QUANTITATIVE ESTIMATE OF THE STATIONARY NAVIER-STOKES EQUATIONS AT INFINITY AND UNIQUENESS OF THE SOLUTION

CHING-LUNG LIN 1,a AND JENN-NAN WANG 2,b

This work is dedicated to Professor Tai-Ping Liu for his 70th birthday.

¹Department of Mathematics and Research Center for Theoretical Sciences, NCTS, National Cheng Kung University, Tainan 701, Taiwan.

 a E-mail: cllin2@mail.ncku.edu.tw

 2 Institute of Applied Mathematical Sciences, NCTS, National Taiwan University, Taipei 106, Taiwan. b E-mail: jnwang@math.ntu.edu.tw

Abstract

In this paper we are interested in the asymptotic behavior of incompressible fluid around a bounded obstacle. Under certain a priori decaying assumptions, we derive a quantitative estimate of the decaying rate of the difference of any two velocity functions at infinity. This quantitative estimate gives us a sufficient condition, expressed in terms of integrability, to guarantee that the solution of the Navier-Stokes equations is unique.

1. Introduction

Let D be a bounded domain in \mathbb{R}^n and $\Omega = \mathbb{R}^n \setminus \overline{D}$ with $n \geq 2$. Without loss of generality, we let 0 belong to interior of D. Assume that Ω is filled with an incompressible fluid described by the stationary Navier-Stokes equations

$$\begin{cases} -\Delta u + u \cdot \nabla u + \nabla p = f & \text{in } \Omega, \\ \nabla \cdot u = 0 & \text{in } \Omega. \end{cases}$$
(1.1)

We are interested in the following question: let u_1 and u_2 be two solutions of (1.1) satisfying some pre-described assumptions such as boundedness or

AMS Subject Classification: 35B60, 76D05.

Received March 31, 2015 and in revised form September 2, 2015.

Key words and phrases: Quantitative uniqueness estimates, Navier-Stokes equations, Carleman estimates.

decaying conditions, then find a sufficient condition which guarantees that $u_1 \equiv u_2$ in Ω . In this paper, we answer this question by deriving a minimal decay rate of $u_1 - u_2$ at infinity if $u_1 \neq u_2$.

This question is motivated by the following problem. It was shown by Finn [1] that when n = 3 and f = 0, if $u|_{\partial D} = 0$ and $u = o(|x|^{-1})$, then u is trivial. Inspired by Finn's result, we would like to ask the following question: when n = 3, if we know a priori that $u = O(|x|^{-1})$, what is the minimal decaying rate of any nontrivial u satisfying (1.1)? It should be remarked that the boundary value of u on ∂B is irrelevant in this problem. Moreover, the asymptotic behavior $u = O(|x|^{-1})$ characterizes the so-called physically reasonable solutions introduced by Finn [2].

To answer the main question of the paper, we simply subtract two equations for u_1 and u_2 and obtain

$$\begin{cases} -\Delta v + v \cdot \nabla v + v \cdot \nabla u_2 + u_2 \cdot \nabla v + \nabla p_v = 0 & \text{in } \Omega, \\ \nabla \cdot v = 0 & \text{in } \Omega, \end{cases}$$

where $v = u_1 - u_2$ and $p_v = p_1 - p_2$. Therefore, to solve the problem, it suffices to consider the generalized Navier-Stokes equations

$$\begin{cases} -\Delta v + v \cdot \nabla v + v \cdot \nabla \alpha + \alpha \cdot \nabla v + \nabla p = 0 & \text{in } \Omega, \\ \nabla \cdot v = 0 & \text{in } \Omega \end{cases}$$
(1.2)

with $\nabla \cdot \alpha = 0$. To describe the main theorem, we denote

$$I(x) = \int_{|y-x|<1} |v(y)|^2 dy$$

and

$$M(t) = \inf_{|x|=t} I(x).$$

Then we prove that

Theorem 1.1. Let $v \in (H^1_{loc}(\Omega))^n$ be a nontrivial solution of (1.2) with an appropriate $p \in H^1_{loc}(\Omega)$. Assume that for $0 \le \kappa_1 < \frac{1}{4}$, $0 \le \kappa_2 < \frac{1}{2}$, $0 < \delta \le \frac{1}{8}$ and $\lambda \ge 1$

$$\begin{cases} |v(x)| + |\alpha(x)| + |\nabla v(x)| \le \lambda (1 + |x|^2)^{-\kappa_1 - \delta} \\ |\nabla \alpha(x)| \le \lambda (1 + |x|^2)^{-\kappa_2 - \delta}. \end{cases}$$
(1.3)

