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Abstract

The framework of this article is the Navier-Stokes-Allen-Cahn system for the dynam-

ics of a fluid whose two phases can transform into each other. It studies traveling waves

that describe the internal structure of moving interfaces between the phases. A general

result on the existence and bifurcation of these waves is detailed for fluids with (1) two

compressible phases, (2) one incompressible and one compressible phase, (3) two incom-

pressible phases, and (4) associated limits in which one or both of the two phases are

almost incompressible.

1. A General Result on the Existence and Bifurcation of

Phase-Transition Fronts

This paper considers families of isothermal Navier-Stokes-Allen-Cahn

systems

∂tρ+∇·(ρu) = 0,

∂t(ρu)+∇·(ρu⊗ u+pI) = ∇·
(

µ(∇u+(∇u)T )+(λ∇·u)I−δρ∇c ⊗∇c
)

,

(1.1)
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∂t(ρc)+∇·(ρcu) = δ−1/2(ρq+∇·(δρ∇c)).

These equations model the spatiotemporal behaviour of a compressible vis-

cous or inviscid fluid which is assumed to be a locally homogeneous mixture

of two components such that its local thermodynamic state is completely

described by its density ρ (or, equivalently, by its specific volume τ = 1/ρ)

and the mass fraction c of one of the components. Besides the 3-velocity

u, the other dependent variables in (1.1) are the pressure p and the phase

transformation rate q; the coefficients δ and µ, λ reflect the fluid’s capillarity

and viscosity. We suppose that the fluid has a constant temperature θ and

the equations derive from an extended Gibbs potential

G(c, p, θ, |∇c|) = G0(c, p, θ) +
1

2
δ|∇c|2 (1.2)

via

τ(c, p, θ) = G0
p(c, p, θ), q(c, p, θ) = −G0

c(c, p, θ). (1.3)

Model (1.1) derives from the fully non-isothermal Navier-Stokes-Allen-Cahn

system

∂tρ+∇·(ρu) = 0,

∂t(ρu) +∇·(ρu⊗ u−T) = 0,

∂tE +∇·((EI−T)u) = ∇·(β∇θ),

∂t(ρχ) +∇·(ρχu)− J = 0

(1.4)

by assuming that the heat conductivity β is infinite. (In (1.4), E ,T, J are

total energy, total Cauchy stress, and extended transformation rate. Cf.

[3, 9, 11] for details). In contrast to (1.4), the temperature enters (1.1) only

as a parameter. This paper focusses on an interesting bifurcation that can

happen in dependence on the value θ of this parameter.

We discuss traveling-wave solutions of (1.1),

(c(x, t), p(x, t),u(x, t)) = ϕ(x), x ≡ x · n− st,

that are heteroclinic,

ϕ(−∞) 6= ϕ(+∞).
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Such a solution is called a front, s ∈ R and n ∈ S2 are its speed and its

direction of propagation. The quantity

m = ρ(u · n− s),

obviously independent of x, is the associated mass flux. We exemplarily con-

centrate on a prototypical situation in which a class of such fronts, of small

amplitude and small flux, arise during a bifurcation at a critical temperature

θ∗.

The following two facts have been established in [6] under certain as-

sumptions on G.1

Property 1 (Maxwell states and no-flux phase boundaries). With θ̃ < θ∗

sufficiently close to θ∗, the following holds for every θ ∈ (θ̃, θ∗]. There are lo-

cally uniquely determined fluid states (c0.p0), (c0, p0), depending continuously

on θ, such that (i)

q(c0, p0) = q(c0, p0) = 0

with

c0 = c0 if θ = θ∗,

and (ii) if θ < θ∗, then

τ(c0, p0) > τ(c0, p0)

and system (1.1) admits a no-flux (m = 0) phase boundary

(−→c (x),−→p (x), 0) with (−→c (−∞),−→p (−∞))=(c0, p0), (
−→c (∞),−→p (∞))=(c0, p0)

and (equivalently via x 7→ −x) a no-flux phase boundary

(←−c (x),←−p (x), 0) with (←−c (−∞),←−p (−∞))=(c0, p0), (
←−c (∞),←−p (∞))=(c0, p0).

