QUANTITATIVE ESTIMATE OF THE STATIONARY NAVIER-STOKES EQUATIONS AT INFINITY AND UNIQUENESS OF THE SOLUTION

CHING-LUNG LIN ${ }^{1, a}$ AND JENN-NAN WANG ${ }^{2, b}$

This work is dedicated to Professor Tai-Ping Liu for his 70th birthday.
${ }^{1}$ Department of Mathematics and Research Center for Theoretical Sciences, NCTS, National Cheng Kung University, Tainan 701, Taiwan.
${ }^{a}$ E-mail: cllin2@mail.ncku.edu.tw
${ }^{2}$ Institute of Applied Mathematical Sciences, NCTS, National Taiwan University, Taipei 106, Taiwan.
${ }^{b}$ E-mail: jnwang@math.ntu.edu.tw
IIII

Abstract

In this paper we are interested in the asymptotic behavior of incompressible fluid around a bounded obstacle. Under certain a priori decaying assumptions, we derive a quantitative estimate of the decaying rate of the difference of any two velocity functions at infinity. This quantitative estimate gives us a sufficient condition, expressed in terms of integrability, to guarantee that the solution of the Navier-Stokes equations is unique.

1. Introduction

Let D be a bounded domain in \mathbb{R}^{n} and $\Omega=\mathbb{R}^{n} \backslash \bar{D}$ with $n \geq 2$. Without loss of generality, we let 0 belong to interior of D. Assume that Ω is filled with an incompressible fluid described by the stationary Navier-Stokes equations

$$
\left\{\begin{array}{l}
-\Delta u+u \cdot \nabla u+\nabla p=f \quad \text { in } \quad \Omega, \tag{1.1}\\
\nabla \cdot u=0 \quad \text { in } \Omega .
\end{array}\right.
$$

We are interested in the following question: let u_{1} and u_{2} be two solutions of (1.1) satisfying some pre-described assumptions such as boundedness or

[^0]decaying conditions, then find a sufficient condition which guarantees that $u_{1} \equiv u_{2}$ in Ω. In this paper, we answer this question by deriving a minimal decay rate of $u_{1}-u_{2}$ at infinity if $u_{1} \neq u_{2}$.

This question is motivated by the following problem. It was shown by Finn [1] that when $n=3$ and $f=0$, if $\left.u\right|_{\partial D}=0$ and $u=o\left(|x|^{-1}\right)$, then u is trivial. Inspired by Finn's result, we would like to ask the following question: when $n=3$, if we know a priori that $u=O\left(|x|^{-1}\right)$, what is the minimal decaying rate of any nontrivial u satisfying (1.1)? It should be remarked that the boundary value of u on ∂B is irrelevant in this problem. Moreover, the asymptotic behavior $u=O\left(|x|^{-1}\right)$ characterizes the so-called physically reasonable solutions introduced by Finn [2].

To answer the main question of the paper, we simply subtract two equations for u_{1} and u_{2} and obtain

$$
\left\{\begin{array}{l}
-\Delta v+v \cdot \nabla v+v \cdot \nabla u_{2}+u_{2} \cdot \nabla v+\nabla p_{v}=0 \quad \text { in } \quad \Omega, \\
\nabla \cdot v=0 \quad \text { in } \Omega
\end{array}\right.
$$

where $v=u_{1}-u_{2}$ and $p_{v}=p_{1}-p_{2}$. Therefore, to solve the problem, it suffices to consider the generalized Navier-Stokes equations

$$
\left\{\begin{array}{l}
-\Delta v+v \cdot \nabla v+v \cdot \nabla \alpha+\alpha \cdot \nabla v+\nabla p=0 \quad \text { in } \Omega \tag{1.2}\\
\nabla \cdot v=0 \quad \text { in } \Omega
\end{array}\right.
$$

with $\nabla \cdot \alpha=0$. To describe the main theorem, we denote

$$
I(x)=\int_{|y-x|<1}|v(y)|^{2} d y
$$

and

$$
M(t)=\inf _{|x|=t} I(x)
$$

Then we prove that
Theorem 1.1. Let $v \in\left(H_{l o c}^{1}(\Omega)\right)^{n}$ be a nontrivial solution of (1.2) with an appropriate $p \in H_{l o c}^{1}(\Omega)$. Assume that for $0 \leq \kappa_{1}<\frac{1}{4}, 0 \leq \kappa_{2}<\frac{1}{2}$, $0<\delta \leq \frac{1}{8}$ and $\lambda \geq 1$

$$
\left\{\begin{array}{l}
|v(x)|+|\alpha(x)|+|\nabla v(x)| \leq \lambda\left(1+|x|^{2}\right)^{-\kappa_{1}-\delta} \tag{1.3}\\
|\nabla \alpha(x)| \leq \lambda\left(1+|x|^{2}\right)^{-\kappa_{2}-\delta}
\end{array}\right.
$$