Then there exist \tilde{t} depending on λ , n, κ_1 , κ_2 , δ and positive constants C_1 such that

$$M(t) \ge \exp\left(-C_1 t^{\kappa} \log t\right) \quad for \quad t \ge \tilde{t}, \tag{1.4}$$

where $\kappa = \max\{2 - 4\kappa_1, 2 - 2\kappa_2\}$ and the constant C_1 depends on λ , n and

$$\left| \log \left(\min \{ \inf_{\tilde{t} < |x| < \tilde{t}^{(1-\delta)^{-1}}} \int_{|y-x| < 1} |v(y)|^2 dy, 1 \} \right) \right|.$$

It is interesting to compare Theorem 1.1 with the result obtained in [5] where we showed that for the standard stationary Navier-Stokes equations (i.e., $\alpha = 0$ in (1.2)) if v is bounded (for n = 2) or C^1 bounded (for $n \ge 3$) in Ω , then

$$M(t) \ge \exp(-Ct^{2+}).$$

We can immediately deduce several consequences from Theorem 1.1. Assume that n = 3 and $f = O(|x|^{-3})$ at infinity. Let u_1, u_2 be two solutions of (1.1) satisfying $u_1 = O(|x|^{-1})$ and $u_2 = O(|x|^{-1})$. It was proved by Sverak and Tsai [7] that both ∇u_1 and ∇u_2 are $O(|x|^{-2})$. So we can choose $\kappa_1 = 3/16, \kappa_2 = 3/8$ (then $\kappa = 5/4$), and fix $\delta = 1/8$ in Theorem 1.1. Due to Sverak and Tsai's result, we can also relax condition (1.3). Setting $v = u_1 - u_2$ and $\alpha = v_1$, we obtain from Theorem 1.1 that

Corollary 1.2. Let $u_1, u_2 \in (H^1_{loc}(\Omega))^3$ be solutions of (1.1) with appropriate pressures $p_1, p_2 \in H^1_{loc}(\Omega)$. Assume that $f(x) = O(|x|^{-3})$, $u_1(x) = O(|x|^{-1})$, and $u_2 = O(|x|^{-1})$, at infinity. Then there exist \tilde{t} and positive constant s_1 such that

$$\inf_{|x|=t} \int_{|y-x|<1} |(u_1 - u_2)(y)|^2 dy \ge \exp\left(-s_1 t^{5/4} \log t\right) \quad for \quad t \ge \tilde{t}$$

where s_1 depends linearly on

$$\left| \log \left(\min \{ \inf_{\tilde{t} < |x| < \tilde{t}^{8/7}} \int_{|y-x| < 1} |(u_1 - u_2)(y)|^2 dy, 1 \} \right) \right|.$$

Corollary 1.2 immediately implies the following qualitative uniqueness results.

2016]

Corollary 1.3. Let $u_1, u_2 \in (H^1_{loc}(\Omega))^3$ be solutions of (1.1) with appropriate pressures $p_1, p_2 \in H^1_{loc}(\Omega)$. Assume that $f(x) = O(|x|^{-3})$, $u_1(x) = O(|x|^{-1})$, and $u_2 = O(|x|^{-1})$, at infinity. Then there exist R and positive constant s_1 such that if

$$\int_{\Omega \cap \{|x| \ge R\}} \exp(s|x|^{5/4} \log |x|) |(u_1 - u_2)(x)|^2 dx < \infty$$

for all $s > s_1$, then $u_1 \equiv u_2$ in Ω , where s_1 's dependence is described in Corollary 1.2.

In particular, let $u_2 = 0$ and f = 0, we have that

Corollary 1.4. Let n = 3, f = 0, and $u \in (H^1_{loc}(\Omega))^3$ be a solution of (1.1) with an appropriate $p \in H^1_{loc}(\Omega)$. Assume that $u(x) = O(|x|^{-1})$. Then there exist R and positive constants s_1 such that if

$$\int_{\Omega \cap \{|x| \ge R\}} \exp(s|x|^{5/4} \log |x|) |u(x)|^2 dx < \infty$$

for all $s > s_1$, then $u \equiv 0$ in Ω , where s_1 depends linearly on the quantity

$$\left| \log \left(\min \{ \inf_{R < |x| < R^{\frac{8}{7}}} \int_{|y-x| < 1} |u(y)|^2 dy, 1 \} \right) \right|.$$

As in [5], we prove our result along the line of Carleman's method. Some useful techniques used in [5] are collected in the next Section. The proof of the main theorem is given in Section 3.

