_{\mathbf{c}^{\prime}} \mathbf{D}_{\mathbf{c}^{\prime}}$. We define $\psi: \mathbf{H} \rightarrow \mathcal{A} \otimes \mathbf{J}$ by $\psi\left(c_{w}\right)=$ $\sum_{z \in W, d \in \mathbf{D} ; \mathbf{a}(d)=\mathbf{a}(z)} h_{x, d, z} t_{z}$. From [19, 18.8] we see that $\psi$ is a homomorphism of $\mathcal{A}$-algebras with 1 . Specializing $v$ to 1 we get a ring homomorphism $\psi_{1}: \mathbf{Z}[W] \rightarrow \mathbf{J}$ where $\mathbf{Z}[W]$ is the group algebra of $W$. This becomes an isomorphism $\psi_{1}^{\mathbf{Q}}$ after tensoring by $\mathbf{Q}$ (see [19, 20.1]). For $E \in \operatorname{Irr} W$ we denote by $E_{\infty}$ the simple $\mathbf{Q} \otimes \mathbf{J}$-module which corresponds to $E$ under $\psi_{1}^{\mathbf{Q}}$. Now the $\mathbf{Q}(v) \otimes \mathbf{J}$-module $\mathbf{Q}(v) \otimes_{\mathbf{Q}} E_{\infty}$ can be regarded as a $\mathbf{Q}(v) \otimes_{\mathcal{A}}$ $\mathbf{H}$-module $E(v)$ via the algebra homomorphism (actually an isomorphism) $\mathbf{Q}(v) \otimes_{\mathcal{A}} \mathbf{H} \rightarrow \mathbf{Q}(v) \otimes \mathbf{J}$ induced by $\psi$.

Let $\operatorname{Irr}_{\mathbf{c}} W=\left\{E \in \operatorname{Irr} W ; \mathbf{c}_{E}=\mathbf{c}\right\}$. Let $E \in \operatorname{Irr} W$. From the definitions we see that we have $E \in \operatorname{Irr}_{\mathbf{c}} W$ if and only if $E_{\infty}$ is a simple $\mathbf{Q} \otimes \mathbf{J}^{\mathbf{c}}$-module. From the definitions, for any $z \in \mathbf{c}$ we have

$$
\begin{equation*}
\operatorname{tr}\left(c_{z}, E(v)\right)=\operatorname{tr}\left(t_{z}, E_{\infty}\right) v^{a}+\text { lower powers of } v \tag{e}
\end{equation*}
$$

Lemma 1.4. Let $r \geq 1$ and let $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{r}\right) \in W^{r}$.
(a) Assume that $w_{i} \in \mathbf{c}$ for some $i \in[1, r]$ and that $w \in W, k \in \mathbf{Z}$ are such that $N(w, k)$ in 1.2(b) is $\neq 0$. Then either $w \in \mathbf{c}, k \geq-(r-1) a$ or $w \prec \mathbf{c}$; if $w \in \mathbf{c}$ and $k=-(r-1) a$, then $w_{j} \in \mathbf{c}$ for all $j \in[1, r]$.
(b) Assume that $w_{i} \in \mathbf{c}$ for some $i \in[1, r]$. If $j \in \mathbf{Z}$ (resp. $\left.j>\nu+(r-1) a\right)$ then $\left(L_{\mathbf{w}}^{\bullet}[|\mathbf{w}|]\right)^{j}$ is a direct sum of simple perverse sheaves of the form $\mathbf{L}_{z}$ where $z \in W$ satisfies $z \preceq \mathbf{c}($ resp. $z \prec \mathbf{c})$.
(c) Assume that $w_{i} \prec \mathbf{c}$ for some $i \in[1, r]$ and that $w \in W, k \in \mathbf{Z}$ are such that $N(w, k)$ in $1.2(\mathrm{~b})$ is $\neq 0$. Then $w \prec \mathbf{c}$.
(d) Assume that $w_{i} \prec \mathbf{c}$ for some $i \in[1, r]$. If $j \in \mathbf{Z}$ then $\left(L_{\mathbf{w}}^{\bullet}[|\mathbf{w}|]\right)^{j}$ is a direct sum of simple perverse sheaves of the form $\mathbf{L}_{z}$ where $z \in W$ satisfies $z \prec \mathbf{c}$.

We prove (a). If $r=1$ the result is obvious (we have $k=0$ ). We now assume that $r \geq 2$. From the definitions we see that there exists a permutation $w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r}^{\prime}$ of $w_{1}, w_{2}, \ldots, w_{r}$, a sequence $z_{1}, z_{2}, \ldots, z_{r}$ in $W$ and a sequence $f_{2}, \ldots, f_{r}$ in $\mathbf{N}\left[v, v^{-1}\right]$ such that (i) $z_{1}=w_{1}^{\prime} \in \mathbf{c}, z_{r}=w$, (ii) for any $i \in[2, r], c_{z_{i}}$ appears with coefficient $f_{i}$ in $c_{z_{i-1}} c_{w_{i}^{\prime}}$ or in $c_{w_{i}^{\prime}} c_{z_{i-1}}$, (iii) $\left(k ; f_{2} f_{3} \ldots f_{n}\right) \neq 0$ (see 0.2). From the definition of $\preceq$ we have $z_{r} \preceq z_{r-1} \preceq$ $\ldots \preceq z_{2} \preceq z_{1}$. Hence $z_{r} \preceq \mathbf{c}, \mathbf{a}\left(z_{r}\right) \geq \mathbf{a}\left(z_{r-1}\right) \geq \cdots \geq \mathbf{a}\left(z_{2}\right) \geq \mathbf{a}\left(z_{0}\right)=a$ (see
[19, P4]), $v^{\mathbf{a}\left(z_{i}\right)} f_{i} \in \mathbf{N}[v]$ for $i=2, \ldots, r$. Hence $v^{\mathbf{a}\left(z_{2}\right)+\cdots+\mathbf{a}\left(z_{r}\right)} f_{2} f_{3} \ldots f_{r} \in$ $\mathbf{N}[v]$ so that $k+\mathbf{a}\left(z_{2}\right)+\cdots+\mathbf{a}\left(z_{r}\right) \geq 0$. We also see that if $z_{r} \in \mathbf{c}$ so that $\mathbf{a}\left(z_{r}\right)=a$ then $\mathbf{a}\left(z_{r}\right)=\mathbf{a}\left(z_{r-1}\right)=\cdots=\mathbf{a}\left(z_{2}\right)=a$ and $k+(r-1) a \geq 0$. Now assume that $z_{r} \in \mathbf{c}$ and $k=-(r-1) a$. Then $v^{\mathbf{a}\left(z_{2}\right)+\cdots+\mathbf{a}\left(z_{r}\right)} f_{2} f_{3} \ldots f_{r} \in \mathbf{N}[v]$ has $\neq 0$ constant term hence $v^{\mathbf{a}\left(z_{i}\right)} f_{i} \in \mathbf{N}[v]$ has $\neq 0$ constant term for $i=2, \ldots, r$. Using [19, P8], we deduce that $z_{i}, z_{i-1}, w_{i}^{\prime}$ are in the same twosided cell for $i=2, \ldots, r$. Hence $w_{2}^{\prime}, \ldots, w_{r}^{\prime}$ are in $\mathbf{c}$. Since $w_{1}^{\prime} \in \mathbf{c}$, we see that $w_{1}, \ldots, w_{r}$ are in $\mathbf{c}$. This proves (a).

Note that in (a) we have necessarily $w \preceq \mathbf{c}$. Replacing $\mathbf{c}$ in (a) by the two-sided cell containing $w_{i}$ in (c) we deduce that (c) holds.

We prove (b). By 1.2(b) we have
(e) $\quad\left(L_{\mathbf{w}}^{\bullet}[|\mathbf{w}|]\right)^{j} \cong \oplus_{w \in W, k \in \mathbf{Z}}\left(\left(\mathbf{L}_{w}\right)^{j+k-\nu}\right)^{\oplus N(w, k)}=\oplus_{w \in W}\left(\mathbf{L}_{w}\right)^{\oplus N(w, \nu-j)}$.

Hence if $\mathbf{L}_{z}$ appears as a summand in the last direct sum then $N(z, \nu-j) \neq 0$. Using (a) we see that $z \preceq \mathbf{c}$ and that $z \prec \mathbf{c}$ if $\nu-j<-(r-1) a$. This proves (b). The same proof, using (c) instead of (a) yields (d).
1.5. We consider the maps $\mathcal{B}^{2} \stackrel{f}{\leftarrow} X \stackrel{\pi}{\leftarrow} G$ where
$X=\left\{\left(B, B^{\prime}, g\right) \in \mathcal{B} \times \mathcal{B} \times G ; g B g^{-1}=B^{\prime}\right\}, f\left(B, B^{\prime}, g\right)=\left(B, B^{\prime}\right), \pi\left(B, B^{\prime}, g\right)=g$.
Now $L \mapsto \chi(L)=\pi!f^{*} L$ defines a functor $\mathcal{D}_{m}\left(\mathcal{B}^{2}\right) \rightarrow \mathcal{D}_{m}(G)$. For $i \in \mathbf{Z}, L \in$ $\mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ we write $\chi^{i}(L)$ instead of $(\chi(L))^{i}$.

The functor $\chi$ is the main tool used in the definition 13] of (unipotent) character sheaves. For any $z \in W$ we set $R_{z}=\chi\left(L_{z}^{\sharp}\right) \in \mathcal{D}_{m}(G)$. A unipotent character sheaf is a simple perverse sheaf $A \in \mathcal{M}(G)$ such that $\left(A: R_{z}^{j}\right) \neq 0$ for some $z \in W, j \in \mathbf{Z}$. Let $C S(G)$ be a set of representatives for the isomorphism classes of unipotent character sheaves.

By [15, 14.11], for any $A \in C S(G)$, any $z \in W$ and any $j \in \mathbf{Z}$ we have

$$
\begin{equation*}
\left(A: R_{z}^{j}\right)=\left(j-\Delta-|z| ;(-1)^{j-\Delta} \sum_{E \in \operatorname{Irr} W} c_{A, E} \operatorname{tr}\left(c_{z}, E(v)\right)\right) \tag{a}
\end{equation*}
$$

where $E(v)$ is as in 1.3 and $c_{A, E}$ are uniquely defined rational numbers; for $E^{\prime} \in \operatorname{Rep}(W)$ we set

$$
c_{A, E^{\prime}}=\sum_{E \in \operatorname{Irr} W}\left(\text { multiplicity of } E \text { in } E^{\prime}\right) c_{A, E} .
$$

Moreover, given $A$, there is a unique two-sided cell $\mathbf{c}_{A}$ of $W$ such that $c_{A, E}=$ 0 whenever $E \in \operatorname{Irr} W$ satisfies $\mathbf{c}_{E} \neq \mathbf{c}_{A}$; this differs from the two-sided cell associated to $A$ in [15, 16.7] by multiplication on the left or right by $w_{\max }$. Note that
(b) $\left(A: R_{z}^{j}\right) \neq 0$ for some $z \in \mathbf{c}_{A}, j \in \mathbf{Z}$ and conversely, if $\left(A: R_{z}^{j}\right) \neq 0$ for $z \in W, j \in \mathbf{Z}$, then $\mathbf{c}_{A} \preceq z$;
see [22, 41.8], [23, 44.18].
For example, if $G=G L_{2}(\mathbf{k})$ and $W=\{1, s\}$, we have $C S(G)=\left\{A_{0}, A_{1}\right\}$ with $A_{1} \not \neq A_{0}=\overline{\mathbf{Q}}_{l}[\Delta]$, and $R_{1}=A_{0}[-\Delta] \oplus A_{1}[-\Delta], R_{s}=A_{0}[-\Delta] \oplus$ $A_{0}[-\Delta-2]$. Thus $R_{1}^{\Delta} \cong A_{0} \oplus A_{1}, R_{1}^{j}=0$ if $j \neq \Delta$ and $R_{s}^{\Delta} \cong A_{0}, R_{s}^{\Delta+2} \cong A_{0}$, $R_{s}^{j}=0$ if $j \notin\{\Delta, \Delta+2\}$. We have $\operatorname{Irr} W=\left\{E_{0}, E_{1}\right\}$ where $E_{0}$ is the unit representation, $E_{1}$ is the sign representation and
$\operatorname{tr}\left(c_{1}, E_{0}(v)\right)=1, \operatorname{tr}\left(c_{1}, E_{1}(v)\right)=1, \operatorname{tr}\left(c_{s}, E_{0}(v)\right)=v+v^{-1}, \operatorname{tr}\left(c_{s}, E_{1}(v)\right)=0$.
It follows that $\left.c_{A_{i}, E_{j}}\right)=\delta_{i j}$ for $i, j \in\{0,1\}$. Hence $\mathbf{c}_{A_{0}}=\mathbf{c}_{E_{0}}=\{s\}$ (resp. $\left.\mathbf{c}_{A_{1}}=\mathbf{c}_{E_{1}}=\{1\}\right)$.

We return to the general case. For $A \in C S(G)$ let $a_{A}$ be the value of the a-function on $\mathbf{c}_{A}$. If $z \in W, E \in \operatorname{Irr}(W)$ satisfy $\operatorname{tr}\left(c_{z}, E(v)\right) \neq 0$ then $\mathbf{c}_{E} \preceq z$; if in addition we have $z \in \mathbf{c}_{E}$, then

$$
\operatorname{tr}\left(c_{z}, E(v)\right)=\sum_{h \geq 0} \gamma_{z, E, h} v^{a_{E}-h}
$$

where $\gamma_{z, E, h} \in \mathbf{Z}$ is zero for large $h$ and $a_{E}$ is the value of the a-function on $\mathbf{c}_{E}$. Hence from (a) we see that
(c) $\left(A: R_{z}^{j}\right)=0$ unless $\mathbf{c}_{A} \preceq z$ and, if $z \in \mathbf{c}_{A}$, then

$$
\left(A: R_{z}^{j}\right)=(-1)^{j+\Delta}\left(j-\Delta-|z| ; \sum_{h \geq 0, E \in \operatorname{Irr} W ; \mathbf{c}_{E}=\mathbf{c}_{A}} c_{A, E} \gamma_{z, E, h} v^{a_{A}-h}\right)
$$

which is 0 unless $j-\Delta-|z| \leq a_{A}$.
For $Y=G$ or $Y=\mathcal{B}^{2}$ let $\mathcal{M}^{\wedge} Y$ be the category of perverse sheaves on $Y$ whose composition factors are all of the form $A \in C S(G)$, when $Y=G$, or of the form $\mathbf{L}_{z}$ with $z \in W$ (when $Y=\mathcal{B}^{2}$ ). Let $\mathcal{M}^{\preceq} Y$ (resp. $\mathcal{M}^{\prec} Y$ ) be the category of perverse sheaves on $Y$ whose composition factors are all of the form $A \in C S(G)$ with $\mathbf{c}_{A} \preceq \mathbf{c}$ (resp. $\mathbf{c}_{A} \prec \mathbf{c}$ ), when $Y=G$, or of the form $\mathbf{L}_{z}$ with $z \preceq \mathbf{c}($ resp. $z \prec \mathbf{c})$ when $Y=\mathcal{B}^{2}$. Let $\mathcal{D}^{\circledR} Y\left(\right.$ resp. $\mathcal{D}^{\preceq} Y$ or $\left.\mathcal{D}^{\prec} Y\right)$ be the category of all $K \in \mathcal{D}(Y)$ such that $K^{i} \in \mathcal{M}^{\wedge} Y$ (resp. $K^{i} \in \mathcal{M}^{\prec} Y$ or $K^{i} \in \mathcal{M}^{\prec} Y$ ) for all $i \in \mathbf{Z}$. Let $\mathcal{M}_{m}^{\leftrightarrow} Y$ (or $\mathcal{M} \underset{m}{\prec} Y$, or $\mathcal{M}_{m}^{\prec} Y$ ) be the category of all $K \in \mathcal{M}_{m} Y$ which are also in $\mathcal{M}^{\natural} Y$ (or $\mathcal{M}^{\preceq} Y$ or $\mathcal{M}^{\prec} Y$ ). Let $\mathcal{D}_{m}^{\star} Y$ (or $\mathcal{D}_{m}^{\prec} Y$, or $\mathcal{D}_{m}^{\prec} Y$ ) be the category of all $K \in \mathcal{D}_{m} Y$ which are also in $\mathcal{D}^{\natural} Y$ (or $\mathcal{D}^{\preceq} Y$ or $\mathcal{D}^{\prec} Y$ ). From (c) we deduce:
(d) If $z \preceq \mathbf{c}$ then $R_{z}^{j} \in \mathcal{M} \preceq G$ for all $j \in \mathbf{Z}$ and. If $z \in \mathbf{c}$ and $j>a+\Delta+|z|$, then $R_{z}^{j} \in \mathcal{M}^{\prec} G$. If $z \prec \mathbf{c}$ then $R_{z}^{j} \in \mathcal{M}^{\prec} G$ for all $j \in \mathbf{Z}$.

Lemma 1.6. Let $r \geq 1, J \subset[1, r], J \neq \emptyset$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{r}\right) \in W^{r}$. Let $\mathfrak{E}=\Delta+r a$.
(a) Assume that $w_{i} \in \mathbf{c}$ for some $i \in[1, r]$. If $j \in \mathbf{Z}$ (resp. $\left.j>\mathfrak{E}\right)$ then $\chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right)$ is in $\mathcal{M}^{\preceq} G\left(\right.$ resp. $\left.\mathcal{M}^{\prec} G\right)$.
(b) Assume that $w_{i} \in \mathbf{c}$ for some $i \in J$. If $j \in \mathbf{Z}$ (resp. $j \geq \mathfrak{E}$ ) then $\chi^{j}\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)$ is in $\mathcal{M} \preceq G\left(\right.$ resp. $\left.\mathcal{M}^{\prec} G\right)$.
(c) Assume that $w_{i} \in \mathbf{c}$ for some $i \in J$. If $j \geq \mathfrak{E}$ then the cokernel of the map

$$
\chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{J}[|\mathbf{w}|]\right) \rightarrow \chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right)
$$

associated to 1.1(a) is in $\mathcal{M}^{\prec} G$.
(d) Assume that $w_{i} \in \mathbf{c}$ for some $i \in J$. If $j \in \mathbf{Z}$ (resp. $\left.j>\mathfrak{E}\right)$ then $\chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)$ is in $\mathcal{M}^{\preceq} G\left(\right.$ resp. $\left.\mathcal{M}^{\prec} G\right)$.
(e) Assume that $w_{i} \prec \mathbf{c}$ for some $i \in J$. If $j \in \mathbf{Z}$ then $\chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right) \in$ $\mathcal{M}^{\prec} G$ and $\chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{J}[|\mathbf{w}|]\right) \in \mathcal{M}^{\prec} G$.

We prove (a). Let $A$ be a simple perverse sheaf on $G$ and let $j \in \mathbf{Z}$ be such that $A$ is a composition factor of $\chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right)=\chi^{j+|\mathbf{w}|}\left(L_{\mathbf{w}}^{\bullet}\right)$. Then there exists $h^{\prime}$ such that $\left(A: \chi^{j+|\mathbf{w}|-h^{\prime}}\left(\left(L_{\mathbf{w}}^{\bullet}\right)^{h^{\prime}}\right)\right) \neq 0$. By 1.2(b) we have

$$
\left(L_{\mathbf{w}}^{\bullet}\right)^{h^{\prime}} \cong \oplus_{w \in W, k \in \mathbf{Z}}\left(\left(\mathbf{L}_{w}[k-|\mathbf{w}|-\nu]\right)^{h^{\prime}}\right)^{\oplus N(w, k)}
$$

$$
=\oplus_{w \in W, k \in \mathbf{Z}}\left(\left(\mathbf{L}_{w}\right)^{h^{\prime}+k-|\mathbf{w}|-\nu}\right)^{\oplus N(w, k)}=\oplus_{w \in W}\left(\mathbf{L}_{w}\right)^{\oplus N\left(w,|\mathbf{w}|+\nu-h^{\prime}\right)}
$$

Hence $A$ is a composition factor of

$$
\oplus_{w \in W}\left(\chi^{j+|\mathbf{w}|-h^{\prime}}\left(\mathbf{L}_{w}\right)\right)^{\oplus N\left(w,|\mathbf{w}|+\nu-h^{\prime}\right)} .
$$

Thus there exists $z \in W$ such that $N\left(z,|\mathbf{w}|+\nu-h^{\prime}\right) \neq 0$ and $(A$ : $\left.\chi^{j+|\mathbf{w}|-h^{\prime}}\left(\mathbf{L}_{z}\right)\right) \neq 0$. From $N\left(z,|\mathbf{w}|+\nu-h^{\prime}\right) \neq 0$ and 1.4(a) we see that $z \preceq \mathbf{c}$. We also see that $A \in C S(G)$ and $\mathbf{c}_{A} \preceq z$, see $1.5(\mathrm{~b})$; hence $\mathbf{c}_{A} \preceq \mathbf{c}$. If $z \prec \mathbf{c}$ or if $\mathbf{c}_{A} \prec z$ then $\mathbf{c}_{A} \prec \mathbf{c}$. Assume now that $z \in \mathbf{c}$ and $z \in \mathbf{c}_{A}$ so that $\mathbf{c}_{A}=\mathbf{c}$. From 1.4 we see that $|\mathbf{w}|+\nu-h^{\prime} \geq-(r-1) a$ that is $h^{\prime} \leq|\mathbf{w}|+\nu+(r-1) a$.

We have $\left(A: R_{z}^{j-h^{\prime}+|\mathbf{w}|+\nu+|z|}\right) \neq 0$ hence by 1.5 (c) we have

$$
j-h^{\prime}+|\mathbf{w}|+\nu+|z|-\Delta-|z| \leq a_{A}
$$

that is $j-h^{\prime}+|\mathbf{w}|+\nu-\Delta \leq a$. Combining this with the inequality $h^{\prime} \leq|\mathbf{w}|+\nu+(r-1) a$ we obtain $j \leq \Delta+r a$. This proves (a).

We prove (b). Let $A$ be a simple perverse sheaf on $G$ and $j \in \mathbf{Z}$ be such that $\left(A: \chi^{j}\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)\right) \neq 0$. There exists $h$ such that $(A$ : $\left.\left.\chi^{j}\left(p_{0 r!}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{h}\right)[-h]\right)\right) \neq 0$. We have $\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{h} \neq 0$ hence $\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu-\right.$ 1]) $)^{h-\nu+1} \neq 0$ hence by $1.1(\mathrm{c}), h-\nu+1 \leq 0$. From $1.1(\mathrm{~b})$ we see that there exists $\mathbf{w}^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r}^{\prime}\right) \in W^{r}$ such that $w_{i}=w_{i}^{\prime}$ for all $i \in J$ and such that $A$ is a composition factor of
$\chi^{j}\left(p_{0 r!}\left(L_{\mathbf{w}^{\prime}}^{[1, r]}\left[\left|\mathbf{w}^{\prime}\right|+\nu\right]\right)[-h]\right)=\chi^{j+\nu-h}\left(p_{0 r!}\left(L_{\mathbf{w}^{\prime}}^{[1, r]}\left[\left|\mathbf{w}^{\prime}\right|\right]\right)\right)=\chi^{j+\nu-h}\left(L_{\mathbf{w}^{\prime}}^{\bullet}\left[\left|\mathbf{w}^{\prime}\right|\right]\right)$.
From (a) (for $\mathbf{w}^{\prime}$ instead of $\mathbf{w}$ ) we see that $A \in C S(G), \mathbf{c}_{A} \preceq \mathbf{c}$ and that $\mathbf{c}_{A} \prec \mathbf{c}$ if $j+\nu-h>\Delta+r a$ that is, if $j>h+\Delta-\nu+r a$. If $j \geq \Delta+r a$ then using $h-\nu+1 \leq 0$ (that is $0>h-\nu$ ) we see that we have indeed $j>h+\Delta-\nu+r a$. This proves (b).

We prove (c). From 1.1(a) we get a distinguished triangle

$$
\left.\left(\chi\left(p_{0 r!} L_{\mathbf{w}}^{J}[| | \mathbf{w} \mid]\right]\right), \chi\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[[|\mathbf{w}|]]\right), \chi\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[[|\mathbf{w}|]]\right)\right)
$$

in $\mathcal{D}_{m}(G)$. This gives rise for any $j$ to an exact sequence

$$
\begin{equation*}
\chi^{j-1}\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[[|\mathbf{w}|]]\right) \rightarrow \chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{J}[[|\mathbf{w}|]]\right) \rightarrow \chi^{j}\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[[|\mathbf{w}|]]\right) \tag{f}
\end{equation*}
$$

$$
\left.\rightarrow \chi^{j}\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[| | \mathbf{w} \mid]\right]\right)
$$

$\mathcal{M}_{m}(G)$. Using this and (b) we see that (c) holds.
Now (d) follows from the previous exact sequence using (a),(b).
Replacing $\mathbf{c}$ in (a) and (d) by the two-sided cell containing $w_{i}$ in (e) we deduce that (e) holds.
1.7. Let $C S_{\mathbf{c}}=\left\{A \in C S(G) ; \mathbf{c}_{A}=\mathbf{c}\right\}$. For any $z \in \mathbf{c}$ we set $n_{z}=a+\Delta+|z|$. Let $A \in C S_{\mathbf{c}}$ and let $z \in \mathbf{c}$. We have:

$$
\begin{equation*}
\left(A: R_{z}^{n_{z}}\right)=(-1)^{a+|z|} \sum_{E \in \operatorname{Irr}_{\mathrm{c}} W} c_{A, E} \operatorname{tr}\left(t_{z}, E_{\infty}\right) \tag{a}
\end{equation*}
$$

Indeed, from 1.5(a) we have

$$
\left(A: R_{z}^{n_{z}}\right)=(-1)^{a+|z|} \sum_{E \in \operatorname{Irr} W} c_{A, E}\left(a ; \operatorname{tr}\left(c_{z}, E(v)\right)\right)
$$

and it remains to use $1.3(\mathrm{e})$. We show:
(b) For any $A \in C S_{\mathbf{c}}$ there exists $z \in \mathbf{c}$ such that $\left(A: R_{z}^{n_{z}}\right) \neq 0$.

Assume that this is not so. Then, using (a), we see that

$$
\sum_{E \in \operatorname{Irr}_{c} W} c_{A, E} \operatorname{tr}\left(t_{z}, E_{\infty}\right)=0
$$

for any $z \in \mathbf{c}$. This shows that the linear functions $t_{z} \mapsto \operatorname{tr}\left(t_{z}, E_{\infty}\right)$ on $\mathbf{J}^{\mathbf{c}}$ (for various $E$ as above) are linearly dependent. (It is known that $c_{A, E} \neq 0$ for some $E \in \operatorname{Irr}_{\mathbf{c}} W$.) This is a contradiction since the $E_{\infty}$ form a complete set of simple modules for the semisimple algebra $\mathbf{Q} \otimes \mathbf{J}^{\mathbf{c}}$.

Let $\mathbf{c}^{0}=\left\{z \in \mathbf{c} ; z \sim_{L} z^{-1}\right\}$. If $z \in \mathbf{c}-\mathbf{c}^{0}$ and $E \in \operatorname{Irr}_{\mathbf{c}} W$, then $\operatorname{tr}\left(t_{z}, E_{\infty}\right)=0$ (see [19, 24.2]). From this and (a) we deduce
(c) If $z \in \mathbf{c}-\mathbf{c}^{0}$, then $R_{z}^{n_{z}}=0$.
1.8. For $Y=G$ or $\mathcal{B}^{2}$ let $\mathcal{C}^{\wedge} Y$ be the subcategory of $\mathcal{M}^{\wedge} Y$ consisting of semisimple objects; let $\mathcal{C}_{0}^{\boldsymbol{\omega}} Y$ be the subcategory of $\mathcal{M}_{m} Y$ consisting of those $K \in \mathcal{M}_{m} Y$ such that $K$ is pure of weight 0 and such that as an object of
$\mathcal{M}(Y), K$ belongs to $\mathcal{C}^{\wedge} Y$. Let $\mathcal{C}^{\text {c }} Y$ be the subcategory of $\mathcal{M}^{\wedge} Y$ consisting of objects which are direct sums of objects in $C S_{\mathbf{c}}$ (if $Y=G$ ) or of the form $\mathbf{L}_{z}$ with $z \in \mathbf{c}\left(\right.$ if $\left.Y=\mathcal{B}^{2}\right)$. Let $\mathcal{C}_{0}^{\mathbf{c}} Y$ be the subcategory of $\mathcal{C}_{0}^{\boldsymbol{\omega}} Y$ consisting of those $K \in \mathcal{C}_{0}^{\boldsymbol{\omega}} Y$ such that as an object of $\mathcal{C}^{\boldsymbol{\infty}} Y, K$ belongs to $\mathcal{C}^{c} Y$. For $K \in \mathcal{C}_{0}^{\aleph} Y$, let $\underline{K}$ be the largest subobject of $K$ such that as an object of $\mathcal{C}^{\star} Y$, we have $\underline{K} \in \mathcal{C}^{c} Y$ 。

Proposition 1.9. (a) If $L \in \mathcal{D} \preceq \mathcal{B}^{2}$ then $\chi(L) \in \mathcal{D} \preceq G$. If $L \in \mathcal{D}^{\prec} \mathcal{B}^{2}$ then $\chi(L) \in \mathcal{D}^{\prec} G$.
(b) If $L \in \mathcal{M} \preceq \mathcal{B}^{2}$ and $j>a+\nu+\rho$ then $\chi^{j}(L) \in \mathcal{M}^{\prec} G$.

