GENERALIZED SKEW DERIVATIONS ON LIE IDEALS

VINCENZO DE FILIPPIS ${ }^{1, a}$ AND ÇAGRI DEMIR ${ }^{2, b}$

${ }^{1}$ Department of Mathematics and Computer Science, University of Messina, 98166 Messina, Italy.
${ }^{a}$ E-mail: defilippis@unime.it
${ }^{2}$ Department of Mathematics, Science Faculty, Ege University 35100, Bornova, Izmir, Turkey.
${ }^{b}$ E-mail: cagri.demir@ege.edu.tr
$\|\|\|$

Abstract

Let R be a prime ring with center $Z(R), C$ its extended centroid, L a noncentral Lie ideal of R and $n, m \geq 1$ fixed integers. Suppose that F is a nonzero generalized skew derivation of R such that $F\left(u^{n}\right) u^{m} \in Z(R)$, for all $u \in L$. Then $\operatorname{dim}_{C} R C=4$.

1. Introduction

Let R be a prime ring with center $Z(R)$, extended centroid C, and right Martindale quotient ring Q_{r}. We mean by a derivation of R an additive map d from R into itself which satisifes the rule $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. An additive map $g: R \longrightarrow R$ is called a generalized derivation of R if there exists a derivation d of R such that $g(x y)=g(x) y+x d(y)$, for all $x, y \in R$.

In 17 Lee and Shiue showed that if R is a non-commutative prime ring, I a nonzero left ideal of R and d is a derivation of R such that $\left[d\left(x^{m}\right) x^{n}, x^{r}\right]_{k}=0$ for all $x \in I$, where k, m, n, r are fixed positive integers, then $d=0$ unless $R \cong M_{2}(G F(2))$. Later in [1] Argaç and Demir proved the following result: Let R be a non-commutative prime ring, I a nonzero left ideal of R and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $\left[g\left(x^{m}\right) x^{n}, x^{r}\right]_{k}=0$ for all $x \in I$, then there exists $a \in U$, the left Utumi quotient ring of R, such that $g(x)=x a$ for all $x \in R$, except when $R \cong M_{2}(G F(2))$ and $I[I, I]=0$.

[^0]Here we would like to continue on this line of investigation by considering generalized skew derivations defined on R. The definition of generalized skew derivation is a unified notion of skew derivation and generalized derivation, which are considered as classical additive mappings of non-associative algebras, have been investigated by many people from various views. Let R be an associative ring and α be an automorphism of R. An additive mapping $d: R \longrightarrow R$ is said to be a skew derivation of R if

$$
d(x y)=d(x) y+\alpha(x) d(y)
$$

for all $x, y \in R$ and α is called an associated automorphism of d. An additive mapping $F: R \longrightarrow R$ is said to be a (right) generalized skew derivation of R if there exists a skew derivation d of R with associated automorphism α such that

$$
F(x y)=F(x) y+\alpha(x) d(y)
$$

for all $x, y \in R, d$ is called an associated skew derivation of F and α is called an associated automorphism of F.

We will prove:
Theorem 1. Let R be a prime ring with center $Z(R), C$ its extended centroid, L a noncentral Lie ideal of R and $n, m \geq 1$ fixed integers. Suppose that F is a nonzero generalized skew derivation of R such that $F\left(u^{n}\right) u^{m} \in Z(R)$, for all $u \in L$. Then $\operatorname{dim}_{C} R C=4$.

In all that follows let Q_{r} be the right Martindale quotient ring, Q be the two-sided Martindale quotient ring of R and $C=Z(Q)=Z\left(Q_{r}\right)$ the center of Q and $Q_{r}, T=Q *_{C} C\{X\}$ the free product over C of the C-algebra Q and the free C-algebra $C\{X\}$, with X the countable set consisting of noncommuting indeterminates $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ We refer the reader to [2] for the definitions and the related properties of these objects. Of course Q is a prime centrally closed C-algebra.

Moreover let s_{4} be the standard polynomial of degree 4, in non-commting variables $x_{1}, x_{2}, x_{3}, x_{4}$.

It is known that automorphisms, derivations and skew derivations of R can be extended both to Q and Q_{r}. In [4] (Lemma 2), J.C. Chang extended the definition of a generalized skew derivation to the right Martindale quotient ring Q_{r} of R as follows: by a (right) generalized skew
derivation we mean an additive mapping $F: Q_{r} \rightarrow Q_{r}$ such that $F(x y)=$ $F(x) y+\alpha(x) d(y)$, for all $x, y \in Q$, where d is a skew derivation of R and α is an automorphism of R, moreover there exists $F(1)=a \in Q_{r}$ such that $F(x)=a x+d(x)$, for all $x \in R$. Moreover if $F(1) \in Q$, then F can be extended to Q.

Before starting with our proof, we also state the following well known result, which will be useful in the sequel:

Fact 1.1. Let R be a prime ring and L a noncentral Lie ideal of R. Then either $\operatorname{char}(R)=2$ and $\operatorname{dim}_{C} R C=4$, or there exists a noncentral two-sided ideal I of R such that $0 \neq[I, R] \subseteq L$.

Proof. If $\operatorname{char}(R) \neq 2$, the result is contained in Lemma 2 of (3). In case $\operatorname{char}(R)=2$ it follows from Theorem 4 of [15] and Lemma 2 of [10].

2. The Case of Inner Generalized Skew Derivations

In this section we consider the case when F is an inner generalized skew derivation induced by the elements $b, c \in R$ and $\alpha \in \operatorname{Aut}(R)$, that is $F(x)=b x+\alpha(x) c$, for all $x \in R$. In this sense, our aim will be to prove the following:

Proposition 2.1. Let R be a prime ring, I a noncentral two-sided ideal of $R, n, m \geq 1$ fixed integers, b, c nonzero elements of R, and $\alpha \in \operatorname{Aut}(R)$ such that $\left(b\left[r_{1}, r_{2}\right]^{n}+\alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c\right)\left[r_{1}, r_{2}\right]^{m} \in Z(R)$, for all $r_{1}, r_{2} \in I$, then $\operatorname{dim}_{C} R C=4$.

We begin with:
Fact 2.2. Let R be a non-commutative prime ring and $s \geq 1$ be a fixed integer such that $\left[r_{1}, r_{2}\right]^{s} \in Z(R)$, for all $r_{1}, r_{2} \in R$. Then $\operatorname{dim}_{C} R C=4$.