2. Reduced system and Carleman estimates

Fixing x_0 with $|x_0| = t >> 1$, we define

$$w(x) = (at)v(atx + x_0), \ \tilde{\alpha}(x) = (at)\alpha(at + x_0), \ \text{and} \ \tilde{p}(x) = (at)^2 p(atx + x_0),$$

where r_1 is the constant given in Lemma 2.1 and $a \ge 8/r_1$ which will be determined in the proof of Theorem 1.1. Likewise, we denote

$$\Omega_t := B_{\frac{1}{a} - \frac{1}{20at^{\delta}}}(0) = \{x : |x| < \frac{1}{a} - \frac{1}{20at^{\delta}}\}.$$

From (1.2), it is easy to get that

$$\begin{cases} -\Delta w + w \cdot \nabla w + w \cdot \nabla \tilde{\alpha} + \tilde{\alpha} \cdot \nabla w + \nabla \tilde{p} = 0 & \text{in} \quad \Omega_t, \\ \nabla \cdot w = 0 & \text{in} \quad \Omega_t. \end{cases}$$
(2.1)

In view of (1.3), we have that

$$\begin{cases} \|\tilde{\alpha}\|_{L^{\infty}(\Omega_{t})} + \|w\|_{L^{\infty}(\Omega_{t})} \leq C_{0}a\lambda t^{1-2\kappa_{1}-\delta}, \\ \|\nabla w\|_{L^{\infty}(\Omega_{t})} \leq C_{0}a^{2}\lambda t^{2-2\kappa_{1}-\delta}, \\ \|\nabla \tilde{\alpha}\|_{L^{\infty}(\Omega_{t})} \leq C_{0}a^{2}\lambda t^{2-2\kappa_{2}-\frac{3}{4}\delta}, \end{cases}$$
(2.2)

where we can choose $C_0 = (20)^{5/4}$.

To prove Theorem1.1, we use the reduced system containing the vorticity equation derived in [5]. Let us define the vorticity q of the velocity w by

$$q = \operatorname{curl} w := \frac{1}{\sqrt{2}} (\partial_i w_j - \partial_j w_i)_{1 \le i,j \le n}.$$

The formal transpose of curl is given by

$$(\operatorname{curl}^{\top} v)_{1 \le i \le n} := \frac{1}{\sqrt{2}} \sum_{1 \le j \le n} \partial_j (v_{ij} - v_{ji}),$$

where $v = (v_{ij})_{1 \le i,j \le n}$. It is easy to see that

$$\Delta w = \nabla (\nabla \cdot w) - \operatorname{curl}^{\top} \operatorname{curl} w$$

(see, for example, [6] for a proof), which implies

$$\Delta w + \operatorname{curl}^{\top} q = 0 \quad \text{in} \quad \Omega_t.$$
(2.3)

Next we observe that

$$w \cdot \nabla \tilde{\alpha} + \tilde{\alpha} \cdot \nabla w = \nabla (w \cdot \tilde{\alpha}) - \sqrt{2} (\operatorname{curl} w) \tilde{\alpha} - \sqrt{2} (\operatorname{curl} \tilde{\alpha}) w$$
$$= \nabla (w \cdot \tilde{\alpha}) - \sqrt{2} q \tilde{\alpha} - \sqrt{2} (\operatorname{curl} \tilde{\alpha}) w$$

and in particular

$$w \cdot \nabla w = \nabla(\frac{1}{2}|w|^2) - \sqrt{2}(\operatorname{curl} w)w = \nabla(\frac{1}{2}|w|^2) - \sqrt{2}qw.$$

2016]

Thus, applying curl on the first equation of (2.1), we have that

$$-\Delta q + Q(q)(w + \tilde{\alpha}) + q(\nabla w + \nabla \tilde{\alpha})^{\top} - (\nabla w + \nabla \tilde{\alpha})q^{\top} - \operatorname{div} F = 0 \text{ in } \Omega_t, \quad (2.4)$$

where

$$(Q(q)w)_{ij} = \sum_{1 \le k \le n} (\partial_j q_{ik} - \partial_i q_{jk}) w_k$$

and

$$(\operatorname{div} F)_{ij}Z = \sum_{k=1}^{n} \partial_k F_{ijk}$$

with

$$F_{ijk} = \sum_{1 \le m \le n} \left((\operatorname{curl} \tilde{\alpha})_{jm} w_m \delta_k^i - (\operatorname{curl} \tilde{\alpha})_{im} w_m \delta_k^j \right).$$

Putting together (2.3), (2.4), and using (1.3), to prove the main theorem, it suffices to consider

$$\begin{cases} \Delta q + A(x) \cdot \nabla q + B(x)q + \operatorname{div} F = 0 & \text{in } \Omega_t, \\ \Delta w + \operatorname{curl}^\top q = 0 & \text{in } \Omega_t, \end{cases}$$
(2.5)

where A is a (3,2) tensor and B is a (2,2) tensor with

$$||A||_{L^{\infty}(\Omega_t)} \leq C_0 \lambda a t^{1-2\kappa_1-\delta}, ||B||_{L^{\infty}(\Omega_t)} \leq C_0 \lambda a^2 t^{2-2\kappa_1-\delta} + C_0 \lambda a^2 t^{2-2\kappa_2-\frac{3}{4}\delta},$$

and

$$|F(x)| \le C_0 \lambda a^2 t^{2-2\kappa_2 - \frac{3}{4}\delta} |w(x)|, \quad \forall \ x \in \Omega_t$$

Our proof relies on appropriate Carleman estimates. Here we need two Carleman estimates with weights $\varphi_{\beta} = \varphi_{\beta}(x) = \exp(-\beta \tilde{\psi}(x))$, where $\beta > 0$ and $\tilde{\psi}(x) = \log |x| + \log((\log |x|)^2)$.

