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Abstract

A conservative algorithm for front tracking, previously proposed, is developed here

in detail. Conservation follows from general ideas of numerical analysis. Portions of the

algorithm are higher order.

Front tracking is well suited to the study of problems in turbulent mixing, in that

it controls excess numerical species concentration diffusion, normally present in Eulerian

finite difference codes. Conservative tracking is important to prevent a gradual drift away

from correct mass balances.

We propose an Application Programming Interface (API) to mediate the insertion

of front tracking into an external physics code. The main requirement upon a client code

imposed by the API is a front-aware interpolation function, which is used to construct two

sided states at each front point. These states are defined by interpolation or extrapolation

from interior states on each side of the front. Using these, we define a time integration

for front points, and a conservative time integration for interior (grid cell average solution

values). We define this first for cells not cut by the front and then for cut cells also.

Reference implementations of client functions will be provided for regular grid client codes.

1. Introduction

Front tracking is the technique of storing and dynamically evolving a

meshed front that partitions a simulation domain into two or more regions,
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each representing a different material, or physics model. The motivation for

conservative front tracking is rather simple: Front tracking is the unique

method presently demonstrated to avoid systematic errors in an important

class of problems revolving around turbulent mixing [11, 12, 7]. The benefit

to be derived from sharp resolution of interfaces and steep gradients runs

through broad classes of problems, including cardiac electrophysiology [15],

resin transfer molding (fiber reinforced plastic) [2, 3], primary breakup of

a diesel fuel jet [1], deposition and etching in the manufacture of semicon-

ductors [9], the tracking of cloud boundaries in meteorology [16], models

of targets for high energy particle accelerators [4], and mixing models for

chemically reacting flows [17].

Previous versions of the front tracking algorithm for fluid discontinuities

violated conservation due to inconsistent data flows into the region from ar-

tificial states constructed near the tracked discontinuity. The primary ratio-

nale for concern with conservation arises from the fundamental importance

conservation properties play in the design of numerical algorithms. Con-

servation becomes an important criterion in practice to prevent a possible

systematic buildup of errors in problems with many simulation time steps.

Section 2 is devoted to details of the conservative front tracking algo-

rithm. In Section 3 we describe the API, allowing insertion of this algorithm

into a physics code. Conclusions are contained in a final Section 4.

2. The Conservative Front Tracking Algorithm

2.1. Overview

We start with conservative equations, typically of fluid dynamics (i.e. the

Euler or Navier-Stokes equations). Solutions of these equations may have

discontinuities or surface layers with large gradients (i.e., near discontinu-

ities). Shock waves, the most notable of these, are not proposed for tracking,

as shock waves are well resolved by commonly used algorithms. Rather, it is

the contact waves which present persistent problems in numerical solutions.

These waves express jumps in temperature, species concentration, and shear

velocity. Such waves, whether discontinuous or representing steep gradients,

are usually poorly resolved by Eulerian finite difference algorithms.
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The conservative front tracking algorithm [5, 8] follows general principles

of finite difference and finite volume numerical analysis. Consider a finite

difference or finite volume space-time cell. We call the new time level its

top, and the old time level its bottom. The remaining faces of the cell, with

variable time, are its sides. The general idea of conservative differencing is

to define the integral of the conserved solution values over the top as equal

to the same integral over the bottom plus the integrals of the flux of the

conserved quantities through the sides (plus any source term relevant to

that cell). In this way, the sum of conserved solution variables and their

dynamic change over all faces is zero, i.e. a conservation property within the

cell. Conservation is achieved when the two flux integrals, evaluated from

each of the two directions at a shared side of two adjacent cells, coincide.

In this case, no solution variables are created or annihilated in the passage

between the cells. In other words, the cells are joined conservatively.

We base the time step for finite difference stencils which do not cross

the front on an assumed client directionally split conservative scheme (e.g.

WENO, PPM). For the remaining grid cells (whose stencils contain discon-

tinuities), we construct front states at the current time level (with first order

accuracy only), and use these to extrapolate ghost cell states across the front.