Proof. The result is implicitly contained in Theorem 4 of [13].
Lemma 2.3. Let R be a prime ring, I a noncentral two-sided ideal of R, $a, b \in R, n, m \geq 1$ fixed integer, such that $\left(a u^{n}+u^{n} b\right) u^{m} \in Z(R)$, for all $u \in[I, I]$, then either $a=-b \in Z(R)$ or $\operatorname{dim}_{C} R C=4$.

Proof. By our assumption we have that $\left(a\left[r_{1}, r_{2}\right]^{n}+\left[r_{1}, r_{2}\right]^{n} b\right)\left[r_{1}, r_{2}\right]^{m} \in$ $Z(R)$ for all $r_{1}, r_{2} \in I$. Moreover I and R and Q_{r} satisfy the same generalized polynomial identities (see [5]), thus $\left(a\left[r_{1}, r_{2}\right]^{n}+\left[r_{1}, r_{2}\right]^{n} b\right)\left[r_{1}, r_{2}\right]^{m} \in C$ for all $r_{1}, r_{2} \in Q_{r}$. Hence we assume that Q_{r} satisfies the following generalized polynomial identity

$$
\begin{equation*}
P\left(x_{1}, x_{2}, x_{3}\right)=\left[\left(a\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} b\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right] \tag{2.1}
\end{equation*}
$$

and $P\left(x_{1}, x_{2}, x_{3}\right)$ is a generalized polynomial in the free product $Q_{r} *_{C}$ $C\left\{x_{1}, x_{2}, x_{3}\right\}$ of the C-algebra Q_{r} and the free C-algebra $C\left\{x_{1}, x_{2}, x_{3}\right\}$.

2.1. Step 1: Here we prove that either $P\left(x_{1}, x_{2}, x_{3}\right)$ is a non-trivial

 generalized polynomial identity for R, or $a=-b \in C$.Let $T=Q_{r} *_{C} C\left\{x_{1}, x_{2}, x_{3}\right\}$. For brevity we write $P(X)$ instead of $P\left(x_{1}, x_{2}, x_{3}\right)$ and $f(X)$ instead of $\left[x_{1}, x_{2}\right]$.

Now suppose that $P(X) \in Q_{r} *_{C} C\{X\}$ is a trivial generalized polynomial identity for Q_{r}, that is

$$
P(X)=\left[\left(a f(X)^{n}+f(X)^{n} b\right) f(X)^{m}, x_{3}\right]=0 \in T
$$

Suppose that $\{a, 1\}$ are linearly C-independent. By [5], it follows $a f(X)^{n+m} x_{3}=0 \in T$ which is a contradiction, since we suppose $a \notin C$. Therefore $\{a, 1\}$ must be linearly C-dependent, that is $a \in C$ and

$$
P(X)=\left[f(X)^{n}(a+b) f(X)^{m}, x_{3}\right]=0 \in T
$$

Since $P(X)$ is trivial, again by [5], we have $a+b=0$ and the conclusion follows.

Therefore in all that follows we assume that $a \notin C$ and Q_{r} satisfies the non-trivial generalized polynomial identity $P\left(x_{1}, x_{2}, x_{3}\right)$. In case C is infinite, we have $P\left(r_{1}, r_{2}, r_{3}\right)=0$ for all $r_{1}, r_{2}, r_{3} \in Q_{r} \bigotimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both Q_{r} and $Q_{r} \otimes_{C} \bar{C}$ are centrally closed (theorems 2.5 and 3.5 in [11]) we may replace R by Q_{r} or $Q_{r} \otimes_{C} \bar{C}$ according as C is finite or infinite. Thus, without loss of generality, we may consider the case when R is centrally closed over C which is either finite or algebraically closed and $P\left(r_{1}, r_{2}, r_{3}\right)=0$, for all $r_{1}, r_{2}, r_{3} \in R$. By Martindale's theorem
[18], R is a primitive ring having a nonzero socle with C as the associated division ring. In light of Jacobson's theorem (p. 75 in [12]) R is isomorphic to a dense ring of linear transformations on some vector space V over C.

2.2. Step 2: We prove that $\operatorname{dim}_{C} V \leq 2$

Suppose by contradiction that $\operatorname{dim}_{C} V \geq 3$. Of course under this assumption, R cannot satisfy the standard identity s_{4}. Suppose first that $\operatorname{dim}_{C} V=l \geq 3$ is a finite integer, so that we may assume $Q_{r}=M_{l}(C)$, the ring of all $l \times l$ matrices over C. Denote $e_{i j}$ the usual matrix unit, with 1 in the i, j-entry and zero elsewhere and let $\left[r_{1}, r_{2}\right]=\left[e_{i j}, e_{j i}\right]=e_{i i}-e_{j j}$, for any $j \neq i$. Therefore, by (2.1) and for $x_{3}=e_{k k}$, with $k \neq i, j$, we have that

$$
\begin{equation*}
0=\left[\left(a\left(e_{i i}-e_{j j}\right)^{n}+\left(e_{i i}-e_{j j}\right)^{n} b\right)\left(e_{i i}-e_{j j}\right)^{m}, e_{k k}\right]=-e_{k k} a\left(e_{i i}-e_{j j}\right)^{m+n} \tag{2.2}
\end{equation*}
$$

that is a is a diagonal matrix in $M_{l}(C)$. Recall that for any $\sigma \in \operatorname{Aut}\left(M_{l}(C)\right)$, $M_{l}(C)$ satisfies

$$
\begin{equation*}
\left[\left(\sigma(a)\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} \sigma(b)\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right] \tag{2.3}
\end{equation*}
$$

therefore $\sigma(a)$ is again a diagonal matrix. In particular we introduce some suitable automorphisms of $M_{l}(C)$. More precisely, let $i \neq j$ and

$$
\lambda(x)=\left(1+e_{i j}\right) x\left(1-e_{i j}\right)=x+e_{i j} x-x e_{i j}-e_{i j} x e_{i j} .
$$

Hence $a+e_{i j} a-a e_{i j}-e_{i j} a e_{i j}$ is diagonal, that is the (i, i)-entry of a is equal to the (j, j)-one, which implies that a is a central matrix in $M_{l}(C)$. Thus Q_{r} satisfies

$$
P\left(x_{1}, x_{2}, x_{3}\right)=\left[\left[x_{1}, x_{2}\right]^{n} c\left[x_{1}, x_{2}\right]^{m}, x_{3}\right]
$$

where $c=a+b$. In case $c \in C$ we get $a, b \in C$ and Q_{r} satisfies $c\left[x_{1}, x_{2}\right]^{n+m} \in$ C. Since Q_{r} does not satisfy s_{4} and by Fact 2.2, we have that $c=0$, that is $a=-b \in C$.