Lemma 2.1. There exist a sufficiently small number $r_1 > 0$ depending on nand a sufficiently large number $\beta_1 > 3$, a positive constant C, depending on n such that for all $v \in U_{r_1}$ and $f = (f_1, \dots, f_n) \in (U_{r_1})^n$, $\beta \ge \beta_1$, we have that

$$\int \varphi_{\beta}^{2} (\log |x|)^{2} (\beta |x|^{4-n} |\nabla v|^{2} + \beta^{3} |x|^{2-n} |v|^{2}) dx
\leq C \int \varphi_{\beta}^{2} (\log |x|)^{4} |x|^{2-n} [(|x|^{2} \Delta v + |x| \operatorname{div} f)^{2} + \beta^{2} ||f||^{2}] dx, \quad (2.6)$$

where $U_{r_1} = \{ v \in C_0^{\infty}(\mathbb{R}^n \setminus \{0\}) : \operatorname{supp}(v) \subset B_{r_1} \}.$

Lemma 2.1 is a modified form of [4, Lemma 2.4]. For the sake of brevity, we omit the proof here. Replacing β of Lemma 2.1 with $\beta + 1$ and choosing f = 0 implies

Lemma 2.2. There exist a sufficiently small number $r_1 > 0$, a sufficiently large number $\beta_1 > 1$, a positive constant C, such that for all $v \in U_{r_1}$ and $\beta \ge \beta_1$, we have

$$\int \varphi_{\beta}^{2} (\log|x|)^{-2} |x|^{-n} (\beta|x|^{2} |\nabla v|^{2} + \beta^{3} |v|^{2}) dx \leq C \int \varphi_{\beta}^{2} |x|^{-n} (|x|^{4} |\Delta v|^{2}) dx.$$
(2.7)

In addition to Carleman estimates, we also need the following interior estimate.

Lemma 2.3. For any $0 < a_1 < a_2$ such that $B_{a_2} \subset \Omega_t$ for t > 1, let $X = B_{a_2} \setminus \overline{B}_{a_1}$ and d(x) be the distant from $x \in X$ to $\mathbb{R}^n \setminus X$. Then we have

$$\int_{X} d(x)^{2} |\nabla w|^{2} dx + \int_{X} d(x)^{4} |\nabla q|^{2} dx + \int_{X} d(x)^{2} |q|^{2} dx$$

$$\leq C \left(1 + a^{2} t^{-\frac{3\delta}{2}}\right)^{2} \int_{X} |w|^{2} dx, \qquad (2.8)$$

where the constant C depends on n, λ .

The proof of this lemma is similar to that given in [5].

3. Proof of Theorem 1.1

This section is devoted to the proof of the main theorem, Theorem 1.1. Since $(w, p) \in (H^1(\Omega_t))^{n+1}$, the regularity theorem implies $w \in H^2_{loc}(\Omega_t)$. Therefore, to use estimate (2.7), we simply cut-off w. So let $\chi(x) \in C_0^{\infty}(\mathbb{R}^n)$ satisfy $0 \leq \chi(x) \leq 1$ and

$$\chi(x) = \begin{cases} 0, & |x| \le \frac{1}{8at}, \\ 1, & \frac{1}{4at} < |x| < \frac{1}{a} - \frac{3}{20at^{\delta}}, \\ 0, & |x| \ge \frac{1}{a} - \frac{2}{20at^{\delta}}. \end{cases}$$

It is easy to see that for any multiindex α

$$\begin{cases} |D^{\alpha}\chi| = O((at)^{|\alpha|}) & \text{if } \frac{1}{8at} \le |x| \le \frac{1}{4at}, \\ |D^{\alpha}\chi| = O((at^{\delta})^{|\alpha|}) & \text{if } \frac{1}{a} - \frac{3}{20at^{\delta}} \le |x| \le \frac{1}{a} - \frac{2}{20at^{\delta}}. \end{cases}$$
(3.1)

To apply Carleman estimates above, it suffices to take $1/a \leq r_1$. Now applying (2.7) to χw gives

$$\int (\log|x|)^{-2} \varphi_{\beta}^{2} |x|^{-n} (\beta|x|^{2} |\nabla(\chi w)|^{2} + \beta^{3} |\chi w|^{2}) dx$$

$$\leq C \int \varphi_{\beta}^{2} |x|^{-n} |x|^{4} |\Delta(\chi w)|^{2} dx. \qquad (3.2)$$