Then there exist \tilde{t} depending on $\lambda, n, \kappa_{1}, \kappa_{2}, \delta$ and positive constants C_{1} such that

$$
\begin{equation*}
M(t) \geq \exp \left(-C_{1} t^{\kappa} \log t\right) \quad \text { for } \quad t \geq \tilde{t} \tag{1.4}
\end{equation*}
$$

where $\kappa=\max \left\{2-4 \kappa_{1}, 2-2 \kappa_{2}\right\}$ and the constant C_{1} depends on λ, n and

$$
\left|\log \left(\min \left\{\inf _{\tilde{t}<|x|<\tilde{t}(1-\delta)^{-1}} \int_{|y-x|<1}|v(y)|^{2} d y, 1\right\}\right)\right| .
$$

It is interesting to compare Theorem 1.1 with the result obtained in [5] where we showed that for the standard stationary Navier-Stokes equations (i.e., $\alpha=0$ in (1.2)) if v is bounded (for $n=2$) or C^{1} bounded (for $n \geq 3$) in Ω, then

$$
M(t) \geq \exp \left(-C t^{2+}\right)
$$

We can immediately deduce several consequences from Theorem 1.1. Assume that $n=3$ and $f=O\left(|x|^{-3}\right)$ at infinity. Let u_{1}, u_{2} be two solutions of (1.1) satisfying $u_{1}=O\left(|x|^{-1}\right)$ and $u_{2}=O\left(|x|^{-1}\right)$. It was proved by Sverak and Tsai [7] that both ∇u_{1} and ∇u_{2} are $O\left(|x|^{-2}\right)$. So we can choose $\kappa_{1}=3 / 16, \kappa_{2}=3 / 8$ (then $\kappa=5 / 4$), and fix $\delta=1 / 8$ in Theorem 1.1, Due to Sverak and Tsai's result, we can also relax condition (1.3). Setting $v=u_{1}-u_{2}$ and $\alpha=v_{1}$, we obtain from Theorem 1.1 that

Corollary 1.2. Let $u_{1}, u_{2} \in\left(H_{l o c}^{1}(\Omega)\right)^{3}$ be solutions of (1.1) with appropriate pressures $p_{1}, p_{2} \in H_{l o c}^{1}(\Omega)$. Assume that $f(x)=O\left(|x|^{-3}\right)$, $u_{1}(x)=$ $O\left(|x|^{-1}\right)$, and $u_{2}=O\left(|x|^{-1}\right)$, at infinity. Then there exist \tilde{t} and positive constant s_{1} such that

$$
\inf _{|x|=t} \int_{|y-x|<1}\left|\left(u_{1}-u_{2}\right)(y)\right|^{2} d y \geq \exp \left(-s_{1} t^{5 / 4} \log t\right) \quad \text { for } \quad t \geq \tilde{t}
$$

where s_{1} depends linearly on

$$
\left|\log \left(\min \left\{\inf _{\tilde{t}<|x|<\tilde{t}^{8 / 7}} \int_{|y-x|<1}\left|\left(u_{1}-u_{2}\right)(y)\right|^{2} d y, 1\right\}\right)\right| .
$$

Corollary 1.2 immediately implies the following qualitative uniqueness results.

Corollary 1.3. Let $u_{1}, u_{2} \in\left(H_{l o c}^{1}(\Omega)\right)^{3}$ be solutions of (1.1) with appropriate pressures $p_{1}, p_{2} \in H_{l o c}^{1}(\Omega)$. Assume that $f(x)=O\left(|x|^{-3}\right), u_{1}(x)=$ $O\left(|x|^{-1}\right)$, and $u_{2}=O\left(|x|^{-1}\right)$, at infinity. Then there exist R and positive constant s_{1} such that if

$$
\int_{\Omega \cap\{|x| \geq R\}} \exp \left(s|x|^{5 / 4} \log |x|\right)\left|\left(u_{1}-u_{2}\right)(x)\right|^{2} d x<\infty
$$

for all $s>s_{1}$, then $u_{1} \equiv u_{2}$ in Ω, where s_{1} 's dependence is described in Corollary 1.2.