It is enough to prove the proposition assuming in addition that $L=\mathbf{L}_{z}$ where $z \preceq \mathbf{c}$. Then (a) follows from 1.6(a),(e). Im the setup of (b) we have $\chi^{j}\left(\mathbf{L}_{z}\right)=\chi^{j+\nu}\left(L_{z}^{\sharp}[[|z|]]\right)$ and this is in $\mathcal{M}^{\prec} G$ since $j+\nu>\Delta+a$, see 1.6(a).
1.10. For $L \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$ we set

$$
\underline{\chi}(L)=\underline{\left(\chi^{a+\nu+\rho}(L)\right.}((a+\nu+\rho) / 2)=\underline{(\chi(L))^{\{a+\nu+\rho\}}} \in \mathcal{C}_{0}^{\mathbf{c}} G .
$$

The functor $\underline{\chi}: \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2} \rightarrow \mathcal{C}_{0}^{\mathbf{c}} G$ is called truncated induction. For $z \in \mathbf{c}$ we have
(a)

$$
\underline{\chi}\left(\mathbf{L}_{z}\right)=\underline{R_{z}^{n_{z}}}\left(n_{z} / 2\right) .
$$

Indeed,

$$
\begin{aligned}
\underline{\chi}\left(\mathbf{L}_{z}\right) & =\underline{\chi^{a+\nu+\rho}\left(\mathbf{L}_{z}\right)}((a+\nu+\rho) / 2)=\underline{\left(\chi\left(L_{z}^{\sharp}[[|z|+\nu]]\right)^{a+\nu+\rho}\right.}((a+\nu+r) / 2) \\
& \left.=\underline{\chi^{a+\Delta+|z|}\left(L_{z}^{\sharp}\right.}\right)((a+\Delta+|z|) / 2)=\underline{\chi^{n_{z} / 2}\left(L_{z}^{\sharp}\right)}\left(n_{z} / 2\right) .
\end{aligned}
$$

We shall denote by $\tau: \mathbf{J}^{\mathbf{c}} \rightarrow \mathbf{Z}$ the group homomorphism such that $\tau\left(t_{z}\right)=1$ if $z \in \mathbf{D}_{\mathbf{c}}$ and $\tau\left(t_{z}\right)=0$, otherwise. For $z, u \in \mathbf{c}$ we show:

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} G}\left(\underline{\chi}\left(\mathbf{L}_{z}\right), \underline{\chi}\left(\mathbf{L}_{u}\right)\right)=\sum_{y \in \mathbf{c}} \tau\left(t_{y^{-1}} t_{z} t_{y} t_{u^{-1}}\right) \tag{b}
\end{equation*}
$$

Using (a) and the definitions we see that the left hand side of (b) equals

$$
\sum_{A \in C S_{\mathbf{c}}}\left(A: R_{z}^{n_{z}}\right)\left(A: R_{u}^{n_{u}}\right)
$$

hence, using 1.7(a) it equals

$$
\sum_{E, E^{\prime} \in \operatorname{Irr}_{\mathbf{c}} W}(-1)^{|z|+|u|} \sum_{A \in C S_{\mathbf{c}}} c_{A, E} c_{A, E^{\prime}} \operatorname{tr}\left(t_{z}, E_{\infty}\right) \operatorname{tr}\left(t_{u}, E_{\infty}^{\prime}\right)
$$

Replacing in the last sum $\sum_{A \in C S_{\mathrm{c}}} c_{A, E} c_{A, E^{\prime}}$ by 1 if $E=E^{\prime}$ and by 0 if $E \neq E^{\prime}$ (see [15, 13.12]) we obtain

$$
\sum_{E \in \operatorname{Irr}_{c} W}(-1)^{|z|+|u|} \operatorname{tr}\left(t_{z}, E_{\infty}\right) \operatorname{tr}\left(t_{u}, E_{\infty}\right)
$$

This is equal to $(-1)^{|z|+|u|}$ times the trace of the operator $\xi \mapsto t_{z} \xi t_{u^{-1}}$ on $\mathbf{J}^{\mathbf{c}} \otimes \mathbf{C}$. The last trace is equal to the sum over $y \in \mathbf{c}$ of the coefficient of $t_{y}$ in $t_{z} t_{y} t_{u^{-1}}$; this coefficient is equal to $\tau\left(t_{y^{-1}} t_{z} t_{y} t_{u^{-1}}\right)$ since for $y, y^{\prime} \in \mathbf{c}$, $\tau\left(t_{y^{\prime}} t_{y}\right)$ is 1 if $y^{\prime}=y^{-1}$ and is 0 if $y^{\prime} \neq y^{-1}$ (see [19, 20.1(b)]). Thus we have

$$
\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} G}\left(\underline{\chi}\left(\mathbf{L}_{z}\right), \underline{\chi}\left(\mathbf{L}_{u}\right)\right)=(-1)^{|u|+|z|} \sum_{y \in \mathbf{c}} \tau\left(t_{y^{-1}} t_{z} t_{y} t_{u^{-1}}\right)
$$

Since $\operatorname{dim} \operatorname{Hom}_{\mathcal{C}^{c} G}\left(\underline{\chi}\left(\mathbf{L}_{z}\right), \underline{\chi}\left(\mathbf{L}_{u}\right)\right) \in \mathbf{N}$ and $\sum_{y \in \mathbf{c}} \tau\left(t_{y^{-1}} t_{z} t_{y} t_{u^{-1}}\right) \in \mathbf{N}$, it follows that (b) holds.
1.11. A version of the following result (at the level of Grothendieck groups) appears in 13].
(a) Let $L, L^{\prime} \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$. Assume that $L^{\prime}$ is a $G$-equivariant perverse sheaf. We have canonically $\chi\left(L \bullet L^{\prime}\right)=\chi\left(L^{\prime} \bullet L\right)$.
Let $Z=\mathcal{B}^{2} \times G$. Define $c: Z \rightarrow \mathcal{B}^{2} \times \mathcal{B}^{2} \times G$ by

$$
c\left(\left(B_{1}, B_{2}\right), g\right)=\left(\left(B_{1}, B_{2}\right),\left(B_{2}, g B_{1} g^{-1}\right), g\right)
$$

and $d: Z \rightarrow G$ by $d\left(\left(B_{1}, B_{2}\right), g\right)=g$. Define $c^{\prime}: Z \rightarrow \mathcal{B}^{2} \times \mathcal{B}^{2} \times G$ by

$$
c^{\prime}\left(\left(B_{1}, B_{2}\right), g\right)=\left(\left(B_{2}, g B_{1} g^{-1}\right),\left(B_{1}, B_{2}\right), g\right)
$$

We have

$$
\chi\left(L \bullet L^{\prime}\right)=d_{!} c^{*}\left(L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}\right), \quad \chi\left(L^{\prime} \bullet L\right)=d_{!} c^{\prime *}\left(L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}\right) .
$$

Define $t: Z \rightarrow Z, u: \mathcal{B}^{2} \times \mathcal{B}^{2} \times G$ by

$$
\begin{aligned}
t\left(\left(B_{1}, B_{2}\right), g\right) & =\left(\left(B_{2}, g B_{1} g^{-1}\right), g\right) \\
u\left(\left(B_{1}, B_{2}\right),\left(B_{3}, B_{4}\right), g\right) & =\left(\left(B_{1}, B_{2}\right),\left(g B_{3} g^{-1}, g B_{4} g^{-1}\right), g\right) .
\end{aligned}
$$

We have $c t=u c^{\prime}, d t=d$. Since $L^{\prime}$ is $G$-equivariant we have canonically $u^{*}\left(L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}\right)=L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}$. Hence

$$
\begin{aligned}
d_{!} c^{*}\left(L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}\right) & =d_{!} t_{!} t^{*} c^{*}\left(L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}\right)=d_{!} c^{\prime *} u^{*}\left(L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}\right) \\
& =d_{!} c^{\prime *}\left(L \boxtimes L^{\prime} \boxtimes \overline{\mathbf{Q}}_{l}\right) .
\end{aligned}
$$

This proves (a).
We will not use (a) in this paper; a characteristic zero analogue of (a) plays a role in [4].

Lemma 1.12. Let $Y_{1}, Y_{2}$ be among $G, \mathcal{B}^{2}$ and let $\mathbf{X} \in \mathcal{D} \underset{m}{\preceq} Y_{1}$. Let $c, c^{\prime}$ be integers and let $\Phi: \mathcal{D}_{\bar{m}}^{\preceq} Y_{1} \rightarrow \mathcal{D}_{\bar{m}}^{\preceq} Y_{2}$ be a functor which takes distinguished triangles to distinguished triangles, commutes with shifts, maps $\mathcal{D}_{m}^{\prec} Y_{1}$ into $\mathcal{D}_{m}^{\prec} Y_{2}$ and maps complexes of weight $\leq i$ to complexes of weight $\leq i$ (for any i). Assume that (a),(b) below hold:
(a) $\quad\left(\Phi\left(\mathbf{X}_{0}\right)\right)^{h} \in \mathcal{M}_{m}^{\prec} Y_{2}$ for any $\mathbf{X}_{0} \in \mathcal{M}_{\bar{m}}^{\prec} Y_{1}$ and any $h>c$;
(b) $\quad \mathbf{X}$ has weight $\leq 0$ and $\mathbf{X}^{i} \in \mathcal{M}^{\prec} Y_{1}$ for any $i>c^{\prime}$.

Then
(c)

$$
(\Phi(\mathbf{X}))^{j} \in \mathcal{M}^{\prec} Y_{2} \text { for any } j>c+c^{\prime}
$$

and we have canonically
(d)

$$
\underline{\left(\Phi\left(\underline{\mathbf{X}}^{\left\{c^{\prime}\right\}}\right)\right)^{\{c\}}}=\underline{(\Phi(\mathbf{X}))^{\left\{c+c^{\prime}\right\}}}
$$

From the distinguished triangle $\left(\tau_{<i} \mathbf{X}, \tau_{\leq i} \mathbf{X}, \mathbf{X}^{i}[-i]\right)$ we get a distinguished triangle $\left(\Phi\left(\tau_{<i} \mathbf{X}\right), \Phi\left(\tau_{\leq i} \mathbf{X}\right), \Phi\left(\mathbf{X}^{i}[-i]\right)\right.$; hence we have an exact sequence

$$
\left(\Phi\left(\mathbf{X}^{i}\right)\right)^{h-1} \rightarrow\left(\Phi\left(\tau_{<i} \mathbf{X}\right)\right)^{i+h} \rightarrow\left(\Phi\left(\tau_{\leq i} \mathbf{X}\right)\right)^{i+h} \rightarrow\left(\Phi\left(\mathbf{X}^{i}\right)\right)^{h} \rightarrow\left(\Phi\left(\tau_{<i} \mathbf{X}\right)\right)^{i+h+1}
$$

From this and (a),(b) we see by induction on $i$ that
$\left(\Phi\left(\tau_{\leq i} \mathbf{X}\right)\right)^{i+h} \in \mathcal{M}^{\prec} Y_{2}$ if $i+h>c+c^{\prime}$ (in particular, $(\Phi(\mathbf{X}))^{k} \in \mathcal{M}^{\prec} Y_{2}$ if $k>c+c^{\prime}$ so that (c) holds);
$\left(\Phi\left(\tau_{\leq c^{\prime}} \mathbf{X}\right)\right)^{c+c^{\prime}} \xrightarrow{\beta}\left(\Phi\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c}$ has kernel and cokernel in $\mathcal{M}^{\prec} Y_{2} ;$
$\left(\Phi\left(\tau_{\leq i} \mathbf{X}\right)\right)^{c+c^{\prime}} \xrightarrow{\beta^{\prime}}\left(\Phi\left(\tau_{\leq i+1} \mathbf{X}\right)\right)^{c+c^{\prime}}$ has kernel and cokernel in $\mathcal{M}^{\prec} Y_{2}$ for $i \geq c^{\prime}$.

Here the maps $\beta, \beta^{\prime}$ come from the previous exact sequence. Now $\beta, \beta^{\prime}$ are strictly compatible with the weight filtrations (see [1, 5.3.5]); we deduce that the maps

$$
\begin{aligned}
g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq c^{\prime}} \mathbf{X}\right)\right)^{c+c^{\prime}} & \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c}, \\
g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i} \mathbf{X}\right)\right)^{c+c^{\prime}} & \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i+1} \mathbf{X}\right)\right)^{c+c^{\prime}}\left(\text { for } i \geq c^{\prime}\right)
\end{aligned}
$$

induced by $\beta, \beta^{\prime}$ have kernel and cokernel in $\mathcal{M}^{\prec} Y_{2}$. Since these are maps between semisimple perverse sheaves we see that they induce isomorphisms

$$
\begin{aligned}
\underline{g r_{c+c^{\prime}}}\left(\Phi\left(\tau_{\leq c^{\prime}} \mathbf{X}\right)\right)^{c+c^{\prime}} & \xrightarrow{\sim} \underline{g r_{c+c^{\prime}}\left(\Phi\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c}} \\
\underline{g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i} \mathbf{X}\right)\right)^{c+c^{\prime}}} & \xrightarrow{\sim} \underline{g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i+1} \mathbf{X}\right)\right)^{c+c^{\prime}}}\left(\text { for } i \geq c^{\prime}\right) .
\end{aligned}
$$

By composition we get a canonical isomorphism

$$
\begin{equation*}
\underline{g r_{c+c^{\prime}}\left(\Phi\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c} \xrightarrow{\sim} \underline{g r_{c+c^{\prime}}}(\Phi(\mathbf{X}))^{c+c^{\prime}}} \tag{e}
\end{equation*}
$$

(note that $\underline{g r_{c+c^{\prime}}(\Phi(\mathbf{X}))^{c+c^{\prime}}}=\underline{g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i} \mathbf{X}\right)\right)^{c+c^{\prime}}}$ for $i \gg 0$ ).
For any $j$ we have an exact sequence

$$
0 \rightarrow \mathcal{W}^{j-1}\left(\mathbf{X}^{c^{\prime}}\right) \rightarrow \mathcal{W}^{j}\left(\mathbf{X}^{c^{\prime}}\right) \rightarrow g r_{j} \mathbf{X}^{c^{\prime}} \rightarrow 0
$$

hence a distinguished triangle

$$
\left(\Phi\left(\mathcal{W}^{j-1}\left(\mathbf{X}^{c^{\prime}}\right)\right), \Phi\left(\mathcal{W}^{j}\left(\mathbf{X}^{c^{\prime}}\right)\right), \Phi\left(g r_{j} \mathbf{X}^{c^{\prime}}\right)\right)
$$

which gives rise to an exact sequence

$$
\begin{aligned}
\left(\Phi\left(g r_{j} \mathbf{X}^{c^{\prime}}\right)\right)^{c-1} & \rightarrow\left(\Phi\left(\mathcal{W}^{j-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c} \rightarrow\left(\Phi\left(\mathcal{W}^{j}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c}\right. \\
& \rightarrow\left(\Phi\left(g r_{j} \mathbf{X}^{c^{\prime}}\right)\right)^{c} \rightarrow\left(\Phi\left(\mathcal{W}^{j-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c+1}
\end{aligned}
$$

and to an exact sequence

$$
\begin{aligned}
g r_{c+c^{\prime}}\left(\Phi\left(g r_{j} \mathbf{X}^{c^{\prime}}\right)\right)^{c-1} & \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{j-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{j}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c} \\
& \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(g r_{j} \mathbf{X}^{c^{\prime}}\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{j-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c+1}\right.
\end{aligned}
$$

Now $\Phi\left(\mathcal{W}^{j}\left(\mathbf{X}^{c^{\prime}}\right)\right)$ is mixed of weight $\leq j$ hence $\left(\Phi\left(\mathcal{W}^{j}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c}$ is mixed of weight $\leq c+j$ so that $g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{j}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c}=0$ if $j<c^{\prime}$. Moreover $g r_{c+c^{\prime}}\left(\Phi\left(g r_{j} \mathbf{X}^{c^{\prime}}\right)\right)^{c}=0$ if $j>c^{\prime}$ since $\mathbf{X}^{c^{\prime}}$ is mixed of weight $\leq c^{\prime}$. Thus we have an exact sequence
$0 \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{c^{\prime}}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} \mathbf{X}^{c^{\prime}}\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{c^{\prime}-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c+1}$
and we have

$$
\begin{aligned}
g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{c^{\prime}}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c} & =g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{c^{\prime}+1}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c}=g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{c^{\prime}+2}\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c}\right. \\
& =\ldots
\end{aligned}
$$

Thus we have an exact sequence

$$
0 \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} \mathbf{X}^{c^{\prime}}\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{c^{\prime}-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c+1}
$$

By (a) we have $\left(\Phi\left(\mathcal{W}^{c^{\prime}-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c+1} \in \mathcal{M}^{\prec} Y_{2}$ hence

$$
g r_{c+c^{\prime}}\left(\Phi\left(\mathcal{W}^{c^{\prime}-1}\left(\mathbf{X}^{c^{\prime}}\right)\right)\right)^{c+1} \in \mathcal{M}^{\prec} Y_{2} .
$$

Thus $g r_{c+c^{\prime}}\left(\Phi\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c}$ is a subobject of $g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} \mathbf{X}^{c^{\prime}}\right)\right)^{c}$ and the quotient is in $\mathcal{M}^{\prec} Y_{2}$. Since $g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} \mathbf{X}^{c^{\prime}}\right)\right)^{c}$ is semisimple in $\mathcal{M}\left(Y_{2}\right)$ it follows that

$$
\underline{g r_{c+c^{\prime}}\left(\Phi\left(\mathbf{X}^{c^{\prime}}\right)\right)^{c}}=\underline{g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} \mathbf{X}^{c^{\prime}}\right)\right)^{c}}
$$

This, together with (e) gives

It follows that

$$
\underline{g r_{c+c^{\prime}}\left(\Phi\left(\underline{g r_{c^{\prime}} \mathbf{X}^{c^{\prime}}}\right)\right)^{c}}=\underline{g r_{c+c^{\prime}}(\Phi(\mathbf{X}))^{c+c^{\prime}}}
$$

so that (d) holds.
1.13. Let $L \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$. We have clearly $\mathfrak{D}(L) \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$. We show that we have canonically:
(a)

$$
\underline{\chi}(\mathfrak{D}(L))=\mathfrak{D}(\underline{\chi}(L)) .
$$

By the relative hard Lefschetz theorem [1, 5.4.10] applied to the projective morphism $\pi$ and to $f^{*} L[[\nu+\rho]]$ (a perverse sheaf of pure weight 0 on $X$, notation of 1.5 ) we have canonically for any $i$ :

$$
\begin{equation*}
\left(\pi_{!} f^{*} L[[\nu+\rho]]\right)^{-i}=\left(\pi_{!} f^{*} L[[\nu+\rho]]\right)^{i}(i) \tag{b}
\end{equation*}
$$

We have used that $f$ is smooth with fibres of dimension $\nu+\rho$. This also shows that

$$
\begin{equation*}
\mathfrak{D}(\chi(\mathfrak{D}(L)))=\chi(L)[[2 \nu+2 \rho]] . \tag{c}
\end{equation*}
$$

Using (b), (c) we have

$$
\begin{aligned}
\mathfrak{D}(\underline{\chi}(\mathfrak{D}(L))) & =\mathfrak{D}\left((\chi(\mathfrak{D}(L)))^{a+\nu-r}((a+\nu+\rho) / 2)\right) \\
& \left.=(\mathfrak{D}(\chi(\mathfrak{D}(L))))^{-a-\nu-\rho}((-a-\nu-\rho) / 2)\right) \\
& \left.=(\chi(L)[[2 \nu+2 \rho]])^{-a-\nu-\rho}((-a-\nu-\rho) / 2)\right) \\
& \left.=(\chi(L)[[\nu+\rho]])^{-a}(-a / 2)\right) \\
& \left.\left.=(\chi(L)[[\nu+\rho]])^{a}(a / 2)\right)=(\chi(L))^{a+\nu+\rho}((a+\nu+\rho) / 2)\right)=\underline{\chi} L .
\end{aligned}
$$

This proves (a).
1.14. Let $d \in \mathbf{D}_{\mathbf{c}}$ and let $\Lambda_{d}$ be the left cell containing $d$. We show:
(a)

$$
\left(A: \underline{\chi}\left(\mathbf{L}_{d}\right)\right)=c_{A,\left[\Lambda_{d}\right]} \text { for any } A \in C S_{\mathbf{c}}
$$

For any $E \in \operatorname{Irr}_{\mathbf{c}} W$ we have $\operatorname{tr}\left(t_{d}, E_{\infty}\right)=$ multiplicity of $E$ in $\left[\Lambda_{d}\right]$. Hence, using 1.10(a) and 1.7(a), we have

$$
\begin{aligned}
\left(A: \underline{\chi}\left(\mathbf{L}_{d}\right)\right) & =(-1)^{a+|d|} \sum_{E \in \operatorname{Irr}_{\mathrm{c}} W} c_{A, E}\left(\text { multiplicity of } E \text { in }\left[\Lambda_{d}\right]\right) \\
& =(-1)^{a+|d|} c_{A,\left[\Lambda_{d}\right]} .
\end{aligned}
$$

It remains to show that

$$
\begin{equation*}
|d|=a \bmod 2 \tag{b}
\end{equation*}
$$

If $p_{1, d} \in \mathbf{Z}\left[v^{-1}\right]$ is as in $\left.19,5.3\right]$, then $v^{-a}$ appears with nonzero coefficient in $p_{1, d}$, see [19, 14.1] hence by [19, $\left.5.4(\mathrm{~b})\right]$ we have $-a=|d|-|1| \bmod 2$. This proves (b) hence (a).
1.15. Let $\pi_{1}:\{(B, g) \in \mathcal{B} \times G ; g \in B\} \rightarrow G$ be the first projection. Let $\Sigma:=\pi_{1!} \overline{\mathbf{Q}}_{l}[[\Delta]]$. As observed in [11], $\pi_{1}$ is small, so that $\Sigma$ is a perverse sheaf on $G$; moreover, $\Sigma$ has a natural $W$-action so that $\Sigma=\oplus_{E \in \operatorname{Irr} W} E \otimes A_{E}$ where $A_{E}=\operatorname{Hom}_{W}(E, \Sigma)$ is a simple perverse sheaf. Since $\Sigma=\chi\left(\mathbf{L}_{1}\right)[[\nu+\rho]]$ we have $A_{E} \in \mathcal{C}_{0}^{\curvearrowleft} G$ for any $E$. It is known that $A_{E} \in \mathcal{M} \preceq G$ if and only if $\mathbf{c}_{E} \prec \mathbf{c}$ and $A_{E} \in \mathcal{C}^{\mathbf{c}} G$ if and only if $\mathbf{c}_{E}=\mathbf{c}$. (A closely related statement appears in 12, 12.6].) There is a unique $E_{\mathbf{c}} \in \operatorname{Irr}_{\mathbf{c}} W$ such that $E_{\mathbf{c}}^{\dagger}$ is a special representation of $W$.

We show:
(a) Assume that $\left(A_{E_{\mathbf{c}}}: \underline{\chi}\left(\mathbf{L}_{d}\right)\right) \leq 1$ for any $d \in \mathbf{D}_{\mathbf{c}}$. Then for any $d \in \mathbf{D}_{\mathbf{c}}$ we have $\left(A_{E_{\mathbf{c}}}: \underline{\chi}\left(\mathbf{L}_{d}\right)\right)=1$.
For any $d \in \mathbf{D}_{\mathbf{c}}$ we set $\delta(d)=c_{A_{E_{\mathbf{c}}},\left[\Lambda_{d}\right]}$. By 1.14 our assumption is that $\delta(d) \in\{0,1\}$ for any $d \in \mathbf{D}_{\mathbf{c}}$ and we must prove that $\delta(d)=1$ for any $d \in \mathbf{D}_{\mathbf{c}}$. Since $c_{A_{E_{\mathbf{c}}},[\mathbf{c}]}=\sum_{d \in \mathbf{D}_{\mathbf{c}}} \delta(d)$, it is enough to show that $c_{A_{E_{\mathbf{c}}},[\mathbf{c}]}=\left|\mathbf{D}_{\mathbf{c}}\right|$. Since $\mathbf{c}_{A_{E_{\mathbf{c}}}}=\mathbf{c}$ we have $c_{A_{E_{\mathbf{c}}},\left[\mathbf{c}^{\prime}\right]}=0$ for any two-sided cell $\mathbf{c}^{\prime} \neq \mathbf{c}$. Hence it is enough to show that $\sum_{\mathbf{c}^{\prime}} c_{A_{E_{\mathbf{c}}},\left[\mathbf{c}^{\prime}\right]}=\left|\mathbf{D}_{\mathbf{c}}\right|$ where $\mathbf{c}^{\prime}$ runs over the twosided cells in $W$. Let Reg be the regular representation of $W$. We have $\sum_{\mathbf{c}^{\prime}} c_{A_{E_{\mathbf{c}}},\left[\mathbf{c}^{\prime}\right]}=c_{A_{E_{\mathbf{c}}}}$,Reg hence it is enough to show that $c_{A, \text { Reg }}=\left|\mathbf{D}_{\mathbf{c}}\right|$ where $A=A_{E \mathbf{c}}$. From 1.5(a) we have

$$
\left(A: R_{1}^{\Delta}\right)=\left(0 ; \sum_{E \in \operatorname{Irr} W} c_{A, E} \operatorname{dim}(E)\right)=\sum_{E \in \operatorname{Irr} W} c_{A, E} \operatorname{dim}(E)=c_{A, \operatorname{Reg}}
$$

hence it is enough to show that $\left(A: R_{1}^{\Delta}\right)=\left|\mathbf{D}_{\mathbf{c}}\right|$. Recall that $R_{1}[\Delta]=\Sigma$ hence it is enough to show that $(A: \Sigma)=\left|\mathbf{D}_{\mathbf{c}}\right|$. We have $(A: \Sigma)=\operatorname{dim} E_{\mathbf{c}}$. It remains to show that $\operatorname{dim}\left(E_{\mathbf{c}}\right)=\left|\mathbf{D}_{\mathbf{c}}\right|$. This is a well known property of special representations.

We will see in 6.4 that the assumption of (a) is in fact satisfied.

## 2. Truncated Restriction

2.1. The following result and its proof are similar to 1.6.

Lemma 2.2. Let $r \geq 1, J \subset[1, r], J \neq \emptyset$ and $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{r}\right) \in W^{r}$. Let $\mathfrak{F}=\nu+(r-1) a$.
(a) Assume that $w_{i} \in \mathbf{c}$ for some $i \in[1, r]$. If $j \in \mathbf{Z}$ (resp. $\left.j>\mathfrak{F}\right)$ then $\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right)^{j}$ is in $\mathcal{M}^{\preceq} \mathcal{B}^{2}\left(\right.$ resp. $\left.\mathcal{M}^{\prec} \mathcal{B}^{2}\right)$.
(b) Assume that $w_{i} \in \mathbf{c}$ for some $i \in J$. If $j \in \mathbf{Z}$ (resp. $j \geq \mathfrak{F}$ ) then $\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{j}$ is in $\mathcal{M} \preceq \mathcal{B}^{2}$ (resp. $\mathcal{M}^{\prec} \mathcal{B}^{2}$ ).
(c) Assume that $w_{i} \in \mathbf{c}$ for some $i \in J$. If $j \geq \mathfrak{F}$ then the cokernel of the map

$$
\left(p_{0 r!} L_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{j} \rightarrow\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right)^{j}
$$

associated to 1.1(a) is in $\mathcal{M}^{\prec} \mathcal{B}^{2}$.
(d) Assume that $w_{i} \in \mathbf{c}$ for some $i \in J$. If $j \in \mathbf{Z}$ (resp. $\left.j>\mathfrak{F}\right)$ then $\left(p_{0 r!} L_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{j}$ is in $\mathcal{M}^{\preceq} \mathcal{B}^{2}\left(\right.$ resp. $\left.\mathcal{M}^{\prec} \mathcal{B}^{2}\right)$.
(e) Assume that $w_{i} \prec \mathbf{c}$ for some $i \in J$. If $j \in \mathbf{Z}$ then $\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right)^{j} \in$ $\mathcal{M}^{\prec} \mathcal{B}^{2}$ and $\left(p_{0 r!} L_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$.

We prove (a). Let $L=\mathbf{L}_{z}, z \in W$ and $j \in \mathbf{Z}$ be such that $L$ is a composition factor of $\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[|\mathbf{w}|]\right)^{j}=\left(L_{\mathbf{w}}^{\bullet}[\mathbf{w}]\right)^{j}$. By 1.2(b) we have

$$
\left(L_{\mathbf{w}}^{\bullet}[|\mathbf{w}|]\right)^{j} \cong \oplus_{w \in W, k \in \mathbf{Z} ; j+k-\nu=0}\left(\mathbf{L}_{w}\right)^{\oplus N(w, k)}
$$

hence $N(z, \nu-j)=0$. From $N(z, \nu-j) \neq 0$ and 1.4(a) we see that $z \preceq \mathbf{c}$. Assume now that $z \in \mathbf{c}$. From 1.4 we see that $\nu-j \geq-(r-1) a$ that is $j \leq \mathfrak{F}$.

We prove (b). Let $L=\mathbf{L}_{z}, z \in W$ and $j \in \mathbf{Z}$ be such that $L$ is a composition factor of $\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{j}$. There exists $h$ such that $L$ is a composition factor of $\left.\left(p_{0 r!}\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{h}\right)[-h]\right)^{j}$. We have $\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|]\right)^{h} \neq 0$ hence $\left(\dot{L}_{\mathbf{w}}^{J}[|\mathbf{w}|+\nu-1]\right)^{h-\nu+1} \neq 0$ hence by 1.1(c), $h-\nu+1 \leq 0$. From 1.1(b) we
see that there exists $\mathbf{w}^{\prime}=\left(w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r}^{\prime}\right) \in W^{r}$ such that $w_{i}=w_{i}^{\prime}$ for all $i \in J$ and such that $L$ is a composition factor of

$$
\left(p_{0 r!}\left(L_{\mathbf{w}^{\prime}}^{[1, r]}\left[\left|\mathbf{w}^{\prime}\right|+\nu\right]\right)[-h]\right)^{j}=\left(p_{0 r!}\left(L_{\mathbf{w}^{\prime}}^{[1, r]}\left[\left|\mathbf{w}^{\prime}\right|\right]\right)\right)^{j+\nu-h}=\left(L_{\mathbf{w}^{\prime}}^{\bullet}\left[\left|\mathbf{w}^{\prime}\right|\right]\right)^{j+\nu-h}
$$

From (a) (for $\mathbf{w}^{\prime}$ instead of $\mathbf{w}$ ) we see that $z \preceq \mathbf{c}$ and that $z \prec \mathbf{c}$ if $j+\nu-h>\mathfrak{F}$ that is, if $j>h+\mathfrak{F}-\nu$. If $j \geq \mathfrak{F}$ then using $h-\nu+1 \leq 0$ (that is $0>h-\nu$ ) we see that we have indeed $j>h+\mathfrak{F}-\nu$. This proves (b).

We prove (c). From 1.1(a) we get a distinguished triangle

$$
\left.\left.\left(p_{0 r!} L_{\mathbf{w}}^{J}[| | \mathbf{w} \mid]\right], p_{0 r!} L_{\mathbf{w}}^{[1, r]}[[|\mathbf{w}|]], p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[| | \mathbf{w} \mid]\right]\right)
$$

in $\mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$. This gives rise for any $j$ to an exact sequence

$$
\begin{equation*}
\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[[|\mathbf{w}|]]\right)^{j-1} \rightarrow\left(p_{0 r!} L_{\mathbf{w}}^{J}[[|\mathbf{w}|]]\right)^{j} \rightarrow\left(p_{0 r!} L_{\mathbf{w}}^{[1, r]}[[|\mathbf{w}|]]\right)^{j} \rightarrow\left(p_{0 r!} \dot{L}_{\mathbf{w}}^{J}[[|\mathbf{w}|]]\right)^{j} \tag{f}
\end{equation*}
$$

in $\mathcal{M}_{m}\left(\mathcal{B}^{2}\right)$. Using this and (b) we see that (c) holds.
Now (d) follows from the previous exact sequence using (a),(b).
Replacing $\mathbf{c}$ in (a) and (d) by the two-sided cell containing $w_{i}$ in (e) we deduce that (e) holds.
2.3. Let $r \geq 1$ and let $x_{1}, x_{2}, \ldots, x_{r}$ be elements of $W$ such that at least one of them is in $\mathbf{c}$. We show:
(a) If $\underline{\left(\mathbf{L}_{x_{1}} \bullet \mathbf{L}_{x_{2}} \bullet \ldots \bullet \mathbf{L}_{x_{r}}\right)\{(r-1)(a-\nu)\}} \neq 0$ then $x_{i} \in \mathbf{c}$ for all $i \in[1, r]$.

By assumption we have

$$
\left.\left(L_{x_{1}}^{\sharp}\left[\left[\left|x_{1}\right|\right]\right] \bullet L_{x_{2}}^{\sharp}\left[| | x_{2} \mid\right]\right] \bullet \ldots \bullet L_{x_{r}}^{\sharp}\left[\left[\left|x_{r}\right|\right]\right]\right)^{\{\nu+(r-1) a\}} \neq 0 .
$$

Using 1.2(b) we see that there exists $w \in \mathbf{c}$ such that $\mathbf{L}_{w}$ appears with nonzero multiplicity in

$$
\sum_{z \in W, n \in \mathbf{Z}}\left(\left(L_{z}^{\sharp}[n+|z|]\right)^{(r-1) a+\nu}\right)^{\oplus N_{y}(z, n)}
$$

(that is, $\left.N_{y}(w,-(r-1) a) \neq 0\right)$ where $N_{y}(z, n) \in \mathbf{N}$ are given by the following
identity in $\mathbf{H}$ :

$$
c_{x_{1}} c_{x_{2}} \ldots c_{x_{r}}=\sum_{z \in W, n \in \mathbf{Z}} N_{y}(z, n) v^{n} c_{z}
$$

From $N_{y}(w,-(r-1) a) \neq 0$ we see using 1.3(b) that $x_{i} \in \mathbf{c}$ for all $i$.
2.4. In the setup of 2.3 , we see using $1.3(\mathrm{~d})$, that
(a) $N_{y}\left(w^{\prime},-(r-1) a\right)$ is the coefficient of $t_{w^{\prime}}$ in $t_{w_{1}} t_{w_{2}} \ldots t_{w_{r}}$.
2.5. Let $\pi, f$ be as in 1.5. Now $K \mapsto \zeta(K)=f_{!} \pi^{*} K$ defines a functor $\mathcal{D}_{m}(G) \rightarrow \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$. For $i \in \mathbf{Z}, K \in \mathcal{D}_{m}(G)$ we write $\zeta^{i}(K)$ instead of $(\zeta(K))^{i}$.

