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Abstract

In the absence of magnetic effects, the dynamics of two-species charged dilute par-

ticles (e.g., electrons and ions) interacting with their self-consistent electrostatic field as

well as their grazing collisions is described by the two-species Vlasov-Poisson-Landau sys-

tem, while the one-species Vlasov-Poisson-Landau system models the time evolution of

dilute charged particles consisting of electrons interacting through its binary grazing col-

lisions under the influence of the self-consistent internally generated electrostatic forces

with a fixed ionic background. To construct global smooth solutions of the two-species

Vlasov-Poisson-Landau system near Maxwellians, a time-velocity weighted energy method

is developed by Guo in [Guo Y., J. Amer. Math. Soc. 25 (2012), 759–812] which yields a

satisfactory well-posedness theory for the two-species Vlasov-Poisson-Landau system with

algebraic decay initial perturbation in the perturbative context. It is worth emphasizing

that such a time-velocity weighted energy method relies heavily on the fact that the po-

tential of the electrostatic field decays sufficiently fast. The main purpose of this paper is

to show that, for the one-species Vlasov-Poisson-Landau system, although the temporal

decay of the electric potential is worse than that of the two-species Vlasov-Poisson-Landau

system, the method developed in [Guo Y., J. Amer. Math. Soc. 25 (2012), 759–812] can

still be adapted provided that the initial perturbation satisfies the neutral condition.
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1. Introduction and Main Results

In the absence of magnetic effects, the dynamics of two-species charged

dilute particles (e.g., electrons and ions) interacting with their self-consistent

electrostatic field as well as their grazing collisions is described by the two-

species Vlasov-Poisson-Landau (called VPL in the sequel for simplicity of

presentation) system (cf. [9, 15, 18]):

∂tF+ + v · ∇xF+ + E · ∇vF+ = Q(F+, F+) +Q(F+, F−),
(1.1)

∂tF− + v · ∇xF− − E · ∇vF− = Q(F−, F+) +Q(F−, F−).

Here F±(t, x, v) ≥ 0 are the number density functions for the ions (+) and

electrons (−), respectively, at time t ≥ 0, position x = (x1, x2, x3) ∈ R
3,

and velocity v = (v1, v2, v3) ∈ R
3. The collision between charged particles is

given by

Q (G±, G∓)

= ∇v ·
∫

R3
v

Φ(v − v′)
{
G±(v

′)∇vG∓(v)−∇v′G±(v
′)G∓(v)

}
dv′

=
3∑

i,j=1

∂i

∫

R3
v

Φij(v − v′)
{
G±(v

′)∂jG∓(v)− ∂jG±(v
′)G∓(v)

}
dv′, (1.2)

where ∂i = ∂vi and Φ(v) =
(
Φij(v)

)
3×3

is the famous Landau (Fokker-

Planck) kernel (cf. [1, 2, 3, 6, 7, 9, 10, 11, 13, 15, 16, 18]):

Φij(v) =

(
δij −

vivj

|v|2
)
|v|γ+2, γ ≥ −3 (1.3)

and the case of γ = −3 corresponds to the Coulomb potential (cf. [2, 17]).

The self-consistent electric field E(t, x) = −∇xφ and the electric poten-

tial φ(t, x) will then satisfy the Poisson equation

∇x ·E = −△xφ =

∫

R3
v

(F+ − F−) dv, lim
|x|→+∞

φ(t, x) = 0. (1.4)

Here, without loss of generality, all the physical constants such as the mag-

nitudes of charge and mass of the two-species charged particles and all the
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generic constants such as 4π in the Poisson equation (1.4), etc. evolved are

normalized to be unit for notational simplicity throughout this manuscript.

In physical situations the ion mass is usually much larger than the elec-

tron mass so that the electrons move much faster than the ions. Thus, the

ions are often described by a fixed ion background nb(x) and only the elec-

trons move. For such a case, the dynamics of the electrons interacting with

its self-consistent electrostatic field as well as its grazing collisions with a

fixed background of ions can be described by the following one-species VPL

system

∂tF + v · ∇xF +∇xφ · ∇vF = Q(F,F ), (1.5)

∆xφ =

∫

R3
v

F dv − nb(x), lim
|x|→+∞

φ(t, x) = 0. (1.6)

Here the unknown F = F (t, x, v) ≥ 0 is the density distribution function of

electrons located at x = (x1, x2, x3) ∈ R
3 with velocity v = (v1, v2, v3) ∈

R
3 at time t ≥ 0. The potential function φ = φ(t, x) generating the

self-consistent electric field E(t, x) ≡ −∇xφ(t, x) in (1.5) is coupled with

F (t, x, v) through the Poisson equation (1.6) where nb(x) is the density of

the ionic background. Throughout this manuscript, nb(x) is assumed to be

a positive constant, which means that the density of the ionic background

is spatially uniform, and without loss of generality, we can further assume

that nb(x) = 1.

This paper is concerned with the global solvability of the one-species

VPL system (1.5), (1.6) around the following normalized global Maxwellian

µ = (2π)−
3
2 exp

(
−|v|2

2

)

in the whole space R
+
t ×R

3
x × R

3
v with prescribed initial data

F (0, x, v) = F0(x, v). (1.7)

For this purpose, we define the perturbation f(t, x, v) by

F (t, x, v) = µ+ µ
1
2 f(t, x, v),
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then, such a Cauchy problem (1.5), (1.6), (1.7) is reformulated as

∂tf + v · ∇xf +∇xφ · ∇vf − 1

2
v · ∇xφf −∇xφ · vµ 1

2 + Lf = Γ(f, f),

△xφ =

∫

R3
v

µ
1
2 f dv, lim

|x|→+∞
φ(t, x) = 0, (1.8)

f(0, x, v) = f0(x, v) = µ− 1
2 (F0(x, v) − µ(v)) .

Here the linearized Landau collision operator Lf and the nonlinear collision

term Γ(f, f) are defined by

Lf = −µ−1/2
{
Q
(
µ, µ

1
2 f
)
+Q

(
µ

1
2 f, µ

)}

and

Γ(f, f) = µ− 1
2Q
(
µ

1
2 f, µ

1
2 f
)
,

respectively. Recalling (1.8), we can rewrite φ(t, x) in terms of f(t, x, v) as

φ(t, x) = − 1

4π|x| ∗x
∫

R3
v

µ
1
2 (v)f(t, x, v) dv.

Here ∗x denotes the convolution with respect to the x variable.

For the linearized Landau collision operator L, it is well known [7] that

it is non-negative and the null space N of L is given by

N = Span
{
µ

1
2 , viµ

1
2 (1 ≤ i ≤ 3),

(
|v|2 − 3

)
µ

1
2

}
.

If we define P as the orthogonal projection from L2(R3
v) to N , then for any

given function f(t, x, v) ∈ L2(R3
v), one has

Pf = a(t, x)µ
1
2 + b(t, x) · vµ 1

2 + c(t, x)
(
|v|2 − 3

)
µ

1
2 ,

a =

∫

R3
v

µ
1
2 f dv =

∫

R3
v

µ
1
2Pfdv ≡ P0f,

bi =

∫

R3
v

viµ
1
2 f dv =

∫

R3
v

viµ
1
2Pf dv, i = 1, 2, 3,

c =
1

6

∫

R3
v

(
|v|2 − 3

)
µ

1
2 fdv =

1

6

∫

R3
v

(
|v|2 − 3

)
µ

1
2Pfdv.

Therefore, we have the following macro-micro decomposition with respect to
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the given global Maxwellian µ

f(t, x, v) = Pf(t, x, v) + {I−P}f(t, x, v). (1.9)

Here I denotes the identity operator. Pf and {I−P}f are called the macro-

scopic and the microscopic component of f(t, x, v), respectively. For the

corresponding macro-microscopic decomposition for the Boltzmann equa-

tion, see [8, 14].

Before going on, we first list some basic notations used throughout this

paper:

• C denotes some positive constant (generally large) and λ, ǫ, κ, and δ

stand for some positive constant (generally small). Note that all these

constants may take different values in different places;

• A . B means that there is a generic constant C > 0 such that A ≤ CB.

A ∼ B means A . B and B . A. A & B can be defined similarly;

• The multi-indices α = [α1, α2, α3] and β = [β1, β2, β3] will be used

to record spatial and velocity derivatives, respectively. And ∂α
β =

∂α1
x1
∂α2
x2
∂α3
x3
∂
β1
v1 ∂

β2
v2 ∂

β3
v3 . Similarly, the notation ∂α will be used when β = 0

and likewise for ∂β. The length of α is denoted by |α| = α1 + α2 + α3.

α′ ≤ α means that no component of α′ is greater than the corresponding

component of α, and α′ < α means that α′ ≤ α and |α′| < |α|. And it is

convenient to write
∣∣∣∇k

xf
∣∣∣ ≡

√∑

|α|=k

|∂αf |2;

• 〈·, ·〉 is used to denote the L2
v inner product in R

3
v, with the L2 norm

| · |L2
v
, while (·, ·) denotes the L2 inner product either in R

3
x × R

3
v or in

R
3
x with the L2 norm ‖ · ‖;

• For p ≥ 1, q ≥ 1, we also define the mixed velocity-space Lebesgue space

L
p
vL

q
x = Lp(R3

v;L
q(R3

x)) with the norm

‖f‖Lp
vL

q
x
=



∫

R3
v

(∫

R3
x

|f(x, v)|qdx
) p

q

dv




1
p

for f = f(x, v) ∈ L
p
vL

q
x and when p = 2, we will use Zq to denote L2

vL
q
x.