Using the same interior solver with the expanded ghost cell stencil, we again

construct a time propagation to the next time level using the conservative

scheme above, but using the extrapolated states for the parts of the stencil

which cross the discontinuity. This calculation is conservative only for cells

which do not cross the front (as using these artificial states in a cut cell is

inherently non-conservative).

Finally, we recompute solution values for space time cut cells, using the

cut cell conservative algorithm defined here. We define a cut cell as the

portion of a grid cell that lies on a single side of the front. Although the

solution may be discontinuous across the front, the flux, in the direction

of the front normal, is continuous. Thus the conservation requirement of

continuous fluxes across cut cell boundaries is possible to achieve.

2.2. Merger of small cut cells

The conservative flux balance law, is stated schematically as

u(tn+1) = (|TOP |)−1

[
u(tn)|BOTTOM | −

∫

S̃

F (u) · ndS

]
, (2.1)
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Figure 1: Volume merging of cut cells illustrated in a 2D space time example. Here
the volume V3 with no top is merged with the larger one V4 and likewise the region
V2 with small top is merged with V1.

where u(tn) and u(tn+1) are cell averages, |TOP| and |BOTTOM| are cut cell

volumes, and F is the flux as defined by the conservation law. Here S̃ is the

sides of a space-time cell and n is the outward normal of S̃. Eq. (2.1) defines

the new time level solution. We have thus advanced the solution by one time

step. However, with the cut cells defined by the front, the top may be small,

leading to a numerical instability or severe time step restriction. Even worse,

the top may be missing, leading to an undesired constraint on the solution

at the already constructed previous time level. There are several strategies

to avoid the problems of small tops or no tops at all. We employ the method

of merger of small cells into adjacent ones until all merged cut cells have a

sufficiently large top, so that unwelcome restrictions on the algorithm CFL

number are avoided. This algorithm, previously proposed [13], is illustrated

in Figure 1.

2.3. Quadrature points and weights for flux integrals

We propose second order accurate quadrature, although the data is first

order only. At this order of accuracy, for planar surfaces, integration over a

region W is approximated by the integration area (volume) |W | multiplied

by evaluation of the integrand at the centroid of the integration area or

volume,
∫

W

f · dA ≈ f(Wcentroid) · |W | , (2.2)

where the integrand f is the flux. The fluxes into the space-time cell via

the top and bottom (fixed time faces) are the solution function at each time
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level, whereas the flux through the variable time faces is the conservative

flux. The time centroid amounts to consideration of the interface at the 1/2

time level. Now, we are in the familiar case of an interface describing a 2D

surface in 3D space at a fixed time level. The front propagation to the 1/2

time level is constructed to first order only, leading to front point location

errors of the order of ∆x2, because the error in location is: |∆x| = O(∆t|∆v|)

i.e. the time step times the error in velocity. This location error for the flux

does not affect its stated accuracy. The fluxes at the front are constructed

from front states, and these are only first order accurate, constructed by

interpolation/extrapolation from 1/2 time level interior states.

Quadrature for a cut cell planar surface or full cell face follows (2.2).

Surface (volume) centroids are obtained by triangulation (tetrahedraliza-

tion) of the cell in question, with all triangles (tets) on a single side of the

front. An elementary calculation yields the centroid of triangles (tets), and

a simple average on one side of the front gives the centroid of the integra-

tion area. While this algorithm considers a large number of triangles (tets),

the calculation in each (of the centroid) is elementary. The more expensive

integrand evaluation is performed only once per cut cell face or surface frag-

ment. Generalizing the integration formula (2.2) to the curvilinear surface

S defined by the front itself raises a new issue. For each facet (triangle) ti of

the front, with area |ti| and centroid Ci, totally or partially within the cell,

we apply the centroid method to the part lying within the cell. Then

∫

S

fdA =
∑

i

∫

ti

fdA ≈
∑

i

|ti|f(Ci) . (2.3)

For efficiency reasons, we partition triangles into groups, and compute a

single centroid and flux evaluation for the group as a whole. With grouped

triangles, it is necessary to restrict the grouping size to allow a single valued

projection onto a coordinate plane. Except for interfaces which are highly

complicated at the cell level, a single coordinate projection will suffice for

the entire front surface within a cell.