Property 2 (Phase boundaries with non-zero mass flux). For sufficiently

small m 6= 0,

1In [6], Theorems 1 and 2 were phrased in terms of ρ and the Helmholtz potential F , which is
Legendre conjugate to G, cf. Sec. 2.1 below. Under the assumptions of [6], the two formulations
are equivalent.
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(i) the (left endstate, profile, right endstate) triple

(c0, p0, 0), (
−→c ,−→p , 0), (c0, p0, 0)

perturbs regularly to a (left endstate, profile, right endstate) triple

(−→c −

m,−→p −

m,−→u −

m), (−→c m,−→p m,−→u m), (−→c +
m,−→p +

m,−→u +
m),

corresponding to a traveling-wave phase boundary that is densifying if

m > 0 and rarefying if m < 0;

(ii) the (left endstate, profile, right endstate) triple

(c0, p0, 0), (
←−c ,←−p , 0), (c0, p0, 0)

perturbs regularly to a (left endstate, profile, right endstate) triple

(←−c −

m,←−p −

m,←−u −

m), (←−c m,←−p m,←−u m), (←−c +
m,←−p +

m,←−u +
m)

corresponding to a traveling-wave phase boundary that is rarefying if

m > 0 and densifying if m < 0.

A proof of the following is given in [8] and sketched below.

Theorem 1. Assume there exists a point (c∗, p∗, θ∗) at which G satisfies

Gc = Gcc = Gccc = 0, Gcccc > 0, Gccθ > 0, Gcp 6= 0. (1.5)

Then, Properties 1 and 2 hold near that point.

Sketch of proof. For all traveling waves, we will assume ∂t = 0, i. e., we

work in the rest frame of the wave. It suffices to consider traveling waves

with zero mass flux, m = 0, cf. [6]. In the rest frame, these have

u · n = 0

and are governed by the ordinary differential equations

0 = p′ + (δρy2)′ (1.6)

0 = ρq + (δρy)′ (1.7)

c′ = y. (1.8)
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It is easy to show (cf. Lemma 1 in [6]) that G(c, p, θ, y) is a first integral of

(1.6)-(1.8). After integrating (1.6) and using the outcome

p+ δρy2 = π, π a constant of integration,

in equations (1.7), (1.8), these latter reduce to a planar system in c and y, in

which θ and π play the role of parameters. As the rest points of this system

are precisely the points (c, y) with y = 0 and

G0
c(c, π, θ) = 0,

this system is easily understood along the lines of [6] by analyzing the local

extrema of the elements of

{G0(., p, θ) : (p, θ) near (p∗, θ∗)}. (1.9)

According to singularity theory [4], assumptions (1.5) mean that locally

near c∗, the set (1.9) constitutes a universal unfolding of G0(., p∗, θ∗) and

there exists a diffeomorphism from a neighborhood of (c∗, p∗, θ∗) in R
3 to a

neigborhood of (0, 0, 0) in R
3, with

(c, p, θ) 7→ (c̃, p̃, θ̃) ≡ (C(c, p, θ), P (p, θ),Θ(p, θ)),

such that locally

G0(c, p, θ) = c̃4 + θ̃c̃2 + p̃c̃ ≡ G̃(c̃, p̃, θ̃).

Following Thom, this is called the cusp catastrophe, cf. [4]. p. 147. Now,

G̃(., p̃, θ̃) : R → R has one local extremum (a mimimum) or three local

extrema (two mimima with a maximum in between) according to whether

−8θ̃3 < 27p̃2 or − 8θ̃3 > 27p̃2.

In the latter case the two minima of G̃(., p̃, θ̃) occur with identical values

if and only if p̃ = 0. The situation thus corresponds to the one displayed

in Figures 3 and 4 of [6]. Concretely speaking, heteroclinic saddle-saddle

connections exist if and only if θ̃ < 0 and p̃ = 0. ���
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For the rest of the paper, we will assume that the fluid satisfies the

assumption2

(R) G0(c, p, θ) = cG1(p, θ) + (1− c)G2(p, θ) +W (c, θ). (1.10)

Here, G1(p1, θ) and G2(p2, θ) denote the Gibbs potentials of the individual

phases, and their individual pressures

p1 = p2 (1.11)

have the same value p. Note (by differentiation w. r. t. p) that for the

individual specific volumes τ1, τ2 of the phases, (R) amounts to the natural

immiscibility condition

cτ1 + (1− c)τ2 = τ. (1.12)

For this still very general situation we find

Corollary 1. Assume there exists a state (c∗, θ∗) at which the mixing energy

W satisfies

Wcc = Wccc = 0, Wcccc > 0, Wccθ > 0. (1.13)

If there exists a pressure value p∗ such that

(G2 −G1)(p∗, θ∗) = Wc(c∗, θ∗) while (G2
p −G1

p)(p∗, θ∗) 6= 0, (1.14)

Properties 1 and 2 hold near the point (c∗, p∗, θ∗).