For p ≥ 1, q ≥ 1, ℓ ∈ Z
+, Lp

xL
q
v, L

p
vH

ℓ
x, etc. can be defined similarly;
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• For some time and velocity dependent weight function w(t, v) & 1, as in

[7], we define the the weighted norms | · |σ,w and ‖ · ‖σ,w as

|f |σ,w ∼
∣∣∣w(t, v)〈v〉

γ+2
2 f
∣∣∣
L2
v

+

∣∣∣∣w(t, v)〈v〉
γ
2∇vf · v

|v|

∣∣∣∣
L2
v

+

∣∣∣∣w(t, v)〈v〉
γ+2
2 ∇vf × v

|v|

∣∣∣∣
L2
v

(1.10)

and ‖f‖σ,w =
∥∥|f |σ,w

∥∥. Moreover, |f |σ ≡ |f |σ,1 and ‖f‖σ ≡ ‖f‖σ,1;
• For p ∈ [1,+∞] and some time and velocity dependent weight function

w(t, v) & 1, Lp(R3
v) denotes the usual Lebesgue space in R

3
v with the

usual norm | · |Lp
v
, Lp

w(R3
v) stands for the weighted Lebesgue space in R

3
v

with norm |f |p,w = |wf |Lp
v
for f(v) ∈ L

p
w(R3

v). Similarly, Lp(R3
v × R

3
x)

(or Lp(R3
x)) in R

3
v×R

3
x (or R3

x) and L
p
w(R3

v×R
3
x) (or L

p
w(R3

x)) in R
3
v×R

3
x

(or R
3
x) can be defined similarly with the corresponding norms ‖ · ‖Lp

x,v

(or ‖ · ‖Lp
x
) and ‖ · ‖p,w, respectively. It is easy to see that | · |2,1 = | · |L2

v
,

‖ · ‖2,1 = ‖ · ‖L2
x,v

= ‖ · ‖, and ‖ · ‖2,1 = ‖ · ‖L2
x
= ‖ · ‖.

With the above notations in hand, it is well known, cf. [7], that the

linear operator L ≥ 0 is locally coercive in the sense that

〈Lf, f〉 & |{I −P}f |2σ. (1.11)

As pointed out in [9], the main difficulty for the construction of solutions,

either local or global, to the Cauchy problem of both the two-species VPL

system (1.1), (1.4) and the one-species VPL system (1.5), (1.6) for the case

of −3 ≤ γ < −2 is due to the degeneration of coercive estimate (1.11) at

large velocity for the linearized Landau collision operator L and the velocity-

growth of the nonlinear term −1
2v ·∇xφf with the first order velocity-growth

rate induced by the electrostatic force. To overcome such a difficulty, a time-

velocity weighted energy method is introduced in [9] for the two-species VPL

system (1.1), (1.4) in a periodic box to capture the dissipation for controlling

the velocity growth in the nonlinear term for −3 ≤ γ < −1 and to overcome

the large-velocity degeneracy in the energy dissipation for −3 ≤ γ < −2.

The main ideas developed in [9] can be outlined as in the following:
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• An exponential weight of electric potential e∓φ is introduced to cancel

the growth of the velocity in the nonlinear term ∓1
2∇xφ · vf±, which is

mainly due to the following identity

e∓φf±

(
∓1

2
∇xφ · vf± + v · ∇xf±

)
=

1

2
v ·
(
e∓φf2

±

)
. (1.12)

Here f±(t, x, v) = µ(v)−
1
2 (F±(t, x, v) − µ(v));

• A velocity weight

wℓ(α, β)(v) = 〈v〉−(γ+1)(ℓ−|α|−|β|), 〈v〉 =
√

1 + |v|2 (1.13)

is designed to capture the weak velocity diffusion in the linearized Landau

kernel L for the case of −3 ≤ γ < −2;

• A temporal decay of the electric potential φ(t, x) is obtained to close the

energy estimate.

We note, however, that the fact

‖∂tφ(t)‖L∞(R3
x)

∈ L1
(
R
+
)

plays an essential role in the analysis in [9], cf. [15] and [18] for the cor-

responding results in the whole space. But for the Cauchy problem of the

one-species VPL system (1.8), the temporal decay analysis for the solution

operator of the corresponding linearized system in [6] tells us that even if

the initial perturbation f0(x, v) is assumed to satisfy the neutral condition

∫

R3
x

∫

R3
v

µ
1
2 (v)f0(x, v)dvdx = 0, (1.14)

one can only deduce that ∂tφ(t, x) decays at most like

‖∂tφ(t)‖L∞(R3
x)

. (1 + t)−1

and consequently, the arguments developed in [9, 15, 18], which have been

proved to be effective for the construction of global solutions to the Cauchy

problem of the two-species VPL system (1.1), (1.4), can not be adopted

directly to deal with the one-species VPL system (1.5), (1.6).
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To study the global solvability of the Cauchy problem (1.8) of the one-

species VPL system, another time-velocity energy method is introduced in

[6] and [12] which is first used in [4, 5] to deal with the Vlasov-Poisson-

Boltzmann system and is based on the following weight function w̃ℓ−|β|(t, v)

w̃ℓ−|β|(t, v) = 〈v〉−(γ+2)(ℓ−|β|) exp

(
q〈v〉2

(1 + t)ϑ

)
, 0 < q ≪ 1, 0 < ϑ ≤ 1

4
.

(1.15)

By combining the dissipation term

∥∥w̃ℓ−|β|(t, v)∂
α
β {I−P}f

∥∥2
σ

(1.16)

which is the weighted variant of the coercive estimate (1.11) of the linearized

Landau collision operator L with respect to the weight function w̃ℓ−|β|(t, v)

and the extra dissipation term

(1 + t)−1−ϑ
∥∥〈v〉w̃ℓ−|β|(t, v)∂

α
β {I−P}f

∥∥2 (1.17)

induced by the exponential factor e
q〈v〉2

(1+t)ϑ of the weight function w̃ℓ−|β|(t, v),

a somewhat satisfactory well-posedness theory is obtained for the Cauchy

problem (1.8) for the whole range of γ ≥ −3 and for any small initial per-

turbation f0(x, v) which is not necessarily assumed to satisfy the neutral

condition (1.14), but at the price that the initial perturbation f0(x, v) de-

cays exponentially for large |v|.
Thus a natural question is: Does similar global solvability result hold

for the Cauchy problem (1.8) of the one-species VPL system with algebraic

decay initial perturbation? Or in other words, Can the approach developed

in [9, 15, 18] still be adapted in the one-species case?

The main purpose of this paper is devoted to the above problem and we

will show that it is indeed the case if the initial perturbation f0(x, v) satisfies

the neutral condition (1.14). Before stating such a result, for some integer

N ≥ 1 and some constant ℓ ≥ N , we define the energy functional EN,ℓ(t) and

the corresponding dissipation rate functional DN,ℓ(t) of a given f(t, x, v) by

EN,ℓ(t) ∼
∑

|α|+|β|≤N

∥∥wℓ(α, β)∂
α
β f
∥∥2 + ‖∇xφ‖2HN (1.18)
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and

DN,ℓ(t) = ‖a‖2 +
∑

1≤|α|≤N

‖∂α(a, b, c)‖2 +
∑

|α|+|β|≤N

∥∥wℓ(α, β)∂
α
β {I−P}f

∥∥2
σ
.

(1.19)

Now our main result can be stated as follows.

Theorem 1.1. Assume that

• −3 ≤ γ < −2, N ≥ 3, 0 < ǫ0 ≤ 5
4 ;

• The parameters lj(j = 0, 1, 2, 3) are chosen such that

l0 >
3

2
, l1 ≥

l0

2
+N, l2 ≥ l1 +

3γ + 4

2(γ + 1)
, l3 ≥ l2 +

1

2
;

• The initial perturbation f0(x, v) is assumed to satisfy F0(x, v) = µ +
√
µf0(x, v) ≥ 0 and the neutral condition (1.14);

• Y0 =
∑

|α|+|β|≤N

∥∥∥〈v〉−(γ+1)(l3−|α|+|β|)∂α
β f0

∥∥∥+‖∇xφ0‖HN +
∥∥∥〈v〉−

γ+1
2

l0f0

∥∥∥
Z1

+ ‖(1 + |x|)a0‖L1
x
is assumed to be sufficiently small.

Then the Cauchy problem (1.8) of the one-species VPL system exists a unique

global solution f(t, x, v) satisfying F (t, x, v) = µ +
√
µf(t, x, v) ≥ 0 and the

following temporal decay estimates:

‖(f(t),∇xφ(t))‖2 . Y 2
0 (1 + t)−

3
2 ,

(1.20)
‖∇x (f(t),∇xφ(t))‖2 . Y 2

0 (1 + t)−
5
2 ,

and

EN,l1(t) . Y 2
0 (1 + t)−

3
2 . (1.21)

Remark 1.1. Several remarks concerning Theorem 1.1 are listed below:

• Although only the case of −3 ≤ γ < −2 is treated in Theorem 1.1, the

case of γ ≥ −2 has been studied in [12] and it is shown in Theorem 1.1 in

[12] that similar result holds even without the neutral condition (1.14);

• For the case of −3 ≤ γ < −2, it would be of some interest to see

whether similar result holds or not if the initial perturbation f0(x, v)

is not assumed to satisfy the neutral condition (1.14). Such a problem

is under our current study.
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Before concluding this section, we point out the key technical points

in the proof of Theorem 1.1. First of all, similar to that of [9], we use

the velocity weight wℓ(α, β) defined in (1.13) and an exponential weight

of the electric potential e−φ to cancel the velocity growth induced by the

self-consistent electrostatic field ∇xφ. As a consequence, the corresponding

weighted energy estimate based on these two weight functions wl3(α, β) and

e−φ will result in a Lyapunov type differential inequality for some energy

functional EN,l3(t) like

d

dt
EN,l3(t) +DN,l3(t) . ‖∂tφ(t)‖L∞

x
EN,l3(t). (1.22)

Since, unlike the case of two-species VPL system (1.1), (1.4) studied in

[9, 15, 18], the temporal decay of the electric potential φ for the one-species

VPL system (1.5), (1.6) is worse such that ‖∂tφ(t)‖L∞(R3
x)

does not belong to

L1(R+) any longer, the argument in [9, 15, 18] can not be adopted directly

to deal with the term ‖∂tφ(t)‖L∞
x
EN,l3(t) appeared in the right hand side of

(1.22).