A functor closely related to $\zeta$ (in which a complex $K$ on $G$ was integrated over the cosets of the unipotent radical of a Borel subgroup, rather than over the cosets of a Borel subgroup as in $\zeta$ ) was introduced in 27] and by the author in 1987 (unpublished, but mentioned in [27, §5] and [7, §0]) when I found a criterion for $K$ to be a character sheaf in terms of the cohomology sheaves of the image of $K$ under this functor. My proof of that criterion was based in part on something close to the following result, a version of which (at the level of Grothendieck groups) appears also in [8, (3.3.1)].

Proposition 2.6. For any $L \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ we have
(a) $\quad \zeta(\chi(L)) \approx\left\{\oplus_{y \in W ;|y|=k} L_{y} \bullet L \bullet L_{y^{-1}} \otimes \mathfrak{L}[[2 k-2 \nu]] ; k \in \mathbf{N}\right\}$,
(b) $\quad \zeta(\chi(L)) \approx\left\{\oplus_{y \in W ;|y|=k} L_{y} \bullet L \bullet L_{y^{-1}}\right.$

$$
\left.\otimes \mathfrak{L}[[2 k-2 \nu-2 \rho]] \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2) ; k \in \mathbf{N}, d \in[0, \rho]\right\}
$$

where $\mathfrak{L}, \mathcal{X}$ are as in 0.2 .
Let
$Y=\left\{\left(B_{1}, B_{2}, B_{3}, B_{4}, g\right) \in \mathcal{B} \times \mathcal{B} \times \mathcal{B} \times \mathcal{B} \times G ; g B_{1} g^{-1}=B_{4}, g B_{2} g^{-1}=B_{3}\right\}$.
For $i j=14$ or 23 we define $h_{i j}^{\prime}: Y \rightarrow X$ by $\left(B_{1}, B_{2}, B_{3}, B_{4}, g\right) \mapsto\left(B_{i}, B_{j}, g\right)$ and $h_{i j}: Y \rightarrow \mathcal{B}^{2}$ by $\left(B_{1}, B_{2}, B_{3}, B_{4}, g\right) \mapsto\left(B_{i}, B_{j}\right)$. We have $\pi^{*} \pi!=h_{14!}^{\prime} h_{23}^{\prime}{ }^{*}$ hence

$$
\zeta(\chi(L))=f_{!} \pi^{*} \pi!f^{*}(L)=f_{!} h_{14!}^{\prime} h_{23}^{\prime}{ }^{*} f^{*}(L)=h_{14!} h_{23}^{*} L
$$

For $k \in \mathbf{N}$ let $Y^{k}=\cup_{y \in W ;|y|=k} Y_{y}$ where

$$
Y_{y}=\left\{\left(B_{1}, B_{2}, B_{3}, B_{4}, g\right) \in Y ;\left(B_{1}, B_{2}\right) \in \mathcal{O}_{y},\left(B_{3}, B_{4}\right) \in \mathcal{O}_{y^{-1}}\right\}
$$

and let $Y^{\geq k}:=\cup_{k^{\prime} ; k^{\prime} \geq k} Y^{k^{\prime}}$, an open subset of $Y$; let $h_{i j}^{k}: Y^{k} \rightarrow \mathcal{B}^{2}, h_{i j}^{\geq k}$ : $Y^{\leq k} \rightarrow \mathcal{B}^{2}$ be the restrictions of $h_{i j}$. For any $k \in \mathbf{N}$ we have a distinguished triangle

$$
\left.\left(h_{14!}^{\geq k+1} h_{23}^{\geq k+1 *} L\right), h_{14!}^{\geq k} h_{23}^{\geq k *} L, h_{14!}^{k} h_{23}^{k *} L\right) .
$$

It follows that we have

$$
\zeta(\chi(L)) \approx\left\{h_{14!}^{k} h_{23}^{k *} L ; k \in \mathbf{N}\right\} .
$$

For $k \in \mathbf{N}$ let $Z^{k}=\cup_{y \in W ;|y|=k} Z_{y}$ where

$$
Z_{y}=\left\{\left(B_{1}, B_{2}, B_{3}, B_{4}\right) \in \mathcal{B}^{4} ;\left(B_{1}, B_{2}\right) \in \mathcal{O}_{y},\left(B_{3}, B_{4}\right) \in \mathcal{O}_{y^{-1}}\right\}
$$

for $i, j \in[1,4]$ we define $\tilde{h}_{i j}^{k}: Z^{k} \rightarrow \mathcal{B}^{2}$ and $\tilde{h}_{i j}^{y}: Z_{y} \rightarrow \mathcal{B}^{2}$ by $\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$ $\mapsto\left(B_{i}, B_{j}\right)$. We have an obvious morphism $u: Y^{k} \rightarrow Z^{k}$ whose fibres are isomorphic to $\mathbf{k}^{\nu-k}$ times the $\rho$-dimensional torus $T$. We have a commutative diagram


We have
$h_{14!}^{k}{ }_{23}^{k *} L=\tilde{h}_{14!}^{k} u_{!} u^{*} \tilde{h}_{23}^{k *} L=\tilde{h}_{14!}^{k}\left(\tilde{h}_{23}^{k *} L \otimes u_{!} \overline{\mathbf{Q}}_{l}\right)=\left(\tilde{h}_{14!}^{k} \tilde{h}_{23}^{k *} L\right) \otimes \mathfrak{L}[[-2 \nu+2 k]]$.
We deduce that

$$
\zeta(\chi(L)) \approx\left\{\left(\tilde{h}_{14!}^{k} \tilde{h}_{23}^{k *} L\right) \otimes \mathfrak{L}[[-2 \nu+2 k]] ; k \in \mathbf{N}\right\} .
$$

Since $Z^{k}$ is the union of open and closed subvarieties $Z_{y},|y|=k$, we have

$$
\tilde{h}_{14!}^{k} \tilde{h}_{23}^{k *} L=\oplus_{y \in W ;|y|=k} \tilde{h}_{14!}^{y} \tilde{h}_{23}^{y *} L
$$

From the definitions we have

$$
\tilde{h}_{14!}^{y} \tilde{h}_{23}^{y *} L=L_{y} \bullet L \bullet L_{y^{-1}} .
$$

This completes the proof of (a). Now (b) follows from (a) using

$$
\begin{equation*}
\mathfrak{L}[[2 \rho]] \approx\left\{\overline{\mathbf{Q}}_{l} \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2) ; d \in[0, \rho]\right\} \tag{c}
\end{equation*}
$$

which follows from the definitions.
Proposition 2.7. Let $w \in W$ and let $j \in \mathbf{Z}$. We set $S=\zeta\left(R_{w}\right)[[2 \rho+2 \nu+$ $|w|]] \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$.
(a) If $w \preceq \mathbf{c}$ then $S^{j} \in \mathcal{M}^{\preceq} \mathcal{B}^{2}$.
(b) If $w \in \mathbf{c}$ and $j>\nu+2 a$ then $S^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$.
(c) If $w \prec \mathbf{c}$ then $S^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$.
(d) $S^{j}$ is mixed of weight $\leq j$.
(e) If $j \neq \nu+2 a$ and $w \in \mathbf{c}$ then gr $_{\nu+2 a} S^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$.
(f) If $k>\nu+2 a$ and $w \in \mathbf{c}$ then $g r_{k} S^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$.

Let $J=\{2\} \subset[1,3]$. Using 2.5 and $1.2($ a) with $r=3$ we have
(g) $\left.\left.S \approx\left\{p_{03!} L_{y, w, y^{-1}}^{J}[| | w|+2| y \mid]\right]\right) \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2) ; d \in[0, \rho], y \in W\right\}$.

Using this and the definitions we see that to prove (a) it is enough to show that for any $y, d$ as above we have

$$
\begin{equation*}
\left(p_{03!} L_{y, w, y^{-1}}^{J}[[|w|+2|y|]] \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2)\right)^{j} \in \mathcal{M}^{\preceq} \mathcal{B}^{2} \tag{h}
\end{equation*}
$$

this follows from $2.2(\mathrm{~d})$, (e). This proves (a).
At the same time we see that to prove (d) it is enough to show that for any $y, d$ as above, $(\mathrm{h})$ is mixed of weight $\leq j$. Since $\overline{\mathbf{Q}}_{l}[[d]](d / 2)$ is pure of weight $-d \leq 0$, to prove the last statement it is enough to show that $p_{03!} L_{y, w, y^{-1}}^{J}[[|w|+2|y|]]$ is mixed of weight $\leq 0$. Note that $L_{y, w, y^{-1}}^{J}[[|w|+2|y|]]$ is obtained by ()! under an open imbedding from $\left.L_{y, w, y^{-1}}^{[1,3]}[| | w|+2| y \mid]\right]$ which is pure of weight 0 hence it is mixed of weight $\leq 0$ (see [1, 5.1.14]), hence $p_{03!} L_{y, w, y^{-1}}^{J}[[|w|+2|y|]]$ is mixed of weight $\leq 0$ (see [1, 5.1.14]). This proves (d).

We prove (b). It is again enough to show that for any $y, d$ as above

$$
\left(p_{03!} L_{y, w, y^{-1}}^{J}[[|w|+2|y|]] \otimes \Lambda^{d} \mathcal{X} d[[d]](d)\right)^{j}
$$

is in $\mathcal{M}^{\prec} \mathcal{B}^{2}$ if $j>\nu+2 a$. This follows from 2.2(d) since $j>\nu+2 a, d \geq 0$ implies $j+d>\nu+2 a$.

Now (c) follows from (a) by replacing $\mathbf{c}$ by the two-sided cell containing $w$.

We prove (e). If $j>\nu+2 a$ this follows from (b). If $j<\nu+2 a$ we have $g r_{\nu+2 a} S^{j}=0$ by (a). This proves (e).

We prove (f). If $j<k$ we have $g r_{k} S^{j}=0$ by (d). If $j \geq k$ we have $j>\nu+2 a$ so that $S^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$ by (b). This proves (f).

Proposition 2.8. (a) If $K \in \mathcal{D} \preceq G$ then $\zeta(K) \in \mathcal{D} \preceq \mathcal{B}^{2}$. If $K \in \mathcal{D}^{\prec} G$ then $\zeta(K) \in \mathcal{D} \prec \mathcal{B}^{2}$.
(b) If $K \in \mathcal{M} \preceq G$ and $j>\rho+\nu+a$ then $\zeta^{j}(K) \in \mathcal{M}^{\prec} \mathcal{B}^{2}$.

It is enough to prove the proposition assuming in addition that $K=$ $A \in C S(G)$. By $1.7(\mathrm{~b})$ we can find $w \in \mathbf{c}_{A}$ such that $\left(A: R_{w}^{n_{w}}\right) \neq 0$. Then $A\left[-n_{w}\right]$ is a direct summand of $R_{w}$. Hence $\zeta(A)$ is a direct summand of $\zeta\left(R_{w}\right)[\Delta+a+|w|]$ and $\zeta^{j}(A)$ is a direct summand of $\zeta^{j+\Delta+a+|w|}\left(R_{w}\right)=$ $\zeta^{j-\rho+a}\left(R_{w}[2 \rho+2 \nu+|w|]\right)$. Using 2.7 we deduce that (a) holds and that, in the setup of $(\mathrm{b}), \zeta^{j}(A) \in \mathcal{M}^{\prec} \mathcal{B}^{2}$ provided that $j-\rho+a>\nu+2 a$. Hence (b) holds.
2.9. For $K \in \mathcal{C}_{0}^{\mathbf{c}} G$ we set

$$
\underline{\zeta}(K)=\underline{(\zeta(K))^{\{\rho+\nu+a\}}} \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2} .
$$

We say that $\underline{\zeta}(K)$ is the truncated restriction of $K$.
2.10. We note the following result, a version of which was first stated in [7, 9.2.1].
(a) Let $K \in \mathcal{D}_{m}(G)$ and let $L \in \mathcal{M}_{m}\left(\mathcal{B}^{2}\right)$ be $G$-equivariant. Then there is a canonical isomorphism $L \bullet \zeta(K) \xrightarrow{\sim} \zeta(K) \bullet L$.

We have $\zeta(K) \bullet L=c_{!} d^{*}(K \boxtimes L), L \bullet \zeta(K)=c_{!}^{\prime} d^{\prime *}(K \boxtimes L)$ where

$$
\begin{aligned}
& Z=\left\{\left(g, B, B^{\prime \prime}, B^{\prime}\right) \in G \times \mathcal{B} \times \mathcal{B} \times \mathcal{B} ; g B g^{-1}=B^{\prime \prime}\right\}, \\
& Z^{\prime}=\left\{\left(g, B, B^{\prime \prime}, B^{\prime}\right) \in G \times \mathcal{B} \times \mathcal{B} \times \mathcal{B} ; g^{-1} B^{\prime} g=B^{\prime \prime}\right\}, \\
& d: Z \rightarrow G \times \mathcal{B}^{2} \text { is }\left(g, B, B^{\prime \prime}, B^{\prime}\right) \mapsto\left(g,\left(B^{\prime \prime}, B^{\prime}\right)\right), \\
& d^{\prime}: Z^{\prime} \rightarrow G \times \mathcal{B}^{2} \text { is }\left(g, B, B^{\prime \prime}, B^{\prime}\right) \mapsto\left(g,\left(B, B^{\prime \prime}\right)\right), \\
& c: Z \rightarrow \mathcal{B}^{2}, c^{\prime}: Z^{\prime} \rightarrow \mathcal{B}^{2} \text { are }\left(g, B, B^{\prime \prime}, B^{\prime}\right) \mapsto\left(B, B^{\prime}\right) .
\end{aligned}
$$

We identify $Z, Z^{\prime}$ with $G \times \mathcal{B}^{2}$ by $\left(g, B, B^{\prime \prime}, B^{\prime}\right) \mapsto\left(g,\left(B, B^{\prime}\right)\right)$. Then $d$ becomes $d_{1}:\left(g,\left(B, B^{\prime}\right)\right) \mapsto\left(g,\left(g B g^{-1}, B^{\prime}\right)\right)$, $d^{\prime}$ becomes $d_{1}^{\prime}:\left(g,\left(B, B^{\prime}\right)\right) \mapsto$ $\left(g,\left(B, g^{-1} B^{\prime} g\right)\right)$ and $c, c^{\prime}$ become $c_{1}:\left(g,\left(B, B^{\prime}\right)\right) \mapsto\left(B, B^{\prime}\right)$. It is enough to show that $d_{1}^{*}(K \boxtimes L)=d_{1}^{\prime *}(K \boxtimes L)$. Define $u: G \times \mathcal{B}^{2} \rightarrow G \times \mathcal{B}^{2}$ by $\left(g,\left(B, B^{\prime}\right)\right) \mapsto\left(g,\left(g B g^{-1}, g B^{\prime} g^{-1}\right)\right)$. By the $G$-equivariance of $L$ we have canonically $u^{*}\left(\overline{\mathbf{Q}}_{l} \boxtimes L\right)=\overline{\mathbf{Q}}_{l} \boxtimes L$. We have $d_{1}=u d_{1}^{\prime}$ hence $d_{1}^{*}(K \boxtimes L)=$ $d_{1}^{\prime}{ }^{*} u^{*}(K \boxtimes L)=d_{1}^{\prime *}(K \boxtimes L)$ and (a) follows.
Proposition 2.11. (a) If $L \in \mathcal{M} \preceq \mathcal{B}^{2}$ and $j>2 a+2 \nu+2 \rho$ then $(\zeta(\chi(L)))^{j} \in$ $\mathcal{M}^{\prec} \mathcal{B}^{2}$.
(b) If $L \in \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2}$, we have canonically

$$
\underline{\zeta}(\underline{\chi}(L))=\underline{(\zeta(\chi(L)))^{\{2 a+2 \nu+2 \rho\}}} \in \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2}
$$

We apply 1.12 with $\Phi=\zeta: \mathcal{D}_{m}(G) \rightarrow \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ and with $\mathbf{X}=\chi(L)$, $\left(c, c^{\prime}\right)=(a+\nu+\rho, a+\nu+\rho)$, see 2.8, 1.9. The result follows.

## 3. Truncated Convolution on $\mathcal{B}^{2}$

3.1. We show that for $L, L^{\prime} \in \mathcal{D}^{\wedge} \mathcal{B}^{2}$, (a) and (b) below hold.
(a) If $L \in \mathcal{D} \preceq \mathcal{B}^{2}$ or $L^{\prime} \in \mathcal{D} \preceq \mathcal{B}^{2}$ then $L \bullet L^{\prime} \in \mathcal{D} \preceq \mathcal{B}^{2}$. If $L \in \mathcal{D}^{\prec} \mathcal{B}^{2}$ or $L^{\prime} \in \mathcal{D}^{\prec} \mathcal{B}^{2}$ then $L \bullet L^{\prime} \in \mathcal{D}^{\prec} \mathcal{B}^{2}$.
(b) Assume that $L, L^{\prime} \in \mathcal{M}^{\wedge} \mathcal{B}^{2}$ and that either $L$ or $L^{\prime}$ is in $\mathcal{M} \preceq \mathcal{B}^{2}$. If $j>a-\nu$ then $\left(L \bullet L^{\prime}\right)^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$.

We can assume that $L=\mathbf{L}_{z}, L^{\prime}=\mathbf{L}_{z^{\prime}}$ with $z \preceq \mathbf{c}$ or $z^{\prime} \preceq \mathbf{c}$. Then (a) follows from 1.4(b),(c). To prove (b) we can further assume that $z \in \mathbf{c}$ or $z^{\prime} \in \mathbf{c}$.

According to $1.4(\mathrm{~b})$ we have $\left.\left(L_{z}^{\sharp}[|z|] \bullet L_{z^{\prime}}^{\sharp}\left[\left|z^{\prime}\right|\right]\right)\right)^{j^{\prime}} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$ if $j^{\prime}>\nu+a$ hence $\left(L_{Z}^{\sharp}[|z|+\nu] \bullet L_{z^{\prime}}^{\sharp}\left[\left|z^{\prime}\right|+\nu\right]\right)^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$ if $j+2 \nu>\nu+a$ that is if $j>a-\nu$; this proves (b).
3.2. For $L, L^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$, we set
(a)

$$
L \bullet L^{\prime}=\underline{\left(L \bullet L^{\prime}\right)^{\{a-\nu\}}} \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2} .
$$

Using 1.12 twice, we see that for $L, L^{\prime}, L^{\prime \prime} \in \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2}$ we have canonically

$$
\begin{aligned}
& \left(L \bullet L^{\prime}\right) \bullet L^{\prime \prime}=\left(L \bullet L^{\prime} \bullet L^{\prime \prime}\right)^{\{2 a-2 \nu\}}, \\
& L \underline{\bullet}\left(L^{\prime} \bullet L^{\prime \prime}\right)=\left(L \bullet L^{\prime} \bullet L^{\prime \prime}\right)^{\{2 a-2 \nu\}} .
\end{aligned}
$$

Hence

$$
\left(L \bullet L^{\prime}\right) \underline{\bullet} L^{\prime \prime}=L \underline{\bullet}\left(L^{\prime} \bullet L^{\prime \prime}\right) .
$$

We see that $L, L^{\prime} \mapsto L_{\bullet} L^{\prime}$ defines an associative tensor product structure on $\mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$. (A closely related result appears in 18].) Hence if ${ }^{1} L,{ }^{2} L, \ldots,{ }^{r} L$ are in $\mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$ then ${ }^{1} L \bullet^{2} L \bullet \ldots \bullet^{r} L \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$ is well defined. Using 1.12 repeatedly, we have

$$
\begin{equation*}
{ }^{1} L \underline{\bullet}^{2} L \bullet \ldots \stackrel{\bullet}{r}^{r} L=\underline{\left({ }^{1} L \bullet{ }^{2} L \bullet \ldots \bullet{ }^{r} L\right)^{\{(r-1)(a-\nu)\}}} . \tag{b}
\end{equation*}
$$

3.3. Let $L, L^{\prime} \in \mathcal{C}_{0}^{\text {c }} \mathcal{B}^{2}$. We show that we have canonically:
(a)

$$
\mathfrak{D}\left(L \bullet^{L^{\prime}}\right)=\mathfrak{D}(L) \bullet \mathfrak{D}\left(L^{\prime}\right) .
$$

We can assume that $L=\mathbf{L}_{w_{1}}, L^{\prime}=\mathbf{L}_{w_{2}}$ where $w_{1}, w_{2} \in \mathbf{c}$. Let $\mathbf{w}=\left(w_{1}, w_{2}\right)$. Let $L_{\mathbf{w}}^{[1,2]}$ be the intersection cohomology complex of the projective variety

$$
\left\{\left(B_{0}, B_{1}, B_{2}\right) \in \mathcal{B}^{3} ;\left(B_{0}, B_{1}\right) \in \overline{\mathcal{O}}_{w_{1}},\left(B_{1}, B_{2}\right) \in \overline{\mathcal{O}}_{w_{2}}\right\}
$$

extended by 0 on the complement to this variety in $\mathcal{B}^{3}$ and let $p_{02}: \mathcal{B}^{3} \rightarrow \mathcal{B}^{2}$ be the map $\left(B_{0}, B_{1}, B_{2}\right) \mapsto\left(B_{0}, B_{2}\right)$. By definition we have

$$
L \bullet L^{\prime}=p_{02!} L_{\mathbf{w}}^{[1,2]}\left[\left[\left|w_{1}\right|+\left|w_{2}\right|+2 \nu\right]\right] .
$$

We must show that

$$
\begin{equation*}
\left.\left.\mathfrak{D}\left(\left(L \bullet L^{\prime}\right)^{a-\nu}((a-\nu) / 2)\right)\right)=\left(L \bullet L^{\prime}\right)^{a-\nu}((a-\nu) / 2)\right) . \tag{b}
\end{equation*}
$$

By the hard Lefschetz theorem [1, 5.4.10] applied to the projective morphism $p_{02}$ and to $L_{\mathbf{w}}^{[1,2]}\left[\left[\left|w_{1}\right|+\left|w_{2}\right|+\nu\right]\right]$ (a perverse sheaf of pure weight 0 on $\mathcal{B}^{3}$ ) we have canonically for any $i$ :

$$
\left(p_{02!} L_{\mathbf{w}}^{[1,2]}\left[\left[\left|w_{1}\right|+\left|w_{2}\right|+\nu\right]\right]\right)^{-i}=\left(p_{02!} L_{\mathbf{w}}^{[1,2]}\left[\left[\left|w_{1}\right|+\left|w_{2}\right|+\nu\right]\right]\right)^{i}(i)
$$

that is $\left(L \bullet L^{\prime}[[-\nu]]\right)^{-i}=\left(L \bullet L^{\prime}[[-\nu]]\right)^{i}(i)$, hence

$$
\begin{equation*}
\left(L \bullet L^{\prime}\right)^{-i-\nu}=\left(L \bullet L^{\prime}\right)^{i-\nu}(i) \tag{c}
\end{equation*}
$$

We have $\mathfrak{D}\left(L \bullet L^{\prime}\right)=L \bullet L^{\prime}[[-2 \nu]]$ hence $\mathfrak{D}\left(\left(L \bullet L^{\prime}\right)^{i}\right)=\left(L \bullet L^{\prime}\right)^{-i-2 \nu}(-\nu)$. Thus $\mathfrak{D}\left(\left(L \bullet L^{\prime}\right)^{a-\nu}\right)=\left(L \bullet L^{\prime}\right)^{-\nu-a}(-\nu)=\left(L \bullet L^{\prime}\right)^{-\nu+a}(a-\nu)$. (The last equality uses (c).) This proves (b), hence (a).

The following result is a truncated version of 2.10.
Proposition 3.4. Let $K \in \mathcal{C}_{0}^{\mathbf{c}} G, L \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$. There is a canonical isomorphism
(a)

$$
L \underline{\mathbf{\bullet}} \underline{\zeta}(K) \xrightarrow{\sim} \underline{\zeta}(K) \underline{\bullet} L
$$

Applying 1.12 with $\Phi: \mathcal{D}_{\bar{m}}^{\preceq} \mathcal{B}^{2} \rightarrow \mathcal{D}_{\bar{m}}^{\preceq} \mathcal{B}^{2}, L^{\prime} \mapsto L^{\prime} \bullet L, \mathbf{X}=\zeta(K)$, $\left(c, c^{\prime}\right)=(a-\nu, a+\rho+\nu)($ see $3.1,2.8)$, we deduce that we have canonically

$$
\begin{equation*}
\underline{\left((\zeta(K))^{\{a+\rho+\nu\}} \bullet L\right)^{\{a-\nu\}}}=\underline{(\zeta(K) \bullet L)^{\{2 a+\rho\}}} . \tag{b}
\end{equation*}
$$

Using 1.12 with $\Phi: \mathcal{D}_{\bar{m}}^{\widehat{㐅}} \mathcal{B}^{2} \rightarrow \mathcal{D}_{\bar{m}}^{\widehat{\sim}} \mathcal{B}^{2}, L^{\prime} \mapsto L \bullet L^{\prime}, \mathbf{X}=\zeta(K),\left(c, c^{\prime}\right)=$ $(a-\nu, a+\rho+\nu)($ see $3.1,2.8)$, we deduce that we have canonically

$$
\begin{equation*}
\left(L \bullet(\zeta(K))^{\{a+\rho+\nu\}}\right)^{\{a-\nu\}}=(L \bullet \zeta(K))^{\{2 a+\rho\}} . \tag{c}
\end{equation*}
$$

We now combine (b),(c) with 2.10(a); we obtain the isomorphism (a).

## 4. Truncated Convolution on $G$

4.1 Let $\mu: G \times G \rightarrow G$ be the multiplication map. For $K, K^{\prime} \in \mathcal{D}_{m}(G)$ we define the convolution $K * K^{\prime} \in \mathcal{D}_{m}(G)$ by $K * K^{\prime}=\mu_{!}\left(K \boxtimes K^{\prime}\right)$. For $K, K^{\prime}, K^{\prime \prime}$ in $\mathcal{D}_{m}(G)$ we have canonically $\left(K * K^{\prime}\right) * K^{\prime \prime}=K *\left(K^{\prime} * K^{\prime \prime}\right)$ (and we denote this by $\left.K * K^{\prime} * K^{\prime \prime}\right)$.

Note that if $K \in \mathcal{D}_{m}(G)$ and $K^{\prime} \in \mathcal{M}_{m}(G)$ is $G$-equivariant for the conjugation action of $G$ then we have a canonical isomorphism

$$
\begin{equation*}
K * K^{\prime} \xrightarrow{\sim} K^{\prime} * K \tag{a}
\end{equation*}
$$

Define $r: G \times G \rightarrow G, p_{1}: G \times G \rightarrow G, p_{2}: G \times G \rightarrow G$ by $r:(x, y) \mapsto x^{-1} y x$, $p_{1}:(x, y) \mapsto x, p_{2}:(x, y) \mapsto y$. Without any assumption on $K^{\prime}$ we have

$$
\mu_{!}\left(p_{1}^{*} K \otimes r^{*} K^{\prime}\right)=\mu_{!}\left(p_{2}^{*} K \otimes p_{1}^{*} K^{\prime}\right)=K^{\prime} * K
$$

In our case we have canonically $r^{*} K^{\prime}=p_{2}^{*} K^{\prime}$. Hence

$$
\mu_{!}\left(p_{1}^{*} K \otimes r^{*} K^{\prime}\right)=\mu_{!}\left(p_{1}^{*} K \otimes p_{2}^{*} K^{\prime}\right)=K * K^{\prime}
$$

and (a) follows.

Lemma 4.2. Let $K \in \mathcal{D}_{m}(G), L \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$. We have canonically $K *$ $\chi(L)=\chi(L \bullet \zeta(K))$.

Let $Z=\left\{\left(g_{1}, g_{2}, B, B^{\prime}\right) \in G \times G \times \mathcal{B} \times \mathcal{B} ; g_{2} B g_{2}^{-1}=B^{\prime}\right\}$. Define $c: Z \rightarrow$ $G \times \mathcal{B}^{2}$ by $\left(g_{1}, g_{2}, B, B^{\prime}\right) \mapsto\left(g_{1},\left(B, B^{\prime}\right)\right)$ and $d: Z \rightarrow G$ by $\left(g_{1}, g_{2}, B, B^{\prime}\right) \mapsto$ $g_{1} g_{2}$. From the definitions we see that both $K * \chi(L), \chi(L \bullet \zeta(K))$ can be identified with $d_{!} c^{*}(K \boxtimes L)$. The lemma follows.

Proposition 4.3. For any $L, L^{\prime} \in \mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ we have

$$
\begin{aligned}
& \chi(L) * \chi\left(L^{\prime}\right)[[2 \rho+2 \nu]] \\
& \quad \approx\left\{\chi\left(L^{\prime} \bullet L_{y} \bullet L \bullet L_{y^{-1}}\right)[[2|y|]] \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2) ; d \in[0, \rho], y \in W\right\} .
\end{aligned}
$$

From 2.6(b) we deduce

$$
L^{\prime} \bullet \zeta(\chi(L))[[2 \nu+2 \rho]]
$$

$$
\approx\left\{L^{\prime} \bullet L_{y} \bullet L \bullet L_{y^{-1}}[[2|y|]] \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2) ; y \in W, d \in[0, \rho]\right\}
$$

and

$$
\begin{aligned}
\chi & \left(L^{\prime} \bullet \zeta(\chi(L))\right)[[2 \nu+2 \rho]] \\
& \approx\left\{\chi\left(L^{\prime} \bullet L_{y} \bullet L \bullet L_{y^{-1}}\right)[[2|y|]] \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2) ; y \in W, d \in[0, \rho]\right\} .
\end{aligned}
$$

It remains to show that $\chi\left(L^{\prime} \bullet \zeta(\chi(L))\right)=\chi(L) * \chi\left(L^{\prime}\right)$. This follows from 4.2 with $K, L$ replaced by $\chi(L), L^{\prime}$.

Proposition 4.4. Let $w, w^{\prime} \in W$ and let $j \in \mathbf{Z}$. We set $C=R_{w} * R_{w^{\prime}}[[2 \rho+$ $\left.\left.2 \nu+|w|+\left|w^{\prime}\right|\right]\right] \in \mathcal{D}_{m}(G)$.
(a) If $w \preceq \mathbf{c}$ or $w^{\prime} \preceq \mathbf{c}$ then $C^{j} \in \mathcal{M} \preceq G$.
(b) If $j>\Delta+4 a$ and either $w \in \mathbf{c}$ or $w^{\prime} \in \mathbf{c}$ then $C^{j} \in \mathcal{M}^{\prec} G$.
(c) If $w \prec \mathbf{c}$ or $w^{\prime} \prec \mathbf{c}$ then $C^{j} \in \mathcal{M}^{\prec} G$.
(d) $C^{j}$ is mixed of weight $\leq j$.
(e) If $j \neq \Delta+4 a$ and either $w \in \mathbf{c}$ or $w^{\prime} \in \mathbf{c}$ then $g r{ }_{\Delta+4 a} C^{j} \in \mathcal{M}^{\prec} G$.
(f) If $k>\Delta+4 a$ and $w \in \mathbf{c}$ or $w^{\prime} \in \mathbf{c}$ then $g r_{k} C^{j} \in \mathcal{M}^{\prec} G$.

