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Abstract

Motivated by quantum mechanics we discuss an extended propositional logic (EPL)

basing its syntax on partitions of sets. Every complete partition define a context and in

every context EPL reduces to a classical propositional logic. Partitions lead to a notion

of incompatibility expressing that knowledge cannot be refined without changing context.

We also deal with interpretations, tautologies and semantic consequences in EPL.

1. Introduction

In his famous lecture notes on physics [6], see also [5], Richard Feynman

describes the two-slit experiment as a rule of calculating probability in two

different ways depending on the “context” of the experiment. Particles are

emitted by the source, pass through the system of two slits (i = 1, 2) and

arrive at the screen at some position x ∈ X (we assume that X is finite).

The elementary event eix i = 1, 2, x ∈ X means that the particle passed

through slit i and arrived at x ∈ X. With each event eix there is associated

the complex number ϕix, called the amplitude of eix.

The calculation of the probability of the event ex = e1x ∪ e2x (= the

arrival at x) depends, according to Feynman, on the “context” of the exper-

iment. The decisive rôle is played by the so-called which-way information
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(WWI). The fact that WWI is known means that it is known through which

slit the particle has passed.

(1) If WWI does not exist, then P (ex) = |ϕ1x + ϕ2x|
2 (add amplitudes),

(2) If WWI exists, then P (ex) = |ϕ1x|
2 + |ϕ2x|

2 (add probabilities).

These are Feynman’s rules for calculating the probability of events in quan-

tum mechanics (QM), they depend on the “context”.

There is an alternative description of this situation, which was proposed

in the papers [11] [12] [13]. Instead of considering a unique event ex and two

different “contexts” (as Feynman suggested) it was proposed to consider

these two situations as two different events:

(1) We have an event e1x ⊔ e2x where ⊔ describe the “indistinguishable”

union of events e1x and e2x: We have no WWI.

(2) We have an event e1x∨e2x where ∨ denotes the (standard) distinguishable

union of events: WWI is known.

Clearly, these two events are different

(e1x ⊔ e2x) 6= (e1x ∨ e2x) ∀x ∈ X.

It is useful to represent them as subsets of Ω×Ω, Ω := {eix | i = 1, 2, x ∈

X}, as follows, see [11] [12] [13],

e1x ⊔ e2x 7→ Ax := (e1x ∪ e2x)× (e1x ∪ e2x),

e1x ∨ e2x 7→ Bx := (e1x × e1x) ∪ (e2x × e2x).

The difference between these events is

Ax \Bx = (e1x × e2x) ∪ (e2x × e1x).

Then it is possible to introduce an appropriate measure µ on Ω × Ω such

that P (e1x ⊔ e2x) = µ(Ax), P (e1x ∨ e2x) = µ(Bx). Naturally, in general

µ(Ax) 6= µ(Bx), since Ax 6= Bx.

The relevant fact is that the two events e1x⊔e2x and e1x∨e2x cannot be

considered in the same experiment. This property is called incompatibility,

[13]. The incompatibility has a purely logical origin: it is impossible in the

same experiment “to have” and “not to have” the which-way information.

This incompatibility has nothing to do with Bohr’s complementarity, since
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the incompatibility is a purely logical phenomenon. The compatibility of

two events is denoted in [13] by ⋔ and so

(e1x ⊔ e2x) 6⋔ (e1x ∨ e2x)

and, moreover, (e1x ⊔ e2x) 6⋔ eix, i = 1, 2, while (e1x ∨ e2x) ⋔ eix, i =

1, 2, e1x ⋔ e2x. Then the context was defined in [13] as a maximal set of

mutually compatible events. The incompatibility of events A and B means

the following: If A has happened, then B can be neither true nor false, since

B is not a part of the context of A (see [13] for details).

The aim of this paper is to extend the classical propositional logic (CPL)

to an extended propositional logic (EPL) which incorporates the ideas from

[13]:

(1) the operator ⊔ of indistinguishable disjunction,

(2) the extended set of propositions generated by the operators ¬, ∧, ∨, ⊔,

(3) the concept of incompatibility, ⋔.

A first rough step in such a description was done in [7], where the case

of a finite set of propositional symbols is considered. In this paper, after

introducing the partitions of a set that turns out to be an effective model of

our EPL, in Section 2, we describe the syntax of our EPL. Then, in Section 3,

we discuss the concept of interpretation. Section 4 is devoted to the concepts

of tautology and of semantic consequence, and in Section 5 we show that in

every context our EPL reduces to a classical propositional logic. Finally,

Section 6 contains a few comments about some similarities and differences

between our EPL and 3-valued logics or rough set theory. Essentially, in our

EPL knowledge cannot be refined without changing context.

2. The Syntax: Partitions and Normal Formulas

In this section we illustrate the syntax of our extended propositional

logic. In particular, we deal with a natural parallelism between formulas

and partitions that is between language constructions and set-theoretical

constructions that will lead us to the notion of normal form of a formula.
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2.1. Partitions

First we illustrate a few properties of partitions of a set.

Let Ω be a nonempty set. We call partition of Ω a family A = {ai}i∈I of

nonempty pairwise disjoint subsets of Ω. It is not requested that ∪iai = Ω.

If this is the case, we speak of a complete partition. We say that a partition

is an atomic partition if it consists of only one subset of Ω, A = {a}, a ⊂ Ω,

a 6= ∅. For instance, for two disjoint subsets a, b ⊂ Ω, {a, b} and {a ∪ b} are

two distinct partitions of Ω. The latter is an atomic partition.

For convenience we also introduce the empty partition ∅ where the index

set I = ∅. The set of all partitions of Ω, augmented with the empty partition

∅, will be denoted by Π(Ω); of course, Π(Ω) ⊂ P(P(Ω)). We define the

support of a partition A ∈ Π(Ω) as the set sptA := ∪iai ⊂ Ω. Two partitions

are said to be disjoint or orthogonal, and we write A ⊥ B, if sptA∩sptB = ∅.

Of course, partitions are subsets of the set P(Ω) of subsets of Ω thus an

inclusion operator is inherited: let A = {ai}i∈I and B = {bj}j∈J be two

partitions, we say that A ⊂ B if for any i ∈ I there exists j ∈ J such that

ai = bj. We say that two partitions A = {ai} and B = {bj} ∈ Π(Ω) are

compatible, and we write A ⋔ B, if for any i ∈ I and j ∈ J either ai ∩ bj = ∅

or ai = bj . Trivially, A ⊥ B or A ⊂ B or B ⊂ A imply that A and B are

compatible. Notice that compatibility is not an equivalence relation.