In particular, let $u_{2}=0$ and $f=0$, we have that
Corollary 1.4. Let $n=3, f=0$, and $u \in\left(H_{l o c}^{1}(\Omega)\right)^{3}$ be a solution of (1.1) with an appropriate $p \in H_{l o c}^{1}(\Omega)$. Assume that $u(x)=O\left(|x|^{-1}\right)$. Then there exist R and positive constants s_{1} such that if

$$
\int_{\Omega \cap\{|x| \geq R\}} \exp \left(s|x|^{5 / 4} \log |x|\right)|u(x)|^{2} d x<\infty
$$

for all $s>s_{1}$, then $u \equiv 0$ in Ω, where s_{1} depends linearly on the quantity

$$
\left|\log \left(\min \left\{\inf _{R<|x|<R^{\frac{8}{7}}} \int_{|y-x|<1}|u(y)|^{2} d y, 1\right\}\right)\right| .
$$

As in [5], we prove our result along the line of Carleman's method. Some useful techniques used in [5] are collected in the next Section. The proof of the main theorem is given in Section 3.

2. Reduced system and Carleman estimates

Fixing x_{0} with $\left|x_{0}\right|=t \gg 1$, we define
$w(x)=(a t) v\left(a t x+x_{0}\right), \tilde{\alpha}(x)=(a t) \alpha\left(a t+x_{0}\right)$, and $\tilde{p}(x)=(a t)^{2} p\left(a t x+x_{0}\right)$,
where r_{1} is the constant given in Lemma 2.1 and $a \geq 8 / r_{1}$ which will be determined in the proof of Theorem 1.1, Likewise, we denote

$$
\Omega_{t}:=B_{\frac{1}{a}-\frac{1}{20 a t t^{\delta}}}(0)=\left\{x:|x|<\frac{1}{a}-\frac{1}{20 a t^{\delta}}\right\} .
$$

From (1.2), it is easy to get that

$$
\left\{\begin{array}{l}
-\Delta w+w \cdot \nabla w+w \cdot \nabla \tilde{\alpha}+\tilde{\alpha} \cdot \nabla w+\nabla \tilde{p}=0 \quad \text { in } \quad \Omega_{t} \tag{2.1}\\
\nabla \cdot w=0 \quad \text { in } \quad \Omega_{t} .
\end{array}\right.
$$

In view of (1.3), we have that

$$
\left\{\begin{array}{l}
\|\tilde{\alpha}\|_{L^{\infty}\left(\Omega_{t}\right)}+\|w\|_{L^{\infty}\left(\Omega_{t}\right)} \leq C_{0} a \lambda t^{1-2 \kappa_{1}-\delta} \tag{2.2}\\
\|\nabla w\|_{L^{\infty}\left(\Omega_{t}\right)} \leq C_{0} a^{2} \lambda t^{2-2 \kappa_{1}-\delta} \\
\|\nabla \tilde{\alpha}\|_{L^{\infty}\left(\Omega_{t}\right)} \leq C_{0} a^{2} \lambda t^{2-2 \kappa_{2}-\frac{3}{4} \delta}
\end{array}\right.
$$

where we can choose $C_{0}=(20)^{5 / 4}$.
To prove Theorem1.1, we use the reduced system containing the vorticity equation derived in [5]. Let us define the vorticity q of the velocity w by

$$
q=\operatorname{curl} w:=\frac{1}{\sqrt{2}}\left(\partial_{i} w_{j}-\partial_{j} w_{i}\right)_{1 \leq i, j \leq n}
$$

The formal transpose of curl is given by

$$
\left(\operatorname{curl}^{\top} v\right)_{1 \leq i \leq n}:=\frac{1}{\sqrt{2}} \sum_{1 \leq j \leq n} \partial_{j}\left(v_{i j}-v_{j i}\right)
$$

where $v=\left(v_{i j}\right)_{1 \leq i, j \leq n}$. It is easy to see that

$$
\Delta w=\nabla(\nabla \cdot w)-\operatorname{curl}^{\top} \operatorname{curl} w
$$

(see, for example, [6] for a proof), which implies

$$
\begin{equation*}
\Delta w+\operatorname{curl}^{\top} q=0 \quad \text { in } \quad \Omega_{t} . \tag{2.3}
\end{equation*}
$$