To deal with such a term, we have by multiplying (1.22) by (1 + t)−ǫ0

for some constant ǫ0 > 0 that

d

dt

{
(1 + t)−ǫ0EN,l3(t)

}
+ ǫ0(1 + t)−1−ǫ0EN,l3(t) + (1 + t)−ǫ0DN,l3(t)

. (1 + t)−ǫ0‖∂tφ(t)‖L∞
x
EN,l3(t). (1.23)

The estimate (1.23) tells us that if the electric potential φ decays suitably

such that

‖∂tφ(t)‖L∞(R3
x)

≤ ǫ(1 + t)−1 (1.24)

holds for some sufficiently small positive constant ǫ > 0, then we can use

the new dissipation term (1 + t)−1−ǫ0EN,l3(t), i.e. the second term in the

left hand side of the differential inequality (1.23), to absorb the term (1 +

t)−ǫ0‖∂tφ(t)‖L∞
x
EN,l3(t) appeared in the right hand side of (1.23).

Now the problem is how to get the temporal decay of the electric po-

tential, especially the temporal decay estimate on ‖∂tφ(t)‖L∞
x
. To this end,

by combining the temporal decay analysis on the solution operator of the

corresponding linearized VPL system with the Duhamel principle as in [6],
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we can indeed deduce the temporal decay estimate (1.24) together with the

following temporal decay estimate on ‖∇xφ(t)‖L∞(R3
x)

‖∇xφ(t)‖L∞(R3
x)

≤ ǫ(1 + t)−
5
4 (1.25)

under the assumption that

EN,l1(t) . ǫ(1 + t)−
3
2 . (1.26)

To verify the temporal decay estimate (1.26) on EN,l1(t), on the one hand,

one has for any ℓ ≥ N ≥ 2 that

d

dt
EN,ℓ(t) +DN,ℓ(t) ≤ 0, (1.27)

where we need the smallness of EN,ℓ+ γ
2(γ+1)

(t) which is caused by the velocity

growth comes from the nonlinear term∇xφ·vf (For details, see the estimates

on I1, I2, and I4 in the proof of Lemma 3.2). On the other hand, the analysis

on the temporal decay estimate (1.26) on the energy functional EN,l1(t) in

Lemma 3.3 asks that (1.27) also holds for ℓ = l1 + 2l∗ with l∗ = γ+2
2(γ+1) .

Consequently, the smallness of EN,l1+2l∗+ γ
2(γ+1)

(t) needs to be justified.

To guarantee the smallness of EN,l1+2l∗+ γ
2(γ+1)

(t), by performing the

weighted energy estimates with respect to the weight wℓ(α, β) only and by

re-examining the terms related to the nonlinear term ∇xφ · vf , one can

deduce the following Lyapunov type differential inequality for some energy

functional EN,ℓ(t)

d

dt
EN,ℓ(t) +DN,ℓ(t) . ‖∇xφ(t)‖L∞

x
DN,ℓ+ 1

2
(t) (1.28)

for any ℓ ≥ N .

Thus, if we replace ℓ in (1.28) by l2 ≥ l1+2l∗+ γ
2(γ+1) and take l3 ≥ l2+

1
2

in (1.23), respectively, we can then close the whole analysis by combining

(1.23) with ℓ = l3, (1.28) with ℓ = l2, and the estimate (1.25) provided that

ǫ0 is suitably chosen such that ǫ0 ∈ (0, 1].

The rest of this paper is arranged as follows. In section 2, we will first

give some weighted estimates on the linearized Landau collision operator L
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and the nonlinear collision term Γ. For our later use, some weighted esti-

mates on the nonlinear term related to the electric potential φ(t, x) will also

be given in this section. Section 3 is first devoted to deducing some a priori

estimates on the local solutions to the Cauchy problem (1.8) constructed by

repeating the argument used in [9, 15, 18] and then to proving our main

result Theorem 1.1 by the continuation argument in the usual way.

2. Preliminaries

In this section, we first collect several fundamental results to be used

frequently later. The first lemma is devoted to the estimates on the linearized

Landau operator L and the nonlinear term Γ, whose proofs can be found in

[18].

Lemma 2.1 (cf. [18]). Assume −3 ≤ γ < −2 and let w = wℓ(α, β)(v) be

the weight function defined in (1.13), then we can get that

(i) There exist κ > 0 and Cκ > 0 such that

〈
w2
ℓ (α, 0)(v)∂

αLf, ∂αf
〉
≥ κ|f |2σ,wℓ(α,0)

− Cκ|f |2σ. (2.1)

Let |β| > 0, for η > 0 small enough there exists Cη > 0 such that

〈
w2
ℓ (α, β)(v)∂

α
βLf, ∂

α
β f
〉

≥ κ
∣∣∂α

β f
∣∣2
σ,wℓ(α,β)

− η
∑

|β′|=|β|

∣∣∂α
β′{I−P}f

∣∣2
σ,wℓ(α,β)

−Cη

∑

|β′|<|β|

∣∣∂α
β′f
∣∣2
σ,wℓ(α,β)

. (2.2)

(ii) It follows that

〈
w2
ℓ (α, β)(v)∂

α
βΓ(g1, g2), ∂

α
β g3
〉

(2.3)

.
∑

α1≤α

β̄≤β1≤β

∣∣∣µδ∂α1

β̄
g1

∣∣∣
L2
v

∣∣∣∂α−α1
β−β1

g2

∣∣∣
σ,wℓ(α,β)

(
∣∣∂α

β g3
∣∣
σ,wℓ(α,β)

+ ℓ
∣∣∂α

β g3
∣∣
2,

wℓ(α,β)

〈v〉
−

γ
2

)
.

Here δ > 0 is a sufficiently small universal constant. In particular, we

have

〈Γ(g1, g2), g3〉 .
∣∣∣µδg1

∣∣∣
L2
v

|g2|σ |g3|σ. (2.4)
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Next we turn to deduce some weighted estimates on the nonlinear terms.

Our first lemma is concerned with the term v · ∇xf which can be stated as

in the following lemma:

Lemma 2.2. Assume −3 ≤ γ < −2 and take N ≥ 2 and ℓ ≥ N , then it

follows that

(v · ∇xφf, f) .
d

dt

∫

R3
x

|b|2(a+ 2c)dx + EN,0(t)DN,ℓ(t) + εDN,ℓ(t). (2.5)

Furthermore, we also have the following weighted estimates with respect to

the weight function wℓ(α, β):

∑

1≤|α|≤N

(
v · ∇xφ∂

αf,w2
ℓ (α, 0)∂

αf
)
. EN,ℓ+ γ

2(γ+1)
(t)DN,0(t) + εDN,ℓ(t), (2.6)

∑

|α|+|β|≤N

(
v · ∇xφ∂

α
β {I−P}f), w2

ℓ (α, β)∂
α
β {I−P}f

)

. EN,ℓ+ γ
2(γ+1)

(t)DN,0(t) + εDN,ℓ(t), (2.7)

∑

1≤|α|≤N
α1 6=0

(
v · ∇x∂

α1φ∂α−α1f,w2
ℓ (α, 0)∂

αf
)
. EN,0(t)DN,ℓ(t) + εDN,ℓ(t), (2.8)

and ∑

|α|+|β|≤N,
α1 6=0,α1≤α,β1≤β

(
∂β1v · ∇x∂

α1φ∂α−α1
β−β1

{I−P}f,w2
ℓ (α, β)∂

α
β {I−P}f

)

. EN,0(t)DN,ℓ(t) + εDN,ℓ(t). (2.9)

Proof. For (2.5), as in Lemma 3.2 of [6], one has

(v · ∇xφf, f) .
d

dt

∫

R3
x

|b|2(a+ 2c)dx +
∥∥∇2

xφ
∥∥
H1

∥∥∥〈v〉 1
2 {I−P}f

∥∥∥
2

+
{
‖(a, b, c)‖H2 + ‖∇xφ‖H1 + ‖∇xφ‖ ‖∇xb‖

}

×
{
‖∇x(a, b, c)‖2 +

∥∥∥〈v〉
γ+2
2 {I−P}f

∥∥∥
2
}

.
d

dt

∫

R3
x

|b|2(a+ 2c)dx + EN,0(t)DN,ℓ(t) + εDN,ℓ(t), (2.10)

where we have used the fact that ℓ ≥ N and N ≥ 2.
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As for (2.6), one has from Sobolev’s inequality that

∑

1≤|α|≤N

(
v · ∇xφ∂

αf,w2
ℓ (α, 0)∂

αf
)

.
∑

1≤|α|≤N

‖∇xφ‖L∞
x

∥∥∥wℓ(α, 0)∂
αf〈v〉− γ

2

∥∥∥
∥∥∥wℓ(α, 0)∂

αf〈v〉γ+2
2

∥∥∥

.
∑

1≤|α|≤N

∥∥∇2
xφ
∥∥2
H1

x

∥∥∥wℓ(α, 0)∂
αf〈v〉− γ

2

∥∥∥
2
+ ε ‖wℓ(α, 0)∂

αf‖2σ

. EN,ℓ+ γ
2(γ+1)

(t)DN,0(t) + εDN,ℓ(t).

This proves (2.6) and (2.7) can be proved by the same way as (2.6).

Now for (2.8), we have

∑

1≤|α|≤N

|α1|=1

(
v · ∇x∂

α1φ∂α−α1f,w2
ℓ (α, 0)∂

αf
)

.
∑

1≤|α|≤N

|α1|=1

‖∇x∂
α1φ‖L∞

x

∥∥∥wℓ(α, 0)∂
α−α1Pf〈v〉− γ

2

∥∥∥
∥∥∥wℓ(α, 0)∂

αf〈v〉γ+2
2

∥∥∥

+
∑

1≤|α|≤N

|α1|=1

‖∇x∂
α1φ‖L∞

x

∥∥∥wℓ(α, 0)∂
α−α1{I−P}f〈v〉− γ

2

∥∥∥
∥∥∥wℓ(α, 0)∂

αf〈v〉γ+2
2

∥∥∥

.
∑

1≤|α|≤N

|α1|=1

∥∥∂α1∇2φ
∥∥2
H1

x

{∥∥∥µδ∂α−α1f
∥∥∥
2

+
∥∥∥wℓ(α− α1, 0)∂

α−α1{I −P}f〈v〉γ+2
2

∥∥∥
2 }

+ ε
∑

1≤|α|≤N

‖wℓ(α, 0)∂
αf‖2σ

. EN,0(t)DN,ℓ(t) + εDN,ℓ(t).