Let P be the projection of S into R2, J the Jacobian of P . Then

∫

S

fdA ≈ |P (S)| × f(C)× |J(C)| , (2.4)

where C is the centroid of P (S).
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Figure 2: This figure shows the cut cell with curvilinear cut face projected into
the plane (shown here in the cell bottom. Shading indicates |J |, the magnitude of
the Jacobian of the projection. The face flux is calculated once in the plane (at the
centroid) and weighted by area (times Jacobian).

2.4. Time step pseudo code

We outline the time step of the conservative front tracking algorithm in

terms of high level functions, whose role is suggested by the function names.

Detailed properties of the individual routines are explained in Section 3.

Time step pseudocode is shown in Figure 3.

We summarize the above with a list of key client functions:

1. Find front state

2. Interior state update via ghost cells for cells not cut by the front

3. Conservative state update for cut cells

2.5. Order of accuracy

The conservative algorithm is second order accurate excluding a neigh-

borhood of the front (due to the first order nature of the front state al-

gorithm). An obstacle to higher order accuracy in the neighborhood of the

discontinuity can be seen in trying to define the order of accuracy in a physics

neutral (or problem neutral) matter. The definition of order of accuracy as-

sumes a smooth solution of the PDE, its substitution into the difference
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function timestep()

{
front.point.propagation() /* FTI code*/

/* to 1/2 time level for flux calculation and to next time level

as predictor */

interior.state.update() /* client code */

/* 1/2 time level and full time level for spatial cells not cut

by front */

find.front.states.at.half.time.level() /* client code */

/* 1/2 time level front states */

flux.quadrature.at.half.time.level.cut.cells() /* client code */

cut.cell.interior.state.update() /* client code */

/* conservative update new time level */

find.front.states.at.new.time.level() /* client code */

/* full time level front states */

front.propagation.corrector.at.new.time.level() /* FTI code */

process.new.front() /* FTI code */

component.update() /* client code */

}

Figure 3: Timestep pseudocode

scheme, and an observation of the residual in powers of ∆x. Extending this

definition to piecewise smooth solutions with jump discontinuities, we could

imagine an order of accuracy for the discontinuity surface, and the standard

order of accuracy definition applied to solutions smooth on each side of the

discontinuity. However, extension of these ideas to smooth solutions with

accuracy uniform in the presence of arbitrarily large gradients would require

specification of the gradient magnitude in the trial solution, and thus re-

move the analysis from a physics neutral plane to a highly context specific

one; not a desired step. Thus, our approach is less fundamental, and we

only discuss orders of accuracy in substeps, and according to conventional

notions of accuracy. For example, the flux across the cut cell boundary is

continuous and single valued. At the level of the Euler equations, it is also

bounded, but for solutions of the Navier-Stokes equation, arbitrarily large

flux values can be observed in the initial time steps of resolution of a sharp

discontinuity. A second order flux quadrature is not accurate uniformly in

the presence of large flux values.
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3. FTI: The Front Tracking Interface

FTI (Front Tracking Interface) is the name of the API which implements

the standard front tracking components discussed here. The idea of an API

is to abstract from a software package those features which a user (client)

must interact with. For the API to be useful, this list should be short. FTI

version 0.1 is the reconstruction of our own code into a client-server model

linked with an API. The programmer’s manual for FTI Version 0.1 can be

found at http://www.ams.sunysb.edu/fti

We are in the process of extending this version to the HEDP code

FLASH. FTI Version 1.0 is the conservative version, as discussed here. The

API is written in C++, but we expect it to interoperate with programming

languages that can be combined with C++. For example, the FLASH code

is written in Fortran. It is parallelied using MPI.

FTI routines are divided between client and server routines. The client

must write the client routines, while calling the server routines. This de-

sign allows the front tracking method to be applied regardless of client data

structures or physics, while common functionality (for front dynamics) comes

packaged in the server. For client routines, we also offer a reference imple-

mentation based on a uniform mesh for solution data. Extensions to AMR

box based grids will be similar.