Next we observe that

$$
\begin{aligned}
w \cdot \nabla \tilde{\alpha}+\tilde{\alpha} \cdot \nabla w & =\nabla(w \cdot \tilde{\alpha})-\sqrt{2}(\operatorname{curl} w) \tilde{\alpha}-\sqrt{2}(\operatorname{curl} \tilde{\alpha}) w \\
& =\nabla(w \cdot \tilde{\alpha})-\sqrt{2} q \tilde{\alpha}-\sqrt{2}(\operatorname{curl} \tilde{\alpha}) w
\end{aligned}
$$

and in particular

$$
w \cdot \nabla w=\nabla\left(\frac{1}{2}|w|^{2}\right)-\sqrt{2}(\operatorname{curl} w) w=\nabla\left(\frac{1}{2}|w|^{2}\right)-\sqrt{2} q w .
$$

Thus, applying curl on the first equation of (2.1), we have that

$$
\begin{equation*}
-\Delta q+Q(q)(w+\tilde{\alpha})+q(\nabla w+\nabla \tilde{\alpha})^{\top}-(\nabla w+\nabla \tilde{\alpha}) q^{\top}-\operatorname{div} F=0 \text { in } \Omega_{t}, \tag{2.4}
\end{equation*}
$$

where

$$
(Q(q) w)_{i j}=\sum_{1 \leq k \leq n}\left(\partial_{j} q_{i k}-\partial_{i} q_{j k}\right) w_{k}
$$

and

$$
(\operatorname{div} F)_{i j} Z=\sum_{k=1}^{n} \partial_{k} F_{i j k}
$$

with

$$
F_{i j k}=\sum_{1 \leq m \leq n}\left((\operatorname{curl} \tilde{\alpha})_{j m} w_{m} \delta_{k}^{i}-(\operatorname{curl} \tilde{\alpha})_{i m} w_{m} \delta_{k}^{j}\right)
$$

Putting together (2.3), (2.4), and using (1.3), to prove the main theorem, it suffices to consider

$$
\left\{\begin{array}{l}
\Delta q+A(x) \cdot \nabla q+B(x) q+\operatorname{div} F=0 \quad \text { in } \quad \Omega_{t} \tag{2.5}\\
\Delta w+\operatorname{curl}^{\top} q=0 \quad \text { in } \quad \Omega_{t}
\end{array}\right.
$$

where A is a $(3,2)$ tensor and B is a $(2,2)$ tensor with

$$
\|A\|_{L^{\infty}\left(\Omega_{t}\right)} \leq C_{0} \lambda a t^{1-2 \kappa_{1}-\delta},\|B\|_{L^{\infty}\left(\Omega_{t}\right)} \leq C_{0} \lambda a^{2} t^{2-2 \kappa_{1}-\delta}+C_{0} \lambda a^{2} t^{2-2 \kappa_{2}-\frac{3}{4} \delta}
$$ and

$$
|F(x)| \leq C_{0} \lambda a^{2} t^{2-2 \kappa_{2}-\frac{3}{4} \delta}|w(x)|, \quad \forall x \in \Omega_{t}
$$

Our proof relies on appropriate Carleman estimates. Here we need two Carleman estimates with weights $\varphi_{\beta}=\varphi_{\beta}(x)=\exp (-\beta \tilde{\psi}(x))$, where $\beta>0$ and $\tilde{\psi}(x)=\log |x|+\log \left((\log |x|)^{2}\right)$.

Lemma 2.1. There exist a sufficiently small number $r_{1}>0$ depending on n and a sufficiently large number $\beta_{1}>3$, a positive constant C, depending on n such that for all $v \in U_{r_{1}}$ and $f=\left(f_{1}, \cdots, f_{n}\right) \in\left(U_{r_{1}}\right)^{n}, \beta \geq \beta_{1}$, we have that

$$
\begin{align*}
& \int \varphi_{\beta}^{2}(\log |x|)^{2}\left(\beta|x|^{4-n}|\nabla v|^{2}+\beta^{3}|x|^{2-n}|v|^{2}\right) d x \\
& \quad \leq C \int \varphi_{\beta}^{2}(\log |x|)^{4}|x|^{2-n}\left[\left(|x|^{2} \Delta v+|x| \operatorname{div} f\right)^{2}+\beta^{2}\|f\|^{2}\right] d x \tag{2.6}
\end{align*}
$$

where $U_{r_{1}}=\left\{v \in C_{0}^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right): \operatorname{supp}(v) \subset B_{r_{1}}\right\}$.