Here and after, C and \tilde{C} denote general constants whose value may vary from line to line. The dependence of C and \tilde{C} will be specified whenever necessary. Next applying (2.6) to $v = \chi q$ and $f = |x|\chi F$ yields that

$$\int \varphi_{\beta}^{2} (\log |x|)^{2} (|x|^{4-n}\beta |\nabla(\chi q)|^{2} + |x|^{2-n}\beta^{3} |\chi q|^{2}) dx$$

$$\leq C \int \varphi_{\beta}^{2} (\log |x|)^{4} |x|^{2-n} [(|x|^{2}\Delta(\chi q) + |x|\operatorname{div}(|x|\chi F))^{2} + \beta^{2} ||x|\chi F||^{2}] dx. (3.3)$$

Combining $\beta \times (3.2)$ and (3.3), we obtain that

$$\int_{W} (\log |x|)^{-2} \varphi_{\beta}^{2} |x|^{-n} (\beta^{2} |x|^{2} |\nabla w|^{2} + \beta^{4} |w|^{2}) dx
+ \int_{W} (\log |x|)^{2} \varphi_{\beta}^{2} |x|^{-n} (\beta |x|^{4} |\nabla q|^{2} + |x|^{2} \beta^{3} |q|^{2}) dx
\leq C\beta \int \varphi_{\beta}^{2} |x|^{-n} |x|^{4} |\Delta(\chi w)|^{2} dx
+ C \int \varphi_{\beta}^{2} (\log |x|)^{4} |x|^{2-n} [(|x|^{2} \Delta(\chi q) + |x| \operatorname{div}(|x|\chi F))^{2}
+ \beta^{2} |||x| \chi F ||^{2}] dx,$$
(3.4)

where W denotes the domain $\{x : \frac{1}{4at} < |x| < \frac{1}{a} - \frac{3}{20at^{\delta}}\}$. To simplify the notations, we denote $Y = \{x : \frac{1}{8at} \le |x| \le \frac{1}{4at}\}$ and $Z = \{x : \frac{1}{a} - \frac{3}{20at^{\delta}} \le |x| \le \frac{1}{a} - \frac{2}{20at^{\delta}}\}$. By (2.4) and estimates (3.1), we deduce from (3.4) that

$$\int_{W} (\log |x|)^{-2} \varphi_{\beta}^{2} |x|^{-n} (\beta^{2} |x|^{2} |\nabla w|^{2} + \beta^{4} |w|^{2}) dx$$

$$+ \int_{W} (\log |x|)^{2} \varphi_{\beta}^{2} |x|^{-n} (\beta |x|^{4} |\nabla q|^{2} + |x|^{2} \beta^{3} |q|^{2}) dx$$

$$\leq C\beta \int_{W} \varphi_{\beta}^{2} |x|^{-n} |x|^{4} |\nabla q|^{2} dx$$

$$+ Ca^{2} t^{2-4\kappa_{1}-2\delta} \int_{W} (\log |x|)^{4} \varphi_{\beta}^{2} |x|^{-n} |x|^{6} |\nabla q|^{2} dx$$

$$+ Ca^{4} t^{4-4\kappa_{1}-2\delta} \int_{W} (\log |x|)^{4} \varphi_{\beta}^{2} |x|^{-n} |x|^{6} |q|^{2} dx$$

$$+ C\beta^{2} a^{4} t^{4-4\kappa_{2}-\frac{3}{4}\delta} \int_{W} (\log |x|)^{4} \varphi_{\beta}^{2} |x|^{-n} |x|^{4} |w|^{2} dx$$

$$+ C(at)^{4} \beta \int_{Y \cup Z} \varphi_{\beta}^{2} |x|^{-n} |\tilde{U}|^{2} dx$$

$$+ C(at)^{4} \beta^{2} \int_{Y \cup Z} (\log |x|)^{4} \varphi_{\beta}^{2} |x|^{2-n} |\tilde{U}|^{2} dx,$$

$$(3.5)$$

where $|\tilde{U}(x)|^2 = |x|^4 |\nabla q|^2 + |x|^2 |q|^2 + |x|^2 |\nabla w|^2 + |w|^2$ and C depends on n, λ .