Let $J=\{1,3\} \subset[1,4]$. Using 4.3 and $1.2($ a) with $r=4$ we have (g)
$C \approx\left\{\chi\left(p_{04!} L_{w^{\prime}, y, w, y^{-1}}^{J}\left[\left[|w|+\left|w^{\prime}\right|+2|y|\right]\right]\right) \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2) ; d \in[0, \rho], y \in W\right\}$.
Using this and the definitions we see that to prove (a) it is enough to show that for any $y, d$ as above,
(h) $\quad \chi^{j}\left(p_{04!} L_{w^{\prime}, y, w, y^{-1}}^{J}\left[\left[|w|+\left|w^{\prime}\right|+2|y|\right]\right] \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2)\right) \in \mathcal{M}^{\preceq} G$;
this follows from 1.6(d),(e). This proves (a). At the same time we see that to prove (d) it is enough to show that for any $y, d$ as above, (h) is mixed of weight $\leq j$. Since $\overline{\mathbf{Q}}_{l} \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2)$ is pure of weight $-d \leq 0$, to prove the last statement it is enough to show that $\chi\left(p_{04!} L_{w^{\prime}, y, w, y^{-1}}^{J}\left[\left[|w|+\left|w^{\prime}\right|+2|y|\right]\right]\right)$ is mixed of weight $\leq 0$. This follows from the fact that $p_{04!} L_{w^{\prime}, y, w, y^{-1}}^{J}[[|w|+$ $\left.\left.\left|w^{\prime}\right|+2|y|\right]\right]$ is mixed of weight $\leq 0$ (as in the proof of $2.7(\mathrm{~d})$ ). This proves (d).

We prove (b). It is again enough to show that for any $y, d$ as above

$$
\left.\chi^{j}\left(p_{04!} L_{w^{\prime}, y, w, y^{-1}}^{J}\left[| | w\left|+\left|w^{\prime}\right|+2\right| y \mid\right]\right] \otimes \Lambda^{d} \mathcal{X}[[d]](d / 2)\right)^{j}
$$

is in $\mathcal{M}^{\prec} G$ if $j>\Delta+4 a$. This follows from 1.6(d) since $j>\Delta+4 a, d \geq 0$ implies $j+d>\Delta+4 a$.

Now (c) follows from (a) by replacing $\mathbf{c}$ by the two-sided cell containing $w$ (if $w \prec \mathbf{c}$ ) or $w^{\prime}$ (if $w^{\prime} \prec \mathbf{c}$ ).

We prove (e). If $j>\Delta+4 a$ this follows from (b). If $j<\Delta+4 a$ we have $g r_{\Delta+4 a} C^{j}=0$ by (a). This proves (e).

We prove (f). If $j<k$ we have $g r_{k} C^{j}=0$ by (d). If $j \geq k$ we have $j>\Delta+4 a$ so that $C^{j} \in \mathcal{M}^{\prec} G$ by (b). This proves (f).

Proposition 4.5. Let $K, K^{\prime} \in \mathcal{D}_{m}^{\boldsymbol{\phi}}(G)$.
(a) If $K \in \mathcal{D} \preceq G$ or $K^{\prime} \in \mathcal{D} \preceq G$ then $K * K^{\prime} \in \mathcal{D} \preceq G$; if $K \in \mathcal{D}^{\prec} G$ or $K^{\prime} \in \mathcal{D}^{\prec} G$ then $K * K^{\prime} \in \mathcal{D}^{\prec} G$.
(b) If $K \in \mathcal{M} \preceq G, K^{\prime} \in \mathcal{M}^{\preceq} G$ and $j>\rho+2 a$ then $\left(K * K^{\prime}\right)^{j} \in \mathcal{M}^{\prec} G$.

It is enough to prove the proposition assuming in addition that $K=$ $A \in C S(G), K^{\prime}=A^{\prime} \in C S(G)$. By $1.7(\mathrm{~b})$ we can find $w \in \mathbf{c}_{A}, w^{\prime} \in \mathbf{c}_{A^{\prime}}$ such that $\left(A: R_{w}^{n_{w}}\right) \neq 0,\left(A^{\prime}: R_{w^{\prime}}^{n_{w^{\prime}}}\right) \neq 0$. Then $A\left[-n_{w}\right]$ is a direct summand of $R_{w}$ and $A^{\prime}\left[-n_{w^{\prime}}\right]$ is a direct summand of $R_{w^{\prime}}$. Hence $A * A^{\prime}$ is a direct summand of $R_{w} * R_{w^{\prime}}\left[2 \Delta+\mathbf{a}(w)+\mathbf{a}\left(w^{\prime}\right)+|w|+\left|w^{\prime}\right|\right]$ and $\left(A * A^{\prime}\right)^{j}$ is a direct summand of

$$
\left(R_{w} * R_{w^{\prime}}\left[2 \rho+2 \nu+|w|+\left|w^{\prime}\right|\right]\right)^{j+\mathbf{a}(w)+\mathbf{a}\left(w^{\prime}\right)+2 \nu}
$$

Using 4.4 we deduce that (a) holds and that $\left(A * A^{\prime}\right)^{j} \in \mathcal{M}^{\prec} G$ provided that $j+\mathbf{a}(w)+\mathbf{a}\left(w^{\prime}\right)+2 \nu>\Delta+4 a$. Hence (b) holds. (To prove (b) we can assume, by (a), that $w \in \mathbf{c}, w^{\prime} \in \mathbf{c}$ hence $\mathbf{a}(w)=\mathbf{a}\left(w^{\prime}\right)=a$.)
4.6. For $K, K^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} G$ we set

$$
K \underline{*} K^{\prime}=\underline{\left(K * K^{\prime}\right)^{\{2 a+\rho\}}} \in \mathcal{C}_{0}^{\mathbf{c}} G .
$$

We say that $K \underset{セ}{ } K^{\prime}$ is the truncated convolution of $K, K^{\prime}$. Note that 4.1(a) induces for $K, K^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} G$ a canonical isomorphism
(a)

$$
K \underline{*} K^{\prime} \xrightarrow{\sim} K^{\prime} \underline{\underline{1}} K .
$$

We have also

$$
\begin{equation*}
K \underline{*} K^{\prime}=\oplus_{j \in \mathbf{Z}} \underline{g r_{2 a+\rho}}\left(\left(K * K^{\prime}\right)^{j}\right)((2 a+\rho) / 2) . \tag{b}
\end{equation*}
$$

This follows from 4.4(e).

Proposition 4.7. Let $K, K^{\prime}, K^{\prime \prime} \in \mathcal{C}_{0}^{\mathrm{c}} G$. There is a canonical isomorphism

$$
\begin{equation*}
\left(K \underline{*} K^{\prime}\right) \underline{\underline{1}} K^{\prime \prime} \xrightarrow{\sim} K \underline{*}\left(K^{\prime} \underline{\underline{ }} K^{\prime \prime}\right) . \tag{a}
\end{equation*}
$$

We use 1.12 with $\Phi: \mathcal{D}_{m}(G) \rightarrow \mathcal{D}_{m}(G), K_{1} \mapsto K_{1} * K^{\prime \prime}$, with $\mathbf{X}=K * K^{\prime}$, $\left(c, c^{\prime}\right)=(2 a+\rho, 2 a+\rho)($ see 4.5$)$; we deduce that we have canonically

$$
\begin{equation*}
\left(K_{\underline{*}} K^{\prime}\right) \underline{\underline{1}} K^{\prime \prime}=\underline{\left(K * K^{\prime} * K^{\prime \prime}\right)^{\{4 a+2 \rho\}}} . \tag{b}
\end{equation*}
$$

Next we use 1.12 with $\Phi: \mathcal{D}_{m}(G) \rightarrow \mathcal{D}_{m}(G), K_{1} \mapsto K * K_{1}$, with $\mathbf{X}=$ $K^{\prime} * K^{\prime \prime},\left(c, c^{\prime}\right)=(2 a+\rho, 2 a+\rho)$ (see 4.5); we deduce that we have canonically

$$
\begin{equation*}
K \underline{*}\left(K_{\underline{\prime}} \underline{*} K^{\prime \prime}\right)=\underline{\left(K * K^{\prime} * K^{\prime \prime}\right)^{\{4 a+2 \rho\}}} . \tag{c}
\end{equation*}
$$

We combine (b),(c); (a) follows.
4.8. An argument similar to that in 4.7 shows that the associativity isomorphism provided by 4.7 satisfies the pentagon property.

## 5. Truncated Convolution and Truncated Restriction

5.1 The following proposition asserts a compatibility of truncated restriction with truncated convolution.

Proposition 5.2 Let $K, K^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} G$. There is a canonical isomorphism (in $\left.\mathcal{C}_{0}^{c} \mathcal{B}^{2}\right):$

$$
\underline{\zeta}\left(K^{\prime}\right) \underline{\bullet} \underline{( }(K) \xrightarrow{\sim} \underline{\zeta}\left(K \underline{*} K^{\prime}\right)
$$

The proof is given in 5.6.

Proposition 5.3. Let $K, K^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} G$. We have canonically
(a)

$$
\underline{\zeta}\left(K^{\prime}\right) \underline{\bullet} \underline{\zeta}(K)=\underline{\left(\zeta\left(K^{\prime}\right) \bullet \zeta(K)\right)^{\{3 a+2 \rho+\nu\}}} .
$$

We set $L=\zeta(K), L^{\prime}=\zeta\left(K^{\prime}\right)$. Let ${ }^{0} L \in \mathcal{M}_{\underset{m}{\checkmark}}^{\underset{\sim}{\mathcal{B}}}{ }^{2}$. Applying 1.12 with $\Phi: \mathcal{D} \stackrel{\checkmark}{\square} \mathcal{B}^{2} \rightarrow \mathcal{D}_{\bar{m}}^{\checkmark} \mathcal{B}^{2},{ }^{1} L \mapsto{ }^{0} L \bullet{ }^{1} L, \mathbf{X}=L,\left(c, c^{\prime}\right)=(a-\nu, a+\nu+\rho)$, we see that
(b) $\quad\left({ }^{0} L \bullet L\right)^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2}$ for any ${ }^{0} L \in \mathcal{M} \preceq \mathcal{B}^{2}$ and any $j>2 a+\rho$.

Using 1.12 with $\Phi: \mathcal{D}_{\bar{m}}^{\checkmark} \mathcal{B}^{2} \rightarrow \mathcal{D}_{\stackrel{\rightharpoonup}{m}}^{\checkmark} \mathcal{B}^{2},{ }^{1} L \mapsto{ }^{1} L \bullet L, \mathbf{X}=L^{\prime},\left(c, c^{\prime}\right)=$ $(2 a+\rho, a+\rho+\nu)$ (see (b), 2.8), we deduce that we have canonically

$$
\begin{equation*}
\left.\underline{\left(\underline{L}^{\prime\{a+\rho+\nu\}}\right.} \bullet L\right)^{\{2 a+\rho\}}=\underline{\left(L^{\prime} \bullet L\right)^{\{3 a+2 \rho+\nu\}}} . \tag{c}
\end{equation*}
$$

Let $L_{0}^{\prime}=\underline{L^{\prime}\{a+\rho+\nu\}}$. Applying 1.12 with $\Phi: \mathcal{D}_{\bar{m}}^{\preceq} \mathcal{B}^{2} \rightarrow \mathcal{D}_{\bar{m}}^{\preceq} \mathcal{B}^{2},{ }^{1} L \mapsto L_{0}^{\prime} \bullet{ }^{1} L$, $\mathbf{X}=L,\left(c, c^{\prime}\right)=(a-\nu, a+\rho+\nu)($ see 3.1, 2.8), we deduce that we have canonically

$$
\left.\underline{\left(L_{0}^{\prime} \bullet \underline{L^{\{a+\rho+\nu\}}}\right.}\right)^{\{a-\nu\}}=\underline{\left(L_{0}^{\prime} \bullet L\right)^{\{2 a+\rho\}}} .
$$

Combining with (c) we obtain

$$
\underline{\left(L_{0}^{\prime} \bullet \underline{L^{\{a+\rho+\nu\}}}\right)^{\{a-\nu\}}}=\underline{\left(L^{\prime} \bullet L\right)^{\{3 a+2 \rho+\nu\}}}
$$

and (a) follows.

Proposition 5.4. Let $K, K^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} G$. We have canonically
(a)

$$
\underline{\zeta}\left(K \underline{*} K^{\prime}\right)=\underline{\left(\zeta\left(K * K^{\prime}\right)\right)^{\{3 a+\nu+2 \rho\}}} .
$$

We set $\mathcal{K}=K * K^{\prime}$. Applying 1.12 with $\Phi: \mathcal{D}_{\bar{m}}^{\preceq} G \rightarrow \mathcal{D}_{\bar{m}}^{\preceq} \mathcal{B}^{2}, K_{1} \mapsto \zeta\left(K_{1}\right)$, $\mathbf{X}=\mathcal{K},\left(c, c^{\prime}\right)=(a+\rho+\nu, 2 a+\rho)($ see $2.8,4.5)$, we deduce that we have canonically

$$
\underline{(\zeta(\underline{\mathcal{K}}\{2 a+\rho\}}))^{\{a+\rho+\nu\}}=\underline{(\zeta(\mathcal{K}))^{\{3 a+2 \rho+\nu\}}}
$$

and (a) follows.
A version of the following lemma goes back to [7].

Lemma 5.5. Let $K, K^{\prime} \in \mathcal{D}_{m}(G)$. There is a canonical isomorphism in $\mathcal{D}_{m}\left(\mathcal{B}^{2}\right)$ :
(b)

$$
\zeta\left(K * K^{\prime}\right) \xrightarrow{\sim} \zeta\left(K^{\prime}\right) \bullet \zeta(K)
$$

5.6. We prove Proposition 4.2. Let $K, K^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} G$. We have canonically

$$
\underline{\zeta}\left(K^{\prime}\right) \underline{\bullet} \underline{( }(K)=\underline{\left(\zeta\left(K^{\prime}\right) \bullet \zeta(K)\right)^{\{3 a+2 \rho+\nu\}}}=\underline{\left(\zeta\left(K * K^{\prime}\right)\right)^{\{3 a+2 \rho+\nu\}}}=\underline{\zeta}\left(K_{\underline{*}} K^{\prime}\right) .
$$

(These equalities comes from 5.3(a), 5.5, 5.4(a).) Proposition 5.2 follows.

## 6. Analysis of the Composition $\underline{\zeta \chi}$

6.1. Let $e, f, e^{\prime}$ be integers such that $e \leq f \leq e^{\prime}-3$ and let $\epsilon=e^{\prime}-e+1$; we have $\epsilon \geq 4$. We set
$\mathcal{Y}=\left\{\left(\left(B_{e}, B_{e+1}, \ldots, B_{e^{\prime}}\right), g\right) \in \mathcal{B}^{\epsilon} \times G ; g B_{f} g^{-1}=B_{f+3}, g B_{f+1} g^{-1}=B_{f+2}\right\}$.
Define $\vartheta: \mathcal{Y} \rightarrow \mathcal{B}^{\epsilon}$ by $\left(\left(B_{e}, B_{e+1}, \ldots, B_{e^{\prime}}\right), g\right) \mapsto\left(B_{e}, B_{e+1}, \ldots, B_{e^{\prime}}\right)$. For $i, j$ in $\left\{e, e+1, \ldots, e^{\prime}\right\}$ let $p_{i j}: \mathcal{B}^{e} \rightarrow \mathcal{B}^{2}$ be the projection to the $i, j$ coordinate; define $h_{i j}: \mathcal{Y} \rightarrow \mathcal{B}^{2}$ by $h_{i j}=p_{i j} \vartheta$. Now $G^{\epsilon-2}$ acts on $\mathcal{Y}$ by

$$
\begin{aligned}
& \left(g_{e}, \ldots, g_{f}, g_{f+3}, \ldots, g_{e^{\prime}}\right):\left(\left(B_{e}, B_{e+1}, \ldots, B_{e^{\prime}}\right), g\right) \mapsto \\
& \quad\left(g_{e} B_{e} g_{e}^{-1}, g_{e+1} B_{e+1} g_{e+1}^{-1}, \ldots, g_{f-1} B_{f-1} g_{f-1}^{-1}, g_{f} B_{f} g_{f}^{-1}, g_{f} B_{f+1} g_{f}^{-1}\right. \\
& \left.\left.\quad g_{f+3} B_{f+2} g_{f+3}^{-1}, g_{f+3} B_{f+3} g_{f+3}^{-1}, g_{f+4} B_{f+4} g_{f+4}^{-1}, \ldots, g_{e^{\prime}} B_{e^{\prime}} g_{e^{\prime}}^{-1}\right), g_{f+3} g g_{f}^{-1}\right)
\end{aligned}
$$

this induces a $G^{\epsilon-2}$-action on $\mathcal{B}^{\epsilon}$ so that $\vartheta$ is $G^{\epsilon-2}$-equivariant.
Let $E=\left\{e, e+1, \ldots, e^{\prime}-1\right\}-\{f, f+2\}$. Assume that $x_{n} \in \mathbf{c}$ are given for $n \in E$. Let $P=\otimes_{n \in E} p_{n, n+1}^{*} \mathbf{L}_{x_{n}} \in \mathcal{D}_{m} \mathcal{B}^{\epsilon}, \tilde{P}=\otimes_{n \in E} h_{n, n+1}^{*} \mathbf{L}_{x_{n}}=\vartheta^{*} P \in$ $\mathcal{D}_{m} \mathcal{Y}$. In 6.1-6.7 we will study

$$
h_{e e^{\prime}!} \tilde{P} \in \mathcal{D}_{m} \mathcal{B}^{2}
$$

Setting $\Xi=\vartheta_{!} \overline{\mathbf{Q}}_{l} \in \mathcal{D}_{m} \mathcal{B}^{\epsilon}$, we have

$$
h_{e e^{\prime}!} \tilde{P}=p_{e e!}(\Xi \otimes P)
$$

Clearly $\Xi^{j}$ is $G^{\epsilon-2}$-equivariant for any $j$. For any $y, y^{\prime}$ in $W$ we set

$$
Z_{y, y^{\prime}}:=\left\{\left(B_{e}, B_{e+1}, \ldots, B_{e^{\prime}}\right) \in \mathcal{B}^{\epsilon} ;\left(B_{f}, B_{f+1}\right) \in \mathcal{O}_{y},\left(B_{f+2}, B_{f+3}\right) \in \mathcal{O}_{y^{\prime}}\right\} .
$$

These are the orbits of the $G^{\epsilon-2}$-action on $\mathcal{B}^{\epsilon}$. Note that the fibre of $\vartheta$ over a point of $Z_{y, y^{\prime}}$ is isomorphic to $T \times \mathbf{k}^{\nu-|y|}$ if $y y^{\prime}=1$ and is empty if $y y^{\prime} \neq 1$. Thus
(a) $\left.\Xi\right|_{Z_{y, y^{\prime}}}$ is 0 if $y y^{\prime} \neq 1$
and for any $y \in W$ we have
(b) $\left.\mathcal{H}^{h} \Xi\right|_{Z_{y, y^{-1}}}=0$ if $h>2 \nu-2|y|+2 \rho,\left.\mathcal{H}^{2 \nu-2|y|+2 \rho} \Xi\right|_{Z_{y, y^{-1}}}=\overline{\mathbf{Q}}_{l}(-\nu+$ $|y|-\rho)$.
The closure of $Z_{y, y^{\prime}}$ in $\mathcal{B}^{\epsilon}$ is denoted by $\bar{Z}_{y, y^{\prime}}$. We set $k_{\epsilon}=\epsilon \nu+2 \rho$. We have the following result.

Lemma 6.2. (a) We have $\Xi^{j}=0$ for any $j>k_{\epsilon}$. Hence, setting $\Xi^{\prime}=$ $\tau_{\leq k_{\epsilon}-1} \Xi$, we have a canonical distinguished triangle ( $\Xi^{\prime}, \Xi, \Xi^{k_{\epsilon}}\left[-k_{\epsilon}\right]$ ).
(b) If $\xi \in Z_{y, y^{\prime}}$ and $i=2 \nu-|y|-\left|y^{\prime}\right|+2 \rho$, the induced homomorphism $\mathcal{H}_{\xi}^{i} \Xi \rightarrow \mathcal{H}_{\xi}^{i-k_{\epsilon}}\left(\Xi^{k_{\epsilon}}\right)$ is an isomorphism.

To prove (a) it is enough to show that $\operatorname{dim} \operatorname{supp} \mathcal{H}^{i}\left(\Xi\left[k_{\epsilon}\right]\right) \leq-i$ for any i. Now supp $\mathcal{H}^{i} \Xi$ is a union of $G^{\epsilon-2}$-orbits hence of subvarieties $Z_{y, y^{\prime}}$ and $\operatorname{dim} Z_{y, y^{\prime}}=(\epsilon-2) \nu+|y|+\left|y^{\prime}\right|$. Thus it is enough to show that if $\mathcal{H}_{\xi}^{i}\left(\Xi\left[k_{\epsilon}\right]\right) \neq 0$ with $\xi \in Z_{y, y^{\prime}}$ then $(\epsilon-2) \nu+|y|+\left|y^{\prime}\right| \leq-i$. From 6.1(a),(b) we see that $y=y^{\prime}$ and $i+\epsilon \nu+2 \rho \leq 2 \nu-2|y|+2 \rho$; the desired result follows.

We prove (b). We have an exact sequence

$$
\mathcal{H}_{\xi}^{i} \Xi^{\prime} \rightarrow \mathcal{H}_{\xi}^{i} \Xi \rightarrow \mathcal{H}^{i}\left(\Xi^{k_{\epsilon}}\left[-k_{\epsilon}\right]\right) \rightarrow \mathcal{H}_{\xi}^{i+1} \Xi^{\prime}
$$

Hence it is enough to show that $\mathcal{H}_{\xi}^{i^{\prime}} \Xi^{\prime}=0$ if $i^{\prime} \geq i$. Assume that $\mathcal{H}_{\xi}^{i^{\prime}} \Xi^{\prime} \neq 0$ for some $i^{\prime} \geq i$. Then $Z_{y, y^{\prime}} \subset \operatorname{supp} \mathcal{H}^{i^{\prime}} \Xi^{\prime}$. We have $\left(\Xi^{\prime}\left[k_{\epsilon}-1\right]\right)^{h}=0$ for all $h>0$ hence dimsupp $\mathcal{H}^{i^{\prime \prime}}\left(\Xi^{\prime}\left[k_{\epsilon}-1\right]\right) \leq-i^{\prime \prime}$ for any $i^{\prime \prime}$. Taking $i^{\prime \prime}=i^{\prime}-k_{\epsilon}+1$ we deduce that $\operatorname{dim} Z_{y, y^{\prime}} \leq-i^{\prime}+k_{\epsilon}-1$ hence $i^{\prime} \leq 2 \nu-|y|-\left|y^{\prime}\right|+2 \rho-1=i-1$. This contradicts $i^{\prime} \geq i$ and proves (b).
6.3. For any $y, y^{\prime}$ in $W$ let $\mathfrak{T}_{y, y^{\prime}}$ be the intersection cohomology complex of $\bar{Z}_{y, y^{\prime}}$ extended by 0 on $\mathcal{B}^{\epsilon}-\bar{Z}_{y, y^{\prime}}$, to which $\left[\left[(\epsilon-2) \nu+|y|+\left|y^{\prime}\right|\right]\right]$ is applied.

Note that

$$
\begin{equation*}
\mathfrak{T}_{y, y^{\prime}}=p_{f, f+1}^{*} \mathbf{L}_{y} \otimes p_{f+2, f+3}^{*} \mathbf{L}_{y^{\prime}}[[(\epsilon-4) \nu]] . \tag{a}
\end{equation*}
$$

We have the following result.

Since $g r_{0}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)$ is a semisimple $G^{\epsilon-2}$-equivariant perverse sheaf of pure weight 0 , we have canonically $\operatorname{gr}_{0}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)=\oplus_{y, y^{\prime} \in W} V_{y, y^{\prime}} \otimes \mathfrak{T}_{y, y^{\prime}}$ where $V_{y, y^{\prime}}$ are mixed $\overline{\mathbf{Q}}_{l}$-vector spaces of pure weight 0 . Using the definition or by [1, 5.1.14], $\Xi$ is mixed of weight $\leq 0$ hence $\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)$ is mixed of weight $\leq 0$. Hence we have an exact sequence in $\mathcal{M}_{m} \mathcal{B}^{\epsilon}$
(a) $\quad 0 \rightarrow \mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \rightarrow \Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right) \rightarrow g r_{0}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \rightarrow 0$
that is

$$
0 \rightarrow \mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \rightarrow \Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right) \rightarrow \oplus_{y, y^{\prime} \in W} V_{y, y^{\prime}} \otimes \mathfrak{T}_{y, y^{\prime}} \rightarrow 0
$$

Hence for any $\tilde{y}, \tilde{y}^{\prime}$ in $W$ and any $\mathbf{F}_{q}$-rational point $\xi \in Z_{\tilde{y}, \tilde{y}^{\prime}}$ we have an exact sequence of stalks of cohomology sheaves

$$
\text { (b) } \begin{aligned}
& \mathcal{H}_{\xi}^{h} \mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \xrightarrow{\alpha} \mathcal{H}_{\xi}^{h} \Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right) \\
\rightarrow & \oplus_{y, y^{\prime} \in W} V_{y, y^{\prime}} \otimes \mathcal{H}_{\xi}^{h} \mathfrak{T}_{y, y^{\prime}} \rightarrow \mathcal{H}_{\xi}^{h+1} \mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)
\end{aligned}
$$

here we take $h=-(\epsilon-2) \nu-|\tilde{y}|-\left|\tilde{y}^{\prime}\right|$. Now the vector spaces in (b) are mixed and the maps respect the mixed structures. From 6.2(b) and 6.1 we see that $\mathcal{H}_{\xi}^{h}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)=\mathcal{H}_{\xi}^{h+k_{\epsilon}} \Xi\left(k_{\epsilon} / 2\right)=V_{0}(-h / 2)$ where $V_{0}$ is 0 if $\tilde{y} \tilde{y}^{\prime} \neq 1$ and is $\overline{\mathbf{Q}}_{l}$ if $\tilde{y} \tilde{y}^{\prime}=1$. In particular $\mathcal{H}_{\xi}^{i}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)$ is pure of weight $h$. On the other hand the mixed vector space $\mathcal{H}_{\xi}^{h} \mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)$ has weight $\leq h-1$. Hence the map $\alpha$ in (b) must be zero.

Assume that $\mathcal{H}_{\xi}^{h} \mathfrak{T}_{y, y^{\prime}} \neq 0$. Then $Z_{\tilde{y}, \tilde{y}^{\prime}}$ is contained in the support of $\mathcal{H}^{h} \mathfrak{T}_{y, y^{\prime}}$ which has dimension $\leq-h\left(\right.$ resp. $<-h$ if $\left.\left(y, y^{\prime}\right) \neq\left(\tilde{y}, \tilde{y}^{\prime}\right)\right)$; hence $-h=\operatorname{dim} Z_{t y, \tilde{y}^{\prime}}$ is $\leq-h($ resp. $<-h)$; we see that we must have $\left(y, y^{\prime}\right)=$ $\left(\tilde{y}, \tilde{y}^{\prime}\right)$. Note also that $\mathcal{H}_{\xi}^{h} \mathfrak{T}_{y, y^{\prime}}=\overline{\mathbf{Q}}_{l}(-h / 2)$.

Assume that $\mathcal{H}_{\xi}^{h+1} \mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \neq 0$; then $Z_{\tilde{y}, \tilde{y}^{\prime}}$ is contained in the support of $\mathcal{H}_{\xi}^{h+1} \mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\right)$ which has dimension $\leq-h-1$; hence $-h=$
$\operatorname{dim} Z_{t y, \tilde{y}^{\prime}} \leq-h-1$, a contradiction. We see that (b) becomes an isomorphism

$$
V_{0}(-h / 2) \xrightarrow{\sim} V_{\tilde{y}, \tilde{y}^{\prime}}(-h / 2) .
$$

It follows that we have canonically $V_{\tilde{y}, \tilde{y}^{\prime}}=V_{0}$. The lemma is proved.
6.5. Let $y, \tilde{y} \in W$. Using the definitions and 1.2 (a) we have
(a) $p_{e e^{\prime}!}\left(\mathfrak{T}_{y, \tilde{y}} \otimes P[[(6-2 \epsilon) \nu]]\right)$

$$
\begin{aligned}
= & L_{x_{1}}^{\sharp} \bullet \ldots \bullet L_{x_{f-1}}^{\sharp} \bullet L_{y}^{\sharp} \bullet L_{x_{f+1}}^{\sharp} \bullet L_{\tilde{y}}^{\sharp} \bullet L_{x_{f+3}}^{\sharp} \bullet \ldots \\
& \bullet L_{x_{e^{\prime}}}^{\sharp}\left[\left[\nu+|y|+|\tilde{y}|+\sum_{n \in E}\left|x_{n}\right|\right]\right] .
\end{aligned}
$$

Lemma 6.6. The map $\Xi \rightarrow \Xi^{k_{\epsilon}}\left[-k_{\epsilon}\right]$ (coming from $\left(\Xi^{\prime}, \Xi, \Xi^{k_{\epsilon}}\left[-k_{\epsilon}\right]\right.$ ) in 6.2(a)) induces a morphism

$$
\left(p_{e e^{\prime}!}(\Xi \otimes P)\right)^{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho} \rightarrow\left(p_{e e^{\prime}!}\left(\Xi^{k_{\epsilon}} \otimes P\right)\right)^{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho-k_{\epsilon}}
$$

whose kernel and cokernel are in $\mathcal{M}_{m}^{\prec} \mathcal{B}^{2}$.