Lemma 2.1 is a modified form of [4, Lemma 2.4]. For the sake of brevity, we omit the proof here. Replacing β of Lemma 2.1 with $\beta+1$ and choosing $f=0$ implies

Lemma 2.2. There exist a sufficiently small number $r_{1}>0$, a sufficiently large number $\beta_{1}>1$, a positive constant C, such that for all $v \in U_{r_{1}}$ and $\beta \geq \beta_{1}$, we have

$$
\begin{equation*}
\int \varphi_{\beta}^{2}(\log |x|)^{-2}|x|^{-n}\left(\beta|x|^{2}|\nabla v|^{2}+\beta^{3}|v|^{2}\right) d x \leq C \int \varphi_{\beta}^{2}|x|^{-n}\left(|x|^{4}|\Delta v|^{2}\right) d x \tag{2.7}
\end{equation*}
$$

In addition to Carleman estimates, we also need the following interior estimate.

Lemma 2.3. For any $0<a_{1}<a_{2}$ such that $B_{a_{2}} \subset \Omega_{t}$ for $t>1$, let $X=B_{a_{2}} \backslash \bar{B}_{a_{1}}$ and $d(x)$ be the distant from $x \in X$ to $\mathbb{R}^{n} \backslash X$. Then we have

$$
\begin{align*}
& \int_{X} d(x)^{2}|\nabla w|^{2} d x+\int_{X} d(x)^{4}|\nabla q|^{2} d x+\int_{X} d(x)^{2}|q|^{2} d x \\
& \quad \leq C\left(1+a^{2} t^{-\frac{3 \delta}{2}}\right)^{2} \int_{X}|w|^{2} d x \tag{2.8}
\end{align*}
$$

where the constant C depends on n, λ.

The proof of this lemma is similar to that given in [5].

3. Proof of Theorem 1.1

This section is devoted to the proof of the main theorem, Theorem 1.1, Since $(w, p) \in\left(H^{1}\left(\Omega_{t}\right)\right)^{n+1}$, the regularity theorem implies $w \in H_{l o c}^{2}\left(\Omega_{t}\right)$. Therefore, to use estimate (2.7), we simply cut-off w. So let $\chi(x) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfy $0 \leq \chi(x) \leq 1$ and

$$
\chi(x)= \begin{cases}0, & |x| \leq \frac{1}{8 a t} \\ 1, & \frac{1}{4 a t}<|x|<\frac{1}{a}-\frac{3}{20 a t^{\delta}} \\ 0, & |x| \geq \frac{1}{a}-\frac{2}{20 a t^{\delta}}\end{cases}
$$

It is easy to see that for any multiindex α

$$
\left\{\begin{array}{l}
\left|D^{\alpha} \chi\right|=O\left((a t)^{|\alpha|}\right) \quad \text { if } \quad \frac{1}{8 a t} \leq|x| \leq \frac{1}{4 a t}, \tag{3.1}\\
\left|D^{\alpha} \chi\right|=O\left(\left(a t^{\delta}\right)^{|\alpha|}\right) \quad \text { if } \quad \frac{1}{a}-\frac{3}{20 a t^{\delta}} \leq|x| \leq \frac{1}{a}-\frac{2}{20 a t^{\delta}}
\end{array}\right.
$$

To apply Carleman estimates above, it suffices to take $1 / a \leq r_{1}$. Now applying (2.7) to χw gives

$$
\begin{align*}
& \int(\log |x|)^{-2} \varphi_{\beta}^{2}|x|^{-n}\left(\beta|x|^{2}|\nabla(\chi w)|^{2}+\beta^{3}|\chi w|^{2}\right) d x \\
& \quad \leq C \int \varphi_{\beta}^{2}|x|^{-n}|x|^{4}|\Delta(\chi w)|^{2} d x \tag{3.2}
\end{align*}
$$

Here and after, C and \tilde{C} denote general constants whose value may vary from line to line. The dependence of C and \tilde{C} will be specified whenever necessary. Next applying (2.6) to $v=\chi q$ and $f=|x| \chi F$ yields that

$$
\begin{align*}
& \int \varphi_{\beta}^{2}(\log |x|)^{2}\left(|x|^{4-n} \beta|\nabla(\chi q)|^{2}+|x|^{2-n} \beta^{3}|\chi q|^{2}\right) d x \\
& \leq C \int \varphi_{\beta}^{2}(\log |x|)^{4}|x|^{2-n}\left[\left(|x|^{2} \Delta(\chi q)+|x| \operatorname{div}(|x| \chi F)\right)^{2}+\beta^{2}\||x| \chi F\|^{2}\right] d x . \tag{3.3}
\end{align*}
$$