Hence we assume $c \notin C$, that is there exists $v \in V$ such that $v, c v$ are linearly C-independent. Moreover, since $\operatorname{dim}_{C} V \geq 3$, there exists $w \in V$ such that $v, c v, w$ are linearly C-independent. By the density of Q_{r}, there
exist $r_{1}, r_{2}, r_{3} \in Q_{r}$ such that

$$
\begin{gathered}
r_{1} v=0, \quad r_{2} v=-w, \quad r_{3} v=0, \quad r_{1}(c v)=-v \\
r_{2}(c v)=0, \quad r_{1} w=-v, \quad r_{2} w=v, \quad r_{3} w=-v
\end{gathered}
$$

Thus

$$
\left[r_{1}, r_{2}\right] v=v, \quad\left[r_{1}, r_{2}\right](c v)=-w, \quad\left[r_{1}, r_{2}\right] w=-w
$$

and we get the contradiction

$$
0=\left[\left[r_{1}, r_{2}\right]^{n} c\left[r_{1}, r_{2}\right]^{m}, r_{3}\right] v=(-1)^{n} v \neq 0
$$

Assume now that $\operatorname{dim}_{C} V=\infty$. Suppose next that v and $b v$ are linearly C-independent for some $v \in V$. There exist $w, u \in V$ such that $v, b v, w, u$ are linearly independent over C. By the density of R there exist $x_{1}, x_{2}, x_{3} \in R$ such that

$$
\begin{aligned}
x_{1} v=0, \quad & x_{2} v=b v, \quad x_{1} b v=v \\
& x_{3} w=v \\
x_{1} w= & w, \quad x_{2} w=w \\
x_{2} b v= & u, \quad x_{1} u=b v
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[x_{1}, x_{2}\right] v } & =\left(x_{1} x_{2}-x_{2} x_{1}\right) v=v \\
{\left[x_{1}, x_{2}\right] w } & =\left(x_{1} x_{2}-x_{2} x_{1}\right) w=0
\end{aligned}
$$

and

$$
\left[x_{1}, x_{2}\right] b v=\left(x_{1} x_{2}-x_{2} x_{1}\right) b v=0
$$

Hence by (2.1)

$$
0=\left[\left(a\left[x_{1}, x_{2}\right]^{n}+\left[x_{1}, x_{2}\right]^{n} b\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right] w=a v
$$

Let $w \in V$ be such that $a w \neq 0$. Then $a(v-w)=-a w \neq 0$. Then by above argument $w, b w$ are linearly C-dependent and $v-w, b(v-w)$ too. Therefore, there exist $\alpha, \beta \in C$ such that $b w=\alpha w$ and $b(v-w)=\beta(v-w)$. This gives $b v=\beta(v-w)+b w=\beta(v-w)+\alpha w$ that is $(\alpha-\beta) w=b v-\beta v$. Now, $\alpha=\beta$ implies $b v, v$ are linearly C-dependent, a contradiction. Hence $\alpha \neq \beta$ and so $w \in \operatorname{Span}_{C}\{v, b v\}$.

Finally consider $u \in V$ such that $a u=0$. In this case, $p(u+w)=$ $p u+p w=p w \neq 0$ and then by previous argument, $u+w \in \operatorname{Span}_{C}\{v, b v\}$. Since $w \in \operatorname{Span}_{C}\{v, b v\}$, then also $u \in \operatorname{Span}_{C}\{v, b v\}$.

As a consequence of the above two cases, we get $V=\operatorname{Span}_{C}\{v, b v\}$ that is $\operatorname{dim}_{C} V=2$, a contradiction. This implies that v and $b v$ are linearly C-dependent for all $v \in V$. Thus for each $v \in V, b v=\alpha_{v} v$ for some $\alpha_{v} \in C$. By using standard argument, it is easy to prove that α_{v} is independent of the choice of $v \in V$ and hence we can write $b v=\alpha v$ for all $v \in V$ and for a fixed $\alpha \in C$. Now let $r \in R$ and $v \in V$. Since $b v=\alpha v$, it follows

$$
[b, r] v=(b r) v-(r b) v=b(r v)-r(b v)=\alpha(r v)-r(\alpha v)=0 .
$$

Thus $[b, r] v=0$ for all $v \in V$ i.e., $[b, r] V=0$. Since $[b, r]$ acts faithfully as a linear transformation on the vector space $V,[b, r]=0$ for all $r \in R$. Therefore, $b \in C$. Hence (2.1) reduces to $(a+b)\left[x_{1}, x_{2}\right]^{m+n} \in C$.

Denote $c=a+b$. As above, in case $c \in C$ we easily get $a=-b \in C$.
Hence we assume $a+b=c \notin C$, that is there exists $v \in V$ such that $v, c v$ are linearly C-independent. Moreover, since $\operatorname{dim}_{C} V=\infty$, there exist $w, u \in V$ such that $v, c v, w, u$ are linearly C-independent. By the density of Q_{r}, there exist $r_{1}, r_{2}, r_{3} \in Q_{r}$ such that

$$
\begin{gathered}
r_{1} w=w, \quad r_{2} w=w \\
r_{3} w=v \\
r_{1} v=0, \quad r_{2} v=u, \quad r_{1} u=v
\end{gathered}
$$

Thus

$$
\left[r_{1}, r_{2}\right] v=v, \quad\left[r_{1}, r_{2}\right] w=0
$$

and we get the contradiction

$$
0=\left[c\left[r_{1}, r_{2}\right]^{n+m}, r_{3}\right] w=c v \neq 0
$$

Therefore $\operatorname{dim}_{C} V \leq 2$ and R is a noncommutative prime ring satisfying the standard identity of degree 4 , which implies that $\operatorname{dim}_{C} R C=4$.

Lemma 2.4. Let R be a dense subring of the ring of linear transformations of a vector space V over a division ring D, and let R contain nonzero linear tranformations of finite rank. Let I be a noncentral two-sided ideal of R,
$n, m \geq 1$ fixed integers, α be an automorphism of R and suppose $b, c \in R$ and $F(x)=b x+\alpha(x) c$ such that $F\left(x^{n}\right) x^{m} \in Z(R)$, for all $x \in[I, I]$. If $F \neq 0$ and R does not satisfy s_{4}, then $\operatorname{dim}_{D} V \leq 2$.

Proof. We assume $\operatorname{dim}_{D} V \geq 3$ and prove that a number of contradictions follows.