It is enough to prove that

$$
\left(p_{e e^{\prime}!}\left(\Xi^{\prime} \otimes P\right)\right)^{j} \in \mathcal{M}_{m}^{\prec} \mathcal{B}^{2} \text { for any } j \geq(\epsilon-2) a+(6-\epsilon) \nu+2 \rho .
$$

We have $\Xi^{\prime} \approx\left\{\left(\Xi^{\prime}\right)^{h}[-h] ; h \leq k_{\epsilon}-1\right\}$ hence

$$
\left.p_{e e^{\prime}!}\left(\Xi^{\prime} \otimes P\right) \approx\left\{p_{e e^{\prime}!}\left(\Xi^{\prime}\right)^{h} \otimes P\right)[-h] ; h \leq k_{\epsilon}-1\right\}
$$

so that it is enough to show that

$$
\left.\left(p_{e e^{\prime}!}\left(\Xi^{\prime}\right)^{h} \otimes P\right)[-h]\right)^{j} \in \mathcal{M}_{m}^{\prec} \mathcal{B}^{2}
$$

for any $j \geq(\epsilon-2) a+(6-\epsilon) \nu+2 \rho$ and any $h \leq k_{\epsilon}-1$. Now $\left(\Xi^{\prime}\right)^{h}$ is $G^{\epsilon-2}{ }_{-}$ equivariant hence its composition factors are of the form $\mathfrak{T}_{y, y^{\prime}}$ with $y, y^{\prime}$ in $W$; hence it is enough to show that for any $y, y^{\prime}$ in $W$ we have

$$
\left(p_{e e^{\prime}!}\left(\mathfrak{T}_{y, y^{\prime}} \otimes P\right)[-h]\right)^{j} \in \mathcal{M}_{m}^{\prec} \mathcal{B}^{2}
$$

for any $j \geq(\epsilon-2) a+(6-\epsilon) \nu+2 \rho$ and any $h \leq k_{\epsilon}-1$ or equivalently (see 6.5(a),(b)) that

$$
\begin{aligned}
& \left(L_{x_{1}}^{\sharp} \bullet \ldots \bullet L_{x_{f-1}}^{\sharp} \bullet L_{y}^{\sharp} \bullet L_{x_{f+1}}^{\sharp} \bullet L_{\tilde{y}}^{\sharp} \bullet L_{x_{f+3}}^{\sharp} \bullet \ldots \bullet L_{x_{e^{\prime}}}^{\sharp}\right. \\
& \left.\left[\left[(2 \epsilon-5) \nu+|y|+\left|y^{\prime}\right|+\sum_{n}\left|x_{n}\right|\right]\right]\right)^{j-h} \in \mathcal{M}_{m}^{\prec} \mathcal{B}^{2}
\end{aligned}
$$

for any $j \geq(\epsilon-2) a+(6-\epsilon) \nu+2 \rho$ and any $h \leq f_{\epsilon}-1$. Using $2.2(\mathrm{a})$ it is enough to show that $j-h+(2 \epsilon-5) \nu>\nu+(\epsilon-2) a$. We have
$j-h+(2 \epsilon-5) \nu \geq(\epsilon-2) a+(6-\epsilon) \nu+2 \rho-\epsilon \nu-2 \rho+1+(2 \epsilon-5) \nu=(\epsilon-2) a+\nu+1$
and the lemma is proved.
Lemma 6.7. We have canonically

$$
\underline{\left(h_{e e^{\prime}!} \tilde{P}\right)^{\{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho\}}}=\oplus_{y \in \mathbf{c}} Q_{y}
$$

where

$$
\begin{aligned}
Q_{y} & =\left(p_{e e^{\prime}!}\left(\mathfrak{T}_{y, y^{-1}} \otimes P\right)\right)^{\{(\epsilon-2) a+(6-2 \epsilon) \nu\}} \\
& =\mathbf{L}_{x_{1} \bullet \cdots} \bullet \mathbf{L}_{x_{f-1}} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{x_{f+1}} \bullet \mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{x_{f+3}} \bullet \cdots \bullet \mathbf{L}_{x_{e^{\prime}}}
\end{aligned}
$$

From the exact sequence 6.4(a) we deduce a distinguished triangle in $\mathcal{D}_{m} \mathcal{B}^{2}:$

$$
\left(p _ { e e ^ { \prime } ! } \left(\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P, p_{e e^{\prime}!}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right) \otimes P\right), p_{e e^{\prime}!}\left(g r_{0}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right.\right.
$$

This induces an exact sequence in $\mathcal{M}_{m} \mathcal{B}^{2}$ :
(a) $\quad\left(p_{e e^{\prime}!}\left(\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}$

$$
\rightarrow\left(p_{e e^{\prime}!}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}
$$

$$
\rightarrow\left(p_{e e^{\prime}!}\left(g r_{0}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}
$$

$$
\rightarrow\left(p_{e e^{\prime}!}\left(\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu+1}
$$

We show that

$$
\begin{equation*}
\left(p_{e e^{\prime}!}\left(\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu+1} \in \mathcal{M}_{m}^{\prec} \mathcal{B}^{2} \tag{b}
\end{equation*}
$$

We argue as in the proof of 6.6. Now $\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)$ is $G^{\epsilon-2}$-equivariant hence its composition factors are of the form $\mathfrak{T}_{y, y^{\prime}}$ with $y, y^{\prime}$ in $W$; hence it is enough to show that for any $y, y^{\prime}$ in $W$ we have

$$
\left.\left(p_{e e^{\prime}!} \mathfrak{T}_{y, y^{\prime}} \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu+1} \in \mathcal{M}_{m}^{\prec} \mathcal{B}^{2}
$$

or equivalently (see 6.5(a),(b)) that

$$
\begin{aligned}
& \left(L_{x_{1}}^{\sharp} \bullet \ldots \bullet L_{x_{f-1}}^{\sharp} \bullet L_{y}^{\sharp} \bullet L_{x_{f+1}}^{\sharp} \bullet L_{\tilde{y}}^{\sharp} \bullet L_{x_{f+3}}^{\sharp} \bullet \ldots \bullet L_{x_{e^{\prime}}}^{\sharp}\right. \\
& \left.\left[\left[(2 \epsilon-5) \nu+|y|+\left|y^{\prime}\right|+\sum_{n}\left|x_{n}\right|\right]\right]\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu+1} \in \mathcal{M}_{m}^{\prec} \mathcal{B}^{2} .
\end{aligned}
$$

Using 2.2(a) it remains to note that $(\epsilon-2) a+(6-2 \epsilon) \nu+1+(2 \epsilon-5) \nu>$ $\nu+(\epsilon-2) a$.

Next we show that
(c) $\quad \operatorname{gr}(\epsilon-2) a+(6-2 \epsilon) \nu\left(p_{e e^{\prime}!}\left(\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}=0$.

Indeed, $\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon}\right)\right)$ has weight $\leq-1, P$ has weight 0 hence $\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right)$ $\otimes P$ has weight $\leq-1$ and $p_{e e^{\prime}!}\left(\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)$ has weight $\leq-1$ so that $\left(p_{e e^{\prime}!}\left(\mathcal{W}^{-1}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}$ has weight $\leq(\epsilon-2) a+(6-2 \epsilon) \nu-1$ and (c) follows.

Using (b),(c) we see that (a) induces a morphism

$$
\begin{aligned}
& g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}\left(p_{e e^{\prime}!}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu} \\
& \quad \rightarrow g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}\left(p_{e e^{\prime}!}\left(g r_{0}\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right)\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}
\end{aligned}
$$

which has kernel 0 and cokernel in $\mathcal{M}_{m}^{\prec} \mathcal{B}^{2}$. Hence we have an induced isomorphism
(d) $\begin{aligned} & g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}\left(p_{e e^{\prime}!}!\right. \\ & \xrightarrow{\sim} \frac{g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}}{+(6-2 \epsilon) \nu) / 2) .} \underline{\left.\left.\left(\Xi^{k_{\epsilon}}\left(k_{\epsilon} / 2\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}((\epsilon-2) a+(6-2 \epsilon) \nu) / 2\right)}\end{aligned}$

The left hand side of (d) can be identified (by 6.6) with

$$
\left.\underline{g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}\left(p_{e e^{\prime}!}\left(\Xi\left(k_{\epsilon}\right) \otimes P\right)\right)^{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho}}((\epsilon-2) a+(6-2 \epsilon) \nu) / 2\right)
$$

$$
\begin{aligned}
= & \underline{g r_{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho}\left(p_{e e^{\prime}!}(\Xi \otimes P)\right)^{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho}}\left(k_{\epsilon} / 2\right)((\epsilon-2) a \\
& +(6-2 \epsilon) \nu) / 2) \\
= & \underline{\left(p_{e e^{\prime}!}(\Xi \otimes P)\right)^{\{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho\}} ;}
\end{aligned}
$$

the right hand side of (d) can be identified (by 6.4 and $6.5(\mathrm{a}),(\mathrm{b})$ ) with $\oplus_{y \in W} Q_{y}$ where

$$
\begin{aligned}
Q_{y}= & \frac{\left.g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}\left(p_{e e^{\prime}!}\left(\mathfrak{T}_{y, y^{-1}} \otimes P\right)\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}((\epsilon-2) a+(6-2 \epsilon) \nu) / 2\right)}{=} \frac{g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}\left(L_{x_{1}}^{\sharp} \bullet \ldots \bullet L_{x_{f-1}}^{\sharp} \bullet L_{y}^{\sharp} \bullet L_{x_{f+1}}^{\sharp} \bullet L_{\tilde{y}}^{\sharp} \bullet L_{x_{f+3}}^{\sharp} \bullet \ldots \bullet L_{x_{e^{\prime}}}^{\sharp}\right.}{\left.\left.\left[\left[(2 \epsilon-5) \nu+|y|+\left|y^{\prime}\right|+\sum_{n}\left|x_{n}\right|\right]\right]\right)^{(\epsilon-2) a+(6-2 \epsilon) \nu}((\epsilon-2) a+(6-2 \epsilon) \nu) / 2\right) .}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& Q_{y}=\frac{g r_{(\epsilon-2) a+(6-2 \epsilon) \nu}\left(\mathbf{L}_{x_{1}} \bullet \ldots \bullet \mathbf{L}_{x_{f-1}} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{x_{f+1}} \bullet \mathbf{L}_{\tilde{y}} \bullet\right.}{\left.\mathbf{L}_{x_{f+3}} \bullet \ldots \bullet \mathbf{L}_{\left.x_{e^{\prime}}\right)}\right)} \\
&=\frac{g r_{(\epsilon-2) a+(2-\epsilon) \nu}\left(\mathbf{L}_{x_{1}} \bullet \ldots \bullet \mathbf{L}_{x_{f-1}} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{x_{f+1}} \bullet \mathbf{L}_{\tilde{y}} \bullet\right.}{\left.\mathbf{L}_{x_{f+3}} \bullet \ldots \bullet \mathbf{L}_{\left.x_{e^{\prime}}\right)}\right)}((\epsilon-2) a-(\epsilon-2) \nu \\
&((\epsilon-2) a+(\epsilon-2) \nu) / 2) \\
&=\underline{\left(\mathbf{L}_{x_{1}} \bullet \ldots \bullet \mathbf{L}_{x_{f-1}} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{x_{f+1}} \bullet \mathbf{L}_{\tilde{y}} \bullet \mathbf{L}_{x_{f+3}} \bullet \ldots \bullet \mathbf{L}_{x_{e^{\prime}}}\right)\{(\epsilon-2) a-(\epsilon-2) \nu\}} .
\end{aligned}
$$

Thus we have canonically

$$
\underline{\left(p_{e e^{\prime}!}(\Xi \otimes P)\right)^{\{(\epsilon-2) a+(6-\epsilon) \nu+2 \rho\}}}=\oplus_{y \in W} Q_{y}
$$

where

$$
\begin{aligned}
Q_{y} & =\left(p_{\left.e e^{\prime}!\left(\mathfrak{T}_{y, y^{-1}} \otimes P\right)\right)^{\{(\epsilon-2) a+(6-2 \epsilon) \nu\}}}\right. \\
& =\underline{\left(\mathbf{L}_{x_{1}} \bullet \ldots \bullet \mathbf{L}_{x_{f-1}} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{x_{f+1}} \bullet \mathbf{L}_{\tilde{y}} \bullet \mathbf{L}_{x_{f+3}} \bullet \ldots \bullet \mathbf{L}_{x_{e^{\prime}}}\right)\{(\epsilon-2) a-(\epsilon-2) \nu\}}
\end{aligned}
$$

The expression following the last $=\operatorname{sign}$ is 0 if $y \notin \mathbf{c}$ (see 2.3) and is

$$
\mathbf{L}_{x_{1}} \bullet \ldots \bullet \mathbf{L}_{x_{f-1}} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{x_{f+1}} \bullet \mathbf{L}_{\tilde{y}} \bullet \mathbf{L}_{x_{f+3}} \bullet \ldots \bullet \mathbf{L}_{x_{e^{\prime}}}
$$

if $y \in \mathbf{c}$ (see 3.2). The lemma is proved.

Theorem 6.8 Let $x \in \mathbf{c}$. We have canonically
(a)

$$
\underline{\zeta}\left(\underline{\chi}\left(\mathbf{L}_{x}\right)\right)=\oplus_{y \in \mathbf{c}} \mathbf{L}_{y} \bullet \mathbf{L}_{x} \bullet \mathbf{L}_{y^{-1}} .
$$

In 6.1 we take $e=f=1, e^{\prime}=4$ hence $\epsilon=4$. In this case we have

$$
\mathcal{Y}=\left\{\left(\left(B_{1}, B_{2}, B_{3}, B_{4}\right), g\right) \in \mathcal{B}^{4} \times G ; g B_{1} g^{-1}=B_{4}, g B_{2} g^{-1}=B_{3}\right\}
$$

Let $x \in \mathbf{c}$. From Lemma 6.7 we have canonically

$$
\begin{equation*}
\left.\left(h_{14!} h_{23}^{*} \mathbf{L}_{x}\right)\right)^{\{2 a+2 \nu+2 \rho\}}=\oplus_{y \in \mathbf{c}} \mathbf{L}_{y} \bullet \mathbf{L}_{x} \bullet \mathbf{L}_{y^{-1}} \tag{b}
\end{equation*}
$$

By the proof of 2.6 we have

$$
\zeta\left(\chi\left(\mathbf{L}_{x}\right)\right)=h_{14!} h_{23}^{*} \mathbf{L}_{x} .
$$

Hence, using 2.11(b), we have

$$
\underline{\zeta}\left(\underline{\chi}\left(\mathbf{L}_{x}\right)\right)=\underline{\left(h_{14!} h_{23}^{*} \mathbf{L}_{x}\right)^{\{2 a+2 \nu+2 \rho\}}} .
$$

Substituting this into (b) we obtain (a).
6.9. Using 2.4 we see that 6.8 (a) implies
(a)

$$
\underline{\zeta \chi} \mathbf{L}_{x} \cong \oplus_{z \in \mathbf{c}}\left(\mathbf{L}_{z}\right)^{\oplus \psi_{x}(z)}
$$

in $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ where $\psi_{x}(z) \in \mathbf{N}$ are given by the following equation in $\mathbf{J}^{\mathbf{c}}$ :

$$
\sum_{y \in \mathbf{c}} t_{y} t_{x} t_{y^{-1}}=\sum_{z \in \mathbf{c}} \psi_{x}(z) t_{z} .
$$

## 7. Analysis of the Composition $\underline{\zeta \chi}$ (continued)

7.1. Let $\mathfrak{Z}=\left\{\left(\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right), g\right) \in \mathcal{B}^{4} \times G ; g \beta_{2} g^{-1}=\beta_{3}\right\}$. Define $d, d^{\prime}: \mathfrak{Z} \rightarrow$ $\mathcal{B}^{2}$ by $\left.\left.d\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right), g\right)=\left(\beta_{1}, g^{-1} \beta_{4} g\right), d^{\prime}\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right), g\right)=\left(g \beta_{1} g^{-1}, \beta_{4}\right)$. Let $u \in \mathbf{c}$. We set $\tilde{\mathbf{L}}_{u}=d^{*} \mathbf{L}_{u}=d^{*} \mathbf{L}_{u} \in \mathcal{D}_{m}(\mathfrak{Z})$; the last equality follows from the $G$-equivariance of $\mathbf{L}_{u}$. Define $\bar{\vartheta}: \mathfrak{Z} \rightarrow \mathcal{B}^{4}$ by $\left(\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right), g\right) \mapsto$
$\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$. Now $G^{2}$ acts on $\mathfrak{Z}$ by

$$
\left(g_{1}, g_{2}\right):\left(\left(\beta_{1}, \beta_{2}, b_{3}, \beta_{4}\right), g\right) \mapsto\left(\left(g_{1} \beta_{1} g_{1}^{-1}, g_{1} \beta_{2} g_{1}^{-1}, g_{2} b_{3} g_{2}^{-1}, g_{2} \beta_{4} g_{2}^{-1}\right), g_{2} g g_{1}^{-1}\right)
$$

this induces a $G^{2}$-action on $\mathcal{B}^{4}$ so that $\bar{\vartheta}$ is $G^{2}$-equivariant. Note also that $G^{2}$ acts on $\mathcal{B}^{2}$ by $\left(g_{1}, g_{2}\right):\left(B, B^{\prime}\right) \mapsto\left(g_{1} B g_{1}^{-1}, g_{1} B^{\prime} g_{1}^{-1}\right)$ and that $d, d^{\prime}$ are $G^{2}$-equivariant. It follows that a shift of $\tilde{\mathbf{L}}_{u}$ is $G \times G$-equivariant perverse sheaf and $\left(\bar{\vartheta}!\tilde{\mathbf{L}}_{u}\right)^{j}$ is $G^{2}$-equivariant for any $j$.

For $i, j$ in $\{1,2,3,4\}$ let $\bar{p}_{i j}: \mathcal{B}^{4} \rightarrow \mathcal{B}^{2}$ be the projection to the $i, j$ coordinates.

For any $y, z$ in $W$ we set

$$
\mathfrak{Z}_{y, z}=\left\{\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right) \in \mathcal{B}^{4} ;\left(\beta_{1}, \beta_{2}\right) \in \mathcal{O}_{y},\left(\beta_{3}, \beta_{4}\right) \in \mathcal{O}_{z}\right\} .
$$

These are the orbits of the $G^{2}$-action on $\mathcal{B}^{4}$. Let $\mathbf{T}_{y, z}$ be the intersection cohomology complex of the closure $\overline{\mathfrak{Z}}_{y, z}$ of $\mathfrak{Z}_{y, z}$ extended by 0 on $\mathcal{B}^{4}-\overline{\mathfrak{Z}}_{y, z}$, to which $[[2 \nu+|y|+|z|]]$ has been applied. We have $\mathbf{T}_{y, z}=\bar{p}_{12}^{*} \mathbf{L}_{y} \otimes \bar{p}_{34}^{*} \mathbf{L}_{z}$.

We denote by ${ }^{\prime} \mathcal{M} \preceq \mathcal{B}^{4}$ (resp. " $\mathcal{M} \preceq \mathcal{B}^{4}$ ) the category of perverse sheaves on $\mathcal{B}^{4}$ whose composition factors are all of the form $\mathbf{T}_{y, z}$ with $y \preceq \mathbf{c}, z \in W$ (resp. $y \in W, z \preceq \mathbf{c}$ ). We denote by ${ }^{\prime} \mathcal{M} \prec \mathcal{B}^{4}$ (resp. ${ }^{\prime \prime} \mathcal{M} \prec \mathcal{B}^{4}$ ) the category of perverse sheaves on $\mathcal{B}^{4}$ whose composition factors are all of the form $\mathbf{T}_{y, z}$ with $y \prec \mathbf{c}, z \in W$ (resp. $y \in W, z \prec \mathbf{c}$ ). Let $\mathcal{M}^{\preceq} \mathcal{B}^{4}\left(\right.$ resp. $\left.\mathcal{M}^{\prec} \mathcal{B}^{4}\right)$ be the category of perverse sheaves on $\mathcal{B}^{4}$ whose composition factors are all of the form $\mathbf{T}_{y, z}$ with $y \preceq \mathbf{c}, z \preceq \mathbf{c}$ (resp. $y \preceq \mathbf{c}, z \prec \mathbf{c}$ or $y \prec \mathbf{c}, z \preceq \mathbf{c}$ ). Let $\mathcal{D} \underset{\bar{m}}{ } \mathcal{B}^{4}$ (resp. $\mathcal{D}_{m}^{\prec} \mathcal{B}^{4}$ ) be the category consisting of all $K \in \mathcal{D}_{m} \mathcal{B}^{4}$ such that for any $j \in \mathbf{Z}, K^{j}$ belongs to $\mathcal{M}^{\preceq} \mathcal{B}^{4}$ (resp. $\mathcal{M}^{\prec} \mathcal{B}^{4}$ ).

Let $\mathcal{C} \preceq \mathcal{B}^{4}$ be the subcategory of $\mathcal{M} \preceq \mathcal{B}^{4}$ consisting of semisimple objects; let $\mathcal{C}_{0}^{\preceq} \mathcal{B}^{4}$ be the subcategory of $\mathcal{M}_{m} \mathcal{B}^{4}$ consisting of those $K \in \mathcal{M}_{m} \mathcal{B}^{4}$ such that $K$ is pure of weight 0 and such that as an object of $\mathcal{M B}^{4}, K$ belongs to $\mathcal{C} \preceq \mathcal{B}^{4}$. Let $\mathcal{C}^{c} \mathcal{B}^{4}$ be the the subcategory of $\mathcal{M} \preceq \mathcal{B}^{4}$ consisting of objects which are direct sums of objects of the form $\mathbf{T}_{y, z}$ with $y \in \mathbf{c}, z \in \mathbf{c}$. Let $\mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{4}$ be the subcategory of $\mathcal{C}_{0}^{\preceq} \mathcal{B}^{4}$ consisting of those $K \in \mathcal{C}_{0}^{\preceq} \mathcal{B}^{4}$ such that as an object of $\mathcal{C} \preceq \mathcal{B}^{4}, K$ belongs to $\mathcal{C}^{c} \mathcal{B}^{4}$. For $K \in \mathcal{C}_{0}^{\preceq} \mathcal{B}^{4}$, let $\underline{K}$ be the largest subobject of $K$ such that as an object of $\mathcal{C} \preceq \mathcal{B}^{4}$, we have $\underline{K} \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{4}$.

We set $\alpha=a+3 \nu+2 \rho$. We have canonically
(a)

$$
g_{0}\left(\left(\bar{\vartheta}, \tilde{\mathbf{L}}_{u}\right)^{\alpha}(\alpha / 2)\right)=\oplus_{y, z \in W} U_{y, z} \otimes \mathbf{T}_{y, z}
$$

where $U_{y, z}$ are well defined mixed $\overline{\mathbf{Q}}_{l}$ vector spaces of pure weight 0 .

## Lemma 7.2.

(a) For any $j \in \mathbf{Z}$ we have $\left(\bar{\vartheta}!\tilde{\mathbf{L}}_{u}\right)^{j} \in \mathcal{M} \preceq \mathcal{B}^{4}$.
(b) If $j>\alpha$ then $\left(\bar{\vartheta}_{9} \tilde{\mathbf{L}}_{u}\right)^{j} \in{ }^{\prime} \mathcal{M} \prec \mathcal{B}^{4} \cap^{\prime \prime} \mathcal{M}^{\prec} \mathcal{B}^{4}$.
(c) If $y, z \in \mathbf{c}$, we have canonically $U_{y, z}=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{y}, \mathbf{L}_{u} \bullet \mathbf{L}_{z^{-1}}\right)$.
(d) If $y, z \in \mathbf{c}$, we have canonically $U_{y, z}=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}\right)$.

The proof of (a) and (b) is given in 7.3 and 7.4. The proof of (c) is given in 7.5. The proof of $(\mathrm{d})$ is given in 7.6.
7.3. In this subsection we show that
(a) For any $j \in \mathbf{Z}$ we have $\left(\bar{\vartheta}_{!} \tilde{\mathbf{L}}_{u}\right)^{j} \in^{\prime} \mathcal{M} \preceq \mathcal{B}^{4}$.
(b) If $j>\alpha$ then $\left(\bar{\vartheta}!\tilde{\mathbf{L}}_{u}\right)^{j} \in{ }^{\prime} \mathcal{M}^{\prec} \mathcal{B}^{4}$.

In the setup of 6.1 (with $e=0, f=1, e^{\prime}=4$ hence $\epsilon=5$ ) we identify $\mathcal{Y}$, $\mathfrak{Z}$ via the isomorphism

$$
{ }^{\prime} \mathfrak{c}: \mathcal{Y} \xrightarrow{\sim} \mathfrak{Z}, \quad\left(\left(B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right), g\right) \mapsto\left(\left(B_{0}, B_{2}, B_{3}, B_{4}\right), g\right) .
$$

Then $\bar{\vartheta}$ becomes the composition $\mathcal{Y} \xrightarrow{\vartheta} \mathcal{B}^{5} \xrightarrow{\theta} \mathcal{B}^{4}$ where $\theta$ is $\left(B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right) \mapsto$ $\left(B_{0}, B_{2}, B_{3}, B_{4}\right) ; \bar{\vartheta}_{!} \tilde{\mathbf{L}}_{u}$ becomes $\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)$.

We have

$$
\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right) \approx\left\{\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{h}[-h]\right) ; h \leq k_{5}\right\}
$$

where the inequality $h \leq k_{5}$ comes from the fact that $\Xi^{h}=0$ if $h>k_{5}$, see 6.2(a). (Recall that $k_{5}=5 \nu+2 \rho$.) Hence it is enough to show:
(c) For any $j, h \in \mathbf{Z}$, we have $\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{h}[-h]\right)\right)^{j} \in^{\prime} \mathcal{M} \preceq \mathcal{B}^{4}$.
(d) For any $j, h \in \mathbf{Z}$ such that $j>\alpha, h \leq k_{5}$, we have $\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes\right.\right.$ $\left.\left.\Xi^{h}[-h]\right)\right)^{j} \in{ }^{\prime} \mathcal{M}^{\prec} \mathcal{B}^{4}$.

Note that in (d) we have $j-h>a-2 \nu$. Since $\Xi^{h}$ is $G^{3}$-equivariant, its composition factors are of the form $\mathfrak{T}_{y, y^{\prime}}$ with $y, y^{\prime} \in W$. Hence it is enough to show for any $y, y^{\prime} \in W$ :
(e) For any $j^{\prime} \in \mathbf{Z}$, we have $\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{\prime}}\right)\right)^{j^{\prime}} \in^{\prime} \mathcal{M} \preceq \mathcal{B}^{4}$.
(f) For any $j^{\prime} \in \mathbf{Z}$ such that $j^{\prime}>a-2 \nu$, we have $\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{\prime}}\right)\right)^{j^{\prime}} \in$ ${ }^{\prime} \mathcal{M} \prec \mathcal{B}^{4}$.

From the definitions we have

$$
\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{\prime}}\right)=\bar{p}_{12}^{*}\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}\right)[[\nu]] \otimes \bar{p}_{34}^{*} \mathbf{L}_{y^{\prime}}
$$

This can be viewed as $\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}[[\nu]]\right) \boxtimes \mathbf{L}_{y^{\prime}} \in \mathcal{D}_{m}\left(\mathcal{B}^{2} \times \mathcal{B}^{2}\right)$. Since $\mathbf{L}_{y^{\prime}}$ is a perverse sheaf on the second copy of $\mathcal{B}^{2}$, we have

$$
\left(\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}[[\nu]]\right) \boxtimes \mathbf{L}_{y^{\prime}}\right)^{j^{\prime}}=\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}\right)^{j^{\prime}+\nu} \boxtimes \mathbf{L}_{y^{\prime}}(\nu / 2)
$$

It remains to observe that $\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}\right)^{j^{\prime}+\nu}$ is in $\mathcal{M} \preceq \mathcal{B}^{2}$ for any $j^{\prime}$ and is in $\mathcal{M}^{\prec} \mathcal{B}^{2}$ if $j^{\prime}+\nu>a-\nu$ (by 3.1). This proves (a),(b).
7.4. In this subsection we show that
(a) For any $j \in \mathbf{Z}$ we have $\left(\bar{\vartheta}_{!} \tilde{\mathbf{L}}_{u}\right)^{j} \in{ }^{\prime \prime} \mathcal{M} \leq \mathcal{B}^{4}$.
(b) If $j>\alpha$ then $\left(\bar{\vartheta}_{!} \tilde{\mathbf{L}}_{u}\right)^{j} \in{ }^{\prime \prime} \mathcal{M}^{\prec} \mathcal{B}^{4}$.

The arguments are almost a copy of those in 7.3. In the setup of 6.1 (with $e=1, f=1, e^{\prime}=5$ hence $\epsilon=5$ ) we identify $\mathcal{Y}, \mathfrak{Z}$ via the isomorphism

$$
{ }^{\prime} \mathfrak{c}: \mathcal{Y} \xrightarrow{\sim} \mathfrak{Z}, \quad\left(\left(B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right), g\right) \mapsto\left(\left(B_{1}, B_{2}, B_{3}, B_{5}\right), g\right) .
$$

Then $\bar{\vartheta}$ becomes the composition $\mathcal{Y} \xrightarrow{\vartheta} \mathcal{B}^{5} \xrightarrow{\theta} \mathcal{B}^{4}$ where $\theta$ is $\left(B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right) \mapsto$ $\left(B_{1}, B_{2}, B_{3}, B_{5}\right) ; \bar{\vartheta}_{!} \tilde{\mathbf{L}}_{u}$ becomes $\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)$. We have $\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right) \approx$ $\left\{\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{h}[-h]\right) ; h \leq k_{5}\right\}$ where the inequality $h \leq k_{5}$ comes from the fact that $\Xi^{h}=0$ if $h>k_{5}$, see 6.2(a). Hence it is enough to show:
(c) For any $j, h \in \mathbf{Z}$, we have $\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{h}[-h]\right)\right)^{j} \in{ }^{\prime \prime} \mathcal{M} \preceq \mathcal{B}^{4}$.
(d) For any $j, h \in \mathbf{Z}$ such that $j>\alpha, h \leq k_{5}$, we have $\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes\right.\right.$ $\left.\left.\Xi^{h}[-h]\right)\right)^{j} \in{ }^{\prime \prime} \mathcal{M}^{\prec} \mathcal{B}^{4}$.

Note that in (d) we have $j-h>a-2 \nu$. Since $\Xi^{h}$ is $G^{3}$-equivariant, its composition factors are of the form $\mathfrak{T}_{y, y^{\prime}}$ with $y, y^{\prime} \in W$. Hence it is enough to show for any $y, y^{\prime} \in W$ :
(e) For any $j^{\prime} \in \mathbf{Z}$, we have $\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{\prime}}\right)\right)^{j^{\prime}} \in{ }^{\prime \prime} \mathcal{M} \preceq \mathcal{B}^{4}$.
(f) For any $j^{\prime} \in \mathbf{Z}$ such that $j^{\prime}>a-2 \nu$, we have $\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{\prime}}\right)\right)^{j^{\prime}} \in$ ${ }^{\prime \prime} \mathcal{M}^{\prec} \mathcal{B}^{4}$.

From the definitions we have

$$
\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{\prime}}\right)=\bar{p}_{34}^{*}\left(\mathbf{L}_{y^{\prime}} \bullet \mathbf{L}_{u}\right)[[\nu]] \otimes \bar{p}_{12}^{*} \mathbf{L}_{y}
$$

This can be viewed as $\mathbf{L}_{y} \boxtimes\left(\mathbf{L}_{y^{\prime}} \bullet \mathbf{L}_{u}[[\nu]]\right) \in \mathcal{D}_{m}\left(\mathcal{B}^{2} \times \mathcal{B}^{2}\right)$. Since $\mathbf{L}_{y}$ is a perverse sheaf on the first copy of $\mathcal{B}^{2}$, we have

$$
\left(\mathbf{L}_{y} \boxtimes\left(\mathbf{L}_{y^{\prime}} \bullet \mathbf{L}_{u}[[\nu]]\right)\right)^{j^{\prime}}=\mathbf{L}_{y}(\nu / 2) \boxtimes\left(\mathbf{L}_{y^{\prime}} \bullet \mathbf{L}_{u}\right)^{j^{\prime}+\nu} .
$$

It remains to observe that $\left(\mathbf{L}_{y^{\prime}} \bullet \mathbf{L}_{u}\right)^{j^{\prime}+\nu}$ is in $\mathcal{M} \preceq \mathcal{B}^{2}$ for any $j^{\prime}$ and is in $\mathcal{M}^{\prec} \mathcal{B}^{2}$ if $j^{\prime}+\nu>a-\nu$ (by 3.1). This proves (a), (b).

Combining (a),(b) with 7.3(a),(b) we see that 7.2(a),(b) hold.
7.5. We prove $7.2(\mathrm{c})$ using the isomorphism ${ }^{\prime} \mathfrak{c}: \mathcal{Y} \xrightarrow{\sim} \mathfrak{Z}$ in 7.3 . (We assume again that we are in the setup of 6.1 with $e=0, f=1, e^{\prime}=4$ hence $\epsilon=5$.) As in 7.3 , we have $\overline{\gamma_{!}} \tilde{\mathbf{L}}_{u}=\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)$. Here $\theta: \mathcal{B}^{5} \rightarrow \mathcal{B}^{4}$ is as in 7.3.