Remark 1. (i) Conditions (1.13) simply means that, near c = c∗, the family

W (., θ)

undergoes a generic transition from convex (“one-well”) for θ > θ∗ to convex-

concave-convex (“double-well”) for θ < θ∗.

(ii) The inequality in (1.14) means that the individual specific volumes

of the two phases are different at the critical state (c∗, p∗, θ∗).

2(R) is sometimes called Raoult’s law. There are other natural settings that we do not consider
here, for example Dalton’s law G0(c, p, θ) = cG1(cp, θ) + (1 − c)G2((1 − c)p, θ) +W (c, θ). Cf. [9].
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2. Compressibility versus Incompressibility

We will look at three classes of fluids according to whether one or both of

the phases are compressible or incompressible, and conclude by commenting

on incompressible limits. While we have intentionally formulated Theorem 1

for a much more general situation, it is for clarity’s sake that we now restrict

attention beyond the rule (R) by assuming additionally that the Gibbs en-

ergies G1, G2 of both phases themselves do not depend on the temperature.

For all examples below, the classical part of the Gibbs potential thus reads

G0(c, p, θ) = cG1(p) + (1− c)G2(p) +W (c, θ). (2.1)

2.1. Both phases compressible

Assuming that both phases are compressible amounts to requiring

d2G1(p)/dp2 < 0 and d2G2(p, θ)/dp2 < 0.

As this case is covered by the results in [6], we restrict its discussion to

explaining the connection.

The Helmholtz potentials F 1, F 2, and F 0 of phase 1, phase 2, and the

mixture are related to the respective Gibbs potentials through Legendre

transforms,

F 1(τ1)=G1(p1)−τ1p1, F 1(τ2)=G1(p2)−τ1p2, F 0(c, τ, θ)=G0(c, p, θ)−τp,

with

τ1 =
dG1(p1)

dp1
, τ2 =

dG2(p2)

dp2
, τ =

∂G0(c, p, θ)

∂p
.

The Helmholtz potential of the mixture thus is

F 0(c, τ, θ) = cF1(T1(c, τ)) + (1− c)F2(T2(c, τ)) +W (c, θ),

with

τj = Tj(c, τ) j = 1, 2,

found by solving (1.12) together with the relation

dF1(τ1)

dτ1
=

dF2(τ2)

dτ2
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that expresses the equality (1.11) of partial pressures.

Note that the treatment of the phase-transition fronts by means of Gibbs

potentials given in the present paper (and in its announcement [7]) is more

convenient also in this case than the treatment via Helmholtz potentials in

[6].

2.2. One phase incompressible, the other compressible

Assuming that phase 1 is incompressible and phase 2 is compressible

means requiring

d2G1(p)/dp2 = 0 and d2G2(p, θ)/dp2 < 0.

While Corollary 1 just holds immediately, we illustrate the occurrence of

Property 1 in the prototypical case

G1(p) = τ1p with constant τ1 > 0, G2(p) = 1 + log p.

The considerations in the proof of Property 1 amount to studying the level

sets of

Γθ,π(c, y) ≡ Ĝ(P π(c, y), c) +W (c, θ) +
1

2
y2,

where

Ĝ(p, c) = cG1(p) + (1− c)G2(p) = cpτ1 + (1− c)(1 + log p)

is G0 −W and P π(c, y) the unique positive root p of

0 = (p− π)(cτ1p+ (1− c)) + y2p.

The critical pressure is p = p∗, the unique solution < 1 of

Gc(p, c) = τ1p− log p− 1 = 0.