Let A = {ai}i∈I and B = {bj}j∈J be two partitions, then the set-

theoretic intersection A ∩B of A and B in P(Ω), defined by

A ∩B =
{
c ⊂ Ω

∣∣∣ c ∈ A and c ∈ B
}
,

is a partition of Ω. In contrast, the set-theoretic union

A ∪B :=
{
c ⊂ Ω

∣∣∣ c ∈ A or c ∈ B
}

in P(Ω) is not a partition, in general. We now define the operators ¬, ∧,

∨ and ⊔ on Π(Ω) as follows. Let A = {ai}i∈I and B = {bj}j∈J be two

partitions of Ω, then

(1) ¬A := {Ω \ sptA},

(2) ⊔A := ¬¬A = {sptA},

(3) A ⊔B := {sptA ∪ sptB},

(4) ∧A := A,
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(5) if for some i, j we have ai ∩ bj 6= ∅, we set

A ∧B :=
{
ai ∩ bj

∣∣∣ i ∈ I, j ∈ J, ai ∩ bj 6= ∅
}
,

otherwise we set A ∧B = ∅,

(6) ∨A := A,

(7) if the supports of A and B are disjoint, we set A ∨ B := A ∪ B, and in

general

A ∨B = (A ∧B) ∨ (¬A ∧B) ∨ (A ∧ ¬B).

since A ∧B, (¬A) ∧B and A ∧ (¬B) are pairwise disjoint partitions.

By induction we then extend the operators ∨, ∧ and ⊔ to operators with

arbitrary arity.

Example 1. Let a, b, c ⊂ Ω be three pairwise disjoint subsets of Ω and

let A = {a}, B = {b} and C = {c}, i.e., A, B and C are three atomic

and pairwise disjoint partitions. Then A ∨ B = {a, b}, A ⊔ B = {a ∪ b},

⊔(⊔A) = ⊔A = A, hence

A ∧ (A ∨B) = A,

A ∧ (A ⊔B) = {a} ∧ {a ∪ b} = {a} = A,

A ∨ (A ∨B) = A ∨B,

A ∨ (A ⊔B) = {a} ∨ {a ∪ b} = {a, b} = A ∨B,

A ⊔ (A ∨B) = {a} ⊔ {a, b} = {a ∪ b} = A ⊔B.

Furthermore,

(A ∨B) ⊔ (A ∨C) = {a, b} ⊔ {a, c} = {a ∪ b ∪ c} = A ⊔B ⊔ C,

(A ⊔B) ∨ (A ⊔C) = {a ∪ b} ∨ {a ∪ c} = {a} ∨ {c} ∨ {b} = A ∨B ∨ C,

(A ⊔B) ∧ (A ⊔C) = {a ∪ b} ∧ {a ∪ c} = {a} = A,

(A ∨B) ∧ (A ∨C) = {a, b} ∧ {a, c} = A.

However, in general, A ∧ (A ∨ B) 6= A and A ∨ (A ∧ B) 6= A. In fact,

if a, b, c ⊂ Ω are pairwise disjoint and A := {a ∪ b}, B := {b ∪ c} we have

A ∧ (A ∨B) = A ∨ (A ∧B) = {a, b}.

Several properties of partitions are discussed in [7] [13]. Here we recall

some of them.
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Proposition 2. Let Ω be a set. Then

(1) ∨, ∧ and ⊔ are associative and commutative on Π(Ω),

(2) the following distribution law holds

A ∧ (B ∨C) = (A ∧B) ∨ (A ∧C) ∀A,B,C ∈ Π(Ω),

while in general, A ∨ (B ∧C) is not equal to (A ∨B) ∧ (A ∨ C),

(3) the subset A(Ω) ⊂ Π(Ω) of atomic partitions augmented with the empty

partition is a Boolean algebra with the operations ¬, ∧ and ⊔, and the

elements 0 and 1 given by ∅ and {Ω}, respectively.

As a consequence, the following claims are equivalent:

(1) A ⋔ B,

(2) A ∧B ⊂ A and A ∧B ⊂ B,

(3) A ∨B = A ∪B,

(4) A ∪B ∈ Π(Ω).

Observe that if A and B are compatible, then the operations A ∨ B and

A∧B simply reduce to the set theoretic operations of union and intersection,

respectively.

For two partitions A and B we define B \A := (¬A)∧B. Observe that

the inclusion B \ A ⊂ B is false, in general, and it is true if A ⊂ B.

A maximal class of compatible partitions is called a context, see [13].

Since for every A ∈ Π(Ω) the partition A ∨ (¬A) is compatible with A, we

conclude that every context K contains one (and only one) complete partition

U of Ω, that we call the universe of K. In particular, if K is a context with

universe U , then a partition A belongs to K if and only if A ⊂ U .

Let K be a context with universe U . Then we may define a negation

operator within K by setting for A ∈ K

¬K(A) := (¬A) ∧ U.

By the above, ¬KA ∈ K.

Let K be a context with universe U . Since A ∈ K if and only if A ⊂ U ,

there is a bijection j : K → P(U), j(A) := A. Moreover,
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Proposition 3. j is an isomorphism between K with the three operations of

union, intersection and negation ¬K within K and the standard algebra of

the parts P(U), so that K is a Boolean algebra.

Therefore, the usual consequences holds. For instance, let K be a context

and let A,B ∈ K. Then

¬K(¬KA) = A,

¬K(A ∩B) = ¬KA ∪ ¬KB,

¬K(A ∪B) = ¬KA ∩ ¬KB,

and

(¬KA) ∪B = U if and only if A ⊂ B. (2.1)

2.2. The syntax of EPL

We begin by declaring our alphabet by means of which formulas are

produced. It consists of

(1) a set P = {p1, p2, . . . } of at most denumerable propositional symbols,

(2) a set of symbols for logical operators, ¬, ∧, ∨, ⊔ (corresponding to

the logic operators of syntactical negation, conjunction, disjunction and

irreducible or indistinguishable disjunction), where arity of ¬ is 1 while

the arity of ∧, ⊔ and ∨ is any arbitrary n ≥ 1,

(3) auxiliary symbols (), {}, etc.

As usual, an expression is a concatenation of symbols of the alphabet. We

write

∨(f1, f2)

to denote the concatenation of the symbols “∨”, “(”, “f1”, “f2”, “)” and

similarly for ∧(f1, f2) and ⊔(f1, f2). We shall also write f1 ∨ f2 instead of

∨(f1, f2), and similarly for the expressions involving ⊔ and ∧.