From the exact triangle $\left(\Xi^{\prime}, \Xi, \Xi^{k_{5}}\left[-k_{5}\right]\right)$ in 6.2 (a) we get an exact triangle

$$
\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right), \theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right), \theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left[k_{5}\right]\right)\right)
$$

hence an exact sequence
(a) $\quad\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right)\right)^{j} \rightarrow\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{j}$

$$
\left.\left.\rightarrow\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\right] k_{5}\right]\right)\right)^{j} \rightarrow\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right)\right)^{j+1}
$$

Replacing $\Xi$ by $\Xi^{\prime}$ in the proof of 7.3(b) given in 7.3 and using that $\left(\Xi^{\prime}\right)^{h}=0$ if $h \geq k_{5}$ we see that

$$
\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right)\right)^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{4} \text { for } j \geq \alpha .
$$

Hence the exact sequence (a) implies that

$$
\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{\alpha} \rightarrow\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left[k_{5}\right]\right)\right)^{\alpha}
$$

has kernel and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$. This induces a homomorphism
(b) $\left.\left.g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{\alpha}(\alpha / 2)\right) \rightarrow g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left[k_{5}\right]\right)\right)^{\alpha}(\alpha / 2)\right)$

$$
\left.=g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\right)\right)^{\alpha-k_{5}}(\alpha / 2)\right)
$$

which has kernel and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$.
From the exact sequence 6.4(a) we get a distinguished triangle

$$
\begin{aligned}
& \left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right], \theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5}\right]\right. \\
& \left.\quad \theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)
\end{aligned}
$$

Hence we have an exact sequence
(c)

$$
\begin{aligned}
& \left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha} \\
& \quad \rightarrow\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5}\right]\right)^{\alpha} \\
& \quad \rightarrow\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha} \\
& \quad \rightarrow\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha+1}
\end{aligned}
$$

Replacing $\Xi$ by $\mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5} / 2\right]$ in the proof of $7.3(\mathrm{~b})$ given in 7.3 and using that $\left(\mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5} / 2\right]\right)^{h}=0$ if $h>k_{5}$ we see that

$$
\begin{equation*}
\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha+1} \in \mathcal{M}^{\prec} \mathcal{B}^{4} \tag{d}
\end{equation*}
$$

Note that

$$
\begin{equation*}
g r_{\alpha-k_{5}}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}=0 \tag{e}
\end{equation*}
$$

This follows from the fact that $\mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)$ has weight $\leq-1$ hence $\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)$ has weight $\leq-1$ and $\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}$ has weight $\leq \alpha-k_{5}-1$.

Using (d),(e), we see that (c) induces a morphism

$$
\begin{aligned}
& g r_{\alpha-k_{5}}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)^{\alpha-k_{5}} \\
& \quad \rightarrow g r_{\alpha-k_{5}}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}
\end{aligned}
$$

which has kernel 0 and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$, hence a morphism

$$
\begin{aligned}
& \left.g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\right)\right)^{\alpha-k_{5}}(\alpha / 2)\right) \\
& \left.\quad \rightarrow g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right)
\end{aligned}
$$

which has kernel 0 and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$. Composing this with the morphism (b) we obtain a morphism

$$
\begin{aligned}
& \left.g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{\alpha}(\alpha / 2)\right) \\
& \left.\quad \rightarrow g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right)
\end{aligned}
$$

which has kernel and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$. Using 7.1(a) and 6.4 this becomes a morphism

$$
\text { (f) } \left.\oplus_{z, y^{\prime} \in W} U_{z, y^{\prime}} \otimes \mathbf{T}_{z, y^{\prime}} \rightarrow \oplus_{y \in W} g r_{0}\left(\theta_{!}\left(\left(p_{01}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{-1}}\right)\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right)
$$

which has kernel and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$. As in 7.3 , the right hand side of (f) is

$$
\begin{aligned}
& \left.\oplus_{y \in W} g r_{0}\left(\bar{p}_{12}^{*}\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}\right)[[\nu]] \otimes \bar{p}_{34}^{*} \mathbf{L}_{y^{-1}}\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right) \\
& \left.\left.=\oplus_{y \in W} g r_{0}\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}\right)[[\nu]]\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right) \boxtimes \mathbf{L}_{y^{-1}} \\
& \left.=\oplus_{y \in W}\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y}\right)\right)^{\{a-\nu\}} \boxtimes \mathbf{L}_{y^{-1}} \\
& =\oplus_{y \in \mathbf{c}, z \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{u} \bullet \mathbf{L}_{y}\right) \mathbf{L}_{z} \boxtimes \mathbf{L}_{y^{-1}} \oplus \oplus_{(y, z) \in W \times(W-\mathbf{c})} U_{z, y^{-1}}^{\prime} \mathbf{L}_{z} \boxtimes \mathbf{L}_{y^{-1}}
\end{aligned}
$$

where $U_{z, y^{-1}}^{\prime}$ are well defined mixed $\overline{\mathbf{Q}}_{l}$-vector spaces. It follows that we have canonically

$$
U_{z, y^{\prime}}=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{u} \bullet \mathbf{L}_{y^{\prime}-1}\right)
$$

whenever $y^{\prime} \in \mathbf{c}, z \in \mathbf{c}$. This completes the proof of 7.2(c).
7.6. We prove $7.2(\mathrm{~d})$ using the isomorphism ${ }^{\prime \prime} \mathfrak{c}: \mathcal{Y} \xrightarrow{\sim} \mathfrak{Z}$ in 7.4. (We assume again that we are in the setup of 6.1 with $e=1, f=1, e^{\prime}=5$ hence $\epsilon=5$.) The arguments will be similar to those in 7.5. As in 7.4, we have $\bar{\vartheta}_{!} \tilde{\mathbf{L}}_{u}=\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)$. Here $\theta: \mathcal{B}^{5} \rightarrow \mathcal{B}^{4}$ is as in 7.4.

From the exact triangle $\left(\Xi^{\prime}, \Xi, \Xi^{k_{5}}\left[-k_{5}\right]\right)$ in $6.2($ a) we get an exact triangle

$$
\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right), \theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right), \theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left[k_{5}\right]\right)\right)
$$

hence an exact sequence
(a)

$$
\begin{aligned}
& \left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right)\right)^{j} \rightarrow\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{j} \\
& \left.\left.\quad \rightarrow\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\right] k_{5}\right]\right)\right)^{j} \rightarrow\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right)\right)^{j+1}
\end{aligned}
$$

Replacing $\Xi$ by $\Xi^{\prime}$ in the proof of $7.4(\mathrm{~b})$ given in 7.4 and using that $\left(\Xi^{\prime}\right)^{h}=0$ if $h \geq k_{5}$ we see that

$$
\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{\prime}\right)\right)^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{4} \text { for } j \geq \alpha
$$

Hence the exact sequence (a) implies that

$$
\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{\alpha} \rightarrow\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left[k_{5}\right]\right)\right)^{\alpha}
$$

has kernel and cokernel in $\mathcal{M} \prec \mathcal{B}^{4}$. This induces a homomorphism
(b) $\left.\left.g r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{\alpha}(\alpha / 2)\right) \rightarrow g r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left[k_{5}\right]\right)\right)^{\alpha}(\alpha / 2)\right)$

$$
\left.=g r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\right)\right)^{\alpha-k_{5}}(\alpha / 2)\right)
$$

which has kernel and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$.
From the exact sequence 6.4(a) we get a distinguished triangle

$$
\begin{aligned}
& \left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right], \theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5}\right]\right. \\
& \left.\quad \theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right) .
\end{aligned}
$$

Hence we have an exact sequence
(c)

$$
\begin{aligned}
& \left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha} \\
& \quad \rightarrow\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5}\right]\right)^{\alpha} \\
& \quad \rightarrow\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha} \\
& \quad \rightarrow\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha+1}
\end{aligned}
$$

Replacing $\Xi$ by $\mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5} / 2\right]$ in the proof of $7.4(\mathrm{~b})$ given in 7.4 and using that $\left(\mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\left[-k_{5} / 2\right]\right)^{h}=0$ if $h>k_{5}$ we see that

$$
\begin{equation*}
\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\left[-k_{5}\right]\right)^{\alpha+1} \in \mathcal{M}^{\prec} \mathcal{B}^{4} \tag{d}
\end{equation*}
$$

Note that
(e)

$$
g r_{\alpha-k_{5}}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}=0
$$

This follows from the fact that $\mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)$ has weight $\leq-1$ hence $\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)$ has weight $\leq-1$ and $\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathcal{W}^{-1}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}$ has weight $\leq \alpha-k_{5}-1$.

Using (d),(e), we see that (c) induces a morphism

$$
\begin{aligned}
& g r_{\alpha-k_{5}}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)^{\alpha-k_{5}} \\
& \quad \rightarrow g r_{\alpha-k_{5}}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}
\end{aligned}
$$

which has kernel 0 and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$, hence a morphism

$$
\begin{aligned}
& \left.g r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi^{k_{5}}\right)\right)^{\alpha-k_{5}}(\alpha / 2)\right) \\
& \left.\quad \rightarrow g r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right)
\end{aligned}
$$

which has kernel 0 and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$. Composing this with the morphism (b) we obtain a morphism

$$
\begin{aligned}
& \left.g r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \Xi\right)\right)^{\alpha}(\alpha / 2)\right) \\
& \left.\quad \rightarrow g r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes g r_{0}\left(\Xi^{k_{5}}\left(k_{5} / 2\right)\right)\right)\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right)
\end{aligned}
$$

which has kernel and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$. Using 7.1(a) and 6.4, this becomes a morphism
(f) $\left.\oplus_{y^{\prime}, z \in W} U_{y^{\prime}, z} \otimes \mathbf{T}_{y^{\prime}, z} \rightarrow \oplus_{y \in W} \operatorname{gr} r_{0}\left(\theta_{!}\left(\left(p_{45}^{*} \mathbf{L}_{u}\right) \otimes \mathfrak{T}_{y, y^{-1}}\right)\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right)$
which has kernel and cokernel in $\mathcal{M}^{\prec} \mathcal{B}^{4}$. As in 7.4 , the right hand side of (f) is

$$
\begin{aligned}
& \left.\oplus_{y \in W} g r_{0}\left(\bar{p}_{34}^{*}\left(\mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}\right)[[\nu]] \otimes \bar{p}_{12}^{*} \mathbf{L}_{y}\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right) \\
& \left.\left.=\oplus_{y \in W} \mathbf{L}_{y} \boxtimes g r_{0}\left(\mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{y}\right)[[\nu]]\right)^{\alpha-k_{5}}\left(\left(\alpha-k_{5}\right) / 2\right)\right) \\
& \left.=\oplus_{y \in W} \mathbf{L}_{y} \boxtimes\left(\mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}\right)\right)^{\{a-\nu\}} \\
& = \\
& \quad \oplus_{y \in \mathbf{c}, z \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}\right) \otimes\left(\mathbf{L}_{y} \boxtimes \mathbf{L}_{z}\right) \oplus \oplus_{(y, z) \in W \times(W-\mathbf{c})} U_{y, z}^{\prime \prime} \\
& \\
& \quad \otimes\left(\mathbf{L}_{y} \boxtimes \mathbf{L}_{z}\right)
\end{aligned}
$$

where $U_{y, z}^{\prime \prime}$ are well defined mixed $\overline{\mathbf{Q}}_{l}$-vector spaces. It follows that we have canonically $U_{y, z}=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}\right)$ whenever $y \in \mathbf{c}, z \in \mathbf{c}$. This completes the proof of $7.2(\mathrm{~d})$. Lemma 7.2 is proved.

Proposition 7.7. For any $y, z, u \in \mathbf{c}$ we have canonically

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{y}, \mathbf{L}_{u} \bullet \mathbf{L}_{z^{-1}}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}\right) \tag{a}
\end{equation*}
$$

Indeed both sides of (a) are identified in $7.2(\mathrm{c}),(\mathrm{d})$ with $U_{y, z}$.

Proposition 7.8. Let $u, x \in \mathbf{c}$. In the setup of 7.1 we have canonically

$$
\underline{\left(\bar{p}_{14!}\left(\bar{\vartheta}_{!}\left(\tilde{\mathbf{L}}_{u}\right) \otimes \bar{p}_{23}^{*} \mathbf{L}_{x}\right)\right)^{\{3 a+\nu+2 \rho\}}}=\oplus_{y, z \in \mathbf{c}} \bar{Q}_{y, z}
$$

where

$$
\begin{aligned}
\bar{Q}_{y, z} & =\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{y}, \mathbf{L}_{u} \bullet \mathbf{L}_{z^{-1}}\right) \otimes\left(\mathbf{L}_{y} \bullet \mathbf{L}_{x} \bullet \mathbf{L}_{z}\right) \\
& =\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}\right)\left(\mathbf{L}_{y} \bullet \mathbf{L}_{x} \bullet \mathbf{L}_{z}\right) \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}
\end{aligned}
$$

(The last equality comes from 7.7.)

Define $\Phi: \mathcal{D}_{\bar{m}}^{\checkmark} \mathcal{B}^{4} \rightarrow \mathcal{D}_{\bar{m}}^{\checkmark} \mathcal{B}^{2}$ by $\Phi(K)=\bar{p}_{14!}\left(K \otimes \bar{p}_{23}^{*} \mathbf{L}_{x}\right)$. This is well defined and maps $\mathcal{D}_{m}^{\prec} \mathcal{B}^{4}$ to $\mathcal{D}_{m}^{\prec} \mathcal{B}^{2}$. (This can be deduced from $2.2(\mathrm{a})$, (e).) Let $\left(c, c^{\prime}\right)=(2 a-2 \nu, a+3 \nu+2 \rho)$. Let $\mathbf{X}=\bar{\vartheta}_{!}\left(\tilde{\mathbf{L}}_{u}\right)$. By 7.2(a) we have $\mathbf{X}^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{4}$ for any $j>c^{\prime}$. Note that $\mathbf{X}$ has weight $\leq 0$. If $K \in \mathcal{D}_{\underset{m}{㐅}} \mathcal{B}^{4}$ and $K \in \mathcal{M} \preceq \mathcal{B}^{4}$ then $(\Phi(K))^{h} \in \mathcal{M}^{\prec} \mathcal{B}^{4}$ for any $h>c$. (This can be deduced from 2.2(a) with $r=3$.) Now the proof of Lemma 1.12 can be repeated word by word and yield a canonical identification

$$
\underline{\left(\Phi\left(\underline{\mathbf{X}^{\left\{c^{\prime}\right\}}}\right)\right)^{\{c\}}}=\underline{(\Phi(\mathbf{X}))^{\left\{c+c^{\prime}\right\}}}
$$

that is
$\underline{\left(\bar{p}_{14!}\left(\underline{\left(\bar{\vartheta}_{!}\left(\tilde{\mathbf{L}}_{u}\right)\right)^{\{a+3 \nu+2 \rho\}}} \otimes \bar{p}_{23}^{*} \mathbf{L}_{x}\right)\right)^{\{2 a-2 \nu\}}}=\underline{\left(\bar{p}_{14!}\left(\bar{\vartheta}_{!}\left(\tilde{\mathbf{L}}_{u}\right) \otimes \bar{p}_{23}^{*} \mathbf{L}_{x}\right)\right)^{\{3 a+\nu+2 \rho\}}}$.
Replacing here $\underline{\left(\bar{\vartheta}_{!}\left(\tilde{\mathbf{L}}_{u}\right)\right)^{\{a+3 \nu+2 \rho\}}}$ by

$$
\oplus_{y, z \in \mathbf{c}} U_{y, z} \otimes \mathbf{T}_{y, z}=\oplus_{y, z \in \mathbf{c}} U_{y, z} \otimes \bar{p}_{12}^{*} \mathbf{L}_{y} \otimes \bar{p}_{34}^{*} \mathbf{L}_{z}
$$

(see 7.1(a) and 7.2(a)) we obtain

$$
\underline{\left(\bar{p}_{14!}\left(\bar{\vartheta}_{!}\left(\tilde{\mathbf{L}}_{u}\right) \otimes \bar{p}_{23}^{*} \mathbf{L}_{x}\right)\right)^{\{3 a+\nu+2 \rho\}}}=\oplus_{y, z \in \mathbf{c}} \bar{Q}_{y, z}
$$

where

$$
\bar{Q}_{y, z}=U_{y, z} \otimes \underline{\left(\bar{p}_{14!}\left(\bar{p}_{12}^{*} \mathbf{L}_{y} \otimes \bar{p}_{34}^{*} \mathbf{L}_{z} \otimes \bar{p}_{23}^{*} \mathbf{L}_{x}\right)\right)^{\{2 a-2 \nu\}}=U_{y, z} \otimes\left(\mathbf{L}_{y} \bullet \mathbf{L}_{x} \bullet \mathbf{L}_{z}\right) . . . . . . .}
$$

This completes the proof. (We use 7.2(c),(d).)

### 7.9. Let

$$
\begin{aligned}
\prime \mathcal{Y} & =\left\{\left(\left(B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right), g\right) \in \mathcal{B}^{5} \times G ; g B_{1} g^{-1}=B_{4}, g B_{2} g^{-1}=B_{3}\right\}, \\
\prime \prime \mathcal{Y} & =\left\{\left(\left(B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right), g\right) \in \mathcal{B}^{5} \times G ; g B_{1} g^{-1}=B_{4}, g B_{2} g^{-1}=B_{3}\right\} .
\end{aligned}
$$

Note that ' $\mathcal{Y}$ is what in 6.1 (with $e=0, f=1, e^{\prime}=4$ ) was denoted by $\mathcal{Y}$ and " $\mathcal{Y}$ is what in 6.1 (with $e=1, f=1, e^{\prime}=5$ ) was denoted by $\mathcal{Y}$. For $i, j$ in $[0,4]$ define ${ }^{\prime} h_{i j}: ' \mathcal{Y} \rightarrow \mathcal{B}^{2}$ by $\left(\left(B_{0}, B_{1}, B_{2}, B_{3}, B_{4}\right), g\right) \mapsto\left(B_{i}, B_{j}\right)$. For $i, j$ in $[1,5]$ define " $h_{i j}:{ }^{\prime \prime} \mathcal{Y} \rightarrow \mathcal{B}^{2}$ by $\left(\left(B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right), g\right) \mapsto\left(B_{i}, B_{j}\right)$. Let $u, x \in \mathbf{c}$. Let ${ }^{\prime} \mathcal{E}={ }^{\prime} h_{04!}\left({ }^{\prime} h_{01}^{*} \mathbf{L}_{u} \otimes{ }^{\prime} h_{23}^{*} \mathbf{L}_{x}\right) \in \mathcal{D}_{m} \mathcal{B}^{2},{ }^{\prime \prime} \mathcal{E}={ }^{\prime \prime} h_{15!}\left({ }^{\prime \prime} h_{23}^{*} \mathbf{L}_{x}\right) \otimes$ $\left.{ }^{\prime \prime} h_{45}^{*} \mathbf{L}_{u}\right) \in \mathcal{D}_{m} \mathcal{B}^{2}$. From Lemma 6.7 we obtain canonical identifications

$$
\underline{\left({ }^{\prime} \mathcal{E}\right)^{\{3 a+\nu+2 \rho\}}}=\oplus_{y \in \mathbf{c}}{ }^{\prime} Q_{y}, \quad \underline{(\prime \prime \mathcal{E})^{\{3 a+\nu+2 \rho\}}}=\oplus_{y \in \mathbf{c}}{ }^{\prime \prime} Q_{y},
$$

where

$$
' Q_{y}=\mathbf{L}_{u} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{x} \bullet \mathbf{L}_{y^{-1}}, \quad " Q_{y}=\mathbf{L}_{y} \bullet \mathbf{L}_{x} \bullet \mathbf{L}_{y^{-1}} \bullet \mathbf{L}_{u}
$$

Using Theorem 6.8 we have canonically

$$
\oplus_{y \in \mathrm{c}}{ }^{\prime} Q_{y}=\mathbf{L}_{u} \underline{\bullet} \underline{\zeta \chi}\left(\mathbf{L}_{x}\right), \quad \oplus_{y \in \mathrm{c}}{ }^{\prime \prime} Q_{y}=\underline{\zeta \chi}\left(\mathbf{L}_{x}\right) \underline{\bullet} \mathbf{L}_{u}
$$

hence

$$
\underline{\left({ }^{\prime} \mathcal{E}\right)^{\{3 a+\nu+2 \rho\}}}=\mathbf{L}_{u} \underline{\bullet} \underline{\left.\zeta \chi\left(\mathbf{L}_{x}\right), \quad \underline{(\prime \mathcal{E}}\right)^{\{3 a+\nu+2 \rho\}}}=\underline{\zeta \chi}\left(\mathbf{L}_{x}\right) \underline{\bullet} \mathbf{L}_{u} .
$$

From the definitions we see that the identification
(a)

$$
\mathbf{L}_{u} \bullet \underline{\varrho \chi}\left(\mathbf{L}_{x}\right)=\underline{\zeta \chi}\left(\mathbf{L}_{x}\right) \bullet \mathbf{L}_{u}
$$

in 3.4(a) (with $L=\mathbf{L}_{u}, K=\underline{\chi}\left(\mathbf{L}_{x}\right)$ ) is the same as the identification

$$
\underline{\left({ }^{\prime} \mathcal{E}\right)^{\{3 a+\nu+2 \rho\}}}=\underline{(\prime \prime \mathcal{E})^{\{3 a+\nu+2 \rho\}}}
$$

obtained by identifying both sides with $\underline{\mathcal{E}\{3 a+\nu+2 \rho\}}$ where $\mathcal{E}=\bar{p}_{14!}\left(\bar{\vartheta}_{!}\left(\tilde{\mathbf{L}}_{u}\right) \otimes\right.$ $\bar{p}_{23}^{*} \mathbf{L}_{x}$ ). (Note that ${ }^{\prime} \mathcal{E}=\mathcal{E}={ }^{\prime \prime} \mathcal{E}$ via the isomorphisms ${ }^{\prime} \mathcal{Y}^{\prime}{ }^{\mathcal{C}} \mathcal{J}^{\prime \prime} \mathfrak{c} / \prime \mathcal{Y}$, see 7.3, 7.4, where ${ }^{\prime} \mathcal{Y},{ }^{\prime \prime} \mathcal{Y}$ are denoted by $\mathcal{Y}$.) Using these identifications and Proposition 7.8 we obtain a commutative diagram

where the upper horizontal maps yield the identification (a) and the lower horizontal maps are the obvious ones: they map ' $Q_{y}$ onto $\oplus_{z \in \mathrm{c}} \bar{Q}_{z^{-1}, y^{-1}}$ and " $Q_{y}$ onto $\oplus_{z \in \mathbf{c}} \bar{Q}_{y, z}$.

## 8. Adjunction Formula (Weak Form)

Proposition 8.1. Let $L \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}, K \in \mathcal{C}_{0}^{\mathbf{c}} G$. We have canonically

$$
\begin{equation*}
K \underline{*} \underline{\chi}(L)=\underline{\chi}(L \underline{\bullet} \underline{\zeta}(K)) . \tag{a}
\end{equation*}
$$

Applying 1.12 with $\Phi: \mathcal{D}_{\bar{m}}^{\preceq} G \rightarrow \mathcal{D}_{\bar{m}}^{\preceq} G, K_{1} \mapsto K * K_{1}, \mathbf{X}=\chi(L)$, $\left(c, c^{\prime}\right)=(2 a+\rho, a+\rho+\nu)($ see $4.5,1.9)$ we deduce that we have canonically

$$
\underline{\left(K * \underline{(\chi(L))^{\{a+\rho+\nu\}}}\right)^{\{2 a+\rho\}}}=\underline{(K * \chi(L))^{\{3 a+2 \rho+\nu\}}}
$$

that is,

$$
\begin{equation*}
K \underline{*} \underline{\chi}(L)=\underline{(K * \chi(L))^{\{3 a+2 \rho+\nu\}}} . \tag{b}
\end{equation*}
$$

Applying 1.12 with $\Phi: \mathcal{D} \underset{\bar{m}}{\checkmark} \mathcal{B}^{2} \rightarrow \mathcal{D} \underset{\bar{m}}{\checkmark} \mathcal{B}^{2},{ }^{1} L \mapsto L \bullet{ }^{1} L, \mathbf{X}=\zeta(K),\left(c, c^{\prime}\right)=$ $(a-\nu, a+\nu+\rho)($ see $3.1,2.8)$ we deduce that we have canonically

$$
\begin{equation*}
\left.\underline{\left(L \bullet \underline{(\zeta(K))^{\{a+\nu+\rho\}}}\right.}\right)^{\{a-\nu\}}=\underline{(L \bullet \zeta(K))^{\{2 a+\rho\}}} \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
(L \bullet \zeta(K))^{j} \in \mathcal{M}^{\prec} \mathcal{B}^{2} \text { if } j>2 a+\rho . \tag{d}
\end{equation*}
$$

Applying 1.12 with $\Phi: \mathcal{D}_{\stackrel{\rightharpoonup}{m}}^{\checkmark} \mathcal{B}^{2} \rightarrow \mathcal{D} \underset{\bar{m}}{\prec} G,{ }^{1} L \mapsto \chi\left({ }^{1} L\right), \mathbf{X}=L \bullet \zeta(K),\left(c, c^{\prime}\right)=$ $(a+\rho+\nu, 2 a+\rho)($ see (d) and 1.9) we deduce that we have canonically

$$
\underline{\left.\underline{\chi(L \bullet \zeta(K))^{\{2 a+\rho\}}}\right)^{\{a+\rho+\nu\}}}=\underline{(\chi(L \bullet \zeta(K)))^{\{3 a+2 \rho+\nu\}}} .
$$

Combining this with (c) gives

$$
\underline{\chi}(L \underline{\bullet} \underline{\zeta}(K))=\underline{(\chi(L \bullet \zeta(K)))^{\{3 a+2 \rho+\nu\}}}
$$

which together with (b) gives (a). (We use the equality $K * \chi(L)=\chi(L \bullet$ $\zeta(K))$, see 4.2.)

The following lemma is a variant of 1.12 .
Lemma 8.2. Let $c \in \mathbf{Z}$ and let $Y$ be one of $G, \mathcal{B}^{2}$. Let $\Phi: \mathcal{D} \underset{m}{\checkmark} Y \rightarrow \mathcal{D}_{m} \mathbf{p}$ be a functor which takes distinguished triangles to distinguished triangles, commutes with shifts and direct sums and maps complexes of weight $\leq i$ to complexes of weight $\leq i($ for any $i)$. Assume that
(a)

$$
\left(\Phi\left(K_{0}\right)\right)^{h}=0 \text { for any } K_{0} \in \mathcal{M}_{\bar{m}}^{\preceq} Y \text { and any } h>c .
$$

Then for any $K \in \mathcal{D}_{\bar{m}}^{\preceq} Y$ of weight $\leq 0$ and any $c^{\prime} \in \mathbf{Z}$ we have canonically

$$
\begin{equation*}
\left(\Phi\left(\underline{K^{\left\{c^{\prime}\right\}}}\right)\right)^{\{c\}} \subset(\Phi(K))^{\left\{c+c^{\prime}\right\}} . \tag{c}
\end{equation*}
$$

As in 1.12 for any $i, h$ we have an exact sequence

$$
\begin{aligned}
\left(\Phi\left(K^{i}\right)\right)^{h-1} & \rightarrow\left(\Phi\left(\tau_{<i} K\right)\right)^{i+h} \rightarrow\left(\Phi\left(\tau_{\leq i} K\right)\right)^{i+h} \rightarrow\left(\Phi\left(K^{i}\right)\right)^{h} \\
& \rightarrow\left(\Phi\left(\tau_{<i} K\right)\right)^{i+h+1} .
\end{aligned}
$$

Assume first that $i+h=c+c^{\prime}+1, h \geq c+2$ hence $i \leq c^{\prime}-1$. Then $\left(\Phi\left(K^{i}\right)\right)^{h-1}=0,\left(\Phi\left(K^{i}\right)\right)^{h}=0$ hence $\left(\Phi\left(\tau_{<i} K\right)\right)^{c+c^{\prime}+1} \xrightarrow{\sim}\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}+1}$. Thus we see by induction on $i$ that $\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}+1}=0$ for $i \leq c^{\prime}-1$; in particular

$$
\begin{equation*}
\left(\Phi\left(\tau_{\leq c^{\prime}-1} K\right)\right)^{c+c^{\prime}+1}=0 \tag{d}
\end{equation*}
$$

Next assume that $i+h=c+c^{\prime}, h \geq c+2$ hence $i \leq c^{\prime}-2$. Then $\left(\Phi\left(K^{i}\right)\right)^{h-1}=0,\left(\Phi\left(K^{i}\right)\right)^{h}=0$ hence $\left(\Phi\left(\tau_{<i} K\right)\right)^{c+c^{\prime}+1} \xrightarrow{\sim}\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}+1}$.

Thus we see by induction on $i$ that $\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}}=0$ for $i \leq c^{\prime}-2$; in partic$\operatorname{ular}\left(\Phi\left(\tau_{\leq c^{\prime}-2} K\right)\right)^{c+c^{\prime}}=0$. Now assume that $i+h=c+c^{\prime}, h=c+1$ hence $i=$ $c^{\prime}-1$. We have an exact sequence $\left(\Phi\left(\tau_{\leq c^{\prime}-2} K\right)\right)^{c+c^{\prime}} \rightarrow\left(\Phi\left(\tau_{\leq c^{\prime}-1} K\right)\right)^{c+c^{\prime}} \rightarrow 0$ hence $\left(\Phi\left(\tau_{\leq c^{\prime}-1} K\right)\right)^{c+c^{\prime}}=0$. Now assume that $i+h=c+c^{\prime}, h=c$ hence $i=c^{\prime}$. We have an exact sequence

$$
0 \rightarrow\left(\Phi\left(\tau_{\leq c^{\prime}} K\right)\right)^{c+c^{\prime}} \rightarrow\left(\Phi\left(K^{c^{\prime}}\right)\right)^{c} \rightarrow\left(\Phi\left(\tau_{<c^{\prime}} K\right)\right)^{c+c^{\prime}+1}
$$

hence using (d) we have

$$
\begin{equation*}
\left(\Phi\left(\tau \leq c^{\prime} K\right)\right)^{c+c^{\prime}} \xrightarrow{\sim}\left(\Phi\left(K^{c^{\prime}}\right)\right)^{c} . \tag{e}
\end{equation*}
$$

For any $i$, from the exact sequence

$$
\left(\Phi\left(K^{i}\right)\right)^{c+c^{\prime}-i-1} \rightarrow\left(\Phi\left(\tau_{<i} K\right)\right)^{c+c^{\prime}} \rightarrow\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}}
$$

we deduce an exact sequence

$$
g r_{c+c^{\prime}}\left(\Phi\left(K^{i}\right)\right)^{c+c^{\prime}-i-1} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\tau_{<i} K\right)\right)^{c+c^{\prime}} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}} .
$$

Now $\left(\Phi\left(K^{i}\right)\right)^{c+c^{\prime}-i-1}$ is mixed of weight $\leq c+c^{\prime}-1$ (by our assumptions) hence $g r_{c+c^{\prime}}\left(\Phi\left(K^{i}\right)\right)^{c+c^{\prime}-i-1}=0$. Thus for any $i$ we have an imbedding

$$
g r_{c+c^{\prime}}\left(\Phi\left(\tau_{<i} K\right)\right)^{c+c^{\prime}} \subset g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}}
$$

Hence each $g r_{c+c^{\prime}}\left(\Phi\left(\tau_{<i} K\right)\right)^{c+c^{\prime}}$ becomes a subobject of $g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq i} K\right)\right)^{c+c^{\prime}}$ with large $i$, that is of $g r_{c+c^{\prime}}(\Phi(K))^{c+c^{\prime}}$. In particular we have

$$
\begin{equation*}
g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq c^{\prime}} K\right)\right)^{c+c^{\prime}} \subset g r_{c+c^{\prime}}(\Phi(K))^{c+c^{\prime}} \tag{f}
\end{equation*}
$$

From the exact sequence $0 \rightarrow W_{c^{\prime}-1} K^{c^{\prime}} \rightarrow K^{c^{\prime}} \rightarrow g r_{c^{\prime}} K^{c^{\prime}} \rightarrow 0$ (here we use that $K^{c^{\prime}}$ has weight $\leq c^{\prime}$ ) we deduce an exact sequence

$$
\left(\Phi\left(W_{c^{\prime}-1} K^{c^{\prime}}\right)\right)^{c} \rightarrow\left(\Phi\left(K^{c^{\prime}}\right)\right)^{c} \rightarrow\left(\Phi\left(g r_{c^{\prime}} K^{c^{\prime}}\right)\right)^{c} \rightarrow\left(\Phi\left(W_{c^{\prime}-1} K^{c^{\prime}}\right)\right)^{c+1}
$$

hence an exact sequence

$$
\begin{aligned}
& g r_{c+c^{\prime}}\left(\Phi\left(W_{c^{\prime}-1} K^{c^{\prime}}\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(K^{c^{\prime}}\right)\right)^{c} \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} K^{c^{\prime}}\right)\right)^{c} \\
& \quad \rightarrow g r_{c+c^{\prime}}\left(\Phi\left(W_{c^{\prime}-1} K^{c^{\prime}}\right)\right)^{c+1} .
\end{aligned}
$$

Now $\left(\Phi\left(W_{c^{\prime}-1} K^{c^{\prime}}\right)\right)^{c}$ has weight $\leq c+c^{\prime}-1$ hence $g r_{c+c^{\prime}}\left(\Phi\left(W_{c^{\prime}-1} K^{c^{\prime}}\right)\right)^{c}=0$; by (a) we have $\left(\Phi\left(W_{c^{\prime}-1} K^{c^{\prime}}\right)\right)^{c+1}=0$. Hence the previous exact sequence yields

$$
g r_{c+c^{\prime}}\left(\Phi\left(K^{c^{\prime}}\right)\right)^{c} \xrightarrow[\rightarrow]{\sim} g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} K^{c^{\prime}}\right)\right)^{c} .
$$

Combining this with $g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq c^{\prime}} K\right)\right)^{c+c^{\prime}}=g r_{c+c^{\prime}}\left(\Phi\left(K^{c^{\prime}}\right)\right)^{c}$ obtained from (e) we see that

$$
g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} K^{c^{\prime}}\right)\right)^{c}=g r_{c+c^{\prime}}\left(\Phi\left(\tau_{\leq c^{\prime}} K\right)\right)^{c+c^{\prime}}
$$

Using this and (f) we obtain an imbedding

$$
g r_{c+c^{\prime}}\left(\Phi\left(g r_{c^{\prime}} K^{c^{\prime}}\right)\right)^{c} \subset g r_{c+c^{\prime}}(\Phi(K))^{c+c^{\prime}}
$$

Since $\underline{g r_{c^{\prime}}} K^{c^{\prime}}$ is canonically a direct summand of $g r_{c^{\prime}} K^{c^{\prime}}$ we see that the previous imbedding restricts to an imbedding

$$
g r_{c+c^{\prime}}\left(\Phi\left(\underline{g r_{c^{\prime}} K^{c^{\prime}}}\right)\right)^{c} \subset g r_{c+c^{\prime}}(\Phi(K))^{c+c^{\prime}}
$$

Applying $\left(\left(c+c^{\prime}\right) / 2\right)$ to both sides we obtain (c).
8.3. Let $\iota: \mathbf{p} \rightarrow G$ be the map with image 1 . We show:
(a) Let $K \in \mathcal{M} \stackrel{\prec}{\widetilde{m}} G$. If $j>-2 a-\rho$, then $\left(\iota^{*}(K)\right)^{j}=0$.