Here we use the fact that

wℓ(α, 0)〈v〉−
γ
2 = wℓ(α− α1, 0)〈v〉|α1 |(γ+1)− γ

2 ≤ wℓ(α− α1, 0)〈v〉
γ+2
2 ,

1 ≤ |α1| ≤ |α|.

In the similar way, we can also obtain

∑

1≤|α|≤N

2≤|α1|≤N

(
v · ∇x∂

α1φ∂α−α1f,w2
ℓ (α, 0)∂

αf
)
. EN,0(t)DN,ℓ(t) + εDN,ℓ(t).
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Collecting the above two estimates gives (2.8).

(2.9) follows by employing the same argument used to deduce (2.8).

Thus the proof of Lemma 2.2 is complete. ���

Remark 2.1. For the estimates (2.5)-(2.9), only the estimates (2.6) and

(2.7) can lead to the increase of the order of the weight with respect to v. It

is worth to emphasizing that if we perform the corresponding energy type

estimates by using the weights wℓ(α, β)(v) and e−φ simultaneously, we do

not need to deal with these two terms since, due to

e−φw2
ℓ (α, 0)∂

αf ×
(
−1

2
v · ∇xφ∂

αf + v · ∇x∂
αf

)

=
w2
ℓ (α, 0)

2
v · ∇x

(
e−φ |∂αf |2

)
,

e−φw2
ℓ (α, β)∂

α
β {I−P}f ×

(
−1

2
v · ∇xφ∂

α
β {I−P}f + v · ∇x∂

α
β {I−P}f

)

=
w2
ℓ (α, β)

2
v · ∇x

(
e−φ

∣∣∂α
β {I −P}f

∣∣2
)
,

they will vanish after integration with respect to v and x over R3
x ×R

3
v.

The next lemma is concerned with ∇xφ · ∇vf , which can be stated as

follows:

Lemma 2.3. Let N ≥ 2, ℓ ≥ N , we have the estimates on the nonlinear

term ∇xφ · ∇vf as follows:

∑

1≤|α|≤N

(
∂α(∇xφ · ∇vf), w

2
ℓ (α, 0)∂

αf
)
. EN,0(t)DN,ℓ(t) + εDN,ℓ(t) (2.11)

and ∑

|α|+|β|≤N

(
∂α
β (∇xφ · ∇v{I −P}f), w2

ℓ (α, β)∂
α
β {I−P}f

)

. EN,0(t)DN,ℓ(t) + εDN,ℓ(t). (2.12)

Proof. We only need to prove (2.11) since (2.12) can be proved similarly.

For this purpose, one can get first that

∑

1≤|α|≤N

(
∇xφ · ∇v∂

αf,w2
ℓ (α, 0)∂

αf
)
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=
∑

1≤|α|≤N

1

2

(
∇xφ · ∇v(∂

αf)2, w2
ℓ (α, 0)

)

.
∑

1≤|α|≤N

∫

R3
x

|∇xφ|
∣∣∣wℓ(α, 0)∂

αf〈v〉− 1
2

∣∣∣
2

L2
v

dx

.
∑

1≤|α|≤N

‖∇xφ‖L∞
x

∥∥∥wℓ(α, 0)∂
αf〈v〉− 1

2

∥∥∥
2

.
∑

1≤|α|≤N

∥∥∇2
xφ
∥∥2
H1

x

∥∥∥wℓ(α, 0)∂
αf〈v〉− 1

2

∥∥∥
2
+ ε ‖wℓ(α, 0)∂

αf‖2σ

. EN,0(t)DN,ℓ(t) + εDN,ℓ(t)

and
∑

1≤|α|≤N

|α1|=1

(
∇x∂

α1φ · ∂α−α1∇vf,w
2
ℓ (α, 0)∂

αf
)

= −
∑

1≤|α|≤N

|α1|=1

(
∇x∂

α1φ · ∂α−α1f,∇v(w
2
ℓ (α, 0)∂

αf)
)

.
∑

1≤|α|≤N

|α1|=1

‖∇x∂
α1φ‖L∞

x

∥∥∥wℓ(α, 0)∂
α−α1Pf〈v〉− γ

2

∥∥∥
∥∥∥∇v(wℓ(α, 0)∂

αf)〈v〉γ
2

∥∥∥

+
∑

1≤|α|≤N

|α1|=1

‖∇x∂
α1φ‖L∞

x

∥∥∥wℓ(α, 0)∂
α−α1{I−P}f〈v〉− γ

2

∥∥∥
∥∥∥∇v(wℓ(α, 0)∂

αf)〈v〉γ
2

∥∥∥

+
∑

1≤|α|≤N

|α1|=1

‖∇x∂
α1φ‖L∞

x

∥∥∥wℓ(α, 0)∂
α−α1Pf〈v〉− 1

2

∥∥∥
∥∥∥wℓ(α, 0)∂

αf〈v〉− 1
2

∥∥∥

+
∑

1≤|α|≤N

|α1|=1

‖∇x∂
α1φ‖L∞

x

∥∥∥wℓ(α, 0)∂
α−α1{I−P}f〈v〉− 1

2

∥∥∥
∥∥∥wℓ(α, 0)∂

αf〈v〉− 1
2

∥∥∥

.
∑

1≤|α|≤N

|α1|=1

∥∥∂α1∇2φ
∥∥2
H1

x

{∥∥∥µδ∂α−α1f
∥∥∥
2
+
∥∥∥wℓ(α− α1, 0)∂

α−α1{I−P}f〈v〉γ+2
2

∥∥∥
2
}

+ε
∑

1≤|α|≤N

‖wℓ(α, 0)∂
αf‖2σ

. EN,0(t)DN,ℓ(t) + εDN,ℓ(t),

where we have used again the fact that

wℓ(α, 0)〈v〉−
γ
2 =wℓ(α−α1, 0)〈v〉|α1 |(γ+1)− γ

2 ≤wℓ(α−α1, 0)〈v〉
γ+2
2 , 1≤|α1|≤|α|.
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Similarly, one can also conclude that

∑

1≤|α|≤N

2≤|α1|≤N

(
v · ∇x∂

α1φ · ∂α−α1∇vf,w
2
ℓ (α, 0)∂

αf
)
. EN,0(t)DN,ℓ(t) + εDN,ℓ(t).

Collecting the above three estimates yields (2.11). Thus we have completed

the proof of Lemma 2.3. ���

For the estimates on Γ(f, f) with respect to the weight function wℓ(α, β),

from (2.4) and (2.3) in Lemma 2.1, we can obtain that

Lemma 2.4. Let N ≥ 2, ℓ ≥ N , we have the following estimates on the

nonlinear term Γ(f, f) with respect to the weight function wℓ(α, β)

(
Γ(f, f), w2

ℓ (0, 0){I −P}f
)

. EN,0(t)DN,ℓ(t)+εDN,ℓ(t), (2.13)∑

1≤|α|≤N

(
∂αΓ(f, f), w2

ℓ (α, 0)∂
αf
)

. EN,0(t)DN,ℓ(t)+εDN,ℓ(t), (2.14)

and∑

|α|+|β|≤N

|β|≥1

(
∂α
βΓ(f, f), w

2
ℓ (α, β)∂

α
β {I−P}f

)
. EN,0(t)DN,ℓ(t)+εDN,ℓ(t). (2.15)

Proof.We only prove (2.14) in the following since the proofs of (2.13) and

(2.15) are similar. It follows from (2.3) of Lemma 2.1 that

∑

1≤|α|≤N

(
∂αΓ(f, f), w2

ℓ (α, 0)∂
αf
)

.
∑

1≤|α|≤N,
α1≤α

∫

R3
x

∣∣∣µδ∂α1f
∣∣∣
L2
v

∣∣wℓ(α, 0)∂
α−α1f

∣∣
L2
σ
|wℓ(α, 0)∂

αf |L2
σ
dx

.
∑

1≤|α|≤N,
α1=0

∫

R3
x

∣∣∣µδf
∣∣∣
L2
v

|wℓ(α, 0)∂
αf |2L2

σ
dx

+
∑

1≤|α|≤N,

1≤|α1|≤N−1

∫

R3
x

∣∣∣µδ∂α1f
∣∣∣
L2
v

∣∣wℓ(α, 0)∂
α−α1f

∣∣
L2
σ
|wℓ(α, 0)∂

αf |L2
σ
dx

+
∑

1≤|α|≤N,

α1=α,|α|≥2

∫

R3
x

∣∣∣µδ∂αf
∣∣∣
L2
v

|wℓ(α, 0)f |L2
σ
|wℓ(α, 0)∂

αf |L2
σ
dx
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.
∑

1≤|α|≤N,
α1=0

∥∥∥µδf
∥∥∥
L2
vL

∞
x

‖wℓ(α, 0)∂
αf‖2σ

+
∑

1≤|α|≤N,

1≤|α1|≤N−1

∥∥∥µδ∂α1f
∥∥∥
L2
vL

3
x

∥∥wℓ(α, 0)∂
α−α1f

∥∥
L2
σL

6
x
‖wℓ(α, 0)∂

αf‖σ

+
∑

1≤|α|≤N,

α1=α,|α|≥2

∥∥∥µδ∂αf
∥∥∥ ‖wℓ(α, 0)f‖L2

σL
∞
x
‖wℓ(α, 0)∂

αf‖σ

. EN,0(t)DN,ℓ(t) + εDN,ℓ(t).

This proves (2.13) and the proof of Lemma 2.4 is complete. ���

For later use, we also need the time-decay property of the linearized

VPL system

∂tf+v ·∇xf−∇xφ ·vµ1/2+Lf = 0, ∆xφ =

∫

R3
v

µ
1
2 fdv, lim

|x|→∞
φ(t, x) = 0

(2.16)

with the prescribed initial data f(0, x, v) = f0(x, v). We use etB to denote

the evolution operator. The following lemma is concerned with the linearized

VPL system (2.16).