Now we can choose $a > a_0 \ge 8/r_1$ such that $(\log |x|)^2 \ge 2C$ for all $x \in W$. Then the first term on the right hand side of (3.5) can be absorbed by the left hand side of (3.5). Now, let $\beta \ge \beta_2 = t^{\kappa}$ and choose $t \ge t_0$ with t_0 depending on a, λ, δ such that the second term to the fourth term on the right hand side of (3.5) can be removed. With the choices described above, we obtain from (3.5) that

$$\begin{split} \beta^{4}(b_{1})^{-n}(\log b_{1})^{-2}\varphi_{\beta}^{2}(b_{1}) \int_{\frac{1}{at} < |x| < b_{1}} |w|^{2} dx \\ &\leq \beta^{4} \int_{W} (\log |x|)^{-2}\varphi_{\beta}^{2} |x|^{-n} |w|^{2} dx \\ &\leq C\beta(at)^{4} \int_{Y \cup Z} (\log |x|)^{4}\varphi_{\beta}^{2} |x|^{-n} |\tilde{U}|^{2} dx \\ &\leq C\beta^{2}(at)^{4} (\log b_{2})^{4} b_{2}^{-n} \varphi_{\beta}^{2}(b_{2}) \int_{Y} |\tilde{U}|^{2} dx \\ &+ C\beta^{2}(at)^{4} (\log b_{3})^{4} b_{3}^{-n} \varphi_{\beta}^{2}(b_{3}) \int_{Z} |\tilde{U}|^{2} dx, \end{split}$$
(3.6)

where $b_1 = \frac{1}{a} - \frac{8}{20at^{\delta}}$, $b_2 = \frac{1}{8at}$ and $b_3 = \frac{1}{a} - \frac{3}{20at^{\delta}}$.

Using (2.8), we can control $|\tilde{U}|^2$ terms on the right hand side of (3.6).

Indeed, let $X = Y_1 := \{x : \frac{1}{16at} \le |x| \le \frac{1}{2at}\}$, then we can see that

$$d(x) \ge C|x|$$
 for all $x \in Y$,

where C an absolute constant. Therefore, (2.8) implies

$$\int_{Y} \left(|x|^{2} |\nabla w|^{2} + |x|^{4} |\nabla q|^{2} + |x|^{2} |q|^{2} \right) dx
\leq C \int_{Y_{1}} \left(d(x)^{2} |\nabla w|^{2} + d(x)^{4} |\nabla q|^{2} + d(x)^{2} |q|^{2} \right) dx
\leq C \left(1 + a^{2} t^{-\frac{3\delta}{2}} \right)^{2} \int_{Y_{1}} |w|^{2} dx
\leq C a^{4} \int_{Y_{1}} |w|^{2} dx.$$
(3.7)

Here C depends on n, λ . On the other hand, let $X = Z_1 := \{x : \frac{1}{2a} \le |x| \le \frac{1}{a} - \frac{1}{20at^{\delta}}\}$, then

$$d(x) \ge Ct^{-\delta}|x|$$
 for all $x \in Z$,

where C another absolute constant. Thus, it follows from (2.8) that

$$\int_{Z} \left(|x|^{2} |\nabla w|^{2} + |x|^{4} |\nabla q|^{2} + |x|^{2} |q|^{2} \right) dx
\leq Ct^{4\delta} \int_{Z_{1}} \left(d(x)^{2} |\nabla w|^{2} + d(x)^{4} |\nabla q|^{2} dx + d(x)^{2} |q|^{2} \right) dx
\leq Ct^{4\delta} \left(1 + a^{2} t^{-\frac{3\delta}{2}} \right)^{2} \int_{Z_{1}} |w|^{2} dx
\leq C(at)^{4} \int_{Z_{1}} |w|^{2} dx.$$
(3.8)

Combining (3.6), (3.7), and (3.8) leads to

$$b_{1}^{-2\beta-n} (\log b_{1})^{-4\beta-2} \int_{\frac{1}{2at} < |x| < b_{1}} |w|^{2} dx$$

$$\leq Ca^{8} t^{4} (\log b_{2})^{4} b_{2}^{-n} \varphi_{\beta}^{2} (b_{2}) \int_{Y_{1}} |w|^{2} dx$$

$$+ C(at)^{8} (\log b_{3})^{4} b_{3}^{-n} \varphi_{\beta}^{2} (b_{3}) \int_{Z_{1}} |w|^{2} dx.$$
(3.9)

Notice that (3.9) holds for all $\beta \geq \beta_2$.

Changing $2\beta + n$ to β , (3.9) becomes

$$b_{1}^{-\beta} (\log b_{1})^{-2\beta+2n-2} \int_{\frac{1}{2at} < |x| < b_{1}} |w|^{2} dx$$

$$\leq Ca^{8} t^{4} b_{2}^{-\beta} (\log b_{2})^{-2\beta+2n+4} \int_{Y_{1}} |w|^{2} dx$$

$$+ C(at)^{8} b_{3}^{-\beta} (\log b_{3})^{-2\beta+2n+4} \int_{Z_{1}} |w|^{2} dx. \qquad (3.10)$$