Combining $\beta \times$ (3.2) and (3.3), we obtain that

$$
\begin{align*}
& \int_{W}(\log |x|)^{-2} \varphi_{\beta}^{2}|x|^{-n}\left(\beta^{2}|x|^{2}|\nabla w|^{2}+\beta^{4}|w|^{2}\right) d x \\
& \quad+\int_{W}(\log |x|)^{2} \varphi_{\beta}^{2}|x|^{-n}\left(\beta|x|^{4}|\nabla q|^{2}+|x|^{2} \beta^{3}|q|^{2}\right) d x \\
& \leq \\
& \quad C \beta \int \varphi_{\beta}^{2}|x|^{-n}|x|^{4}|\Delta(\chi w)|^{2} d x \\
& \quad+C \int \varphi_{\beta}^{2}(\log |x|)^{4}|x|^{2-n}\left[\left(|x|^{2} \Delta(\chi q)+|x| \operatorname{div}(|x| \chi F)\right)^{2}\right. \tag{3.4}\\
& \left.\quad+\beta^{2}\|| | x \mid \chi F\|^{2}\right] d x
\end{align*}
$$

where W denotes the domain $\left\{x: \frac{1}{4 a t}<|x|<\frac{1}{a}-\frac{3}{20 a t^{\circ}}\right\}$. To simplify the notations, we denote $Y=\left\{x: \frac{1}{8 a t} \leq|x| \leq \frac{1}{4 a t}\right\}$ and $Z=\left\{x: \frac{1}{a}-\frac{3}{20 a t^{\delta}} \leq\right.$ $\left.|x| \leq \frac{1}{a}-\frac{2}{20 a t^{\delta}}\right\}$. By (2.4) and estimates ((3.1), we deduce from (3.4) that

$$
\int_{W}(\log |x|)^{-2} \varphi_{\beta}^{2}|x|^{-n}\left(\beta^{2}|x|^{2}|\nabla w|^{2}+\beta^{4}|w|^{2}\right) d x
$$

$$
\begin{align*}
& +\int_{W}(\log |x|)^{2} \varphi_{\beta}^{2}|x|^{-n}\left(\beta|x|^{4}|\nabla q|^{2}+|x|^{2} \beta^{3}|q|^{2}\right) d x \\
\leq & C \beta \int_{W} \varphi_{\beta}^{2}|x|^{-n}|x|^{4}|\nabla q|^{2} d x \\
& +C a^{2} t^{2-4 \kappa_{1}-2 \delta} \int_{W}(\log |x|)^{4} \varphi_{\beta}^{2}|x|^{-n}|x|^{6}|\nabla q|^{2} d x \\
& +C a^{4} t^{4-4 \kappa_{1}-2 \delta} \int_{W}(\log |x|)^{4} \varphi_{\beta}^{2}|x|^{-n}|x|^{6}|q|^{2} d x \\
& +C \beta^{2} a^{4} t^{4-4 \kappa_{2}-\frac{3}{4} \delta} \int_{W}(\log |x|)^{4} \varphi_{\beta}^{2}|x|^{-n}|x|^{4}|w|^{2} d x \\
& +C(a t)^{4} \beta \int_{Y \cup Z} \varphi_{\beta}^{2}|x|^{-n}|\tilde{U}|^{2} d x \\
& +C(a t)^{4} \beta^{2} \int_{Y \cup Z}(\log |x|)^{4} \varphi_{\beta}^{2}|x|^{2-n}|\tilde{U}|^{2} d x \tag{3.5}
\end{align*}
$$

where $|\tilde{U}(x)|^{2}=|x|^{4}|\nabla q|^{2}+|x|^{2}|q|^{2}+|x|^{2}|\nabla w|^{2}+|w|^{2}$ and C depends on n, λ.