Lemma 2.5. (cf. [6]) Set κ = κ(v) := 〈v〉− γ+1
2 . Let −3 ≤ γ < −2, l ≥ 0,

l0 >
3
2 , α ≥ 0, m = |α|, and assume

∫

R3
x

a0dx ≡
∫

R3
x

∫

R3
v

µ(v)
1
2 f0(x, v)dvdx = 0,

∫

R3
x

(1 + |x|)|a0|dx < ∞, (2.17)

and ∥∥∥κl+l0f0

∥∥∥
Z1

+
∥∥∥κl+l0∂αf0

∥∥∥ < ∞. (2.18)

Then, the evolution operator etB satisfies

∥∥∥κl∂αetBf0

∥∥∥+
∥∥∂α∇x△−1

x P0e
tBf0

∥∥

. (1 + t)−σm

(∥∥∥κl+l0f0

∥∥∥
Z1

+
∥∥∥κl+l0∂αf0

∥∥∥+ ‖(1 + |x|)a0‖L1
x

)
(2.19)

for any t ≥ 0, where

σm =
3

4
+

m

2
.
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Proof. The only difference between this lemma and Lemma 3.5 in [6] is

that we use κ(v) := 〈v〉− γ+1
2 to replace µ(v) = 〈v〉− γ+2

2 used there. Since the

modification is straightforward, we thus omit the details for brevity. ���

The next lemma is concerned with the estimates on
∥∥∥〈v〉−

γ+1
2

l0Γ(f, f)
∥∥∥
Z1

and
∥∥∥〈v〉−

γ+1
2

l0Γ(f, f)
∥∥∥ for later use.

Lemma 2.6. Assume −3 ≤ γ < −2 and N ≥ 3, it holds that

∥∥∥〈v〉−
γ+1
2

l0Γ(f, f)
∥∥∥
Z1

+
∥∥∥〈v〉−

γ+1
2

l0∇xΓ(f, f)
∥∥∥ . E

N,
l0
2
+N

(t). (2.20)

Proof. By the definition of Γ(f, f), one has

Γ(f, f)

=

3∑

i,j=1

µ− 1
2∂i

∫

R3
v

Φij(v − v′)
{
µ

1
2 (v′)f(v′)∂j

(
µ

1
2 (v)f(v)

)

−∂j

(
µ

1
2 (v′)f(v′)

)
µ

1
2 (v)f(v)

}
dv′

=
3∑

i,j=1

Φij ∗v ∂i
(
µ

1
2 f
)
(v)

(
∂jf−

1

2
vjf

)
(v)−

3∑

i,j=1

Φij ∗v ∂ij
(
µ

1
2 f
)
(v)f(v)

+
3∑

i,j=1

Φij ∗v
(
µ

1
2 f
)
(v)

(
∂ijf−

1

2
vi∂jf−

1

2
vj∂if+

1

4
vivjf−

1

2
δijf

)
(v)

−
3∑

i,j=1

Φij ∗v ∂j
(
µ

1
2 f
)
(v)

(
∂if − 1

2
vif

)
(v). (2.21)

Here ∗v denotes the convolution with respect to the v variable.

Therefore, one can deduce that

∥∥∥〈v〉−
γ+1
2

l0Γ(f, f)
∥∥∥
Z1

.

3∑

i,j=1

∥∥∥∥〈v〉−
γ+1
2

l0

{
Φij ∗v ∂i

(
µ

1
2 f
)
(v)

(
∂jf − 1

2
vjf

)
(v)

−Φij ∗v ∂ij
(
µ

1
2 f
)
(v)f(v)

+Φij ∗v
(
µ

1
2 f
)
(v)

(
∂ijf − 1

2
vi∂jf − 1

2
vj∂if +

1

4
vivjf − 1

2
δijf

)
(v)
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−Φij ∗v ∂j
(
µ

1
2 f
)
(v)

(
∂if − 1

2
vif

)
(v)

}∥∥∥∥
Z1

(2.22)

and∥∥∥〈v〉−
γ+1
2

l0∇xΓ(f, f)
∥∥∥

.

3∑

i,j=1

∥∥∥∥〈v〉−
γ+1
2

l0∇x

{
Φij ∗v ∂i

(
µ

1
2 f
)
(v)

(
∂jf − 1

2
vjf

)
(v)

−Φij ∗v ∂ij
(
µ

1
2 f
)
(v)f(v)

+Φij ∗v
(
µ

1
2 f
)
(v)

(
∂ijf − 1

2
vi∂jf − 1

2
vj∂if +

1

4
vivjf − 1

2
δijf

)
(v)

−Φij ∗v ∂j
(
µ

1
2 f
)
(v)

(
∂if − 1

2
vif

)
(v)

}∥∥∥∥. (2.23)

Now we estimate the following two terms

K1 =
∥∥∥〈v〉−

γ+1
2

l0Φij ∗v
(
µ

1
2 f
)
(v) (∂ijf) (v)

∥∥∥
Z1

and

K2 =
∥∥∥〈v〉−

γ+1
2

l0Φij ∗v
(
µ

1
2 f
)
(v) (∇x∂ijf) (v)

∥∥∥

which are typical terms in the right hand sides of (2.22) and (2.23).

To this end, noticing that for each sufficiently small δ′ > 0

∣∣∣Φij ∗v
(
µ

1
2 f
)
(v)
∣∣∣ ≤

(∣∣Φij
∣∣2 ∗v

(
µ1−δ′

)) ∣∣∣µδ′f
∣∣∣
L2
v

. 〈v〉γ+2
∣∣∣µδ′f

∣∣∣
L2
v

,

which follows from the Cauchy-Schwarz inequality, we can get that

K1 .

∥∥∥∥
∣∣∣Φij ∗v

(
µ

1
2 f
)
(v)〈v〉− γ+1

2
l0∂ijf

∣∣∣
L2
v

∥∥∥∥
L1
x

.

∥∥∥∥
∣∣∣µδ′f

∣∣∣
L2
v

∣∣∣〈v〉γ+2〈v〉− γ+1
2

l0∂ijf
∣∣∣
L2
v

∥∥∥∥
L1
x

.
∥∥∥µδ′f

∥∥∥
∥∥∥〈v〉γ+2− γ+1

2
l0∂ijf

∥∥∥
. E

2,
l0
2
+2

(t)

. E
N,

l0
2
+N

(t) (2.24)

and

K2 .

∥∥∥∥
∣∣∣Φij ∗v

(
µ

1
2 f
)
(v)〈v〉− γ+1

2
l0∇x∂ijf

∣∣∣
L2
v

∥∥∥∥
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.

∥∥∥∥
∣∣∣µδ′f

∣∣∣
L2
v

∣∣∣〈v〉γ+2〈v〉− γ+1
2

l0∇x∂ijf
∣∣∣
L2
v

∥∥∥∥

.
∥∥∥µδ′f

∥∥∥
∥∥∥〈v〉γ+2− γ+1

2
l0∇x∂ijf

∥∥∥
. E

3,
l0
2
+3

(t)

. E
N,

l0
2
+N

(t) (2.25)

if N ≥ 3. It is worth emphasizing that it was here that we need to ask that

N ≥ 3.

It is direct to verify that for all other terms in the right hand sides of

(2.22) and (2.23), the same estimate still holds and hence it proves (2.20).

This completes the proof of Lemma 2.6. ���

The next lemma is concerned with the macro dissipation. For this pur-

pose, by applying the macro-micro decomposition (1.9) introduced in [8], for

any f(t, x, v), define moment functions Amj(f) and Bj(f), 1 ≤ m, j ≤ 3, by

Amj(f) =

∫

R3
v

(vmvj − 1)µ1/2fdv, Bj(f) =
1

10

∫

R3
v

(
|v|2 − 5

)
vjµ

1/2fdv.

Then, one can derive form (1.8) a fluid-type system of equations





∂ta+∇x · b = 0,

∂tb+∇x(a+ 2c) +∇xA({I −P}f)−∇xφ = ∇xφa,

∂tc+
1
3∇x · b+ 5

3∇x · B({I−P}f) = 1
3∇xφ · b,

△xφ = a

(2.26)

and




∂tAmj({I −P}f) + ∂xmbj + ∂xj
bm − 2

3δmj∇x · B({I−P}f)
= Amj(r +G)− 2

3δmj∇xφ · b,

∂tBj({I −P}f) + ∂xj
c = Bj(r +G)

(2.27)

with

r=−v·∇x{I −P}f−L{I−P}f, G=Γ(f, f)+
1

2
v·∇xφf−∇xφ·∇vf, (2.28)

where r is a linear term related only to the microscopic component {I−P}f
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and G is a quadratic nonlinear term.

Using (2.26) and (2.27), one has

Lemma 2.7. There is a temporal interactive functional E int
N (t) such that

∣∣E int
N (t)

∣∣ .
∑

|α|≤N

‖∂αf‖2 (2.29)

and
d

dt
E int
N (t) +Dint

N (t) .
∑

|α|≤N

‖∂α{I−P}f‖2σ + EN,0(t)DN,0(t) (2.30)

hold for any 0 ≤ t < T , where

Dint
N (t) ∼ ‖a‖2 +

∑

1≤|α|≤N

‖∂α(a, b, c)‖2 .

Since the proof of Lemma 2.7 is similar to that of Lemma 5.1 in [5], we

thus omit the details for brevity.

3. The Proofs of Our Main Results

This section is devoted to proving our main results based on the contin-

uation argument. Local existence for the Cauchy problem (1.8) in certain

weighted Sobolev space is now well-understood, cf. [9], thus the proof will

consist in deducing the global a priori estimate in the same weighted Sobolev

space in which the local solution is constructed.

To make the presentation clear, we divide the rest of this section into

two subsections. The first one focuses on deducing some a priori estimates

on f(t, x, v).