Let P be a set of propositional symbols. We denote by FP the set of

all admissible expressions, or formulas, of the language. These formulas are

produced by the following grammar :

(1) if p ∈ P, then p ∈ FP ,

(2) if f ∈ FP , then ¬f ∈ FP ,

(3) if f1, f2 ∈ FP , then (f1 ∧ f2), (f1 ∨ f2), (f1 ⊔ f2) ∈ FP .
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By standard induction, each formula f ∈ FP involves a finite and ordered

set of symbols from the alphabet. For f1, f2, . . . , fh in FP we denote in the

sequel by ∧(f1, . . . , fh) or by f1 ∧ . . . ∧ fh the formula

(. . . ((f1 ∧ f2) ∧ f3) ∧ . . . fh)

A similar convention is also used for formulas involving ⊔, ∧ or ∨.

For f ∈ FP the smallest subset Q ⊂ P such that f ∈ FQ is called

the basis, or the basic alphabet, of f and it is denoted by bas(f). Since

FQ ∩ FR = FQ∩R, we have

bas(f) =
⋂{

Q ⊂ P
∣∣∣ f ∈ FQ

}
.

Consider sequences of literals (q1, q2, . . . ) where for each i we have qi = pi

or ¬pi for some pi ∈ F . One can identify such a sequence to a binary sequence

indexed by P that at the place p has 1 if qi = p and 0 if qi = ¬p. This way

we have a natural identification of the set of sequences of literals in P with

the set of binary sequences indexed by P

ΩP := 2P :=
{
σ
∣∣∣ σ : P → {0, 1}

}
.

As usual, every formula f ∈ FP is made by a finite sequence of propo-

sitional symbols, the elements of bas(f). These propositional symbols can

appear as itself or as their negation. We can see a formula as a binary tuple

indexed by the symbols involved. Since each formula f ∈ FP has a finite

basis Q = bas(f) ⊂ P, we identify f with the subset of all binary sequences

indexed by F that have the components indexed by the symbols in bas(f)

fixed.

Definition 4. Let Q ⊂ P. For any E ⊂ ΩQ, the set

CQ(E) =
{
α : P → {0, 1}

∣∣∣ α|Q ∈ E
}

is said to be a Q-cylinder over E. We also say that the cylinder CQ(E) is

Q-based and over E.
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The Q-cylinders inherit the properties of the parts of the finite set ΩQ.

For instance, ΩP = CQ(ΩQ) for all Q ⊂ P, and

CQ(E ∩ F ) = CQ(E) ∩ CQ(F ),

CQ(E ∪ F ) = CQ(E) ∪ CQ(F ),

CQ(E \ F ) = CQ(E) \ CQ(F )

(2.2)

for all E,F ⊂ ΩQ. If we set CQ(∅) := ∅, then the map ΩQ → ΩP defined

by E 7→ CQ(E) is a one-to-one correspondence between the algebra of parts

of ΩQ and the algebra of Q-based cylinders in ΩP In particular, if Q is

finite, then the family of Q-based cylinders is finite with cardinality Ω|Q|.

Moreover, Q1-based cylinders are also Q2-based cylinders if Q1 ⊂ Q2.

A set A ⊂ ΩP is said to be finitely generated if A is a Q-based cylinder

A = CQ(E) for some finite Q ⊂ P and E ⊂ ΩQ. The smallest Q for which

A is Q-based is called the basis of A and we have

bas(A) =
⋂{

Q
∣∣∣A is Q-based

}
.

Finite partitions A = {ai} of ΩP consisting of Qi-based cylinders for

some finite Qi ⊂ P will play a relevant role for us. The class of such

partitions will be denoted by

Πf (ΩP).

For every Q ⊂ P the map ΩQ → ΩP given by E 7→ CQ(E) is a homomor-

phism of algebras; consequently, the operations ¬, ∪, ∩ of ΩQ extends to

operations on the finite partitions of ΩP into Q-based cylinders, and, when

Q varies, to operations on Πf (ΩP).

We now define a map part : FP → Πf (ΩP) as follows:

(1) if p ∈ P, then part(p) :=
{
C{p}({1})

}
,

(2) if f ∈ FP , then part(¬f) := ¬part(f),

(3) if f1, . . . , fk ∈ FP , then

part(∨(f1, . . . , fk)) := part(f1) ∨ · · · ∨ part(fk),

part(∧(f1, . . . , fk)) := part(f1) ∧ . . . ∧ part(fk),

part(⊔(f1, . . . , fk)) := part(f1) ⊔ · · · ⊔ part(fk).
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Notice that part is well-defined and that the image partitions are always

finite partitions into finite generated cylinders; also

(1) If p ∈ P, then part(¬p) = ¬part(p) = {C{p}({0})}.

(2) ∀f ∈ FP we have part(∨(f)) = ∪ part(f) = part(f).

(3) ∀f ∈ FP we have part(∧(f)) = ∩ part(f) = part(f).

(4) For every simple conjunction f we have part(⊔(f)) = part(f).

(5) ∀f ∈ FP we have bas(f) = bas(part(f)).

The map part splits FP into equivalence classes, setting for f, g ∈ FP

f ≃ g iff part(f) = part(g). We assume that part defines the rules of

calculus of our logic by considering equivalent the formulas which give rise

to the same partition. Then it readily follows that logic operators preserve

the equivalence classes, that the logic operators ∧, ∨ and ⊔ are associative

and commutative, and, moreover, that ∨(f) ≃ f , ∧(f) ≃ f ∀f ∈ FP .

2.3. Normal formulas

In this section we prove that in fact the map part from FP into Πf (ΩP) is

onto. Actually, we construct a map ψ : Πf (ΩP) → FP such that part(ψ(A))

= A ∀A ∈ Πf (ΩP ). Therefore ψ is injective and part is surjective.

In order to define the map ψ, let us make some observation about the

ordering of the elements of a Q-cylinder.

The elements of P are naturally ordered, so are the elements of any

finite family Q of symbols. In contrast, there is no natural order of the parts

of a partition. Moreover, there is no natural order on the set of finite tuples

in OQ. Of course, one can introduce the lexicographic order on tuples of

ΩQ. This induces a corresponding order among the elements of a Q-cylinder

CQ(E), E ⊂ Q. More explicitly, if Q = {pi1 , . . . , pis}, i1 < i2 < · · · < is,

then the maps in ΩQ, i.e., the binary s-uples, are ordered as follows: For

σ, τ : Q → {0, 1}, we have σ < τ if there is k such that σ(qi) = τ(qi) for

i = 1, . . . , k − 1 and σ(qk) = 0 < 1 = τ(qk). It is easily seen that < defines

a total order on ΩQ. In particular, every subset M ⊂ ΩQ has a minimum

point, denoted min(M).