Now we can choose $a>a_{0} \geq 8 / r_{1}$ such that $(\log |x|)^{2} \geq 2 C$ for all $x \in W$. Then the first term on the right hand side of (3.5) can be absorbed by the left hand side of (3.5). Now, let $\beta \geq \beta_{2}=t^{\kappa}$ and choose $t \geq t_{0}$ with t_{0} depending on a, λ, δ such that the second term to the fourth term on the right hand side of (3.5) can be removed. With the choices described above, we obtain from (3.5) that

$$
\begin{align*}
& \beta^{4}\left(b_{1}\right)^{-n}\left(\log b_{1}\right)^{-2} \varphi_{\beta}^{2}\left(b_{1}\right) \int_{\frac{1}{a t}<|x|<b_{1}}|w|^{2} d x \\
& \leq \beta^{4} \int_{W}(\log |x|)^{-2} \varphi_{\beta}^{2}|x|^{-n}|w|^{2} d x \\
& \leq C \beta(a t)^{4} \int_{Y \cup Z}(\log |x|)^{4} \varphi_{\beta}^{2}|x|^{-n}|\tilde{U}|^{2} d x \\
& \leq C \beta^{2}(a t)^{4}\left(\log b_{2}\right)^{4} b_{2}^{-n} \varphi_{\beta}^{2}\left(b_{2}\right) \int_{Y}|\tilde{U}|^{2} d x \\
&+C \beta^{2}(a t)^{4}\left(\log b_{3}\right)^{4} b_{3}^{-n} \varphi_{\beta}^{2}\left(b_{3}\right) \int_{Z}|\tilde{U}|^{2} d x \tag{3.6}
\end{align*}
$$

where $b_{1}=\frac{1}{a}-\frac{8}{20 a t^{\delta}}, b_{2}=\frac{1}{8 a t}$ and $b_{3}=\frac{1}{a}-\frac{3}{20 a t^{\delta}}$.
Using (2.8), we can control $|\tilde{U}|^{2}$ terms on the right hand side of (3.6).

Indeed, let $X=Y_{1}:=\left\{x: \frac{1}{16 a t} \leq|x| \leq \frac{1}{2 a t}\right\}$, then we can see that

$$
d(x) \geq C|x| \quad \text { for all } \quad x \in Y
$$

where C an absolute constant. Therefore, (2.8) implies

$$
\begin{align*}
& \int_{Y}\left(|x|^{2}|\nabla w|^{2}+|x|^{4}|\nabla q|^{2}+|x|^{2}|q|^{2}\right) d x \\
& \quad \leq C \int_{Y_{1}}\left(d(x)^{2}|\nabla w|^{2}+d(x)^{4}|\nabla q|^{2}+d(x)^{2}|q|^{2}\right) d x \\
& \quad \leq C\left(1+a^{2} t^{-\frac{3 \delta}{2}}\right)^{2} \int_{Y_{1}}|w|^{2} d x \\
& \quad \leq C a^{4} \int_{Y_{1}}|w|^{2} d x \tag{3.7}
\end{align*}
$$

Here C depends on n, λ. On the other hand, let $X=Z_{1}:=\left\{x: \frac{1}{2 a} \leq|x| \leq\right.$ $\left.\frac{1}{a}-\frac{1}{20 a t^{\delta}}\right\}$, then

$$
d(x) \geq C t^{-\delta}|x| \quad \text { for all } \quad x \in Z
$$

where C another absolute constant. Thus, it follows from (2.8) that

$$
\begin{align*}
& \int_{Z}\left(|x|^{2}|\nabla w|^{2}+|x|^{4}|\nabla q|^{2}+|x|^{2}|q|^{2}\right) d x \\
& \quad \leq C t^{4 \delta} \int_{Z_{1}}\left(d(x)^{2}|\nabla w|^{2}+d(x)^{4}|\nabla q|^{2} d x+d(x)^{2}|q|^{2}\right) d x \\
& \quad \leq C t^{4 \delta}\left(1+a^{2} t^{-\frac{3 \delta}{2}}\right)^{2} \int_{Z_{1}}|w|^{2} d x \\
& \quad \leq C(a t)^{4} \int_{Z_{1}}|w|^{2} d x \tag{3.8}
\end{align*}
$$

Combining (3.6), (3.7), and (3.8) leads to

$$
\begin{align*}
& b_{1}^{-2 \beta-n}\left(\log b_{1}\right)^{-4 \beta-2} \int_{\frac{1}{2 a t}<|x|<b_{1}}|w|^{2} d x \\
& \leq C a^{8} t^{4}\left(\log b_{2}\right)^{4} b_{2}^{-n} \varphi_{\beta}^{2}\left(b_{2}\right) \int_{Y_{1}}|w|^{2} d x \\
& \quad+C(a t)^{8}\left(\log b_{3}\right)^{4} b_{3}^{-n} \varphi_{\beta}^{2}\left(b_{3}\right) \int_{Z_{1}}|w|^{2} d x . \tag{3.9}
\end{align*}
$$