3.1. Some a priori estimates

This subsection is devoted to deducing some a priori estimates on

f(t, x, v). For this purpose, let f(t, x, v) be the unique solution to the Cauchy

problem (1.8) defined on some time interval 0 ≤ t < T constructed in [9].
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To this end, set

X(t) = sup
0≤s≤t

{
(1 + s)

3
2 ‖(f,∇xφ) (s)‖2 + (1 + s)

5
2 ‖∇x (f,∇xφ) (s)‖2

+(1 + s)
3
2EN,l1(s) + EN,l2(s) + (1 + s)−ǫ0EN,l3(s)

}
, (3.1)

where the precise ranges of the parameters N and lj(j = 1, 2, 3) will be

specified later, we now try to deduce certain a priori estimates on f(t, x, v)

and φ(t, x) in terms of X(t) and Y0 in this subsection.

Our first result is to deduce certain basic temporal decay estimates on

f(t, x, v) and φ(t, x). For result in this direction, we have from Lemma 2.4

and Duhamel’s principle that

Lemma 3.1. Assume −3 ≤ γ < −2 and let N ≥ 3, l0 >
3
2 , and l1 ≥ l0

2 +N .

Then it holds that

sup
0≤s≤t

{
(1 + s)

3
2 ‖(∇xφ, f) (s)‖2 + (1 + s)

5
2

∥∥(∇2
xφ,∇xf

)
(s)
∥∥
}
. Y 2

0 +X2(t)

(3.2)

for any 0 ≤ t < T .

Proof. By Duhamel’s principle, we can write the solution f(t, x, v) to the

Cauchy problem (1.8) as

f(t) = etBf0 +

∫ t

0
e(t−s)BG(s)ds,

where G = 1
2v · ∇xφf −∇xφ · ∇vf + Γ(f, f).

Notice that P0G(t) ≡ 0 for all t ≥ 0, one has by applying Lemma 2.4

that

‖∇xf(t)‖+
∥∥∇2

xφ(t)
∥∥

. (1 + t)−
5
4

{∥∥∥〈v〉−
γ+1
2

l0f0

∥∥∥
Z1

+
∥∥∥〈v〉−

γ+1
2

l0∇xf0

∥∥∥+ ‖(1 + |x|)a0‖L1
x

}

+

∫ t

0
(1 + t− s)−

5
4

{∥∥∥〈v〉−
γ+1
2

l0G(s)
∥∥∥
Z1

+
∥∥∥〈v〉−

γ+1
2

l0∇xG(s)
∥∥∥
}
ds, (3.3)

where we recall that l0 >
3
2 is a constant by Lemma 2.5.
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To bound the second term in the right hand side of (3.3), we first esti-

mate the Z1−norm of the terms containing φ as follows

∥∥∥∥〈v〉−
γ+1
2

l0

{
−∇xφ · ∇vf +

1

2
v · ∇xφf

}∥∥∥∥
Z1

.

∥∥∥∥|∇xφ|
{∣∣∣〈v〉−

γ+1
2

l0∇vf
∣∣∣
L2
v

+
∣∣∣〈v〉−

γ+1
2

l0+1f
∣∣∣
L2
v

}∥∥∥∥
L1
x

. ‖∇xφ‖
{∥∥∥〈v〉−

γ+1
2

l0∇vf
∥∥∥+

∥∥∥〈v〉−
γ+1
2

l0+1f
∥∥∥
}

. E
2,

l0
2
+2

(t).

For the L2−norm, one can get by applying the similar way that

∥∥∥∥〈v〉−
γ+1
2

l0∇x

{
−∇xφ · ∇vf +

1

2
v · ∇xφf

}∥∥∥∥ . E
2,

l0
2
+2

(t).

Combining the above two estimates and the assumption (H1) with the esti-

mate (2.20) yield that

∥∥∥〈v〉−
γ+1
2

l0G(s)
∥∥∥
Z1

+
∥∥∥〈v〉−

γ+1
2

l0∇xG(s)
∥∥∥ . E

N,
l0
2
+N

(s)

. EN,l1(s)

. (1+s)−
3
2 sup
0≤s≤t

{
(1+s)

3
2EN,l1(s)

}

. (1+s)−
3
2X(t),

where we have taken l1 ≥ l0
2 +N with N ≥ 3.

Therefore, plugging the above estimate into (3.3) yields that

sup
0≤s≤t

{
(1 + s)

5
2

∥∥(∇2
xφ,∇xf

)
(s)
∥∥2
}
. Y 2

0 +X2(t),

where we used the following inequality

∫ t

0
(1 + t− s)−

5
4 (1 + s)−

3
2ds . (1 + t)−

5
4 .

In the similar way, we can also obtain that

sup
0≤s≤t

{
(1 + s)

3
2 ‖(∇xφ, f) (s)‖2

}
. Y 2

0 +X2(t).
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Thus the proof of Lemma 3.1 is complete. ���

The essential assumption imposed in Lemma 3.1 is to assume that

(H1) sup
0≤t<T

{
(1 + t)

3
2EN,l1(t)

}
. 1.

To verify such an assumption, we need to deduce the temporal decay of the

energy functional EN,l1(t). For this purpose, we need first to deduce the

desired Lyapurov type differential inequality for some suitably constructed

energy functional EN,ℓ(t) and the corresponding dissipation rate functional

DN,ℓ(t) which is the main content of the following lemma.

Lemma 3.2. Let −3 ≤ γ < −2, N ≥ 2, and ℓ ≥ N . If we assume further

that

(H2) sup
0≤t<T

{
EN,ℓ+ γ

2(γ+1)
(t)
}
≤ M

for some sufficiently small M > 0, then there exist an energy functional

EN,ℓ(t) and the corresponding dissipation rate functional DN,ℓ(t) which sat-

isfy (1.18) and (1.19) respectively such that

d

dt
EN,ℓ(t) +DN,ℓ(t) ≤ 0 (3.4)

holds for any 0 ≤ t < T .

Proof. The proof of (3.4) is divided into the following three steps:

Step 1. Applying ∂α with |α| ≤ N to (1.8), then taking the L2 inner

product of the resulting identity with ∂αf , one can get from (1.11), (2.5)

and (2.13) that

d

dt

∑

|α|≤N

{
‖∂αf‖2 + ‖∂α∇xφ‖2 −

∫

R3
x

|b|2(a+ 2c)dx

}
+
∑

|α|≤N

‖∂α{I −P}f‖2σ

. EN,0(t)DN,ℓ(t) + εDN,ℓ(t). (3.5)

Step 2. This step is concerned with the desired energy estimates with

respect to the weight function wℓ(α, β)(v), which is further divided into the

following three sub-steps:
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Step 2.1. For the weighted estimates on the terms containing only x deriva-

tives, we can get by replacing ∂αf with w2
ℓ (α, 0)∂

αf in step 1 and by using

(2.1) that

d

dt

∑

1≤|α|≤N

‖wℓ(α, 0)∂
αf‖2 +

∑

1≤|α|≤N

‖wℓ(α, 0)∂
αf‖2σ

.
∑

1≤|α|≤N

‖∂α∇xφ‖2+
∑

1≤|α|≤N

‖∂αf‖2σ+
∑

1≤|α|≤N

∣∣(v · ∇xφ∂
αf,w2

ℓ (α, 0)∂
αf
)∣∣

︸ ︷︷ ︸
I1

+
∑

1≤|α|≤N,α1 6=0

∣∣(v · ∇x∂
α1φ∂α−α1f,w2

ℓ (α, 0)∂
αf
)∣∣

+
∑

1≤|α|≤N

∣∣(∂α(∇xφ · ∇vf), w
2
ℓ (α, 0)∂

αf
)∣∣

+
∑

1≤|α|≤N

∣∣(∂αΓ(f, f), w2
ℓ (α, 0)∂

αf
)∣∣ .

From (2.6), I1 can be dominated by

I1 . EN,ℓ+ γ
2(γ+1)

(t)DN,0(t) + εDN,ℓ(t).

Moreover, with the help of (2.8), (2.11), and (2.14), the last three terms in

the right hand side of the above inequality can be bounded by CEN,0(t)DN,ℓ(t)

+CεDN,ℓ(t). Thus we arrive at

d

dt

∑

1≤|α|≤N

‖wℓ(α, 0)∂
αf‖2 +

∑

1≤|α|≤N

‖wℓ(α, 0)∂
αf‖2σ

.
∑

1≤|α|≤N

‖∂α{I −P}f‖2σ +DN,0(t) + EN,ℓ+ γ
2(γ+1)

(t)DN,0(t)

+EN,0(t)DN,ℓ(t) + εDN,ℓ(t). (3.6)

Step 2.2. Applying {I−P} to the first equation of (1.8), we get the micro-

equation for f :

∂t{I−P}f + v · ∇x{I−P}f +∇xφ · ∇v{I−P}f − 1

2
v · ∇xφ{I −P}f

+L{I−P}f
= Γ(f, f) +P

(
v · ∇xf +∇xφ · ∇vf − 1

2
v · ∇xφf

)
− v · ∇xPf

−∇xφ · ∇vPf +
1

2
v · ∇xφPf. (3.7)
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For brevity, we denote the right hand side of (3.7) by

Imac(t) ≡ P
(
v · ∇xf +∇xφ · ∇vf − 1

2
v · ∇xφf

)
− v · ∇xPf

−∇xφ · ∇vPf +
1

2
v · ∇xφPf.

Taking the L2 inner product of (3.7) with w2
ℓ (0, 0){I −P}f and by using

(2.2), (2.13), and (2.12), one obtains

d

dt
‖wℓ(0, 0){I −P}f‖2 + ‖wℓ(0, 0){I −P}f‖2σ

. ‖{I−P}f‖2σ +
∣∣(v · ∇xφ{I−P}f,w2

ℓ (0, 0){I −P}f
)∣∣

︸ ︷︷ ︸
I2

+
∣∣(∇xφ · ∇v{I−P}f,w2

ℓ (0, 0){I −P}f
)∣∣

+
∣∣(Γ(f, f), w2

ℓ (0, 0){I −P}f
)∣∣+

∣∣(Imac(t), w
2
ℓ (0, 0){I −P}f

)∣∣

. DN,0(t) + EN,ℓ+ γ
2(γ+1)

(t)DN,0(t) + EN,0(t)DN,ℓ(t) + εDN,ℓ(t), (3.8)

where we have used the following estimates

I2 . EN,ℓ+ γ
2(γ+1)

(t)DN,0(t) + εDN,ℓ(t)

and(
Imac, w

2
ℓ (0, 0){I−P}f

)
.
∥∥∥µδ{I−P}f

∥∥∥
2

H1
xL

2
v

+‖∇x(a, b, c)‖2+EN,0(t)DN,0(t),

which follows from (2.6).