We can assume that $K \in C S(G)$. From the cleanness of cuspidal character sheaves we see that either $\iota^{*} K=0$ in which case there is nothing to prove, or $K \cong A_{E}$ for some $E \in \operatorname{Irr} W$ which we now assume. We have $\mathcal{H}_{1}^{i} A_{E}=$ $\operatorname{Hom}_{W}\left(E, H^{i+\Delta}\left(\mathcal{B}, \overline{\mathbf{Q}}_{l}\right)\right)(\Delta / 2)$ where $H^{i+\Delta}\left(\mathcal{B}, \overline{\mathbf{Q}}_{l}\right)$ has the natural $W$-action. It is known that the polynomial $\sum_{k>0} \operatorname{dim} \operatorname{Hom}_{W}\left(E, H^{k}\left(\mathcal{B}, \overline{\mathbf{Q}}_{l}\right)\right) v^{k}$ has degree $\leq 2 \nu-2 \mathbf{a}\left(\mathbf{c}_{E}\right)$. Hence $\sum_{i} \operatorname{dim}\left(\mathcal{H}_{1}^{i}\left(A_{E}\right)\right) v^{i} \in v^{-2 \mathbf{a}\left(\mathbf{c}_{E}\right)-\rho} \mathbf{Z}\left[v^{-1}\right]$. Since $\mathbf{c}_{E} \preceq \mathbf{c}$, we have $\mathbf{a}\left(\mathbf{c}_{E}\right) \geq a$ and $\sum_{i} \operatorname{dim}\left(\mathcal{H}_{1}^{i}\left(A_{E}\right)\right) v^{i} \in v^{-2 a-\rho} \mathbf{Z}\left[v^{-1}\right]$. This proves (a).
(b) If $K=A_{E_{\mathrm{c}}}$, then we have canonically $\left(\iota^{*} K\right)^{-2 a-\rho}=\mathbf{E}((2 a+\rho) / 2)$ where $\mathbf{E}$ is a well defined 1-dimensional $\overline{\mathbf{Q}}_{l}$-vector space of pure weight 0 .

Equivalently, $\mathcal{H}_{1}^{-2 a-\rho} K$ is a one dimensional mixed $\overline{\mathbf{Q}}_{l}$-vector space of pure weight $-2 a-\rho$. (We use the fact that $E_{\mathbf{c}}$ appears in the $W$-mdule $H^{-2 a+2 \nu}\left(\mathcal{B}, \overline{\mathbf{Q}}_{l}\right)(\Delta / 2)$ with multiplicity one and that $H^{-2 a+2 \nu}\left(\mathcal{B}, \overline{\mathbf{Q}}_{l}\right)(\Delta / 2)$ is pure of weight $-2 a-\rho$.)
(c) If $K \in \mathcal{C}^{\mathbf{c}} G$ and $\operatorname{Hom}_{\mathcal{C}^{c} G}\left(A_{E_{\mathrm{c}}}, K\right)=0$ then $\left(\iota^{*}(K)\right)^{-2 a-\rho}=0$.

We can assume that $K=A_{E}$ where $E \in \operatorname{Irr}_{\mathbf{c}} W, E \neq E_{\mathbf{c}}$. We then use the fact that $E$ does not appear in the $W$-module $H^{-2 a+2 \nu}\left(\mathcal{B}, \overline{\mathbf{Q}}_{l}\right)(\Delta / 2)$.
8.4. Define $\delta: \mathcal{B} \rightarrow \mathcal{B}^{2}$ by $B \mapsto(B, B)$; let $\omega: \mathcal{B} \rightarrow \mathbf{p}$ be the obvious map. From the definitions, for any $L \in \mathcal{D}_{m} \mathcal{B}^{2}$ we have canonically

$$
\begin{equation*}
\iota^{*}(\chi(L))=\omega_{!} \delta^{*}(L) \tag{a}
\end{equation*}
$$

We show:
(b) Let $L \in \mathcal{M}_{\underset{\sim}{\checkmark}}^{\underset{\sim}{\mathcal{B}}}{ }^{2}$. If $j>-a$ then $\left(\delta^{*} L\right)^{j}=0$.

We can assume that $L=\mathbf{L}_{w}$ where $w \preceq \mathbf{c}$. It is enough to show that for any $k$ we have $\left.\left(\mathcal{H}^{k}\left(\delta^{*} L\right)[-k]\right)\right)^{j}=0$ that is $\left(\mathcal{H}^{k}\left(\delta^{*}\left(L_{w}^{\sharp}[|w|+\nu]\right)\right)\right)^{j-k}=0$ or equivalently $\left(\mathcal{H}^{k+\nu}\left(\delta^{*}\left(L_{w}^{\sharp}[|w|]\right)\right)[\nu]\right)^{j-k-\nu}=0$. Now $\mathcal{H}^{k+\nu}\left(\delta^{*}\left(L_{w}^{\sharp}[|w|]\right)\right)[\nu]$ is a perverse sheaf hence we can take $k=j-\nu$ and it is enough to prove that $\mathcal{H}^{j}\left(\delta^{*}\left(L_{w}^{\sharp}[|w|]\right)\right)=0$. Now

$$
\sum_{i \leq 0} \operatorname{rk}\left(\mathcal{H}^{i}\left(\delta^{*} L_{w}^{\sharp}[|w|]\right)\right) v^{i}=p_{1, w} \in v^{-\mathbf{a}(w)} \mathbf{Z}\left[v^{-1}\right]
$$

with $p_{1, w}$ as in [19, 5.3] (see [19, 14.2, P1]). Since $\mathbf{a}(w) \geq a$ it follows that $p_{1, w} \in v^{-a} \mathbf{Z}\left[v^{-1}\right]$. This proves (b).

We show:
(c) If $L \in \mathcal{M} \stackrel{\checkmark}{\underset{m}{\circ}} \mathcal{B}^{2}$ is pure of weight 0 and $i \in \mathbf{Z}$ then $\left(\delta^{*} L\right)^{i}$ is pure of weight $i$.

We can assume that $L=\mathbf{L}_{w}$ where $w \preceq \mathbf{c}$. We have $\left(\delta^{*} L\right)^{i}=\mathcal{H}^{i-\nu}\left(\delta^{*} L\right)=$ $\mathcal{H}^{i+|w|}\left(\delta^{*} L_{w}^{\sharp}\right)(|w| / 2)$ hence it is enough to show that, setting $j=i+|w|$, $\mathcal{H}^{j}\left(\delta^{*} L_{w}^{\sharp}\right)$ is pure of weight $j$. This follows from the results in [10].
(d) Assume that $w \in \mathbf{c}$. If $w=d \in \mathbf{D}_{\mathbf{c}}$ then $\left(\delta^{*} \mathbf{L}_{w}\right)^{-a}=\mathbf{B}_{d}[[\nu]](a / 2)$ for a well defined one dimensional mixed $\overline{\mathbf{Q}}_{l}$-vector space $\mathbf{B}_{d}$ of pure weight 0 , noncanonically isomorphic to $\overline{\mathbf{Q}}_{l}$. If $w \notin \mathbf{D}_{\mathbf{c}}$ then $\left(\delta^{*} \mathbf{L}_{w}\right)^{-a}=0$.

In view of (c), an equivalent statement is that the coefficient of $v^{-a}$ in $p_{1, w}$ is 1 if $w \in \mathbf{D}_{\mathbf{c}}$ and is 0 if $w \notin \mathbf{D}_{\mathbf{c}}$; this holds by [19, 14.2, P5].
8.5. (a) Assume that $L \in \mathcal{M}_{m} \mathcal{B}$ is $G$-equivariant so that $L=V \otimes \overline{\mathbf{Q}}_{l}[[\nu]]$ where $V$ is a mixed $\overline{\mathbf{Q}}_{l}$-vector space. If $j>\nu$ then $\left(\omega_{!} L\right)^{j}=0$. We have
$(\omega!L)^{\nu}=V(-\nu)$.
We have $\mathcal{H}^{j}\left(\omega_{!} L\right)=V \otimes H^{j+\nu}\left(\mathcal{B}, \overline{\mathbf{Q}}_{l}\right)$. Since $\operatorname{dim} \mathcal{B}=\nu$, this is zero if $j+\nu>2 \nu$ and is $V(-\nu)$ if $j+\nu=2 \nu$. This proves (a).

We show:
 canonically $\left(\omega!\delta^{*} L\right)^{\nu-a}=\left(\omega_{!} *\left(\left(\delta^{*} L\right)^{-a}\right)\right)^{\nu}$.

We set $\mathbf{X}=\delta^{*} L$. As in the proof of 1.12 we have an exact sequence

$$
\begin{aligned}
\left.\omega_{!}\left(\mathbf{X}^{i}\right)\right)^{h-1} & \rightarrow\left(\omega_{!}\left(\tau_{<i} \mathbf{X}\right)\right)^{i+h} \rightarrow\left(\omega_{!}\left(\tau_{\leq i} \mathbf{X}\right)\right)^{i+h} \rightarrow\left(\omega_{!}\left(\mathbf{X}^{i}\right)\right)^{h} \\
& \rightarrow\left(\omega_{!}\left(\tau_{<i} \mathbf{X}\right)\right)^{i+h+1} .
\end{aligned}
$$

From this we see by induction on $i$ (using 8.3 and (a)) that if $j>\nu-a$ then $\left(\omega_{!}\left(\tau_{\leq i} \mathbf{X}\right)\right)^{j}=0$ for any $i$. Hence the first assertion of (b) holds. Assume now that $i+h=\nu-a$. From the exact sequence above we see (using 8.3) that

$$
\left(\omega_{!}\left(\tau_{<i} \mathbf{X}\right)\right)^{\nu-a} \xrightarrow{\sim}\left(\omega_{!}\left(\tau_{\leq i} \mathbf{X}\right)\right)^{\nu-a}
$$

when $i>-a$ hence $\left(\omega_{!}\left(\tau_{\leq-a} \mathbf{X}\right)\right)^{\nu-a} \xrightarrow{\sim}\left(\omega_{!} \mathbf{X}\right)^{\nu-a}$. From the same exact sequence we see by induction on $i$ (using (a)) that $\left(\omega_{!}\left(\tau_{\leq i} \mathbf{X}\right)\right)^{j}=0$ for $i \leq-a-1$ hence $\left(\omega_{!}\left(\tau_{\leq-a-1} \mathbf{X}\right)\right)^{j}=0$. The exact sequence above with $i=-a, h=\nu$ becomes

$$
0 \rightarrow(\omega!\mathbf{X})^{\nu-a} \rightarrow\left(\omega_{!}\left(\mathbf{X}^{-a}\right)\right)^{\nu} \rightarrow\left(\omega_{!}\left(\tau_{<-a} \mathbf{X}\right)\right)^{\nu-a+1}
$$

Hence we obtain an isomorphism $\left(\omega_{!} \mathbf{X}\right)^{\nu-a} \xrightarrow{\sim}\left(\omega_{!}\left(\mathbf{X}^{-a}\right)\right)^{\nu}$.
8.6. Let $L \in \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2}$. Applying 8.2 with $\Phi: \mathcal{D}_{\bar{m}}^{\preceq} G \rightarrow \mathcal{D}_{m} \mathbf{p}, K_{1} \mapsto \iota^{*} K_{1}$, $c=-2 a-\rho($ see 8.3$), K$ replaced by $\chi(L)$ and $c^{\prime}=a+\nu+\rho$ we see that we have canonically

$$
\left(\iota^{*}(\underline{\chi}(L))\right)^{\{-2 a-\rho\}} \subset\left(\iota^{*} \chi(L)\right)^{\{-a+\nu\}}=\left(\omega!\delta^{*}(L)\right)^{\{-a+\nu\}} .
$$

(The last equality comes from 8.4(a).) We set

$$
\mathbf{1}^{\prime}=\oplus_{d \in \mathbf{D}_{\mathbf{c}}} \mathbf{B}_{d}^{*} \otimes \mathbf{L}_{d} \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}
$$

where $\mathbf{B}_{d}^{*}$ is the vector space dual to $\mathbf{B}_{d}$. From 8.4(d), 8.5, we see that
(a) $\quad\left(\omega!\delta^{*}(L)\right)^{\{-a+\nu\}}=\left(\omega_{!}\left(\left(\delta^{*} L\right)^{-a}\right)\right)^{\nu}((\nu-a) / 2)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, L\right)$.

Hence we have canonically

$$
\begin{equation*}
\left(\iota^{*}(\underline{\chi}(L))\right)^{\{-2 a-\rho\}} \subset \operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, L\right) \tag{b}
\end{equation*}
$$

We show that the last inclusion is an equality:

$$
\begin{equation*}
\left(\iota^{*}(\underline{\chi}(L))\right)^{\{-2 a-\rho\}}=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, L\right) \tag{c}
\end{equation*}
$$

To prove this we can assume that $L=\mathbf{L}_{x}$ for some $x \in \mathbf{c}$. If $x \notin \mathbf{D}_{\mathbf{c}}$ then the right hand side of $(\mathrm{b})$ is zero hence the left hand side of $(\mathrm{b})$ is zero and (c) holds. Assume now that $x \in \mathbf{D}_{\mathbf{c}}$. Then the right hand side of (b) has dimension 1 ; to prove (c) it is enough to show that the left hand side of (b) has dimension 1. By 8.3(b),(c), the left hand side of (b) has dimension $\left(A_{E_{\mathbf{c}}}: \underline{\chi}\left(\mathbf{L}_{x}\right)\right)$ which, as we already know from (b), has dimension 0 or 1 . Using $1.15(\mathrm{a})$ we see that this dimension is in fact 1 . This proves (c).

The argument above shows also that the assumption of $1.15(\mathrm{a})$ is satisfied; hence we can now state unconditionally:
(d) For any $d \in \mathbf{D}_{\mathbf{c}}$ we have $\left(A_{E_{\mathbf{c}}}: \underline{\chi}\left(\mathbf{L}_{d}\right)\right)=1$.

The argument above shows also:
(e) For any $x \in \mathbf{c}-\mathbf{D}_{\mathbf{c}}$ we have $\left(A_{E_{\mathbf{c}}}: \underline{\chi}\left(\mathbf{L}_{x}\right)\right)=0$.

Lemma 8.7. Let $L, L^{\prime} \in \mathcal{C}^{c} \mathcal{B}^{2}$. We have canonically

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, L \bullet L^{\prime}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathfrak{D}\left(L^{\prime \dagger}\right), L\right) \tag{a}
\end{equation*}
$$

Here for ${ }^{1} L \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ or ${ }^{1} L \in \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}$ we set $L^{\dagger}=h^{\prime *} L$ where $h^{\prime}: \mathcal{B}^{2} \rightarrow \mathcal{B}^{2}$ is $\left(B, B^{\prime}\right) \mapsto\left(B^{\prime}, B\right)$.

We can assume that $L=\mathbf{L}_{x}, L^{\prime}=\mathbf{L}_{x^{\prime}}$ with $x, x^{\prime} \in \mathbf{c}$. We view $L, L^{\prime}$ as objects of $\mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2}$. Using 8.4(a) we have

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, L \bullet L^{\prime}\right)=\left(\omega_{!} \delta^{*}\left(L \bullet L^{\prime}\right)\right)^{\{-a+\nu\}} \tag{b}
\end{equation*}
$$

Applying 8.2 with $\Phi: \mathcal{D} \widehat{\breve{m}} \mathcal{B}^{2} \rightarrow \mathcal{D}_{m} \mathbf{p}, \tilde{L} \mapsto \omega_{!} \delta^{*} \tilde{L},\left(c, c^{\prime}\right)=(\nu-a, a-\nu)$, see $8.5(\mathrm{~b}), K=L \bullet L^{\prime}$, we deduce that we have canonically

$$
\begin{equation*}
\left(\omega!\delta^{*}\left(L \bullet L^{\prime}\right)\right)^{\{\nu-a\}} \subset\left(\omega!\delta^{*}\left(L \bullet L^{\prime}\right)\right)^{\{0\}} \tag{c}
\end{equation*}
$$

From [14, 7.4] we see that we have canonically

$$
\begin{equation*}
\left(\omega_{!}\left(L \otimes L^{\prime \dagger}\right)\right)^{0}=\left(\omega_{!}\left(L \otimes L^{\prime \dagger}\right)\right)^{\{0\}}=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathfrak{D}\left(L^{\prime \dagger}\right), L\right) \tag{d}
\end{equation*}
$$

Note that $\delta^{*}\left(L \bullet L^{\prime}\right)=L \otimes L^{\prime \dagger}$. Hence by combining (b),(c),(d) we have

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, L \bullet L^{\prime}\right) \subset \operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathfrak{D}\left(L^{\prime \dagger}\right), L\right) \tag{e}
\end{equation*}
$$

The dimension of the left hand side of (e) is the sum over $d \in \mathbf{D}_{\mathbf{c}}$ of the coefficients of $t_{d}$ in $t_{x} t_{x^{\prime}} \in \mathbf{J}^{\mathbf{c}}$ and, by [19, 14.2], this sum is equal to 1 if $x^{\prime-1}=x$ and 0 if $x^{\prime-1} \neq x$; hence it is equal to the dimension of the right hand side of (e). It follows that (e) is an equality and (a) follows.
8.8. Let $u: G \rightarrow \mathbf{p}$ be the obvious map. From [14, 7.4], we see that for $K, K^{\prime} \in \mathcal{M}_{\bar{m}}^{\prec} G$ we have canonically

$$
\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}=\operatorname{Hom}_{\mathcal{M} G}\left(\mathfrak{D}(K), K^{\prime}\right), \quad\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{j}=0 \text { if } j>0
$$

We deduce that if $K, K^{\prime}$ are also pure of weight 0 then $\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}$ is pure of weight zero that is $\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}=g r_{0}\left(u_{!}\left(K \otimes K^{\prime}\right)\right)^{0}$. From the definitions we see that we have $u_{!}\left(K \otimes K^{\prime}\right)=\iota^{*}\left(K^{\dagger} * K^{\prime}\right)$ where $K^{\dagger}=h^{*} K$ and $h: G \rightarrow G$ is given by $g \mapsto g^{-1}$. Hence for $K, K^{\prime} \in \mathcal{C}_{0}^{\mathbf{c}} G$ we have
(a) $\quad \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}}} G\left(\mathfrak{D}(K), K^{\prime}\right)=\left(\iota^{*}\left(K^{\dagger} * K^{\prime}\right)\right)^{0}=\left(\iota^{*}\left(K^{\dagger} * K^{\prime}\right)\right)^{\{0\}}$.

Applying 8.2 with $\Phi: \mathcal{D}_{\bar{m}}^{\prec} G \rightarrow \mathcal{D}_{m} \mathbf{p}, K_{1} \mapsto \iota^{*} K_{1}, c=-2 a-\rho$ (see 8.3), $K$ replaced by $K^{\dagger} * K^{\prime}$ and $c^{\prime}=2 a+\rho$ we see that we have canonically

$$
\left(\iota^{*}\left(K^{\dagger} \underline{x} K^{\prime}\right)\right)^{\{-2 a-\rho\}} \subset\left(\iota^{*}\left(K^{\dagger} * K^{\prime}\right)\right)^{\{0\}} .
$$

In particular if $L, L^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2}$ then we have canonically

$$
\left(\iota^{*}\left(\underline{\chi}\left(L^{\prime}\right) \underline{*} \underline{\chi}(L)\right)\right)^{\{-2 a-\rho\}} \subset\left(\iota^{*}\left(\underline{\chi}\left(L^{\prime}\right) * \underline{\chi}(L)\right)\right)^{\{0\}} .
$$

Using the equality

$$
\left(\iota^{*}\left(\underline{\chi}\left(L^{\prime}\right) \underline{\underline{\chi}} \underline{( }(L)\right)\right)^{\{-2 a-\rho\}}=\left(\iota^{*}\left(\underline{\chi}\left(L \underline{\bullet} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)\right)\right)^{\{-2 a-\rho\}}
$$

which comes from 8.1 we deduce that we have canonically

$$
\left(\iota^{*}\left(\underline{\chi}\left(L \underline{\varrho} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)\right)\right)^{\{-2 a-\rho\}} \subset\left(\iota^{*}\left(\underline{\chi}\left(L^{\prime}\right) * \underline{\chi}(L)\right)\right)^{\{0\}}
$$

or equivalently, using (a) with $K, K^{\prime}$ replaced by $\underline{\chi}\left(L^{\prime}\right)^{\dagger}, \underline{\chi}(L)$ :

$$
\begin{aligned}
& \left(\iota^{*}\left(\underline{\chi}\left(L \underline{\bullet} \underline{\zeta}\left(\underline{\chi}\left(L^{\prime}\right)\right)\right)\right)\right)^{\{-2 a-\rho\}} \subset \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}}}\left(\mathfrak{D}\left(\underline{\chi}\left(L^{\prime}\right)^{\dagger}\right), \underline{\chi}(L)\right) \\
& \quad=\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}}}\left(\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right), \underline{\chi}\left(L^{\prime}\right)\right) .
\end{aligned}
$$

Using now 8.6(c) we deduce that we have canonically

$$
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, L \underline{\bullet} \underline{\zeta \chi} L^{\prime}\right) \subset \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} G}\left(\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right), \underline{\chi}\left(L^{\prime}\right)\right)
$$

or equivalently (see 8.7)

$$
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathfrak{D}\left(L^{\dagger}\right), \underline{\zeta \chi} L^{\prime}\right) \subset \operatorname{Hom}_{\mathcal{C}^{c}}{ }^{\prime}\left(\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right), \underline{\chi}\left(L^{\prime}\right)\right) .
$$

We now set ${ }^{1} L=\mathfrak{D}\left(L^{\dagger}\right)$ and note that

$$
\mathfrak{D}\left(\underline{\chi}(L)^{\dagger}\right)=\mathfrak{D}\left(\underline{\chi}\left(L^{\dagger}\right)\right)=\underline{\chi}\left(\mathfrak{D}\left(L^{\dagger}\right)\right)=\underline{\chi}\left({ }^{1} L\right),
$$

see 1.13(a). We obtain

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}}\left({ }^{1} L, \underline{\zeta \chi} L^{\prime}\right) \subset \operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} G}\left(\underline{\chi}\left({ }^{1} L\right), \underline{\chi}\left(L^{\prime}\right)\right) \tag{b}
\end{equation*}
$$

for any ${ }^{1} L, L^{\prime} \in \mathcal{C}_{0}^{c} \mathcal{B}^{2}$.
We have the following result which is a weak form of an adjunction formula, of which the full form will be proved in 9.8.

Proposition 8.9. For any ${ }^{1} L, L^{\prime} \in \mathcal{C}_{0}^{\text {c }} \mathcal{B}^{2}$ we have canonically

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left({ }^{1} L, \underline{\zeta} \underline{\chi}\left(L^{\prime}\right)\right)=\operatorname{Hom}_{\mathcal{C}^{c} G}\left(\underline{\chi}\left({ }^{1} L\right), \underline{\chi}\left(L^{\prime}\right)\right) \tag{a}
\end{equation*}
$$

We can assume that ${ }^{1} L=\mathbf{L}_{z}, L^{\prime}=\mathbf{L}_{u}$ where $z, u \in \mathbf{c}$. By 6.9(a) and 1.10 (b), both sides of the inclusion 8.8(b) have dimension $\sum_{y \in \mathbf{c}} \tau\left(t_{y^{-1}} t_{z} t_{y} t_{u^{-1}}\right)$. Hence that inclusion is an equality. The proposition is proved.

## 9. Equivalence of $\mathcal{C}^{\mathrm{c}} G$ with the centre of $\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}$

9.1 In this section we assume that the $\mathbf{F}_{q}$-rational structure on $G$ in 0.1 is such that
(a) any $A \in C S(G)$ admits a mixed structure of pure weight 0 .
(This can be achieved by replacing if necessary $q$ by a power of $q$.)
The bifunctor $\mathcal{C}_{0}^{\mathbf{c}} G \times \mathcal{C}_{0}^{\mathbf{c}} G \rightarrow \mathcal{C}_{0}^{\mathbf{c}} G, K, K^{\prime} \mapsto K \underset{\underbrace{}}{*} K^{\prime}$ in 4.6 defines a bifunctor $\mathcal{C}^{\mathbf{c}} G \times \mathcal{C}^{\mathbf{c}} G \rightarrow \mathcal{C}^{\mathbf{c}} G$ denoted again by $K, K^{\prime} \mapsto K \underline{*} K^{\prime}$ as follows. Let $K \in \mathcal{C}^{\mathbf{c}} G, K^{\prime} \in \mathcal{C}^{\mathbf{c}} G$; we choose mixed structures of pure weight 0 on $K, K^{\prime}$ (this is possible by (a)), we define $K \underline{ \pm} K^{\prime} \in \mathcal{C}_{0}^{\mathrm{c}} G$ as in 4.6 in terms of these mixed structures and we then disregard the mixed structure on $K \underline{ \pm} K^{\prime}$. The resulting object of $\mathcal{C}^{\mathbf{c}} G$ is denoted again by $K \underline{ \pm} K^{\prime}$; it is independent of the choices made.

In the same way, the bifunctor $\mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2} \times \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2} \rightarrow \mathcal{C}_{0}^{\mathbf{c}} \mathcal{B}^{2}, L, L^{\prime} \mapsto L_{\bullet} L^{\prime}$ gives rise to a bifunctor $\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2} \times \mathcal{C}^{\mathrm{c}} \mathcal{B}^{2} \rightarrow \mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}$ denoted again by $L, L^{\prime} \mapsto L \bullet L^{\prime}$; the functor $\underline{\chi}: \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2} \rightarrow \mathcal{C}_{0}^{\mathrm{c}} G$ gives rise to a functor $\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2} \rightarrow \mathcal{C}^{\mathrm{c}} G$ denoted again by $\underline{\chi}$ (it is again called truncated induction); the functor $\underline{\zeta}: \mathcal{C}_{0}^{\mathrm{c}} G \rightarrow \mathcal{C}_{0}^{\mathrm{c}} \mathcal{B}^{2}$ gives rise to a functor $\mathcal{C}^{\mathrm{c}} G \rightarrow \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ denoted again by $\underline{\zeta}$ (it is again called truncated restriction).

The operation $K \underline{\underline{*}} K^{\prime}$ is again called truncated convolution. It has a canonical associativity isomorphism (deduced from that in 4.7) which again satisfies the pentagon property. Thus $\mathcal{C}^{\mathbf{c}} G$ becomes a monoidal category; it has a braiding coming from 4.6(a).

The operation $L \bullet L^{\prime}$ makes $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ into a monoidal abelian category (see also (18]).
9.2. We set

$$
\mathbf{1}=\oplus_{d \in \mathbf{D}_{\mathbf{c}}} \mathbf{B}_{d} \otimes \mathbf{L}_{d}
$$

Here $\mathbf{B}_{d}$ is as in 8.4(d).
Let $u, z \in \mathbf{c}$. From 7.7(a) we have canonically for any $d \in \mathbf{D}_{\mathbf{c}}$ :

$$
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{d}, \mathbf{L}_{u} \bullet \mathbf{L}_{z^{-1}}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{d} \bullet \mathbf{L}_{u}\right)
$$

Hence
(a)

$$
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, \mathbf{L}_{u} \bullet \mathbf{L}_{z^{-1}}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{1} \bullet \mathbf{L}_{u}\right) .
$$

From 8.7(a) we have

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}^{\prime}, \mathbf{L}_{u} \bullet \mathbf{L}_{z^{-1}}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{u}\right) \tag{b}
\end{equation*}
$$

From (a),(b) we deduce

$$
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{1} \underline{\varrho}_{u}\right)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \mathbf{L}_{u}\right)
$$

Since this holds for any $z \in \mathbf{c}$, we have canonically $\mathbf{1} \bullet \mathbf{L}_{u}=\mathbf{L}_{u}$. Since this holds for any $u \in \mathbf{c}$, we have canonically $\mathbf{1} \bullet L=L$ for any $L \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$. Applying ${ }^{\dagger}$, we deduce that we have canonically $L \bullet \mathbf{1}=L$ for any $L \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$. We see that

1 is a unit object of the monoidal category $\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}$.
9.3. For $L \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ let $L^{*}=\mathfrak{D}\left(L^{\dagger}\right)$. Note that $L^{* *}=L$. According to [3], the monoidal category $\mathcal{C}^{c} \mathcal{B}^{2}$ is rigid and the dual of an object $L$ is $L^{*}$. (I thank V. Ostrik for pointing out the reference [3].) The proof of rigidity given in [3] relies on the use of the geometric Satake isomorphism. Below we will sketch a more self contained approach to proving the rigidity of $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$.

For each $d \in \mathbf{B}_{d}$ we choose an identification $\mathbf{B}_{d}=\overline{\mathbf{Q}}_{l}$, so that $\mathbf{1}=\mathbf{1}^{\prime}=$ $\mathfrak{D}(1)$.