So, if E,F ⊂ ΩQ with min(E) < min(F ), we say E ≺ F and, similarly,

that CQ(E) ≺ CQ(F ). Again ≺ is an order relation that is a total order on
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disjoint sets of ΩQ and also on the corresponding cylinders in ΩP . This way

we can order the elements of a finite partition in Πf (ΩP ).

Define now ψ : Πf (ΩP) → FP by means of the following syntactic

rules:

(1) If A :=
{
C{p}({1})

}
, p ∈ P, we set ψ(A) := p, and, if A =

{
C{p}({0})

}
,

we set ψ(A) := ¬p. In other words, we associate to the atomic parti-

tion containing the {p}-cylinder C{p}({1}) (C{p}({0}, respectively) the

symbol p (¬p, respectively). Trivially, we have part(ψ(A)) = A.

(2) Let A = {CQ(E)} be an atomic partition, where CQ(E) is a Q-cylinder,

Q is finite and E := {α}, α : Q → {0, 1}. By enumerating the elements of

Q by using the order in Q, Q = {pi1 , . . . pik}, we have E = {δi1 , . . . , δik}

and

CQ(E) =

k⋂

j=1

C{pij}
({δpij }).

If fj denotes the literal fj := ψ
({

C{pij }
({δpij })

})
, we then set

ψ(A) := ∧
(
f1, f2, . . . , fk

)
,

i.e., we associate to the atomic partition A, the element of which is a

Q-cylinder over E, a simple conjunction. Again part(ψ(A)) = A.

(3) Let A = {CQ(E)} be an atomic partition where CQ(E) is aQ-cylinder, Q

is finite and E ⊂ ΩQ. Since E is a finite set of tuples, we may enumerate

the tuples in E according to the lexicographic order we introduced above

so that E = {α1, . . . , αs}, αi : Q → {0, 1} and CQ(E) decomposes as

union of disjointQ-cylinders over a single tuple, CQ(E) = ∪s
i=1CQ({αi}).

If

qi := ψ
(
{CQ({αi})}

)
, i = 1, . . . , s,

we then set

ψ(A) := ⊔(q1, q2, . . . , qs).

One sees that part(ψ(A)) = A.
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(4) Finally, if A = {CQi
(Ei) | i = 1, . . . , s} is a finite partition into disjoint

cylinders in Πf (ΩP), denoting gi := ψ({CQi
(Ei)}), we set

ψ(A) := ∨(g1, . . . , gs),

and again we have part(ψ(A)) = A.

The image of ψ is contained in a special class of formulas that we call

normal formulas. They are generated starting from the propositional sym-

bols by the following rules:

(1) A literal is a formula of the type p or ¬p with p ∈ P; of course, bas(p) =

bas(¬p) = {p}. The literals are normal formulas.

(2) If {qi}, i = 1, 2, . . . , h is a finite set of literals with disjoint basis sets,

bas(qi)∩bas(qj) = ∅ ∀i, j, i 6= j, then f = ∧(q1, . . . , qh) is called a simple

conjunction; of course, bas(f) = ∪h
i=1bas(qi). The simple conjunctions

are normal formulas. Notice that p∧p, p∧¬p are not simple conjunctions.

(3) If {fi} is a finite set of simple conjunctions, then the formula

g = ⊔(f1, . . . , fk)

is called an atomic formula; of course, bas(g) = ∪h
i=1bas(fi). Atomic

formulas are normal formulas.

(4) Finally, if g1, . . . , gh are atomic formulas with bas(gi)∩bas(gj) = ∅ ∀i 6= j,

i, j = 1, . . . , h, then F = ∨(g1, . . . , gh) is a normal formula. Of course

bas(f) = ∪h
i=1bas(gi).

Notice that for two simple conjunctions f1 and f2, ∨(f1, f2) is not a

normal formula, while ∨(⊔(f1),⊔(f2)) and ∨(⊔(f2),⊔(f1)) are equivalent

normal formulas.

The image ψ(Πf (ΩP)) we have constructed above does not coincide with

the full class of normal forms, since for a given partition A, ψ(A) depend

on A and on the order relation used to enumerate the elements of each

cylinder of the partition A. However, albeit changing the orderings changes

the map ψ and the normal formula ψ(A), the equivalence class of ψ(A)

never changes. Thus part is a one to one correspondence between FP/ ≃

and Πf (ΩP) and ψ is a bijection between Πf (ΩP) and NP/ ≃. Therefore,

even if ψ ◦ part : FP → NP is not an intrinsic map, ψ ◦ part factorizes to

an intrinsic bijection from FP/ ≃ and NP/ ≃, which in fact associate to a

generic formula f ∈ FP a normal form g := ψ ◦ part(f) which is uniquely
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defined up to a permutation of the addends. Finally, it is worth noticing

that the definition of the map ψ ◦ part is purely syntactic and independent

of any interpretation of the formulas.

Example 5. It may be worth illustrating the above by means of a few

examples.

(1) We have ∧(f, f) ≃ f and ∨(f, f) ≃ f for all f ∈ FP . In fact, we have

part(∨(f, f)) = part(f)∨part(f) = part(f) and, similarly, part(∧(f, f))

= part(f) ∧ part(f) = part(f). In particular, literals are equivalent to

simple conjunctions.

(2) If f is a simple conjunction, then ⊔(f) ≃ f since part(⊔(f)) = ⊔(partf)

= part(f). In other words, simple conjunctions are equivalent to atomic

formulas.

(3) If f is an atomic formula, then part(f) is an atomic partition; then it

follows that ⊔(part(f)) = part(f), hence ⊔(f) ≃ f .

(4) If f1, f2, f3 are atomic formulas, then

f1 ∨ (f1 ⊔ f2 ⊔ f3) ≃ f1 ∨ (f2 ⊔ f3),

f1 ∧ (f1 ⊔ f2 ⊔ f3) ≃ f1.

(5) f1 ⊔ (f1 ∨ f2) ≃ f1 ⊔ f2 since, if part(f1) = {a} and part(f2) = {b}, then

part(f1 ∨ f2) = {a, b} consequently

part(f1 ⊔ (f1 ∨ f2)) = {a} ⊔ {a, b} = {a ∪ b}.

(6) Let f1, f2, f3 be three simple conjunction that are pairwise orthogonal.

Then

(f1 ⊔ f2) ∨ (f1 ⊔ f3) ≃ f1 ∨ f2 ∨ f3,

(f1 ∨ f2) ⊔ (f1 ∨ f3) ≃ f1 ⊔ f2 ⊔ f3,

(f1 ⊔ f2) ∧ (f1 ⊔ f3) ≃ f1.