Since R is a primitive ring with nonzero socle, by [12] (p.79) there exists a semi-linear automorphism $T \in \operatorname{End}(V)$ such that $\alpha(x)=T x T^{-1}$ for all $x \in R$, hence $\left(b x^{n}+T x^{n} T^{-1} c\right) x^{m} \in Z(R)$, for all $x \in[I, I]$. Assume first that v and $T^{-1} c v$ are D-dependent for all $v \in V$. By Lemma 1 in [8], there exists $\lambda \in D$ such that $T^{-1} c v=v \lambda$, for all $v \in V$. In this case, for all $x \in R$,

$$
\begin{aligned}
F(x) v & =\left(b x+T x T^{-1} c\right) v=b x v+T x T^{-1} c v=b x v+T(x v \lambda) \\
& =b x v+T((x v) \lambda)=b x v+T\left(T^{-1} c\right)(x v)=b x v+c x v=(b+c) x v
\end{aligned}
$$

This means that $(F(x)-(b+c) x) V=(0)$, for all $x \in R$ and since V is faithful, it follows that $F(x)=(b+c) x$, for all $x \in R$, and $(b+c) x^{n} x^{m} \in Z(R)$, for all $x \in[I, I]$. By Lemma 2.3 either R satisfies s_{4} or $b+c=0$ and $F=0$, a contradiction again.

Thus there exists $v_{0} \in V$ such that v_{0} and $T^{-1} c v_{0}$ are linearly D independent. Since $\operatorname{dim}_{D} V \geq 3$, then there exists $w \in V$ such that w, v_{0} and $T^{-1} c v_{0}$ are linearly D-independent (denote for clearness $T^{-1} c v_{0}=u$). By the density of R, there exist $r_{1}, r_{2}, r_{3} \in I$ such that

$$
r_{1} v_{0}=w, r_{1} w=v_{0}, r_{1} u=w, r_{2} v_{0}=w, r_{2} w=0, r_{2} u=0, r_{3} u=v_{0}
$$

Thus

$$
\left[r_{1}, r_{2}\right] u=0, \quad\left[r_{1}, r_{2}\right] v_{0}=v_{0}
$$

and

$$
0=\left[\left(b\left[r_{1}, r_{2}\right]^{n}+T\left[r_{1}, r_{2}\right]^{n} T^{-1} c\right)\left[r_{1}, r_{2}\right]^{m}, r_{3}\right] u=b v_{0} .
$$

Since $v_{0}+w$ is D-independent of v_{0} and u, in the same way we get $b\left(v_{0}+w\right)=$ 0 , that is $b w=0$. Analogously, $u+w$ is D-independent of v_{0} and u, and $b(u+w)=0$ implies $b u=0$. Therefore $b V=(0)$ and so $b=0$.

Hence $\left[T x^{n} T^{-1} c x^{m}, r_{3}\right]=0$, for all $x \in[I, I], r_{3} \in R$. As above, by the density of R there exist $s_{1}, s_{2}, s_{3} \in I$, such that

$$
s_{1} v_{0}=w, s_{1} w=w, s_{1} u=v_{0}, s_{2} v_{0}=u, s_{2} w=0, r_{2} u=0, s_{3} w=v_{0}
$$

Thus

$$
\left[s_{1}, s_{2}\right] v_{0}=v_{0}, \quad\left[s_{1}, s_{2}\right] w=0, \quad\left[s_{1}, s_{2}\right] u=-u
$$

and

$$
0=\left[T\left[s_{1}, s_{2}\right]^{n}\left(T^{-1} c\right)\left[s_{1}, s_{2}\right]^{m}, s_{3}\right] w=(-1)^{n} c v_{0}
$$

Following the same above argument, we get $c=0$. Therefore we have the contradiction $F=0$.

2.3. Proof of Proposition 2.1

Suppose first that α is X-inner. Thus there exists an invertible element $q \in Q_{r}$ such that $\alpha(x)=q x q^{-1}$, for all $x \in R$. Thus $\left(b u^{n}+q u^{n} q^{-1} c\right) u^{m} \in$ $Z(R)$, for all $u \in[I, I]$. Since I, R and Q_{r} satisfy the same generalized polynomial identities with coefficients in Q_{r} (see [5]), it follows that (bu ${ }^{n}+$ $\left.q u^{n} q^{-1} c\right) u^{m} \in Z(R)$, for all $u \in\left[Q_{r}, Q_{r}\right]$. If $q^{-1} c \in C=Z\left(Q_{r}\right)$, then $F(x)=$ $(b+c) x$, for all $x \in R$ and $(b+c) u^{n} u^{m} \in Z(R)$, for all $u \in\left[Q_{r}, Q_{r}\right]$. Again by Lemma 2.3 either R satisfies s_{4} or $b+c=0$ and $F=0$, a contradiction. So we may assume that $q^{-1} c \notin C$, and

$$
\begin{equation*}
\left[\left(b\left[x_{1}, x_{2}\right]^{n}+q\left[x_{1}, x_{2}\right]^{n} q^{-1} c\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right] \tag{2.4}
\end{equation*}
$$

is a non-trivial generalized polynomial identity for Q_{r}. By Martindale's theorem [18], Q_{r} is isomorphic to a dense subring of the ring of linear tranformations of a vector space V over D, where D is a finite dimensional division ring over C. By Lemma 2.4 we have that either $\operatorname{dim}_{C} R C=4$ or $\operatorname{dim}_{D} V \leq 2$. In this last case it follows that either $Q_{r} \cong D$ or $Q_{r} \cong M_{2}(D)$, the ring of 2×2 matrices over D. More generally we assume $Q_{r} \cong M_{k}(D)$, for $k \leq 2$.

If C is finite, then D is a field by Wedderburn's Theorem. On the other hand, if C is infinite, let \bar{C} be the algebraic closure of C, then by the van der Monde determinant argument, we see that $Q_{r} \otimes_{C} \bar{C}$ satisfies the same generalized polynomial identity (2.4). Moreover $Q_{r} \otimes_{C} \bar{C} \cong M_{k}(D) \otimes_{C} \bar{C} \cong$ $M_{k}\left(D \otimes_{C} \bar{C}\right) \cong M_{t}(\bar{C})$, for some $t \geq 1$.

By using again the result in Lemma 2.4 and since Q_{r} is not commutative, we get $t=2$. Hence R is an order in a 4 -dimensional central simple algebra, as required.