As a special case of $8.7(\mathrm{a})$, for any $L \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ we have canonically

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}, L \mathfrak{D} \mathfrak{D}\left(L^{\dagger}\right)\right)=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}(L, L) \tag{a}
\end{equation*}
$$

Let $\xi_{L} \in \operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}, L \bullet \mathfrak{D}\left(L^{\dagger}\right)\right)$ be the element corresponding under (a) to the identity homomorphism in $\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}(L, L)$. Using 3.3(a) we have

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}, \mathfrak{D}(L) \underline{\bullet} L^{\dagger}\right) & =\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathfrak{D}\left(\mathfrak{D}(L) \bullet L^{\dagger}\right), \mathfrak{D}(\mathbf{1})\right) \\
& =\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(L \bullet \mathfrak{D}\left(L^{\dagger}\right), \mathbf{1}\right)
\end{aligned}
$$

Under these identifications, the element $\xi_{\mathfrak{D}(L)} \in \operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{1}, \mathfrak{D}(L) \underline{\bullet} L^{\dagger}\right)$ corresponds to an element $\xi_{L}^{\prime} \in \operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(L \bullet \mathfrak{D}\left(L^{\dagger}\right), \mathbf{1}\right)$. The elements $\xi_{L}, \xi_{L}^{\prime}$ define the rigid structure on $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$.
9.4. Let $\mathcal{Z}^{\text {c }}$ be the centre of the monoidal abelian category $\mathcal{C}^{\text {c }} \mathcal{B}^{2}$. (The notion of centre of a monoidal abelian category was introduced by Joyal and Street [9], Majid [25] and Drinfeld, unpublished.)

If $K \in \mathcal{C}^{\mathbf{c}} G$ then the isomorphisms 3.4(a) provide a central structure on $\underline{\zeta}(K) \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ so that $\underline{\zeta}(K)$ can be naturally viewed as an object of $\mathcal{Z}^{\mathbf{c}}$ denoted by $\overline{\zeta(K)}$. (Note that 3.4 is stated in the mixed category but, as above, it implies the corresponding result in the unmixed category.) Then $K \mapsto \overline{\zeta(K)}$ is a functor $\mathcal{C}^{\mathrm{c}} G \rightarrow \mathcal{Z}^{\text {c }}$. The following result will be proved in 9.7.

Theorem 9.5. The functor $\mathcal{C}^{\mathrm{c}} G \rightarrow \mathcal{Z}^{\mathrm{c}}, K \mapsto \overline{\bar{\zeta}(K)}$ is an equivalence of categories.

Note that the existence of an equivalence of categories $\mathcal{C}^{\mathbf{c}} G \rightarrow \mathcal{Z}^{\text {c }}$ was conjectured by Bezrukavnikov, Finkelberg and Ostrik [4], who constructed such an equivalence in characteristic zero.
9.6. By a general result on semisimple rigid monoidal categories in 6, Proposition 5.4], for any $L \in \mathcal{C}^{c} \mathcal{B}^{2}$ one can define directly a central structure on the object $I(L):=\oplus_{y \in \mathbf{c}} \mathbf{L}_{y} \bullet L \bullet \mathbf{L}_{y^{-1}}$ of $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ such that, denoting by $\overline{I(L)}$ the corresponding object of $\mathcal{Z}^{\mathbf{c}}$, we have canonically

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}}\left(L, L^{\prime}\right)=\operatorname{Hom}_{\mathcal{Z}^{\mathrm{c}}}\left(\overline{I(L)}, L^{\prime}\right) \tag{a}
\end{equation*}
$$

for any $L^{\prime} \in \mathcal{Z}^{\mathbf{c}}$. (We use that for $y \in \mathbf{c}$, the dual of the simple object $\mathbf{L}_{y}$ of $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ is $\mathbf{L}_{y^{-1}}$.) The central structure on $I(L)$ can be described as follows: for any ${ }^{1} L \in \mathcal{C}^{\text {c }} \mathcal{B}^{2}$ we have canonically

$$
\begin{aligned}
{ }^{1} L \bullet I(L) & =\oplus_{y \in \mathbf{c}}{ }^{1} L \bullet \mathbf{L}_{y} \bullet \bullet_{\bullet} \bullet \mathbf{L}_{y^{-1}}=\oplus_{y, z \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}}\left(\mathbf{L}_{z},{ }^{1} L \bullet \mathbf{L}_{y}\right) \otimes \mathbf{L}_{z} \bullet L \bullet \mathbf{L}_{y^{-1}} \\
& =\oplus_{y, z \in \mathbf{c}} \operatorname{Hom}_{\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}}\left(\mathbf{L}_{y^{-1}}, \mathbf{L}_{z^{-1}} \bullet^{1} L\right) \otimes \mathbf{L}_{z} \bullet \bullet_{\bullet} \mathbf{L}_{y^{-1}} \\
& =\oplus_{z \in \mathbf{c}} \mathbf{L}_{z} \bullet \bullet_{\bullet} \mathbf{L}_{z^{-1}} \bullet^{1} L=I(L) \bullet^{1} L
\end{aligned}
$$

9.7. For $x \in \mathbf{c}$ we have canonically $\underline{\zeta \chi} \mathbf{L}_{x}=I\left(\mathbf{L}_{x}\right)$ as objects of $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$, see Theorem 6.8. From the last commutative diagram in 7.9 we see that this
identification is compatible with the central structures (see 9.4, 9.6), so that

$$
\begin{equation*}
\overline{\overline{\zeta \chi} \mathbf{L}_{x}}=\overline{I\left(\mathbf{L}_{x}\right)} . \tag{a}
\end{equation*}
$$

Using this and 9.6(a) with $L^{\prime}=\overline{\zeta \chi \tilde{L}}, \tilde{L} \in \mathcal{C}^{\mathrm{c}} \mathcal{B}^{2}$, we see that

$$
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{x}, \underline{\zeta \chi \tilde{L}}\right)=\operatorname{Hom}_{\mathcal{Z} \mathrm{c}}\left(\underline{\overline{\zeta \chi} \mathbf{L}_{x}}, \underline{\overline{\zeta \chi} \tilde{L}}\right)
$$

Combining this with 8.9 we obtain for $\tilde{L}=\mathbf{L}_{x^{\prime}}\left(\right.$ with $\left.x^{\prime} \in \mathbf{c}\right)$ :

$$
\begin{equation*}
\mathbf{A}_{x, x^{\prime}}=\mathbf{A}_{x, x^{\prime}}^{\prime} \tag{b}
\end{equation*}
$$

where

$$
\mathbf{A}_{x, x^{\prime}}=\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} G}\left(\underline{\chi}\left(\mathbf{L}_{x}\right), \underline{\chi}\left(\mathbf{L}_{x^{\prime}}\right)\right), \mathbf{A}_{x, x^{\prime}}^{\prime}=\operatorname{Hom}_{\mathcal{Z}^{\mathrm{c}}}\left(\overline{\overline{\zeta \chi} \mathbf{L}_{x}}, \underline{\zeta \chi \mathbf{L}_{x^{\prime}}}\right) .
$$

Note that the identification (b) is induced by the functor $K \mapsto \overline{\zeta(K)}$. Let $\mathbf{A}=\oplus_{x, x^{\prime} \in \mathbf{c}} \mathbf{A}_{x, x^{\prime}}, \mathbf{A}^{\prime}=\oplus_{x, x^{\prime} \in \mathbf{c}} \mathbf{A}_{x, x^{\prime}}^{\prime}$. Then from (b) we have $\mathbf{A}=\mathbf{A}^{\prime}$. Note that this identification is compatible with the obvious algebra structures of $\mathbf{A}, \mathbf{A}^{\prime}$.

For any $A \in C S_{\mathbf{c}}$ we denote by $\mathbf{A}_{A}$ the set of all $f \in \mathbf{A}$ such that for any $x, x^{\prime}$, the $\left(x, x^{\prime}\right)$-component of $f$ maps the $A$-isotypic component of $\underline{\chi}\left(\mathbf{L}_{x}\right)$ to the $A$-isotypic component of $\underline{\chi}\left(\mathbf{L}_{x^{\prime}}\right)$ and any other isotypic component of $\underline{\chi}\left(\mathbf{L}_{x}\right)$ to 0 . Then $\mathbf{A}=\oplus_{A \in C S_{\mathbf{c}}} \mathbf{A}_{A}$ is the decomposition of $\mathbf{A}$ into simple algebras (each $\mathbf{A}_{A}$ is $\neq 0$ since, by 1.7(b) and 1.10(a), any $A$ is a summand of some $\underline{\chi}\left(\mathbf{L}_{x}\right)$ ).

From [28], 6], we see that $\mathcal{Z}^{\mathbf{c}}$ is a semisimple abelian category with finitely many simple objects up to isomorphism. Let $\mathfrak{S}$ be a set of representatives for the isomorphism classes of simple objects of $\mathcal{Z}^{\mathbf{c}}$. For any $\sigma \in \mathfrak{S}$ we denote by $\mathbf{A}_{\sigma}^{\prime}$ the set of all $f^{\prime} \in \mathbf{A}^{\prime}$ such that for any $x, x^{\prime}$, the $\left(x, x^{\prime}\right)$-component of $f^{\prime}$ maps the $\sigma$-isotypic component of $\underline{\overline{\zeta \chi\left(\mathbf{L}_{x}\right)}}$ to the $\sigma$ isotypic component of $\underline{\zeta \chi\left(\mathbf{L}_{x^{\prime}}\right)}$ and any other isotypic component of $\underline{\overline{\zeta \chi}\left(\mathbf{L}_{x}\right)}$ to 0 . Then $\mathbf{A}^{\prime}=\oplus_{\sigma \in \mathfrak{S}} \mathbf{A}_{\sigma}^{\prime}$ is the decomposition of $\mathbf{A}^{\prime}$ into a sum of simple algebras (each $\mathbf{A}_{\sigma}^{\prime}$ is $\neq 0$ since any $\sigma$ is a summand of some $\underline{\overline{\zeta \chi}\left(\mathbf{L}_{z}\right)}$; indeed, if $\mathbf{L}_{z}$ is a summand of $\sigma$ viewed as an object of $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ then by $9.6(\mathrm{a}), \sigma$ is a summand of $\overline{I\left(\mathbf{L}_{z}\right)}$ hence of $\left.\overline{\overline{\zeta \chi}\left(\mathbf{L}_{z}\right)}\right)$.

Since $\mathbf{A}=\mathbf{A}^{\prime}$, from the uniqueness of decomposition of a semisimple algebra as a direct sum of simple algebras, we see that there is a unique bijection $C S_{\mathbf{c}} \leftrightarrow \mathfrak{S}, A \leftrightarrow \sigma_{A}$ such that $\mathbf{A}_{A}=\mathbf{A}_{\sigma_{A}}^{\prime}$ for any $A \in C S_{\mathbf{c}}$. From the definitions we now see that for any $A \in C S_{\mathrm{c}}$ we have $\bar{\zeta} A \cong \sigma_{A}$. Therefore Theorem 9.5 holds.

Theorem 9.8. Let $L \in \mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}, K \in \mathcal{C}^{\mathbf{c}} G$. We have canonically
(a)

$$
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}(L, \underline{\zeta}(K))=\operatorname{Hom}_{\mathcal{C}^{c} G}(\underline{\chi}(L), K)
$$

Moreover, in $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ we have $\underline{\zeta}(K) \cong \oplus_{z \in \mathbf{c}^{0}} \mathbf{L}_{z}^{\oplus m_{z}}$ where $\mathbf{c}^{0}$ is as in 1.7 and $m_{z} \in \mathbf{N}$.

From 9.5, 9.7, we see that

$$
\operatorname{Hom}_{\mathcal{C}^{\mathrm{c}} G}(\underline{\chi}(L), K)=\operatorname{Hom}_{\mathcal{Z}^{\mathrm{c}}}(\overline{\overline{\zeta \chi}(L)}, \overline{\zeta K})=\operatorname{Hom}_{\mathcal{Z} \mathrm{c}}(\overline{I(L)}, \overline{\zeta K}) .
$$

Using 9.6(a) we see that $\operatorname{Hom}_{\mathcal{Z}^{\mathrm{c}}}(\overline{I(L)}, \bar{\zeta} \bar{K})=\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}(L, \underline{\zeta}(K))$ and (a) follows. To prove the second assertion of the theorem it is enough to show that for any $z \in \mathbf{c}-\mathbf{c}^{0}$ we have $\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}\left(\mathbf{L}_{z}, \underline{\zeta}(K)\right)=0$; by (a), it is enough to show that $\underline{\chi}\left(\mathbf{L}_{z}\right)=0$ and this follows from 1.7(c).
9.9. We show that for $K \in \mathcal{C}^{c} G$ we have canonically
(a)

$$
\mathfrak{D}(\underline{\zeta}(\mathfrak{D}(K)))=\underline{\zeta}(K) .
$$

It is enough to show that for any $L \in \mathcal{C}^{c} \mathcal{B}^{2}$ we have canonically

$$
\operatorname{Hom}_{\mathcal{C}^{\mathfrak{c}} \mathcal{B}^{2}}(L, \mathfrak{D}(\underline{\zeta}(\mathfrak{D}(K))))=\operatorname{Hom}_{\mathcal{C}^{\mathcal{c}} \mathcal{B}^{2}}(L, \underline{\zeta}(K))
$$

Here the left side equals

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{C}^{c} \mathcal{B}^{2}}(\underline{\zeta}(\mathfrak{D}(K)), \mathfrak{D}(L)) & =\operatorname{Hom}_{\mathcal{C}^{c} G}(\mathfrak{D}(K), \underline{\chi}(\mathfrak{D}(L))) \\
& =\operatorname{Hom}_{\mathcal{C}^{c} G}(\mathfrak{D}(K), \mathfrak{D}(\underline{\chi}(L)))
\end{aligned}
$$

(we have used 9.8(a) and 1.13(a)) and the right hand side equals

$$
\operatorname{Hom}_{\mathcal{C}^{c} G}(\underline{\chi}(L), K)=\operatorname{Hom}_{\mathcal{C}^{c} G}(\mathfrak{D}(K), \mathfrak{D}(\underline{\chi}(L)))
$$

(We have again used 9.8(a)). This proves (a).
9.10. The monoidal structure on $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ induces a monoidal structure on $\mathcal{Z}^{\mathbf{c}}$. Using 5.2 and the definitions we see the equivalence of categories in 9.5 is compatible with the monoidal structures. Since $\mathcal{Z}^{\text {c }}$ has a unit object, it follows that the monoidal category $\mathcal{C}^{\mathbf{c}} G$ also has a unit object, say $A$. We show:

$$
\begin{equation*}
A \cong A_{E_{\mathbf{c}}} \tag{a}
\end{equation*}
$$

From 8.6(d),(e) we see that for $x \in \mathbf{c},\left(A_{E_{\mathbf{c}}}: \underline{\chi}\left(\mathbf{L}_{x}\right)\right)$ is 1 if $x \in \mathbf{D}_{\mathbf{c}}$ and is 0 if $x \notin \mathbf{D}_{\mathbf{c}}$. Using 9.8(a) we deduce that for $x \in \mathbf{c}, \operatorname{dim} \operatorname{Hom}_{\mathcal{D B}^{2}}\left(\mathbf{L}_{x}, \underline{\zeta}\left(A_{E_{\mathbf{c}}}\right)\right)$ is 1 if $x \in \mathbf{D}_{\mathbf{c}}$ and is 0 if $x \notin \mathbf{D}_{\mathbf{c}}$. Thus $\underline{\zeta}\left(A_{E_{\mathbf{c}}}\right)$ is isomorphic in $\mathcal{C}^{\mathbf{c}} \mathcal{B}^{2}$ to the unit object $\mathbf{1}$ of the monoidal category $\overline{\mathcal{C}}^{\mathrm{c}} \mathcal{B}^{2}$. Then $\underline{\zeta}\left(A_{E_{\mathrm{c}}}\right)$ viewed as an object of $\mathcal{Z}^{\mathbf{c}}$ is also the unit object of $\mathcal{Z}^{\mathbf{c}}$ hence is isomorphic in $\mathcal{Z}^{\mathbf{c}}$ to $\underline{\zeta}(A)$. Using Theorem 9.5 we deduce that (a) holds.
9.11. Let $z, u \in \mathbf{c}$. We have canonically

$$
\begin{equation*}
\underline{\chi}\left(\mathbf{L}_{z}\right) \underline{\chi} \underline{\chi}\left(\mathbf{L}_{u}\right)=\oplus_{y \in \mathrm{c}} \underline{\chi}\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{z} \bullet \mathbf{L}_{y^{-1}}\right) . \tag{a}
\end{equation*}
$$

Indeed, by 8.1(a), it is enough to prove that we have canonically

$$
\underline{\chi}\left(\mathbf{L}_{u} \bullet \underline{\bullet} \underline{\chi}\left(\mathbf{L}_{z}\right)\right)=\oplus_{y \in \mathbf{c}} \underline{\chi}\left(\mathbf{L}_{u} \bullet \mathbf{L}_{y} \bullet \mathbf{L}_{z} \bullet \mathbf{L}_{y^{-1}}\right)
$$

and this follows from 6.8(a). We see that

$$
\underline{\chi}\left(\mathbf{L}_{z}\right) \underline{*} \underline{\chi}\left(\mathbf{L}_{u}\right) \cong \oplus_{r \in \mathbf{c}^{0}} \underline{\chi}\left(\mathbf{L}_{r}\right)^{\oplus \psi(r)}
$$

in $\mathcal{C}^{\mathbf{c}} G$ where $\psi(r) \in \mathbf{N}$ are given by the following equation in $\mathbf{J}^{\mathbf{c}}$ :

$$
\sum_{y \in \mathbf{c}} t_{u} t_{y} t_{z} t_{y^{-1}}=\sum_{r \in \mathbf{c}} \psi(r) t_{z}
$$

9.12. Let $\mathbf{J}_{0}^{\mathbf{c}}$ be the subgroup of $\mathbf{J}^{\mathbf{c}}$ spanned by $\left\{t_{z} ; z \in \mathbf{c}^{0}\right\}$. For $\xi, \xi^{\prime} \in \mathbf{J}_{0}^{\mathbf{c}}$ we set

$$
\xi \circ \xi^{\prime}=\sum_{y \in \mathbf{c}} \xi t_{y} \xi^{\prime} t_{y^{-1}} \in \mathbf{J}^{\mathbf{c}}
$$

We show that $\xi \circ \xi^{\prime} \in \mathbf{J}_{0}^{\mathbf{c}}$. We can assume that $\xi=t_{w}, \xi=t_{w^{\prime}}$ with $w, w^{\prime} \in \mathbf{c}^{0}$. If $t_{z}(z \in \mathbf{c})$ appears with nonzero coefficient in $\xi \circ \xi^{\prime}$ then $t_{z^{-1}} t_{w} t_{y} t_{w^{\prime}} t_{y^{-1}} \neq 0$
for some $y \in \mathbf{c}$ and $t_{w} t_{y^{\prime}} t_{w^{\prime}} t_{y^{\prime}-1} t_{z^{-1}} \neq 0$ for some $y^{\prime} \in \mathbf{c}$. Using [19, P8] we deduce: $z^{-1} \sim_{L} w^{-1}, w \sim_{L} y^{\prime-1}, y^{\prime-1} \sim_{L} z$. Since $w \sim_{L} w^{-1}$, it follows that $z \sim_{L} z^{-1}$, as claimed.

For $\xi, \xi^{\prime}, \xi^{\prime \prime}$ in $\mathbf{J}_{0}^{\mathbf{c}}$ we show that $\left(\xi \circ \xi^{\prime}\right) \circ \xi^{\prime \prime}=\xi \circ\left(\xi^{\prime} \circ \xi^{\prime \prime}\right)$. We can assume that $\xi=t_{w}, \xi^{\prime}=t_{w^{\prime}}, \xi^{\prime \prime}=t_{w^{\prime \prime}}$ where $w, w^{\prime}, w^{\prime \prime}$ are in $\mathbf{c}^{0}$. We must show:

$$
\sum_{y, u \in \mathbf{c}} t_{w} t_{y} t_{w^{\prime}} t_{y^{-1}} t_{u} t_{w^{\prime \prime}} t_{u^{-1}}=\sum_{y, s \in \mathbf{c}} t_{w} t_{y} t_{w^{\prime}} t_{s} t_{w^{\prime \prime}} t_{s^{-1}} t_{y^{-1}}
$$

or equivalently

$$
\sum_{y, u, s \in \mathbf{c}} h_{y^{-1}, u, s}^{*} t_{w} t_{y} t_{w^{\prime}} t_{s} t_{w^{\prime \prime}} t_{u^{-1}}=\sum_{y, s, u \in \mathbf{c}} h_{s^{-1}, y^{-1}, u^{-1}}^{*} t_{w} t_{y} t_{w^{\prime}} t_{s} t_{w^{\prime \prime}} t_{u^{-1}}
$$

It remains to use the identity $h_{y^{-1}, u, s}^{*}=h_{s^{-1}, y^{-1}, u^{-1}}^{*}$ for $y, u, s \in \mathbf{c}$ (see 19, P7]).

We see that $\left(\mathbf{J}_{0}^{\mathbf{c}}, \circ\right)$ is an associative ring (without 1 in general). Let $\mathcal{G}$ be the Grothendieck group of the category $\mathcal{C}^{\mathbf{c}} G$; this is an associative and commutative ring under truncated convolution (see 9.1) and 9.11 shows that $t_{w} \mapsto \underline{\chi}\left(\mathbf{L}_{z}\right)$ is a ring homomorphism $\mathbf{J}_{0}^{\mathbf{c}} \rightarrow \mathcal{G}$.

## 10. Remarks on the Noncrystallographic Case

10.1 In this subsection we consider a not necessarily crystallographic Coxeter group $W^{\prime}$ with a fixed two-sided cell $\mathbf{c}^{\prime}$. The following discussion assumes the truth of Soergel's conjecture for $W^{\prime}$, recently proved by Elias and Williamson [5]. Let $w \mapsto|w|$ be the length function of $W^{\prime}$. For any $w \in W^{\prime}$ we define $\mathbf{a}(w) \in \mathbf{N}$ as in 19, 13.6]. (The assumption in loc.cit. that $W^{\prime}$ with $w \mapsto|w|$ is bounded in the sense of [19, 13.2] is not necessary for the definition of $\mathbf{a}(w)$; to show that $\mathbf{a}(w)$ is well defined we use instead the inequality $\mathbf{a}(w) \leq|w|$ which is proved by the argument in [19, 15.2], applicable in view of the positivity results of [5].) In the remainder of this section we assume that $W^{\prime}$ with $w \mapsto|w|$ is bounded; then the properties of $\mathbf{a}(w)$ stated in [19, 14.2] hold by the arguments in [19, §15], using again the positivity results in [5]. Assuming further that $W^{\prime}$ is either a finite Coxeter group or an affine Weyl group, the ring $J$ and its subring $J^{\mathbf{c}^{\prime}}$ is defined as in [19, 18.3] in terms of the a-function; both these rings have unit elements.

We show that the definition of the monoidal category in 3.2 can be adapted to the more general case of $W^{\prime}, \mathbf{c}^{\prime}$ by using Soergel bimodules [29] instead of perverse sheaves.

Let $R$ be the algebra of regular real valued functions on a fixed (real) reflection representation of $W^{\prime}$. Then for each $x \in W^{\prime}$, the indecomposable Soergel graded $R$-bimodule $B_{x}$ is defined as in [29, 6.16]. Let $\tilde{C}$ (resp. $C)$ be the category of graded $R$-bimodules wich are isomorphic to finite direct sums of graded $R$-bimodules of the form $B_{x}$ with shift (resp. without shift). As shown by Soergel, $\tilde{C}$ is a monoidal category under the usual tensor product $L, L^{\prime} \mapsto L \bullet L^{\prime}$. If $L \in \tilde{C}$ and $j \in \mathbf{Z}$ we write $L^{j} \in C$ for what in [5, 6.2] is denoted by $\mathcal{H}^{j}(L)$. (The fact that $L^{j}$ is well defined follows from the results of [29] and [5].) Let $C_{\mathbf{c}^{\prime}}$ be the category of graded $R$ bimodules wich are isomorphic to finite direct sums of graded $R$-bimodules of the form $B_{x}\left(x \in \mathbf{c}^{\prime}\right)$ without shift. For any $L \in C$ there is a unique direct sum decomposition $L=\underline{L} \oplus L^{\prime}$ where $\underline{L} \in C_{\mathbf{c}^{\prime}}$ and $L^{\prime}$ is a direct sum of graded $R$-bimodules of the form $B_{x}\left(x \notin \mathbf{c}^{\prime}\right)$. (The uniqueness of this direct sum decomposition follows from the results of [29] and [5].) Let $a^{\prime}$ be the value on $\mathbf{c}^{\prime}$ of the a-function $W^{\prime} \rightarrow \mathbf{N}$. By arguments parallel to those in [18] and making use of the results of [5] and the properties of the a-function we see that for $L, L^{\prime} \in C_{\mathbf{c}^{\prime}}$ we have $\left(L \bullet L^{\prime}\right)^{j}=0$ if $j>a^{\prime}$ and $L, L^{\prime} \mapsto L \bullet L^{\prime}:=\left(L \bullet L^{\prime}\right)^{a^{\prime}}$ defines a monoidal structure on $C_{\mathbf{c}^{\prime}}$ (with a unit object) such that the induced ring structure on the Grothendieck group of $C_{\mathbf{c}^{\prime}}$ is isomorphic to the ring $J^{\mathrm{c}^{\prime}}$. (For three objects $L, L^{\prime}, L^{\prime \prime}$ in $C_{\mathbf{c}^{\prime}}$ we have $\left(L \underline{\bullet} L^{\prime}\right) \underline{\bullet} L^{\prime \prime}=L \bullet\left(L^{\prime} \bullet L^{\prime \prime}\right)=\left(L \bullet L^{\prime} \bullet L^{\prime \prime}\right)^{2 a^{\prime}}$.) (Note that in the finite crystallographic case, the objects of $C_{\mathbf{c}^{\prime}}$ should be thought of as perverse sheaves on $\mathcal{B}$ rather than on $\mathcal{B}^{2}$ as in 3.2; this accounts for our usage of $a^{\prime}$ instead of the $a-\nu$ in 3.2.) Let $Z^{\mathrm{c}^{\prime}}$ be the centre of the monoidal category $\left(C_{\mathbf{c}^{\prime}}, \underline{\bullet}\right)$. By [28, 3.5,3.6], $Z^{\mathbf{c}^{\prime}}$ is an $\mathbf{R}$-linear category. Let $\mathfrak{S}_{\mathbf{c}^{\prime}}$ be the set of isomorphism classes of objects of $Z^{\mathbf{c}^{\prime}}$ which are indecomposable with respect to direct sum. The objects of $\mathfrak{S}_{\mathbf{c}^{\prime}}$ can be called the character sheaves of $W^{\prime}, \mathbf{c}^{\prime}$; this is justified by Theorem 9.5.

Now assume further that $W^{\prime}$ is finite, of type $H_{3}$ or $H_{4}$ or a dihedral group. In this case $\mathbf{c}^{\prime}$ is uniquely determined by the number $a^{\prime}$. Recall that in [16] the "unipotent characters" associated to $W^{\prime}$ were "described". The unipotent characters whose degree polynomial is divisible by $q^{a^{\prime}}$ but not by $q^{a^{\prime}+1}$ can be viewed as unipotent characters associated to $\mathbf{c}^{\prime}$; they form a set
$\mathcal{U}_{\mathbf{c}^{\prime}}$. We expect that $\mathcal{U}_{\mathbf{c}^{\prime}}$ and $\mathfrak{S}_{\mathbf{c}^{\prime}}$ are in a natural bijection. This predicts for example that, if $\mathbf{c}^{\prime}$ in type $H_{4}$ has $a^{\prime}=6$, then $\mathfrak{S}_{\mathbf{c}^{\prime}}$ has exactly 74 elements; if $\mathbf{c}^{\prime}$ for the dihedral group of order $4 k+2$ (resp. $4 k+4$ ) has $a^{\prime}=1$ then $\mathfrak{S}_{\mathbf{c}^{\prime}}$ has exactly $k^{2}$ (resp. $k^{2}+k+2$ ) elements. We expect that the monoidal category $C_{\mathbf{c}^{\prime}}$ is rigid, so that (by a result of [28], [6]), $Z^{\mathbf{c}^{\prime}}$ is a semisimple abelian category and $\mathfrak{S}_{\mathbf{c}^{\prime}}$ is the same as the set of isomorphism classes of simple objects of $Z^{\mathrm{c}^{\prime}}$. We also expect that $Z^{\mathrm{c}^{\prime}}$ is a modular tensor category whose $S$-matrix is the matrix described in [17], [26], which transforms the fake degrees polynomials of $W^{\prime}$ corresponding to $\mathbf{c}^{\prime}$ to the unipotent character degrees corresponding to $\mathbf{c}^{\prime}$.

## References

1. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Astérisque, 100 (1982).
2. D. Ben-Zvi and D. Nadler, The character theory of a complex group, arxiv:0904.1247.
3. R. Bezrukavnikov, M. Finkelberg and V. Ostrik, On tensor categories attached to cells in affine Weyl groups III, Isr. J. Math., 170 (2009), 207-234.
4. R. Bezrukavnikov, M. Finkelberg and V. Ostrik, Character D-modules via Drinfeld center of Harish-Chandra bimodules, Invent. Math., 188 (2012), 589-620.
5. B. Elias and G. Williamson, The Hodge theory of Soergel bimodules, arxiv:1212.0791.
6. P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. Math., 162 (2005), 581-642.
7. V. Ginzburg, Admissible modules on a symmetric space, Astérisque, 173-174 (1989), 199-255.
8. I. Grojnowski, Character sheaves on symmetric spaces, info Ph.D. Thesis, MIT (1992).
9. A. Joyal and R. Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Alg., 71 (1991), 43-51.
10. D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Amer. Math. Soc., Proc. Symp. Pure Math., 36 (1980), 185-203.
11. G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. Math., 42 (1981), 169-178.
12. G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies 107, Princeton Univ. Press (1984).
13. G. Lusztig, Character sheaves I, Adv. Math., 56 (1985), 193-237.
14. G. Lusztig, Character sheaves, II, Adv. Math., 57 (1985), 226-265.
15. G. Lusztig, Character sheaves III, Adv. Math., 57 (1985), 266-315.
16. G. Lusztig, Coxeter groups and unipotent representations, Astérisque, 212 (1993), 191-203.
17. G. Lusztig, Exotic Fourier transform, Duke J. Math., 73 (1994), 227-242.
18. G. Lusztig, Cells in affine Weyl groups and tensor categories, Adv. Math., 129 (1997), 85-98.
19. G. Lusztig, Hecke algebras with unequal parameters, CRM Monograph Ser.18, Amer. Math. Soc., 2003.
20. G. Lusztig, Convolution of almost characters, Asian J. Math., 8 (2004), 769-772. .
21. G. Lusztig, Character sheaves on disconnected groups VII, Represent. Th., 9 (2005), 209-266.
22. G. Lusztig, Character sheaves on disconnected groups IX, Represent. Th., 10 (2006), 353-379.
23. G. Lusztig, Character sheaves on disconnected groups X, Represent. Th., 13 (2009), 82-140.
24. G. Lusztig, On the cleanness of cuspidal character sheaves, Moscow Math. J., 12 (2012), 621-631.
25. S. Majid, Representations, duals and quantum doubles of monoidal categories, Rend. Circ. Mat. Palermo, 26 (1991), 197-206.
26. G. Malle, An exotic Fourier transform for $H_{4}$, Duke J. Math., 73 (1994), 243-246.
27. I. Mirkovic and K. Vilonen, Characteristic varieties of character sheaves, Invent. Math., 93 (1988), 405-418.
28. M. Müger, From subfactors to categories and topology II. The quantum double of tensor categories and subfactors, J. Pure Appl. Alg., 180 (2003), 159-219.
29. W. Soergel, Kazhdan-Lusztig Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu, 6 (2007), 501-525.

[^0]:    Received November 20, 2013 and in revised form March 09, 2014.
    AMS Subject Classification: 20G99.
    Key words and phrases: Character sheaf, perverse sheaf, convolution, Weyl group.
    Supported in part by National Science Foundation grant 1303060.