For (θ, π) near (θ∗, p∗), the level landscape of Γθ,π undergoes a transition

from one saddle (for θ > θ∗) to a saddle-maximum-saddle configuration (for

θ < θ∗ and certain π). In the latter case, the two saddles are at the same

level and thus connected by two heteroclinic orbits (that together surround

the maximum point) if π assumes a unique value π∗(θ).
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Figure3: Level lines of Γθ,π for τ1 = 0.5 and W (c, θ) = (c − 0.5)4 + (θ −

θ∗)(c − 0.5)2. Top to bottom: θ − θ∗ = 0.16, 0.00,−0.08. Left to right:

π − p∗ = −0.010,−0.001, 0.000, 0.001, 0.010.

2.3. Both phases incompressible

Assuming that both phases are incompressible means requiring

d2G1(p)/dp2 = 0 and d2G2(p, θ)/dp
2 = 0,

i.e.,

G1(p) = τ1p, G2(p) = τ2p

with constant specific volumes τ1, τ2 > 0. Corollary 1 applies if one assumes

the specific volumes to satisfy

τ∗ ≡ τ1 − τ2 6= 0. (2.2)

However, we have something deeper to report on this case, connected to the

Navier-Stokes-Korteweg equations.

3We thank J. Höwing for producing these contour plots.
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The Navier-Stokes-Korteweg equations are given by

∂tρ+∇·(ρu) = 0,

∂t(ρu) +∇·(ρu⊗ u+ p̄I) = ∇·
(

µ(∇u+ (∇u)T ) + (λ∇·u)I+K
)

,
(2.3)

Based on Korteweg’s classical idea [10, 5], capillarity is reflected here in the

fluid’s Helmholtz energy

F̄ (ρ,∇ρ) = ˇ̄F (ρ, |∇ρ|2), (2.4)

by its dependence on ∇ρ, and the extended pressure p̄ and the Korteweg

tensor K derive from F̄ as

p̄ = ρ2∂ρF̄ (2.5)

and

K = ρ∇·
(

∂∇ρ(ρF̄ )
)

I−∇ρ⊗ ∂∇ρ(ρF̄ ). (2.6)

Theorem 2. In the case of two molecularly immiscible incompressible phases

of different specific volumes, (2.1), (2.2), the Navier-Stokes-Allen-Cahn equa-

tions (1.1) can be written as the Navier-Stokes-Korteweg system

∂tρ+∇·(ρu) = 0,

∂t(ρu) +∇·(ρu⊗ u+ p̄I) = ∇·
(

µ(∇u+ (∇u)T ) + (λ∗∇·u)I+K
)

,
(2.7)

with p̄,K deriving via (2.5),(2.6) from the induced Helmholtz energy

F̄ (ρ,∇ρ) = W (χ(ρ), θ) +
1

2
[χ′(ρ)]2|∇ρ|2 with χ(ρ) :=

1/ρ− τ2
τ∗

and with the modified bulk viscosity

λ∗ = λ+∆λ where ∆λ ≡
δ1/2

ρτ2∗
. (2.8)

Theorem 2 is a corollary of a corresponding result for the non-isothermal

case that has been stated and proven as Theorem 3.1 in [9]. The crucial

point is the simple fact that the volume-addition law (1.12) amounts to the

constraint

c = χ(ρ).
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The theorem shows that for fluids consisting of two immiscible incompress-

ible phases of different specific volumes, the PDE theory of the Navier-

Stokes-Korteweg system [12, 13] is an alternative to a conceivable “quasi-

incompressible” description one might think of building analogously to how

Lowengrub and Truskinovsky [14] and Abels et al. [1] treat two-phase fluids

without phase transformation (“Cahn-Hilliard” case).

Returning to the issue of traveling waves, we note that our Theorem 1

thus recovers findings of Benzoni-Gavage [2] and others.

2.4. One or either phase almost incompressible

Certain fluids have one or two almost incompressible phases – an ex-

ample is given by water, whose liquid phase is almost incompressible. This

corresponds to limits

Gj
ǫ → Gj as ǫ→ 0 with

dGj
ǫ

dp
< 0 while

dGj

dp
= 0

for j = 1 or j = 2. We conclude by remarking that such limits are regular as

regards the approach to traveling waves taken in this paper. I. e., Theorem

1 and Corollary 1 simply hold uniformly for small ǫ ≥ 0.
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