Hence we may assume that α is X-outer. By Theorem 1 in [6], Q_{r} satisfies

$$
\begin{equation*}
\left(b\left[x_{1}, x_{2}\right]^{n}+\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\right)\left[x_{1}, x_{2}\right]^{m} \in C \tag{2.5}
\end{equation*}
$$

moreover by Main Theorem in [6] Q_{r} is a GPI-ring. Thus Q_{r} is a primitive ring having nonzero socle and its associated division ring D is a finitedimensional over C. If C is finite, then it follows that D is also finite. By Wedderburn's Theorem D is a field and by Lemma 2.4 we also have $\operatorname{dim}_{D} V \leq 2$. Hence from now on we assume that C is infinite.

If α is not Frobenius, then by main Theorem in [7] Q_{r} satisfies

$$
\left(b\left[x_{1}, x_{2}\right]^{n}+\left[y_{1}, y_{2}\right]^{n} c\right)\left[x_{1}, x_{2}\right]^{m} \in C
$$

and in particular Q_{r} satisfies both

$$
\begin{equation*}
b\left[x_{1}, x_{2}\right]^{n+m} \in C \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[y_{1}, y_{2}\right]^{n} c\left[x_{1}, x_{2}\right]^{m} \in C \tag{2.7}
\end{equation*}
$$

By applying Lemma 2.3 to (2.6) and (2.7) it follows that Q_{r} satisfies s_{4} (and also $b, c \in C)$.

On the other hand, if α is Frobenius, then $\operatorname{char}\left(Q_{r}\right)=p>0$ (if not $\alpha(\lambda)=\lambda$ for all $\lambda \in C$ and α must be X-inner by Theorem 4.7.4 in [2]). Moreover $\alpha(\lambda)=\lambda^{p^{t}}$ for all $\lambda \in C$, where t is some fixed integer, and there exists $\mu \in C$ such that $\mu^{p^{t}} \neq \mu$. In (2.5) replace x_{1} by λx_{1} and get $\lambda^{m}\left(\lambda^{n} b\left[x_{1}, x_{2}\right]^{n}+\lambda^{n p^{t}} \alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\right)\left[x_{1}, x_{2}\right]^{m} \in C$ that is

$$
\begin{equation*}
\left.\lambda^{n} b\left[x_{1}, x_{2}\right]^{n}+\lambda^{n p^{t}} \alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\right)\left[x_{1}, x_{2}\right]^{m} \in C \tag{2.8}
\end{equation*}
$$

Comparing (2.5) with (2.8) it follows that Q_{r} satisfies

$$
\begin{equation*}
\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\left[x_{1}, x_{2}\right]^{m}-\lambda^{n\left(p^{t}-1\right)} \alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\left[x_{1}, x_{2}\right]^{m} \in C \tag{2.9}
\end{equation*}
$$

Since (2.9) holds for all $\lambda \in C$, if we choose λ such that $\lambda \mu^{n}=1$, then $\left(\lambda^{n}\right)^{p^{t}} \neq \lambda^{n}$ and it follows from (2.9) that $\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\left[x_{1}, x_{2}\right]^{m} \in C$. From this and (2.5) we also have $b\left[x_{1}, x_{2}\right]^{n+m} \in C$. As a consequence of Lemma 2.3, Q_{r} satisfies s_{4}, unless $b=0$.

Thus, in the following we will consider $b=0$ and Q_{r} satisfies

$$
\begin{equation*}
\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\left[x_{1}, x_{2}\right]^{m} \in C . \tag{2.10}
\end{equation*}
$$

Again by Lemma 2.4, we get $\operatorname{dim}_{D} V \leq 2$. Notice that if $\operatorname{dim}_{D} V=1$, then Q_{r} is a domain; moreover if Q_{r} is not commutative then both $\alpha\left(\left[x_{1}, x_{2}\right]\right)$ and $\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right)$ are not identities for Q_{r}. In this case, by (2.10) we have that

$$
0=\left[\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right) c\left[x_{1}, x_{2}\right]^{m}, \alpha\left(\left[x_{1}, x_{2}\right]\right)\right]=\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right)\left[c\left[x_{1}, x_{2}\right]^{m}, \alpha\left(\left[x_{1}, x_{2}\right]\right)\right] .
$$

Since Q_{r} is a domain, it follows that $\left[c\left[x_{1}, x_{2}\right]^{m}, \alpha\left(\left[x_{1}, x_{2}\right]\right)\right]$ is an identity for Q_{r}. Moreover any $\alpha\left(x_{i}\right)$-word degree is 1 , so that, by Theorem 3 in [7], Q_{r} satisfies the identity $\left[c\left[x_{1}, x_{2}\right]^{m},\left[y_{1}, y_{2}\right]\right]$, that is $c\left[x_{1}, x_{2}\right]^{m} \in C$. Once again by Lemma 2.3 it follows either $c=0$, which implies $F=0$, or Q_{r} satisfies s_{4}.

Hence we now assume $\operatorname{dim}_{D} V=2$ that is $Q_{r} \cong M_{2}(D)$, the ring of 2×2 matrices over D.

Let $h \neq k$ be any element of D such that $[h, k] \neq 0$, and choose in (2.10)

$$
\left[r_{1}, r_{2}\right]=\left[\left[\begin{array}{cc}
h & 0 \\
0 & h
\end{array}\right],\left[\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right]\right] .
$$

Moreover use the following notations:

$$
c=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right], \quad \gamma=[h, k], \quad \alpha\left(\left[r_{1}, r_{2}\right]^{n}\right)=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] .
$$

Since by (2.10) we have $\left[\alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c\left[r_{1}, r_{2}\right]^{m}, e_{22}\right]=0$, by calculations it follows

$$
\left[\begin{array}{cc}
0 & \left(b_{11} c_{12}+b_{12} c_{22}\right) \gamma^{m} \\
\left(b_{21} c_{11}+b_{22} c_{21}\right) \gamma^{m} & 0
\end{array}\right]=0
$$

which implies both $b_{11} c_{12}+b_{12} c_{22}=0$ and $b_{21} c_{11}+b_{22} c_{21}=0$, that is $\alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c=\left[\begin{array}{cc}s_{1} & 0 \\ 0 & s_{2}\end{array}\right]$ for suitable $s_{1}, s_{2} \in D$.

Starting from this, and using again (2.10), we also have $\left[\alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c\left[r_{1}, r_{2}\right]^{m}, e_{12}\right]=0$ and by calculations we get $\left[\begin{array}{cc}0 & \left(s_{1}-s_{2}\right) \gamma^{m} \\ 0 & 0\end{array}\right]=$

0 , which implies $s_{1}=s_{2}$.
Finally for any $s_{3} \in D$ and from $\left[\alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c\left[r_{1}, r_{2}\right]^{m}, s_{3} e_{11}+s_{3} e_{22}\right]=0$ we have $\left[\begin{array}{cc}{\left[s_{1}, s_{3}\right] \gamma^{m}} & 0 \\ 0 & {\left[s_{1}, s_{3}\right] \gamma^{m}}\end{array}\right]=0$, which implies $\left[s_{1}, s_{3}\right]=0$, that is $s_{1} \in Z(D)$ and $\alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c \in Z\left(M_{2}(D)\right)$.