Step 2.3. For the weighted estimates on the mixed x − v derivatives,

applying ∂α
β with |α| + |β| ≤ N, |β| ≥ 1 to (3.7), multiplying it by

w2
ℓ (α, β)∂

α
β {I−P}f and integrating the final results with respect to v and

x over R3
x × R

3
v, we obtain

d

dt

∥∥wℓ(α, β)∂
α
β {I−P}f

∥∥2 +
∥∥wℓ(α, β)∂

α
β {I−P}f

∥∥2
σ

.
∑

|β′|<|β|

∥∥wℓ(α, β
′)∂α

β′{I−P}f
∥∥2
σ
+ η

∑

|β′|=|β|

∥∥wℓ(α, β
′)∂α

β′{I−P}f
∥∥2
σ

+
∣∣(∂α

β (v · ∇x{I −P}f), w2
ℓ (α, β)∂

α
β {I−P}f

)∣∣
︸ ︷︷ ︸

I3

+
∣∣(v · ∇xφ∂

α
β {I−P}f,w2

ℓ (α, β)∂
α
β {I −P}f

)∣∣
︸ ︷︷ ︸

I4



338 YUANJIE LEI, LING WAN AND HUIJIANG ZHAO [September

+
∑

α1≤α,β1≤β

(
∂β1v · ∂α1φ∂α−α1

β−β1
{I−P}f,w2

ℓ (α, β)∂
α
β {I−P}f

)

︸ ︷︷ ︸
I5

+
∣∣(∂α

β (∇xφ · ∇v{I−P}f), w2
ℓ (α, β)∂

α
β {I−P}f

)∣∣
︸ ︷︷ ︸

I6

+
∣∣(∂α

β (Γ(f, f)), w
2
ℓ (α, β)∂

α
β {I−P}f

)∣∣
︸ ︷︷ ︸

I7

+
∣∣(∂α

β Imac(t), w
2
ℓ (α, β)∂

α
β {I−P}f

)∣∣
︸ ︷︷ ︸

I8

. (3.9)

Now we estimate Ij(j = 3, · · · , 8) term by term. Firstly, I3 can be bounded

by

I3 =
(
∂α+ei
β−ei

{I −P}f,w2
ℓ (α, β)∂

α
β {I−P}f

)

=

∫

R3
x

∫

R3
v

∂α+ei
β−ei

{I−P}fwℓ(α+ ei, β − ei)〈v〉
γ+2
2

·∂ei∂α
β−ei{I−P}fwℓ(α, β − ei)〈v〉γ+1〈v〉− γ+2

2 dvdx

. ε
∥∥∥wℓ(α+ ei, β − ei)∂

α+ei
β−ei

{I−P}f
∥∥∥
2

σ
+
∥∥wℓ(α, β − ei)∂

α
β−ei{I−P}f

∥∥2
σ

. ε
∥∥∥wℓ(α+ ei, β − ei)∂

α+ei
β−ei

{I−P}f
∥∥∥
2

σ
+

∑

|α|+|β|≤N
|β′|=|β|−1

∥∥wℓ(α, β
′)∂α

β′{I−P}f
∥∥2
σ
.

With regard to I4, (2.7) tells us that

I4 . EN,ℓ+ γ
2(γ+1)

(t)DN,0(t) + εDN,ℓ(t).

From (2.9), (2.12) and (2.15) respectively, one obtains

I5 + I6 + I7 . EN,0(t)DN,ℓ(t) + εDN,ℓ(t).

As for the last term I8, it is straight to get that

I8 . DN,0(t) + EN,0(t)DN,0(t).

Therefore, inserting the above estimates on I3 ∼ I8 into (3.9), taking sum-

mation over {|β| = m, |α| + |β| ≤ N} for each given 1 ≤ m ≤ N , and then

taking a proper linear combination of those N − 1 estimates with properly
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chosen constants Cm > 0(1 ≤ m ≤ N), we obtain

d

dt

N∑

m=1

∑

|α|+|β|≤N
|β|=m

∥∥wℓ(α, β)∂
α
β {I −P}f

∥∥2+
N∑

m=1

∑

|α|+|β|≤N
|β|=m

∥∥wℓ(α, β)∂
α
β {I−P}f

∥∥2
σ

.
∑

|α|≤N

‖wℓ(α, 0)∂
α{I−P}f‖2σ +DN,0(t) + EN,ℓ+ γ

2(γ+1)
(t)DN,0(t)

+EN,0(t)DN,ℓ(t) + εDN,ℓ(t). (3.10)

Step 3. With the above estimates in hand, if we assume that EN,ℓ+ γ
2(γ+1)

(t)

is sufficiently small, we can finally get by taking a proper linear combination

of (2.30), (3.5), (3.6), (3.8), and (3.10) that

d

dt
EN,ℓ(t) +DN,ℓ(t) ≤ 0, 0 ≤ t < T,

which completes the proof of Lemma 3.2. ���

Based on the above lemma, we can indeed yield the desired temporal

decay of the energy functional EN,l1(t) in the following lemma

Lemma 3.3. Let −3 ≤ γ < −2 and assume that the initial perturbation

f0(x, v) satisfies the neutral condition

∫

R3
x

a0(x)dx ≡
∫

R3
x

∫

R3
v

µ
1
2 (v)f0(x, v)dvdx = 0.

Fix parameters N, l1 as stated in Theorem 1.1 and let l∗ = γ+2
2(γ+1) . If we

assume further that

(H3) sup
0≤t<T

{
EN,l1+2l∗(t)

}
≤ M

holds for some sufficiently small M > 0. Then, one has

sup
0≤s≤t

{
(1 + s)

3
2 EN,l1(s)

}
. Y 2

0 +X2(t) (3.11)

for any 0 ≤ t < T .

Proof. Firstly, if we take ǫ > 0 small enough, we can get by noticing that
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(3.4) holds true when ℓ there is replaced by ℓ1 that

d

dt
EN,l1(t) +DN,l1(t) ≤ 0.

Multiplying the above inequality by (1 + t)
3
2
+ǫ gives

d

dt

{
(1 + t)

3
2
+ǫEN,l1(t)

}
+ (1 + t)

3
2
+ǫDN,l1(t) . (1 + t)

1
2
+ǫEN,l1(t). (3.12)

Secondly, from the assumption (H3) and the result obtained in Lemma 3.2,

we can deduce that the estimate (3.4) also holds true when ℓ there is replaced

by l1 + l∗ and l1 + 2l∗. Thus

d

dt
EN,l1+l∗(t) +DN,l1+l∗(t) ≤ 0 (3.13)

and
d

dt
EN,l1+2l∗(t) +DN,l1+2l∗(t) ≤ 0 (3.14)

hold for all 0 ≤ t < T .

Multiplying (3.13) by (1 + t)
1
2
+ǫ gives

d

dt

{
(1 + t)

1
2
+ǫEN,l1+l∗(t)

}
+ (1 + t)

1
2
+ǫDN,l1+l∗(t) ≤ (1 + t)−

1
2
+ǫEN,l1+l∗(t)

≤ EN,l1+l∗(t). (3.15)

Moreover, (1.18) and (1.19) tell us that

EN,ℓ(t) . DN,ℓ+l∗(t) + ‖(b, c)(t)‖2 + ‖∇xφ(t)‖2

holds for any given ℓ. Then, by taking the time integrating over [0, t] of

(3.12), (3.15), and (3.14), one can get from an appropriate linear combination

of the resulting inequalities that

(1 + t)
3
2
+ǫEN,l1(t) + (1 + t)

1
2
+ǫEN,l1+l∗(t) + EN,l1+2l∗(t)

. EN,l1+2l∗(0) +

∫ t

0
(1 + s)

1
2
+ǫ
{
‖(b, c)(s)‖2 + ‖∇xφ(s)‖2

}
ds.

Applying the estimate (3.2) to the second term in the right hand side of the
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above inequality, it follows that

(1 + t)
3
2
+ǫEN,l1(t) + (1 + t)

1
2
+ǫEN,l1+l∗(t) + EN,l1+2l∗(t)

. EN,l1+2l∗(0) + (1 + t)ǫ
{
Y 2
0 +X2(t)

}
,

which implies further that

sup
0≤s≤t

{
(1 + s)

3
2EN,l1(s) + (1 + s)

1
2 EN,l1+l∗(s) + (1 + s)−ǫEN,l1+2l∗(s)

}

. Y 2
0 +X2(t) (3.16)

holds for any 0 ≤ t < T . Thus we conclude the proof of Lemma 3.3. ���

From Lemma 3.2 and Lemma 3.3, it is easy to see that to guarantee

the temporal decay estimate of the energy functional EN,l1(t), we need only

to verify the smallness of EN,l1+2l∗+ γ
2(γ+1)

(t) ≡ EN,l1+
3γ+4
2(γ+1)

(t). The main

purpose of the rest of this subsection is to do so. To this end, we first have

the following result

Lemma 3.4. Let −3 ≤ γ < −2, N ≥ 2, and ℓ ≥ N , if we assume further

that

(H4) sup
0≤t<T

{
EN,0(t)

}
≤ M

holds for some sufficiently small M > 0, then we can deduce that

d

dt
EN,ℓ(t) +DN,ℓ(t) . ‖∇xφ(t)‖L∞

x
DN,ℓ+ 1

2
(t) (3.17)

holds for any 0 ≤ t < T .