Finally, notice that, if f = e1 ⊔ e2 and g = e1 ⊔ e3, then f ∨ (f ∧ g) 6= f

and f ∧ (f ∨ g) 6= f . In fact, f ∨ (f ∧ g) = f ∧ (f ∨ g) = e1 ∨ e2.
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3. Interpretations

In the classical propositional logic, an interpretation, or a valuation, is

a map I : FP → {0, 1} that associates a truth-value 0 or 1 to each formula

f ∈ FP and, in turn, fix themeaning of all formulas according to the rules

(1) I(¬f) = 1− I(f),

(2) I(f ∧ g) = min(I(f), I(g)),

(3) I(f ∨ g) = max(I(f), I(g)),

(4) I(f → g) = max(1− I(f), I(g)),

(5) I(f ↔ g) = |I(f) + I(g) − 1|.

In particular, the truth-values of the composition of formulas depend func-

tionally on the truth-values of the addends. This property is called func-

tionality.

Let us simplify the notations writing F , Ω and Π(Ω) instead of FP , ΩP

and Πf (ΩP), respectively.

In our case, as we already stated, the rules of computations of our logic

system are modeled on the rules for partitions, since we have set for f, g ∈ F

f ≃ g iff part(f) = part(g). So we assume that interpretations I(f), I(g) of

two equivalent formulas ought to agree,

(E1) If f, g ∈ F and f ≃ g then I(f) = I(g).

Equivalently, the interpretations of f depend only on the normal form of f .

A basic goal in our logic is to implement in it the principle of incompat-

ibility. This dictates a different set of rules for meaningful interpretations.

What we want is that if the normal form of f ∈ F is atomic, I(f) = 1 and

g is not “compatible” with f , neither I(g) = 0 nor I(g) = 1 be possible. Of

course, this implies that an interpretation cannot be defined on the whole

set F of formulas, but only on a proper subset D ⊂ F of formulas that are

compatible with f .

We deal with the requirement of incompatibility by saying that two for-

mulas f, g ∈ F are compatible, and we write f ⋔ g, if part(f) ⋔ part(g).

The principle of incompatibility is then given in terms of partitions as fol-

lows:

(E2) Let b ⊂ Ω be a nonempty and proper subset of Ω and let A ∈ Π(Ω). If

I(b) = 1 and A 6⋔ {b}, then neither I(A) = 0 nor I(A) = 1 is possible.
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We are led to the following definition.

Definition 6. Let h ⊂ Ω be a proper, nonempty subset of Ω. A standard

interpretation parametrized by h is a couple (Dh, Ih) where Dh ⊂ Π(Ω) is

such that A ∈ Dh if and only if A ⋔ {h}, and Ih is a map Ih : Dh → {0, 1}

such that for every A = {a1, a2, . . . an} ∈ Dh we have

I(A) =

{
1 if ai = h for some i = 1, . . . , n,

0 otherwise.

We repeat again: Let b ⊂ Ω be a nonempty proper subset of Ω, and

(Db, Ib) the interpretation associated to b. Then for A ∈ Π(Ω) we have

Ib(A) = 1 if and only if b ∈ A.

Example 7. (i) Let Ω = {a, b, c, d} and let h = {a}. Then the partitions

that are compatible with {{a}} are the nonempty disjoint families of subsets

chosen from

{a}, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}

and, for A ∈ Dh, Ih(A) = 1 if and only if {a} ∈ A.

(ii) Let Ω = {a, b, c, d} and let h = {a, b}. Then the partitions compati-

ble with {{a, b}} are the nonempty families of subsets chosen from

{a, b}, {c}, {d}, {c, d}

and for A ∈ D{a,b}, I{a,b}(A) = 1 if and only if {a, b} ∈ A.

Remark 8. In terms of formulas, the incompatibility principle says

Let f ∈ F be such that its normal form is atomic and I(f) = 1,

and let g ∈ F be incompatible with f , g 6⋔ f , then neither I(g) = 0

nor I(g) = 1 is possible.

and Definition 6 reads as: Let h be an atomic formula. We call standard

interpretation parametrized by h a couple (Dh, Ih) where Dh ⊂ F is the set

of all formulas compatible with h, and Ih : Dh → {0, 1} has the following
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property. For f ∈ Dh, let f1 ∨ f2 ∨ · · · ∨ fs be the normal form of f where

f1, . . . , fs are atomic formulas. Then

Ih(f) =

{
1 if fi = h for some i = 1, . . . , s,

0 otherwise.

When necessary we write also (Dh, Ih) to denote the interpretation parame-

trized by h.

One sees that standard interpretations (D,I) on Π(Ω) have the following

properties:

(a) (Support principle) Let b ⊂ Ω be a nonempty proper subset of Ω and

let A ∈ D be such that A ⊥ {b}. If I(A) = 1 then I(b) = 0.

(b) For every nonempty b ⊂ Ω and for every A ∈ Π(Ω) such that A ⊥ {b}

we have A ∈ D if A ∨ {b} ∈ D equivalently, if A 6∈ D then A ∨ {b} /∈ D.

(c) For every nonempty set b ⊂ Ω with I(b) = 0 and for every A ∈ D such

that A ⊥ {b} we have I(A ∨ {b}) = I(A).

Definition 9. A couple (D, I) is called an interpretation on Π(Ω) if it sat-

isfies (E2) and (a) (b) and (c) above.

We have

Theorem 10. Let (D, I) be an interpretation such that there exist A,B ∈ D

such that I(A) = 1 and I(B) = 0. Then there exists a nonempty proper

subset h ⊂ Ω such that (D, I) is the standard interpretation parametrized by

h.

Lemma 11. Let (D, I) be as in the statement of Theorem 10. For any

partition A = {a1, . . . , as} ∈ Π(Ω), set Ai := {ai}. We have

(1) A ∈ D iff Ai ∈ D for every i = 1, . . . , s,

(2) I(A) = 1 iff there exists i0 such that I(Ai0) = 1,

(3) I(A) = 0 iff I(Ai) = 0 for every i = 1, . . . , s,

(4) Let B ∈ Π(Ω) be orthogonal to A, A ⊥ B. Then

(a) if A,B ∈ D, I(A) = 0 and I(B) = 0, then A∨B ∈ D and I(A∨B) =

0,

(b) if A,B ∈ D and I(A) = 1, then I(B) = 0 and I(A ∨B) = 1,

(c) if A /∈ D, then A ∨B /∈ D.
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Proof.