In case $\alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c=0$, then also $\left[r_{1}, r_{2}\right]^{n} \alpha^{-1}(c)=0$. If denote $\alpha^{-1}(c)=\left[\begin{array}{ll}c_{11}^{\prime} & c_{12}^{\prime} \\ c_{21}^{\prime} & c_{22}^{\prime}\end{array}\right]$ this implies that

$$
0=\left[r_{1}, r_{2}\right]^{n} \alpha^{-1}(c)=\left[\begin{array}{ll}
\gamma^{n} c_{11}^{\prime} & \gamma^{n} c_{12}^{\prime} \\
\gamma^{n} c_{21}^{\prime} & \gamma^{n} c_{22}^{\prime}
\end{array}\right]
$$

and since $\gamma^{n} \neq 0$, it follows $\alpha^{-1}(c)=0$ and also $c=0$. In this case we conclude $F=0$.

Thus we may assume that $0 \neq \alpha\left(\left[r_{1}, r_{2}\right]^{n}\right) c \in Z\left(M_{2}(D)\right)$ and by (2.10) also $\left[r_{1}, r_{2}\right]^{m} \in Z\left(M_{2}(D)\right)$.

Moreover by (2.10) we also have

$$
\begin{equation*}
\left[x_{1}, x_{2}\right]^{n} \alpha^{-1}(c) \alpha^{-1}\left(\left[x_{1}, x_{2}\right]^{m}\right) \in C \tag{2.11}
\end{equation*}
$$

and using the same above argument, one has that: if $c \neq 0$ then $\left[r_{1}, r_{2}\right]^{n} \in$ $Z\left(M_{2}(D)\right)$.

All the previous argument says that: if $h, k \in D$ and

$$
\left[r_{1}, r_{2}\right]=\left[\left[\begin{array}{ll}
h & 0 \\
0 & h
\end{array}\right],\left[\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right]\right]
$$

then either $[h, k]=0$ or both $\left[r_{1}, r_{2}\right]^{m} \in Z\left(M_{2}(D)\right)$ and $\left[r_{1}, r_{2}\right]^{n} \in Z\left(M_{2}(D)\right)$. In particular, for $\left[x_{1}, x_{2}\right]=\left[r_{1}, r_{2}\right]$ in (2.10), it follows $0 \neq c \in C$. Finally, by using again (2.10), we have that Q_{r} satisfies $\alpha\left(\left[x_{1}, x_{2}\right]^{n}\right)\left[x_{1}, x_{2}\right]^{m} \in C$.

Moreover, since $[h, k]$ is either zero or both $[h, k]^{n}$ and $[h, k]^{m}$ are central in D, for all $h, k \in D$, by Fact 2.2 it follows that D satisfies the standard identity s_{4}, that is $[h, k]^{2}$ is central in D for all $h, k \in D$. Moreover, either D is commutative, or both n and m are even integers. Our aim is to prove that also in this case D must be commutative.

Suppose on the contrary that there exist $h, k \in D$, such that $\gamma=$ $[h, k] \neq 0$. Let $\left[h e_{11}, k e_{11}\right]=\gamma e_{11} \in\left[Q_{r}, Q_{r}\right]$ and denote $\alpha\left(\gamma^{n} e_{11}\right)=$ $c_{1} e_{11}+c_{2} e_{12}+c_{3} e_{21}+c_{4} e_{22}$ (where $c_{i} \in D$). By our hypothesis, it follows that $\alpha\left(\gamma^{n} e_{11}\right)\left(\gamma^{m} e_{11}\right) \in Z\left(Q_{r}\right)$, and by calculations we get $c_{1}=c_{3}=0$.

Analogously, if denote $\alpha\left(\gamma^{n} e_{22}\right)=d_{1} e_{11}+d_{2} e_{12}+d_{3} e_{21}+d_{4} e_{22}$ (where $\left.d_{i} \in D\right)$, and since $\alpha\left(\gamma^{n} e_{22}\right)\left(\gamma^{m} e_{22}\right) \in Z\left(Q_{r}\right)$, it follows that $d_{2}=d_{4}=0$. This implies that

$$
\alpha\left(\gamma^{n} e_{11}\right)=\left[\begin{array}{ll}
0 & c_{2} \\
0 & c_{4}
\end{array}\right], \quad \alpha\left(\gamma^{n} e_{22}\right)=\left[\begin{array}{ll}
d_{1} & 0 \\
d_{3} & 0
\end{array}\right]
$$

Moreover, since n is even, we also have $\alpha\left(\gamma^{n} e_{11}+\gamma^{n} e_{22}\right) \in Z\left(Q_{r}\right)$, which implies $c_{2}=d_{3}=0$ and $d_{1}=c_{4}$, so that we may write

$$
\alpha\left(\gamma^{n} e_{11}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & \lambda
\end{array}\right], \quad \alpha\left(\gamma^{n} e_{22}\right)=\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right], \quad \lambda \in D .
$$

Let now $\left[h\left(e_{12}+e_{22}\right), k\left(e_{12}+e_{22}\right)\right]=\gamma\left(e_{12}+e_{22}\right) \in\left[Q_{r}, Q_{r}\right]$ and denote $\alpha\left(\gamma^{n}\left(e_{12}+e_{22}\right)=t_{1} e_{11}+t_{2} e_{12}+t_{3} e_{21}+t_{4} e_{22}\right.$ (where $\left.t_{i} \in D\right)$. Therefore, by the hypothesis,

$$
\alpha\left(\gamma^{n}\left(e_{12}+e_{22}\right)\right) \cdot \gamma^{m}\left(e_{12}+e_{22}\right)=\left[\begin{array}{cc}
0 & \left(t_{1}+t_{2}\right) \gamma^{m} \\
0 & \left(t_{3}+t_{4}\right) \gamma^{m}
\end{array}\right] \in Z\left(Q_{r}\right)
$$

which implies $t_{1}+t_{2}=0$ and $t_{3}+t_{4}=0$, since $\gamma \neq 0$. Hence

$$
\alpha\left(\gamma^{n}\left(e_{12}+e_{22}\right)\right)=\left[\begin{array}{ll}
t_{1} & -t_{1} \tag{2.12}\\
t_{3} & -t_{3}
\end{array}\right], \quad t_{1}, t_{3} \in D
$$

and this means that

$$
\alpha\left(\gamma^{n} e_{12}\right)=\left[\begin{array}{ll}
t_{1} & -t_{1} \tag{2.13}\\
t_{3} & -t_{3}
\end{array}\right]-\alpha\left(\gamma^{n} e_{22}\right)=\left[\begin{array}{cc}
t_{1}-\lambda & -t_{1} \\
t_{3} & -t_{3}
\end{array}\right] .
$$