3.1. Client routines

The key client routines are

1. find front states

2. interior states via ghost states

3. conservative cut cell state update

Since FTI cannot know or enforce conditions on the client data model, it is

the task of the client to generate front states. The front states are the crux

of the coupling between the interior dynamics and the front dynamics.

Although the FTI server can calculate the component at any point, this

call is expensive. For the purpose of storing components as well as identifying

cut cells we impose two data structures on the client

http://www.ams.sunysb.edu/fti
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1. the crossing grid, and

2. the component grid

The crossing grid will store the front elements which cut a cell in each cell

(empty for uncut cells). The component grid stores the component indicator

for each cell. These can be updated efficiently by the set component (§3.1.1)

function, but the details of implementing of the data structure are left open.

The client API routines, needed in the dynamic update are developed

in the following sections:

3.1.1. Set components

Input: Front at current time level

Output: Component label set for each cell not crossing the front. Label

ONFRONT for cut cells.

Synopsis: Assuming the front is closed, that is, assuming that there is no

outer edge to the front surface other than on the outer surface of the compu-

tational region, the front divides the computational domain into connected

components. See Figure 4. A cell’s component can be determined based

on which side of the front it is on. This can be determined by the nearest

front element, though this lookup is expensive, and so we perform it only

once per component region. The remaining cells have their components de-

termined as follows: We store the list of all triangles from the front which

lie in each mesh block. Starting from a cell with a known component (via

nearest element), we employ the method of marching front method. This

algorithm is inverse to the Marching Cubes [14] algorithm, in that it takes

the front location data and uses this to mark each cell. The marching front

propagates component information of a cell to its neighbors until a front is

reached.

3.1.2. Find front state

Input: Component labels and state variables defined at every cell for the

current time level. For cut cells, the component is set to a special label,
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Figure 4: Illustrations of a component grid. Cells are shaded based on component.
Left shows a front crossing solution stencil on the dual to the simulation grid, so
component and state information is defined at cell corners. Right shows front-aware
interpolation on a simulation grid with states and components on cell centers. Only
cells of like component are used. Each component meeting at the front gives one of
the two front states defined on the front.

ONFRONT, and the state represents the solution associated with the com-

ponent to which that the cell center belongs.

Output: Two sided states and a single valued front normal velocity are

computed at every front point. Assuming that the physics is a contact

discontinuity with zero surface tension or a concentration/thermal/shear ve-

locity iso-surface, the pressure and the normal velocity are identical for these

two states.

Synopsis: The interpolation/extrapolation is illustrated conceptually in

Figure 4. One sided interpolation defines a pair of outer front states. See

Figure 5, where the construction is illustrated in 2D. These are input to

a Riemann solver, which returns the midstates associate with the contact

discontinuity. We call these mid states the (inner) front states. For the

purpose of finding a front normal velocity, the outer front states are defined

by linear or constant extrapolation, depending on the number of nearby

grid cell centers with the desired component value. The front normal n is

constructed at the front point, using higher order accuracy ideas from the
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(1) Bilinear interpolation (2) Linear interpolation

(3) Linear extrapolation (4) Constant extrapolation

Figure 5: Cases of the component aware interpolation model in 2D. The shaded
area shows the interpolation or extrapolation element. Case 1 shows a bilinear
interpolation case. Case 2 shows a linear interpolation case. Case 3 shows a linear
extrapolation case. Case 4 shows a constant extrapolation case.

interface geometry program of Jiao and students [10] and is provided by the

FTI server.

3.1.3. Interior state update

Input: A directionally split 1D solver, with specified stencil size and states

defined for all grid cell centers. The front at the current time level is also

required.

Output: States defined at the new time level for all grid cell centers. Except

for cut cells, this definition is conservative. Except near the front, the update

has the order of accuracy of the client solver.

Synopsis: We begin with the identification of all locations where a line

through grid cell centers crosses the front. We construct two sided front
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Figure 6: Ghost cell extrapolation. Above, original stencil, crossing the interface.
Middle: Two right states are replaced by left side extrapolated states to define a
stencil consisting of only left states. Below: a similar construction for the right
sided stencil.

states at these crossing points (the front state algorithm reduces to constant

extrapolation along the grid cell center line in this case) to define outer

front states. The outer front states are input to a Riemann solution, whose

mid states define the (inner) front states. Any stencil crossing the front is

extended on the other side of the front by constant extrapolation from the

associated front state (ghost cell extrapolation) [6]. See Figure 6. Using

these modified stencils, the client solver returns a time advanced state for

the new time level.