(i) follows applying inductively (b).

(ii) Assume that there exists i0 such that I(Ai0) = 1, say i0 = 1. Then by

(c) I(A1 ∨ A2) = 1, I((A1 ∨ A2) ∨ A3) = 1 and so on. After a finite

number of steps we get I(A) = 1. Conversely, assuming I(A) = 1, in

particular A ∈ D and by (b) Ai ∈ D for every i. Were I(Ai) = 0 ∀i,

(c) would give I(A) = 0, a contradiction, and therefore there exists i0

such that I(Ai0) = 1.

(iii) If I(Ai0) = 1 for some i0, then I(A) = 1 by (c). If for all i we have

I(Ai) = 0, then I(A) = 0 by (c).

(iv) Trivial.

Proof of Theorem 10. From the assumptions there exists a partition A

such that I(A) = 1. Decomposing A as A = {a1, . . . , as}, one gets by (i)

and (ii) of Lemma 11 that {ai} ∈ D ∀i and that I({ai}) = 1 for some i0. Set

h := ai0 . We now prove that (D, I) is the interpretation parametrized by h.

Let B = {b1, . . . , br} ∈ Π(Ω). Let us look at the relations between B

and {h}. We have only three possibilities;

(1) We have bj0 = h for some j0. In this case I({bj0}) = 1 hence B ∈ D and

I(B) = 1 by (i) and (ii) of Lemma 11. On the other hand, B ∈ Dh and

Ih(B) = 1 by definition.

(2) We have bj ∩ h = ∅ ∀j. In this case by (i) and (iii) of Lemma 11 we get

I({bj}) = 0 ∀j and (i) and (iii) of Lemma 11 yields I(B) = 0. On the

other hand, by definition B ∈ Dh and Ih(B) = 0.

(3) bj1∩h 6= ∅. This means that {bj1} 6⋔ {h} hence by (E2) {bj1} /∈ D, hence,

by (i) of Lemma 11, B /∈ D. On the other hand, B /∈ Dh by definition.

Thus, for any partition B we have proved that B ∈ D if and only if B ∈ Dh

and in this case I(B) = I(Bh). This completes the proof.

We formulate the relations of interpretations (D, I) on F in terms of the

logical operators ¬, ⊔, ∧ and ∨ passing from formulas to partitions and then

at their interpretations. The results are summarized in the tables below.

We observe that no functional dependence exists. The result of the logic

operations is often determined by the internal structure of the propositions.
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A ¬A ⊔A

I(A) = 1 I(¬A) = 0 I(⊔A) = 1 or ⊔A /∈ D

I(A) = 0 I(¬A) = 1 or ¬A /∈ D I(⊔A) = 0

A /∈ D I(¬A) = 0 or ¬A /∈ D I(⊔A) = 1 or ⊔A /∈ D

This can be shortened as

A ¬A ⊔A

1 0 1 or /∈ D

0 1 or /∈ D 0

/∈ D 0 or /∈ D 1 or /∈ D

Moreover for A 6= ∅, B 6= ∅, A 6= B we have

A B A ∧B A ∨B A ⊔B

1 1 1 1 /∈ D

1 0 0 1 /∈ D

0 0 0 0 0

/∈ D 1 1 or /∈ D 1 or /∈ D 1 or /∈ D

/∈ D /∈ D 1 or 0 or /∈ D 1 or /∈ D 1 or /∈ D

/∈ D 0 0 1 or /∈ D /∈ D

Remark 12. An interpretation (D,I) can be seen as a three-valued map

Ĩ : Π(Ω) → {0, 1, NULL} setting Ĩ(A) = 0 (1) if I(A) = 0 (1, respectively)

and Ĩ(A) = NULL if A /∈ D. In particular, the previous tables can be

rewritten using Ĩ instead of I and NULL instead of /∈ D as in Bochvar’s

logic. However, our logic differs from Bochvar’s three valued logic, see [3].

For instance, in the contest of Bochvar logic we have

¬NULL = NULL,

(A = NULL or B = NULL) implies A ∧B = A ∨B = NULL,

while in our logic, we may have

¬NULL = 0, NULL ∧ 1 = 1, NULL ∧NULL = 1,

NULL ∧NULL = 0, NULL ∨ 1 = 1, etc.

Since our logic differs drastically from databases’s (or Bochvar’s) logic, we

preferred to present the interpretations as two valued maps defined in a

subdomain of Π(Ω).
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4. Semantics

As we stated, the incompatibility principle implies that for any f ∈ F

there exists an interpretation (D, I) such that f /∈ D. This means that no

classical tautology exists, and we have to redefine this concept as well as the

related concept of (semantic) consequence.

Definition 13. We define the following.

(1) A formula f ∈ F is a tautology, and we write |= f , if for every interpre-

tation (D, I) such that f ∈ D we have I(f) = 1.

(2) Let f, g ∈ F . We say that g is a (semantic) consequence of f , and we

write f |= g, if for every interpretation (D, I) for which I(f) = 1 we have

g ∈ D and I(g) = 1.

(3) Let f, g ∈ F . We say that f and g are (semantically) equivalent, and we

write f ≡ g, if for every interpretation (D, I) we have f ∈ D if and only

g ∈ D and, in this case, I(f) = I(g).

The following proposition translates the previous relations on formu-

las into properties of the corresponding partitions and states a few useful

properties.

Proposition 14. Let f, g ∈ F . Then

(1) |= f iff spt(part(f)) = Ω,

(2) f |= g iff part(f) ⊂ part(g),

(3) f ≡ g iff f |= g and g |= f ,

(4) f |= g implies f ⋔ g,

(5) if f |= g and g |= h, then f |= h,

(6) if f ≡ g and g ≡ h, then f ≡ h.

Proof. All the statements are simple consequences of definitions. Through

the proof we set A = part(f) and B = part(g).

(i) Assume that I(f) = 1 for every interpretation (D, I) such that f ∈ D.

We want to prove that sptA = Ω. Assuming by contradiction sptA 6= Ω,

one finds a nonempty proper subset b ⊂ Ω such that sptA ∩ b = ∅.

Consider the interpretation (Db, Ib) where Db is the set of partitions

compatible with {b}. Then A ∈ Db and Ib(A) = 0, a contradiction.
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Conversely, for any nonempty proper subset b ⊂ Ω such that A ∈ Db,

we must have {b} ⊥ A. Since we assume sptA = Ω, we may have

{b} ⊂ A, hence Ib(A) = 1.