Proof. If one checks the proofs of Lemma 3.2, it is easy to find that for the

weight function wℓ(α, β)(v) given by (1.13) with ℓ ≥ N and N ≥ 2, if we

perform the weighted energy estimate with respect to the weight function

wℓ(α, β)(v) as in Lemma 3.2, all the nonlinear terms involved except the

terms I1, I2, and I4 are bounded by (EN,0(t) + ε)DN,ℓ(t) with ε > 0 being

any sufficiently small positive constant, which can further be absorbed by the

corresponding energy dissipation rate functional DN,ℓ(t) if EN,0(t) is assumed

to be sufficiently small for all 0 ≤ t < T . Thus to conclude the proof of

Lemma 3.2, we only need to bound I1, I2, and I4 suitably. To this end, since
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such three terms can be treated by the same way, we just give the estimate

on I4 as follows

I4 .
∣∣(v · ∇xφ∂

α
β {I−P}f,w2

ℓ (α, β)∂
α
β {I −P}f

)∣∣

.

∫

R3
x

|∇xφ|
∣∣∣〈v〉 1

2wℓ(α, β){I −P}f
∣∣∣
2

L2
v

dx

. ‖∇xφ(t)‖L∞
x

∥∥∥〈v〉−
γ+1
2 wℓ(α, β){I −P}f〈v〉γ+2

2

∥∥∥
2

. ‖∇xφ(t)‖L∞
x

∥∥∥〈v〉−
γ+1
2 wℓ(α, β){I −P}f

∥∥∥
2

σ

. ‖∇xφ(t)‖L∞
x
DN,ℓ+ 1

2
(t). (3.18)

Here we have used the fact the −3 ≤ γ < −2.

With the above observation and the estimates on Ij(j = 1, 2, 4) in hand,

the estimate (3.17) follows easily.

It is worth pointing out that although in the proof of (3.17), we do

not need the smallness of EN,ℓ+ γ
2(γ+1)

(t) as in the proof of Lemma 3.2, we

note however, that the estimates on I1, I2 and I4 lead to the new term

‖∇xφ(t)‖L∞
x
DN,ℓ+ 1

2
(t). This completes the proof of Lemma 3.4. ���

In order to absorb the term ‖∇xφ(t)‖L∞
x
DN,ℓ+ 1

2
(t), which appears in the

right hand side of (3.17), we need the following lemma, which plays a key

role in closing the time-velocity weighted energy estimates.

Lemma 3.5. Assume −3 ≤ γ < −2, N ≥ 2, and ℓ ≥ N . If we assume

further that

(H5) Y0 ≤ M

and

(H6) X(t) ≤ M, 0 ≤ t < T

hold for some sufficiently small positive constant M > 0, then it follows that

d

dt

{
(1 + t)−ǫ0EN,ℓ(t)

}
+ (1 + t)−1−ǫ0EN,ℓ(t) + (1 + t)−ǫ0DN,ℓ(t) ≤ 0 (3.19)

holds for any 0 ≤ t < T .
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Proof. Firstly, repeating the analysis performed in step 1 and step 2 in the

proof of Lemma 3.2, if we introduce the weight function e−φ as in [9] to the

weighted energy estimates done in step 1 and step 2 in the proof of Lemma

3.2, it is easy to see that the terms Ij(j = 1, 2, 4) and as a consequence,

the term ‖∇xφ(t)‖L∞
x
DN,ℓ+ 1

2
(t) in the right hand side of (3.17) does not

appear. We note, however, that this argument will induce the additional

term ‖∂tφ(t)‖L∞
x
EN,ℓ(t). And we can deduce that

d

dt
EN,ℓ(t) +DN,ℓ(t) . ‖∂tφ(t)‖L∞

x
EN,ℓ(t). (3.20)

Since, for the solution of the Cauchy problem (1.8) of the one-species VPL

system, as pointed out in the introduction, the temporal decay of the electric

potential φ(t, x) is worse such that ‖∂tφ(t)‖L∞
x

∈ L1(R+) can not hold any

more, to control such a term, we can get by multiplying (3.20) by (1 + t)−ǫ0

for some ǫ0 > 0 to yield that

d

dt

{
(1 + t)−ǫ0EN,ℓ(t)

}
+ ǫ0(1 + t)−1−ǫ0EN,ℓ(t) + (1 + t)−ǫ0DN,ℓ(t)

. (1 + t)−ǫ0 ‖∂tφ(t)‖L∞
x
EN,ℓ(t). (3.21)

To control the term in the right hand side of (3.21), recalling (2.26)1, it holds

that

∂tφ = ∆−1
x ∂ta = −∆−1

x ∇x · b,

then, one has from the estimate (3.2) obtained in Lemma 3.1 and the Sobolev

equality that

‖∂tφ(t)‖L∞
x

. ‖∇x∂tφ(t)‖
1
2
∥∥∇2

x∂tφ(t)
∥∥ 1

2

. ‖b(t)‖ 1
2 ‖∇xb(t)‖

1
2

. ‖f(t)‖ 1
2 ‖∇xf(t)‖

1
2

. (1 + t)−1
(
X

1
2 (t) + Y

1
2
0

)
.

Thus the term (1 + t)−ǫ0‖∂tφ(t)‖L∞
x
EN,ℓ(t) in the right hand side of (3.21)

can be controlled by the second term (1+ t)−1−ǫ0EN,ℓ(t) in the left hand side

of (3.21) if the assumptions (H5) and (H6) are satisfied, which gives (3.19).

This completes the proof of Lemma 3.5. ���
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Based on the above lemmas, we are ready to deduce the uniform-in-time

boundedness of the energy functional EN,l2(t) and the temporal growth rate

of the energy functional EN,l3(t), which are the main content of the following

lemma.

Lemma 3.6. Under the assumptions listed in Lemma 3.5 and let l2 ≥ l1 +
3γ+4
2(γ+1) , l3 ≥ l2 +

1
2 , and 0 < ǫ0 ≤ 1, then it is follows that

EN,l2(t) + (1 + t)−ǫ0EN,l3(t) . Y 2
0 (3.22)

for any 0 ≤ t < T .

Proof. Taking ℓ = l2 ≥ l1 +
3γ+4
2(γ+1) in (3.17) and ℓ = l3 ≥ l2 +

1
2 in (3.19),

respectively, we obtain

d

dt
EN,l2(t) +DN,l2(t) . ‖∇xφ(t)‖L∞

x
DN,l3(t) (3.23)

and

d

dt

{
(1 + t)−ǫ0EN,l3(t)

}
+(1+t)−1−ǫ0EN,l3(t)+(1+t)−ǫ0DN,l3(t) . 0. (3.24)

On the other hand, the estimate (3.2) obtained in Lemma 3.1 and the esti-

mate (3.11) obtained in Lemma 3.3 together with the Gagliardo-Nirenberg

inequality tell us that

‖∇xφ(t)‖L∞
x

.
∥∥∇2

xφ(t)
∥∥ 1

2
∥∥∇3

xφ(t)
∥∥ 1

2

. (1 + t)−
5
4

(
X

1
2 (t) + Y

1
2
0

)
.

Consequently, if we take 0 < ǫ0 ≤ 1 in (3.24), the term ‖∇xφ(t)‖L∞
x
DN,l3(t)

appeared in the right hand side of (3.23) can be bounded by

‖∇xφ(t)‖L∞
x
DN,l3(t) . (1 + t)−

5
4

(
X

1
2 (t) + Y

1
2
0

)
DN,l3(t)

. (1 + t)−ǫ0

(
X

1
2 (t) + Y

1
2
0

)
DN,l3(t),

which can further be controlled by the second term in the left hand side of

(3.24) successfully provided that X(t) and Y0 are chosen sufficiently small.
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Therefore, combing (3.23) with (3.24) gives

d

dt

{
EN,l2(t) + (1 + t)−ǫ0EN,l3(t)

}
≤ 0, (3.25)

which implies that

EN,l2(t) + (1 + t)−ǫ0EN,l3(t) . EN,l3(0).

This is (3.22) and the proof of Lemma 3.6 is complete. ���

3.2. The proof of Theorem 1.1

This subsection is devoted to proving our main result Theorem 1.1 by

the continuation argument. Since the local solvability result to the Cauchy

problem (1.8) in certain weighted Sobolev space is well-established in [9, 15,

18], to extend such a solution f(t, x, v) step by step to a global one, all that we

need to do is to deduce some uniform-in-time a priori estimates on f(t, x, v)

in the same weighted Sobolev space. To this end, suppose that the local

solution f(t, x, v) to the Cauchy problem (1.8) constructed in [9, 15, 18] has

been extended to the time interval [0, T ] for some 0 < T < ∞ and satisfies

the a priori assumption

X(t) ≤ M, 0 ≤ t < T (3.26)

for some sufficiently small positive constant M > 0, now we turn to deduce

certain a priori estimates on f(t, x, v) such that the a priori assumption

(3.26) can be closed. Here the parameters N, l1, l2, l3, and ǫ0 satisfy the

conditions listed in Theorem 1.1.

In fact, if Y0 is sufficiently small and the a priori assumption (3.26)

is assumed to be hold, then the conditions listed in Lemmas 3.1-3.6 are

satisfied, thus we can get from the definition of X(t) and the estimates

(3.2), (3.11), and (3.22) obtained in Lemmas 3.1-3.6 respectively that

X(t) . Y 2
0 +X2(t), 0 ≤ t < T, (3.27)

from which one can then deduce that

X(t) . Y 2
0 (3.28)
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holds for all t ∈ [0, T ] if Y0 is suitably chosen such that

Y0 ≤ δ1

for some positive constant δ1 > 0.

The (3.28) not only yields the desired unform-in-time estimate on

f(t, x, v), but also verifies the a priori assumption (3.26) if Y0 is chosen to

be sufficiently small further such that

Y0 ≤ δ2

for some positive constant δ2 > 0.

Thus if the initial perturbation f0(x, v) is assumed to be sufficiently

small such that

Y0 ≤ min {δ1, δ2} ,

then the global existence result to the Cauchy problem (1.8) follows from

the local existence result obtained in [9, 15, 18] and the standard continuity

argument in the usual way. As a byproduct, the temporal decay estimates

(1.20) and (1.21) follow directly from the definition of X(t). Thus we have

completed the proof of Theorem 1.1.
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