3.1.4. Conservative update for cut cells

Input: States defined for all cell centers and front points for the current

and 1/2 time level, and the propagated front (predictor only) defined at the

current, 1/2 time and new time levels.

Output: Conservative values for cut cell state averages at the new time

level.

Synopsis: The main ideas derive from general conservation principles as

explained in Sec. 2.3, Eq. (2.1). The algorithm makes use of the interior

(non-cut cell) states and the nonconservative interior cut cell states, both

at the 1/2 time level from Sec. to define front states via Sec. 3.1.2. The
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flux is computed from the conservation law, with quadrature as discussed in

Sec. 2.3. The algorithm for merging small cells is discussed in Sec. 2.2.

Outline of steps:

1. Merge Small Tops

2. Triangulate Cut Space-Time Cell Faces

3. Find Centroids

4. Surface Projection onto Face

5. Face Flux Calculation

3.2. FTI routines

3.2.1. Point propagate predictor

Input: A front point, Two sided states at this point and the time step size

∆t.

Output: The front point position at the new time level.

Synopsis: We construct the normal n to the front at this point and advance

the front in time using the first order Euler algorithm, to the new position

incremented by ∆t(n · v).

3.2.2. Point propagate corrector

Input: A predictor front position at the new time level, a pair of front states

at this location, the time step size and the predictor velocity and position

at the old time level.

Output: A corrected front position at the new time level.

Synopsis: The corrector front position is the average of the front (predictor)

positions derived from the velocities at the old and new time levels. Together

with the point propagate predictor, this makes a second order Runge-Kutta

update to the front position.
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3.2.3. Process front

Input: A propagated front at a new time level.

Output: Corrections to the propagated front.

Synopsis: Error checking, error correcting, topological changes, and mesh

smoothing operations are performed. Tests for large, small or bad aspect

ratio triangles are performed, and these are divided or merged with neigh-

bors to improve the mesh quality. Additionally, the front points are moved

on the surface to further improve the mesh quality. Self intersections of the

front are a propagation error which is corrected a posteriori. The test is

by straightforward determination of intersections for pairs of triangles. The

order of the algorithm is reduced from O(n2) to O(n) by testing only pairs

of triangles intersecting a common mesh block. Resolution of the self inter-

sections is physics model dependent. Implemented is an algorithm causing

merger of separate tracked regions upon overlap or contact of distinct part

of the interface. The basic idea is to remove a small box containing the

overlap or intersecting region, and to retriangulate this using only the com-

ponent information at grid cell corners (grid based reconstruction). The gap

between the box and the front totally outside of the box is then filled by a

sequential construction, as discussed in [1].

3.2.3. Utility routines

Additionally, the FTI offers a few client utility routines, for example to

initialize and to print.

4. Conclusions

The value of front tracking to enhance the quality of Eulerian compu-

tations with free surfaces or “steep gradient” iso-concentration, iso-thermal

or iso-shear surfaces is generally recognized. The algorithm belongs to the

ALE (Arbitrary Lagrangian Eulerian) family in addressing interface prob-

lems, and it is in a sense the ultimate ALE algorithm, with the Lagrangian

portion reduced to a dynamic surface. For this reason, it is better able to

survive late time surface distortions. The front tracking method grants an
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improvement in solution quality by maintaining sharpness without loss of

accuracy or conservation.

Implementation of front tracking into physics codes is a daunting en-

deavor, and the purpose of the present paper is to address just this im-

plementation issue. We codify the interface between front tracking and a

client code. Only three key client steps are required, and for these reference

implementations are provided in the case of regular grids. These are (a) con-

struction of front states from the existing interior states at a fixed time level,

(b) construction of ghost cell states to allow conservative time integration

for cells near the front but not crossing it and (c) a conservative algorithm

for time integration of cells cut by the front.
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