(ii) Let b ⊂ Ω be a nonempty proper subset b ⊂ Ω and let (D, I) be the

interpretation parametrized by b. Recall that for any C ∈ Π(Ω) Ib(C) =

1 if and only if b ∈ C.

If f |= g then we have Ib(B) = 1 if Ib(A) = 1 for any nonempty proper

subset b of Ω, hence part(f) ⊂ part(g). Conversely, if Ib(A) = 1, then

b ∈ A, hence b ∈ B thus Ib(B) = 1.

(iii), (iv), (v) and (vi) then follows from (i) and (ii).

In classical propositional logic, one introduces the implication f → g as

the formula (¬f) ∨ g and one proves the (semantic) deduction theorem:

f |= g if and only if |= (f → g).

In our extended propositional logic, the semantic deduction theorem is

not true. Therefore we begin by analyzing the formula |= (f → g).

Definition 15. Let f, g ∈ F .

(1) (f → g) denotes the formula (¬f ∨ g),

(2) (f ↔ g) denotes the formula (f ∧ g) ∨ (¬f ∧ ¬g).

In terms of partitions, we have

Proposition 16. Let f, g ∈ F . Then

(1) |= (f → g) if and only if spt(part(f)) ⊂ spt(part(g)),

(2) |= (f ↔ g) if and only if spt(part(f)) = spt(part(g)),

(3) f |= g if and only if f ⋔ g and |= (f → g),

(4) f ≡ g if and only if f ⋔ g and |= (f ↔ g),

(5) the relations |= (f → g) and |= (f ↔ g) are transitive and reflexive;

moreover, |= (f ↔ g) is a symmetric relation,

(6) |= (f ↔ g) if and only if |= (f → g) and |= (g → f).

Proof. Set A := part(f) and B = part(g).
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(i) By definition |= (g → f) means that ¬f ∨ g is a tautology, hence by (i)

Proposition 14 spt(¬A ∨ B) = Ω. This last statement is equivalent to

Ω \ spt(A) ∪ sptB = Ω, that is, sptA ⊂ sptB,

(ii) By definition |= (f ↔ g) means that the formula (f ∧ g) ∨ (¬f ∧ ¬g) is

a tautology, so that by (i)

spt((A ∧B) ∨ (¬A ∧ ¬B)) = Ω

or, equivalently,

(sptA ∩ sptB) ∪ ((Ω \ sptA) ∩ (Ω \ sptB)) = Ω

which in turn is equivalent to sptA = sptB.

(iii), (iv) and (v) then follows from (i) and (ii) taking also into account

Proposition 14.

Propositions 14 and 16 allow us to express the differences between the

two semantic consequence operators |= and |= (· → ·) in terms of the as-

sociated partitions. We have f |= g if and only if part(f) ⊂ part(g), while

|= (f → g) if and only if spt(part(f)) ⊂ spt(part(g)). Notice that the rela-

tion f |= g is false for incompatible formulas while the relation |= (f → g)

may be true. On the other hand, the relation |= (f → g) is, in a sense, almost

trivial if compared with f |= g. In fact, since for any partition A ∈ Π(Ω) we

have sptA = spt(⊔A), hence

Proposition 17. |= (f ↔ ⊔f) ∀f ∈ F .

Let us introduce the subclass Fa ⊂ F of formulas for which the asso-

ciated normal formulas are atomic. By definition, f ∈ Fa if and only if

f does not contain the operator ∨. In terms of partitions, f ∈ Fa if and

only if part(f) is an atomic partition. Observe that for an atomic partition

A = {a} we have

A = {sptA}, and a = spt({a}).

so that for A = {a} and B = {b} we have

A = B if and only if sptA = sptB.
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Therefore, compare Propositions 14 and 16,

Proposition 18. ∀f, g ∈ Fa

f ≡ g if and only if |= (f ↔ g).

Moreover, our propositional logic behaves on Fa as a classical proposi-

tional logic with respect to the operations ¬, ∧ and ⊔. This follows looking

once more at the associated partitions that are atomic. Denote by Πa(Ω)

the class of atomic partitions. The map i:P(Ω) → Π(Ω) given by a 7→ {a},

which is a trivially a bijection onto Πa(Ω), is in fact an isomorphism between

the algebra P(Ω) with the standard operations of ¬, ∩ and ∪ and Πa(Ω)

with the operations ¬, ∧ and ⊔, respectively.

5. Contexts

Recall that a context of partitions is a maximal set H ⊂ Π(Ω) of com-

patible partitions. Similarly, one defines a context of formulas K ⊂ F as a

maximal set of compatible formulas. Of course, the two definitions above

are related by the map part. In fact, part(K) is a context of partitions if

K is a context of formulas, and part−1(H) is a context of formulas if H is a

context of partitions. Moreover, by maximality,

K = part−1(part(K))

for any context of formulas K.

We now show that in every context our propositional logic behaves as a

classical propositional logic referring once again at the associated partitions.

A context of partitions K contains a unique complete (in general, denu-

merable) partition UK, that we called the universe of K. By comparing the

definitions,

A ∈ K, A ⋔ UK and A ⊂ UK,

are equivalent. Moreover for A,B ∈ K, we have

A ⊂ B if and only if sptA ⊂ sptB. (5.1)
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There is a one-to-one correspondence j : K → P(UK) between K and the

parts of UK. Moreover, for A,B ∈ K, we have

j(A ∧B) = j(A) ∩ j(B), j(A ∨B) = j(A) ∪ j(B)

so that the two operations ∧ and ∨ are each other distributive within K.

In general, for A ∈ K it may happen ¬A /∈ K, in particular, ¬ is not

defined within K. We introduce a new operator, denoted by ¬K and called

the negation operator within K, by

¬KA := ¬A ∧ UK ∀A ∈ K.

It is easy to check that ¬KA ∈ K ∀A ∈ K and that

¬K¬KA = A and ¬A = ⊔(¬KA) ∀A ∈ K.

Moreover,

¬K(A ∧B) = (¬KA) ∨ (¬KB),

¬K(A ∨B) = (¬KA) ∧ (¬KB).

Thus K with the three operations of ¬K , ∧, ∨ becomes an algebra isomorphic

to the standard algebra of the subsets of the universe UK. Thus we conclude

Proposition 19. Let K ⊂ F be a context of formulas. Then the operations

¬K, ∧ and ∨ acts on K as in a classical propositional logic.

It remains to discuss the meaning of a semantic interpretation within a

context K.

Definition 20. Let K ⊂ Π(Ω) be a context of partitions. We say that an

interpretation (D, I) parametrized by a nonempty proper subset b ⊂ Ω is

compatible with K, and we write (D, I) ⋔ K, if {b} ∈ K.