Dividing $b_1^{-\beta}(\log b_1)^{-2\beta+2n-2}$ on the both sides of (3.10) and noting $\beta \ge n+2 > n-1$, i.e., $2\beta - 2n + 2 > 0$, we have for $t \ge t_1 \ge t_0$ that

$$\int_{|x+\frac{b_{4}x_{0}}{t}|<\frac{1}{at}} |w(x)|^{2} dx
\leq \int_{\frac{1}{2at}<|x|
(3.11)$$

where $b_4 = \frac{1}{a} - \frac{1}{at^{\delta}}$ and $b_5 = \frac{1}{a} - \frac{6}{20at^{\delta}}$. In deriving the third inequality above, we use the fact that

$$0 \le (\frac{b_5}{b_3})(\frac{\log b_1}{\log b_3})^2 = 1 - \frac{1}{2t^{\delta}\log a} - \frac{3}{20t^{\delta}} + O(t^{-2\delta}) \le 1$$

for all $t \ge t_2 \ge t_1$ and $a > a_1 = \max\{1, a_0\}$, where t_2 depends on t_1 , δ , and a. From now on we fix a, which depends only on n and r_1 . Recall that r_1 is a function of n. Therefore, t_2 depends on n, λ , and δ . Having fixed constant a, $|\log b_3|$ can be bounded by a positive constant. Thus, (3.11) is reduced to

$$\int_{|x+\frac{b_4x_0}{t}|<\frac{1}{at}} |w(x)|^2 dx \leq Ct^4 (\log t)^6 (8t)^\beta \int_{|x|<\frac{1}{at}} |w(x)|^2 dx$$

2016]

174

[March

$$+Ct^8(b_1/b_5)^\beta \int_{Z_1} |w(x)|^2 dx, \qquad (3.12)$$

where C depends on n and λ .

From (3.12), (2.2), the definition of w(x), the change of variables $y = atx + x_0$, and $x_0 = ty_0$, we have that

$$I(t^{1-\delta}y_0) \leq Ct^4 (\log t)^6 (8t)^{\beta} \int_{|y-x_0|<1} |u(y)|^2 dy + Ct^{8-\frac{3\delta}{2}} \left(\frac{t^{\delta}}{t^{\delta} + \frac{1}{10}}\right)^{\beta}$$

$$\leq C(8t)^{\beta+10} I(ty_0) + Ct^8 \left(\frac{t^{\delta}}{t^{\delta} + \frac{1}{10}}\right)^{\beta}$$

$$\leq C(8t)^{2\beta} I(ty_0) + Ct^8 \left(\frac{t^{\delta}}{t^{\delta} + \frac{1}{10}}\right)^{\beta}$$
(3.13)

provided $\beta \geq \beta_2$. For simplicity, by denoting

$$A(t) = 2\log 8t, \quad B(t) = \log(\frac{t^{\delta} + \frac{1}{10}}{t^{\delta}}),$$

(3.13) becomes

$$I(t^{1-\delta}y_0) \le C \Big\{ \exp(\beta A(t))I(ty_0) + t^8 \exp(-\beta B(t)) \Big\}.$$
 (3.14)

Now, we consider two cases. If

$$\exp(\beta_2 A(t))I(ty_0) \ge t^8 \exp(-\beta_2 B(t)),$$

then we have

$$I(x_0) = I(ty_0) \ge t^8 \exp(-\beta_2(A(t) + B(t))) = t^8(8t)^{-2\beta_2} \left(\frac{t^{\delta} + \frac{1}{10}}{t^{\delta}}\right)^{-\beta_2},$$

that is

$$I(ty_0) \ge t^{-2\beta_2 + 8} = t^{-2t^{\kappa} + 8} \ge \exp(-2t^{\kappa}\log t)$$
(3.15)

for any fixed $t \ge t_2$. Note that we have used the relation $\beta_2 = t^{\kappa}$ in (3.15).

On the other hand, if

$$\exp(\beta_2 A(t))I(ty_0) < t^8 \exp(-\beta_2 B(t)),$$

then we can pick a $\tilde{\beta} > \beta_2$ such that

$$\exp(\tilde{\beta}A(t))I(ty_0) = t^8 \exp(-\tilde{\beta}B(t)).$$
(3.16)

Solving $\tilde{\beta}$ from (3.16) and using (3.14), we have that

$$I(t^{1-\delta}y_0) \leq C \exp(\tilde{\beta}A(t))I(ty_0) = C (I(ty_0))^{\tau} (t^8)^{1-\tau} \leq C t^8 (I(ty_0))^{\tau}, \qquad (3.17)$$

where $\tau = \frac{B(t)}{A(t) + B(t)}$.