On the other hand $\alpha\left(\gamma^{n} e_{12}\right)=\alpha\left(\gamma^{n} e_{12} e_{22}\right)=\alpha\left(e_{12}\right) \alpha\left(\gamma^{n} e_{22}\right)$. If denote $\alpha\left(e_{12}\right)=p_{1} e_{11}+p_{2} e_{12}+p_{3} e_{21}+p_{4} e_{22}\left(\right.$ where $\left.p_{i} \in D\right)$, it follows

$$
\alpha\left(\gamma^{n} e_{12}\right)=\left[\begin{array}{ll}
p_{1} & p_{2} \tag{2.14}\\
p_{3} & p_{4}
\end{array}\right] \cdot\left[\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
p_{1} \lambda & 0 \\
p_{3} \lambda & 0
\end{array}\right] .
$$

Finally, by comparing (2.13) and (2.14) we get $t_{1}=t_{3}=0$, that is, by (2.12),

$$
\alpha\left(\gamma^{n}\left(e_{12}+e_{22}\right)\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

which is a contradiction if $\gamma \neq 0$.

3. The Proof of Theorem 1

As remarked in the Introduction we can write $F(x)=b x+d(x)$ for all $x \in R, b \in Q_{r}$ and d is a skew derivation of R (see [4]).

Since L is a noncentral Lie ideal, by Fact 1.1 we have that either $\operatorname{char}(R)=2$ and $\operatorname{dim}_{C} R C=4$, or there exists a noncentral two-sided ideal I of R such that $[I, I] \subseteq L$. In this last case we get that $F\left(u^{n}\right) u^{m} \in Z(R)$, for all $u \in[I, I]$ for I a noncentral two-sided ideal of R. By Theorem 2 in [9] I, R and Q_{r} satisfy the same generalized polynomial identities with a single skew derivation, then $F\left(u^{n}\right) u^{m} \in C$, for all $u \in\left[Q_{r}, Q_{r}\right]$. Suppose that d is $X-$ inner, then there exist $c \in Q_{r}$ and $\alpha \in \operatorname{Aut}\left(Q_{r}\right)$ such that $d(x)=c x-\alpha(x) c$, for all $x \in R$. In this case $F(x)=(b+c) x-\alpha(x) c$ and by Proposition 2.1] it follows that Q_{r} satisfies s_{4} and $\operatorname{dim}_{C} R C=4$.

Assume finally that d is X-outer. Since Q_{r} satisfies

$$
\begin{equation*}
\left(b\left[x_{1}, x_{2}\right]^{n}+d\left(\left[x_{1}, x_{2}\right]^{n}\right)\right)\left[x_{1}, x_{2}\right]^{m} \in C \tag{3.1}
\end{equation*}
$$

and recalling that

$$
d\left(x^{n}\right)=\sum_{i=0}^{n-1} \alpha\left(x^{i}\right) d(x) x^{n-i-1}
$$

then Q_{r} satisfies

$$
\begin{align*}
& b\left[x_{1}, x_{2}\right]^{n+m}+\left(\sum_{i=1}^{n-1} \alpha\left(\left[x_{1}, x_{2}\right]^{i}\right)\left(d\left(x_{1}\right) x_{2}+\alpha\left(x_{1}\right) d\left(x_{2}\right)\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m} \\
& +\left(\sum_{i=1}^{n-1} \alpha\left(\left[x_{1}, x_{2}\right]^{i}\right)\left(-d\left(x_{2}\right) x_{1}-\alpha\left(x_{2}\right) d\left(x_{1}\right)\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m} \in C . \tag{3.2}
\end{align*}
$$

By Theorem 1 in [9] and (3.2), Q_{r} satisfies

$$
\begin{align*}
b\left[x_{1}, x_{2}\right]^{n+m}+ & \sum_{i=1}^{n-1} \alpha\left(\left[x_{1}, x_{2}\right]^{i}\right)\left(y_{1} x_{2}+\alpha\left(x_{1}\right) y_{2}-y_{2} x_{1}\right. \\
& \left.\left.-\alpha\left(x_{2}\right) y_{1}\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m} \in C \tag{3.3}
\end{align*}
$$

For $y_{1}=y_{2}=0$ we have $b\left[x_{1}, x_{2}\right]^{n+m} \in C$ and by Lemma 2.3 either $\operatorname{dim}_{C} R C=4$, or $b=0$. In this last case Q_{r} satisfies

$$
\begin{equation*}
\left(\sum_{i=1}^{n-1} \alpha\left(\left[x_{1}, x_{2}\right]^{i}\right)\left(y_{1} x_{2}+\alpha\left(x_{1}\right) y_{2}-y_{2} x_{1}-\alpha\left(x_{2}\right) y_{1}\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m} \in C \tag{3.4}
\end{equation*}
$$

Assume α is X-outer. By Theorem 1 in [9] and (3.4) we have that Q_{r} satisfies

$$
\left(\sum_{i=1}^{n-1} \alpha\left(\left[t_{1}, t_{2}\right]^{i}\right)\left(y_{1} x_{2}+t_{1} y_{2}-y_{2} x_{1}-t_{2} y_{1}\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m} \in C
$$

and in particular for $t_{1}=t_{2}=0$ and $y_{1}=x_{1}, y_{2}=x_{2}$, it satisfies $\left[x_{1}, x_{2}\right]^{n+m} \in C$, and $\operatorname{dim}_{C} R C=4$ follows from Fact 2.2,