Notice that an interpretation (D, I) parametrized by a nonempty proper

subset b ⊂ Ω is compatible with K if and only if one of the following two

conditions holds:

(1) K ⊂ D,

(2) I(UK) = 1, where UK is the universe of K.

Definition 21. Let K ⊂ F be a context. We say that
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(1) f ∈ K is a K-tautology, and we write |=K f , if I(f) = 1 for every

interpretation (D, I) compatible with K, I ⋔ K,

(2) g is a consequence of f within K, f |=K g, if I(f) = 1 implies I(g) = 1

for every interpretation (D, I) compatible with K,

(3) f implies g within K, and we write f →K g if the formula (¬Kf) ∨ g is

a K-tautology.

Proposition 22. Let K ⊂ F be a context and let f, g ∈ K. Then we have

the following.

(1) f is a K-tautology if and only if spt(part(f)) = Ω.

(2) f |=K g if and only if part(f) ⊂ part(g).

Therefore for f, g ∈ K

(a) |= f if and only if |=K f ,

(b) f |= g if and only if f |=K g,

(c) The deduction theorem holds within K: f |= g if and only if f →K g is a

tautology.

Finally, for every f, g ∈ K we have f |= g if and only if f |=K g.

Proof. Through the proof let denote by H := part(K) and by UH = {ui}i∈I
the universe of H.

(i) If spt(B) 6= Ω, there exists i0 such that ui0 ∩ spt(B) = ∅. Thus,

for the interpretation (D, I) parametrized by ui0 we have I(B) = 0.

Conversely, if spt(B) = Ω we get B = UH since B ⊂ UK, hence I(B) = 1

for any (D,I) ⋔ H.

(ii) Let A = part(f) and B = part(g). Since f, g ∈ K, A,B ⊂ UH.

For any proper nonempty subset b ∈ A, let (D, I) the interpretation

parametrized by b. Then {b} ⊂ K and I(A) = 1. Therefore f |=K g

yields I(B) = 1 which in turns means b ∈ B. Thus we conclude that

A ⊂ B.

Conversely, assume A ⊂ B. For any nonempty subset b ⊂ Ω such that

{b} ⊂ K, let (D, I) the interpretation parametrized by b. If I(A) = 1, then

b ∈ A and, consequently, b ∈ B which in fact is equivalent to I(B) = 1.

Claims (a) (b) and (c) then follow from (i) and (ii) taking also into account

Propositions 14 and 16 and equation (5.1).
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Finally, let us prove the last statement. Let A := part(f), B = part(g).

By (ii) we have A ⊂ B. Choose

U := B ∪ ¬B, K :=
{
f ∈ F

∣∣∣ part(f) ⊂ U
}
.

Then f, g ∈ K and A ⊂ B ⊂ U , i.e., f |=K g.

6. Comments

As stated in the introduction, our extended propositional logic (EPL)

has similarities to other logical systems, for instance it is non functional

and may be seen as a 3-valued logic. We would like to conclude with a

few remarks concerning our logic in comparison to some of the most-known

logics, [9], [3], [8], [4], [10].

Distinctive features of our extended propositional logic are:

• The logical operators in EPL are not functionally defined (there are no

truth-tables for them).

• EPL contains a new type of logical operator ⊔ of “indistinguishable”

(irreducible) disjunction, which does not exists in other logics known

to the authors. In this way completely new propositions can be con-

structed, e.g.,

(e1 ⊔ e2) ∨ (e3 ⊔ e4) ∨ e5 = {e1, e2, e3, e4, e5}

which do not seem to be considered in other logic systems, again to the

author’s knowledge.

• In EPL there exist incompatible propositions. If f and g are two in-

compatible propositions and if f is atomic and is evaluated as true,

I(f) = 1, then g can be neither true nor false, i.e., g cannot be evalu-

ated. This concept is borrowed from quantum mechanics where situa-

tions with the “which way information ” being available or not avail-

able are not compatible. The examples of incompatible propositions

are simple: f ⊔ g is incompatible with each of f , g and f ∨ g.
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• The negation ¬ has several unusual properties in EPL:

¬1 = 0,

¬0 = 1 or NULL,

¬NULL = 0 or NULL.

This may hint to the intuitionist logic where the main assumption is

that the law of excluded middle does not hold, i.e., that f ∨ ¬f is not a

tautology. In general, in EPL f ∨ ¬f is a tautology. Moreover, models of

intuitionistic logic (Kripke’s models) appears to us to be quite different from

our model based on the concept of partition.

With respect to 3-valued logics (such that Lukasiewitz’s or Bochvar’s

logics), first, most of them are functional and even for the non-functional

ones known to the authors, see e.g. [2], the usual properties of the negation

appear to be different from the negation operator ¬ in EPL.

Finally, let us compare our logic to Rough Set Theory that has been

developed to tackle the idea of limited knowledge, see e.g. [1]. Roughly, let

us assume that we have a setM , the elements of which have some properties

(called attributes). It is clear that the system of properties (the “knowl-

edge”) relates to a decomposition of M into parts (of elements with the

same properties), say M = ∪k
i=1Mi, called a knowledge base. For any subset

of M then one defines the lower and upper approximations of A by

Alow =
⋃{

Mi

∣∣∣Mi ⊂ A
}
,

Aupp =
⋃{

Mi

∣∣∣Mi ∩A 6= ∅
}
,

The couple (Alow, Aupp) can be considered as the image of A through the

knowledge M = ∪iMi.

In our EPL we have a similar construction. Let us consider Ω and

a decomposition Ω = ∪k
i=1ui into disjoint sets. Then the context (as a

partition) created by this decomposition is

U = {u1, u2, . . . , uk} .

But the meaning of U in EPL is different compared to the meaning of the

partition {Mi} in the rough set theory.
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Let us consider a simple example. Set m1 = {e1, e2}, m2 = {e3, e4},

M = m1 ∪m2. A better knowledge may produce

{e1} ∪ {e2} ∪ {e3, e4}

and this better knowledge is compatible with the previous knowledge. In

other words, if the initial knowledge cannot find the difference between e1 and

e2, we are assuming that a better knowledge can differentiate between them.

A better knowledge thus extends the original knowledge and is compatible

with it. The partial knowledge is described by the distinguishable disjunction

e1 ∨ e2. In EPL the situation is different, there is in principle no better

knowledge of {e1, e2}∪{e3, e4} since the indistinguishable disjunction e1⊔e2
is incompatible with e1 and e2 (and also with e1 ∨ e2), and this is one of the

main features of the logic we discussed here.
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