It is time to prove Theorem 1.1. Let $|x_0| = t$ for $t \ge t_2^{\frac{1}{1-\delta}}$ and $y_0 = \frac{x_0}{t}$, then we can write

$$t = \mu^{\left((1-\delta)^{-s}\right)} \tag{3.18}$$

for some positive integer s and $t_2 \leq \mu < t_2^{\frac{1}{1-\delta}} \leq t_2^2$. For simplicity, we define $d_j = \mu^{\left((1-\delta)^{-j}\right)}$ and $\tau_j = \frac{B(d_j)}{A(d_j)+B(d_j)}$ for $j = 1, 2 \cdots s$. Define

$$J = \{1 \le j \le s : \exp(d_j^{\kappa} A(d_j)) I(d^j y_0) \ge d_j^8 \exp(-d_j^{\kappa} B(d_j))\}.$$

Now, we divide it into two cases. If $J = \emptyset$, we only need to consider (3.17). Using (3.17) iteratively starting from $t = d_1$, we have that

$$I(\mu y_0) \leq C(d_1^8) (I(d_1 y_0))^{\tau_1} \\ \leq C^s (d_1 d_2 \cdots d_s)^8 (I(x_0))^{\tau_1 \tau_2 \cdots \tau_s}.$$
(3.19)

By (3.18) and (3.19), we obtain that

$$I(\mu y_0) \leq C^{(\log \log t/|\log(1-\delta)|)} t^{8/\delta} (I(x_0))^{\tau_1 \tau_2 \cdots \tau_s} \leq t^{\tilde{C}_0/\delta} (I(x_0))^{\tau_1 \tau_2 \cdots \tau_s},$$
(3.20)

March

where \tilde{C}_0 depends on λ , n. It is easily to see that

$$\frac{1}{\tau_j} = \frac{2\log(8d_j) + \log(1 + 0.1d_j^{-\delta})}{\log(1 + 0.1d_j^{-\delta})} \le \frac{4\log(8d_j)}{\log(1 + 0.1d_j^{-\delta})} \le 160d_j^{\delta}\log(d_j),$$

and thus

$$\frac{1}{\tau_1 \tau_2 \cdots \tau_s} \leq (160 \log \mu \log t)^s (d_1 \cdots d_s)^\delta \\ \leq t \omega(t), \tag{3.21}$$

where $\omega(t) = (\log t)^{4\log(\log t)}$. Raising both sides of (3.20) to the power $\frac{1}{\tau_1 \tau_2 \cdots \tau_s}$ and using (3.21), we obtain that

$$(\min\{I(\mu y_0), 1\})^{t\omega(t)} \leq I(\mu y_0)^{\frac{1}{\tau_1 \tau_2 \cdots \tau_s}} \leq e^{(\tilde{C}_0/\delta)t\omega(t)} (I(x_0)).$$
(3.22)

Next, if $J \neq \emptyset$, let *l* be the largest integer in *J*. Then from (3.15) we have

$$I(d_l y_0) \ge d_l^{-2d_l^{\kappa}+8}.$$
 (3.23)

Iterating (3.17) starting from $t = d_{l+1}$ yields

$$I(d_{l}y_{0}) \leq C^{s-l}(d_{l+1}\cdots d_{s})^{8} (I(x_{0}))^{\tau_{l+1}\cdots\tau_{s}}$$

$$\leq C^{(\log\log t/|\log(1-\delta)|)}(t/d_{l})^{8/\delta} (I(x_{0}))^{\tau_{l+1}\cdots\tau_{s}}$$

$$\leq t^{\tilde{C}_{0}/\delta} (I(x_{0}))^{\tau_{l+1}\cdots\tau_{s}}.$$
(3.24)

It is enough to assume $I(d_l y_0) < 1$. Repeating the computations in (3.21), we can see that

$$\frac{1}{\tau_{l+1}\cdots\tau_s} \le (t/d_l)\omega(t). \tag{3.25}$$

Hence, combining (3.23), (3.24) and using (3.25), we get that

$$t^{-\hat{C}_{3}t^{\kappa}\log(t)} \le e^{(\hat{C}_{0}/\delta)t\omega(t)} \left(I(x_{0})\right), \qquad (3.26)$$

where \tilde{C}_3 is an absolute constant. The proof is complete in view of (3.15), (3.22) and (3.26).

Acknowledgments

The authors were supported in part by the Ministry of Science and Technology, Taiwan.

References

- R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. Amer. Math. Soc., 17 (1965), 121-153.
- R. Finn, On steady-state solutions for the Navier-Stokes partial differential equations, Arch. Rational Mech. Anal., 3 (1959), 381-396.
- L. Hörmander, The analysis of linear partial differential operators, Vol. 3, Springer-Verlag, Berlin/New York, 1985.
- C.L. Lin, G. Nakamura and J.N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients, *Duke Math Journal*, 155 (2010), No. 1, 189-204.
- C. L. Lin, G. Uhlmann and J. N. Wang, Asymptotic behavior of solutions of the stationary Navier-Stokes equations in an exterior domain, *Indiana University Mathematics Journal*, **60** (2011), No. 6, 2093-2106.
- 6. M. Mitrea and S. Monniaux, Maximal regularity for the Lamé system in certain classes of non-smooth domains, J. Evol. Equ., DOI 10.1007/s00028-010-0071-1.
- V. Sverak and T. P. Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows, Comm in PDE, 25 (2000), 2107-2117.