Finally consider the case α is X-inner, then there exists an invertible element q of Q_{r}, such that $\alpha(x)=q x q^{-1}$, for all $x \in Q_{r}$. Consider first the simplest case when $q \in C$, that is α is the identity map on Q_{r} and d is an usual derivation of R. Then by (3.1) and $b=0, Q_{r}$ satisfies the polynomial identity

$$
\left[\left(\sum_{i+j=n-1}\left[x_{1}, x_{2}\right]^{i} d\left(\left[x_{1}, x_{2}\right]\right)\left[x_{1}, x_{2}\right]^{j}\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right]
$$

that is

$$
\left[\left(\sum_{i+j=n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[d\left(x_{1}\right), x_{2}\right]+\left[x_{1}, d\left(x_{2}\right)\right]\right)\left[x_{1}, x_{2}\right]^{j}\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right]
$$

and since d is X-outer, by Kharchenko's result in [14], Q_{r} satisfies the identity

$$
\left[\left(\sum_{i+j=n-1}\left[x_{1}, x_{2}\right]^{i}\left(\left[y_{1}, x_{2}\right]+\left[x_{1}, y_{2}\right]\right)\left[x_{1}, x_{2}\right]^{j}\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right]
$$

in particular it satisfies

$$
\begin{equation*}
\left[\left(\sum_{i+j=n-1}\left[x_{1}, x_{2}\right]^{i}\left[y_{1}, x_{2}\right]\left[x_{1}, x_{2}\right]^{j}\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right] . \tag{3.5}
\end{equation*}
$$

It is well known that in this situation there exists a suitable field K such that Q_{r} and the matrix ring $M_{t}(K)$ satisfy the same polynomial identities. Then suppose $t \geq 3$ and in (3.5) let $x_{1}=e_{12}, x_{2}=e_{21}, y_{1}=e_{32}, x_{3}=e_{13}$. By calculation it follows from (3.5) the contradiction $0=e_{33}$. Therefore $t \leq 2$ and Q_{r} satisfies s_{4}. Moreover, since R is not commutative, then Q_{r} is also not commutative and $t=2$, that is $\operatorname{dim}_{C} R C=4$.

In light of this, we may consider $q \notin C$. From (3.4) and $y_{1}=0, Q_{r}$ satisfies

$$
\left(\sum_{i=1}^{n-1} q\left[x_{1}, x_{2}\right]^{i} q^{-1}\left(q x_{1} q^{-1} y_{2}-y_{2} x_{1}\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m} \in C
$$

and replacing y_{2} by $q y_{2}$, we have that Q_{r} satisfies

$$
\begin{equation*}
\left[q\left(\sum_{i=1}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(x_{1} y_{2}-y_{2} x_{1}\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m}, x_{3}\right] \tag{3.6}
\end{equation*}
$$

Here we denote by $g\left(x_{1}, x_{2}, y_{2}\right)$ the following polynomial

$$
\left(\sum_{i=1}^{n-1}\left[x_{1}, x_{2}\right]^{i}\left(x_{1} y_{2}-y_{2} x_{1}\right)\left[x_{1}, x_{2}\right]^{n-i-1}\right)\left[x_{1}, x_{2}\right]^{m}
$$

Hence the generalized polynomial identity $\left[\operatorname{qg}\left(x_{1}, x_{2}, y_{2}\right), x_{3}\right]$ is satisfied by Q_{r}. In particular, for $x_{3}=q$, it follows that $q\left[q, g\left(x_{1}, x_{2}, y_{2}\right)\right]$ is a generalized polynomial identity for Q_{r}. Moreover $0 \neq q$ is an invertible element of Q_{r}, then Q_{r} satisfies [$q, g\left(x_{1}, x_{2}, y_{2}\right)$]. Therefore, by Theorem 6 in [16] and since $q \notin C$, we have that either $\operatorname{dim}_{C} R C=4$, or the polynomial $g\left(x_{1}, x_{2}, y_{2}\right)$ is central-valued on Q_{r}. In this last case

$$
\begin{equation*}
\left[\left(\sum_{i=1}^{n-1}\left[r_{1}, r_{2}\right]^{i}\left(r_{1} s_{2}-s_{2} r_{1}\right)\left[r_{1}, r_{2}\right]^{n-i-1}\right)\left[r_{1}, r_{2}\right]^{m}, r_{3}\right]=0 \tag{3.7}
\end{equation*}
$$

for all $r_{1}, r_{2}, r_{3}, s_{2} \in Q_{r}$. As above, Q_{r} is a PI-ring and there exists a suitable
field K such that Q_{r} and the matrix ring $M_{t}(K)$ satisfy the same polynomial identities. Notice that, if $t \geq 3$ and for $\left[r_{1}, r_{2}\right]=\left[e_{12}, e_{21}\right]=e_{11}-e_{22}, r_{3}=e_{11}$ and $s_{2}=e_{31}$ in relation (3.7), it follows the contradiction $e_{31}=0$. Hence $t \leq 2$ and $\operatorname{dim}_{C} R C=4$.

References

1. N. Argaç, C. Demir, A result on generalized derivations with Engel conditions on one-sided ideals, J. Korean Math. Soc., 47 (2010), No. 3, 483-494.
2. K.I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with Generalized Identities, Pure and Applied Math., Dekker, New York, 1996.
3. J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259-267.
4. J.-C. Chang, On the identitity $h(x)=a f(x)+g(x) b$, Taiwanese J. Math., 7 (2003), 103-113.
5. C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Mat. Soc., 103 (1988), No. 3, 723-728.
6. C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms I, J. Algebra, 149 (1992), 371-404.
7. C.-L. Chuang, Differential identities with automorphisms and antiautomorphisms II, J. Algebra, 160 (1993), 130-171.
8. C.-L. Chuang, M.-C. Chou and C.-K. Liu, Skew derivations with annihilating Engel conditions, Publ. Math. Debrecen, 68 (2006), No. 1-2, 161-170.
9. C.-L. Chuang and T. K. Lee, Identities with a single skew derivation, J. Algebra 288 (2005), 59-77.
10. O. M. Di Vincenzo, On the n-th centralizer of a Lie ideal, Boll. UMI, (7) 3-A (1989), 77-85.
11. T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60 (1975), 49-63.
12. N. Jacobson, Structure of Rings, Amer. Math. Soc., Providence, RI, 1964.
13. I. N. Herstein, Center-like elements in prime rings, J. Algebra, 60/2 (1979), 567-574.
14. V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17(1978), 155-168.
15. C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42/1 (1972), 117-136.
16. T. K. Lee, Derivations with Engel condition on polynomials, Alg. Colloquium 5/1 (1998), 13-24.
17. T. K. Lee, W. K. Shiue, A result on derivations with Engel condition in prime rings, Southeast Asian Bull. Math., 23 (1999), No. 3, 437-446.
18. W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.

[^0]: Received February 8, 2013 and in revised form August 29, 2014.
 AMS Subject Classification: 16W25, 16W20, 16N60.
 Key words and phrases: Generalized skew derivation, automorphism, (semi-)prime ring.