Notice that (3.9) holds for all $\beta \geq \beta_{2}$.
Changing $2 \beta+n$ to β, (3.9) becomes

$$
\begin{align*}
& b_{1}^{-\beta}\left(\log b_{1}\right)^{-2 \beta+2 n-2} \int_{\frac{1}{2 a t}<|x|<b_{1}}|w|^{2} d x \\
& \quad \leq C a^{8} t^{4} b_{2}^{-\beta}\left(\log b_{2}\right)^{-2 \beta+2 n+4} \int_{Y_{1}}|w|^{2} d x \\
& \quad+C(a t)^{8} b_{3}^{-\beta}\left(\log b_{3}\right)^{-2 \beta+2 n+4} \int_{Z_{1}}|w|^{2} d x . \tag{3.10}
\end{align*}
$$

Dividing $b_{1}^{-\beta}\left(\log b_{1}\right)^{-2 \beta+2 n-2}$ on the both sides of (3.10) and noting $\beta \geq$ $n+2>n-1$, i.e., $2 \beta-2 n+2>0$, we have for $t \geq t_{1} \geq t_{0}$ that

$$
\begin{align*}
& \int_{\left|x+\frac{b_{4} x_{0}}{t}\right|<\frac{1}{a t}}|w(x)|^{2} d x \\
& \leq \int_{\frac{1}{2 a t}<|x|<b_{1}}|w(x)|^{2} d x \\
& \leq C a^{8} t^{4}(\log (8 a t))^{6}\left(b_{1} / b_{2}\right)^{\beta} \int_{Y_{1}}|w|^{2} d x \\
& \quad+C(a t)^{8}\left(b_{1} / b_{3}\right)^{\beta}\left(\log b_{3}\right)^{6}\left[\log b_{1} / \log b_{3}\right]^{2 \beta-2 n+2} \int_{Z_{1}}|w|^{2} d x \\
& \leq \\
& \quad C a^{8} t^{4}(\log (8 a t))^{6}(8 t)^{\beta} \int_{|x|<\frac{1}{a t}}|w(x)|^{2} d x \tag{3.11}\\
& \quad+C(a t)^{8}\left(\log b_{3}\right)^{6}\left(b_{1} / b_{5}\right)^{\beta} \int_{Z_{1}}|w(x)|^{2} d x,
\end{align*}
$$

where $b_{4}=\frac{1}{a}-\frac{1}{a t^{\delta}}$ and $b_{5}=\frac{1}{a}-\frac{6}{20 a t^{\delta}}$. In deriving the third inequality above, we use the fact that

$$
0 \leq\left(\frac{b_{5}}{b_{3}}\right)\left(\frac{\log b_{1}}{\log b_{3}}\right)^{2}=1-\frac{1}{2 t^{\delta} \log a}-\frac{3}{20 t^{\delta}}+O\left(t^{-2 \delta}\right) \leq 1
$$

for all $t \geq t_{2} \geq t_{1}$ and $a>a_{1}=\max \left\{1, a_{0}\right\}$, where t_{2} depends on t_{1}, δ, and a. From now on we fix a, which depends only on n and r_{1}. Recall that r_{1} is a function of n. Therefore, t_{2} depends on n, λ, and δ. Having fixed constant $a,\left|\log b_{3}\right|$ can be bounded by a positive constant. Thus, (3.11) is reduced to

$$
\int_{\left|x+\frac{b_{4} x_{0}}{t}\right|<\frac{1}{a t}}|w(x)|^{2} d x \leq C t^{4}(\log t)^{6}(8 t)^{\beta} \int_{|x|<\frac{1}{a t}}|w(x)|^{2} d x
$$

$$
\begin{equation*}
+C t^{8}\left(b_{1} / b_{5}\right)^{\beta} \int_{Z_{1}}|w(x)|^{2} d x \tag{3.12}
\end{equation*}
$$

where C depends on n and λ.
From (3.12), (2.2), the definition of $w(x)$, the change of variables $y=$ atx $+x_{0}$, and $x_{0}=t y_{0}$, we have that

$$
\begin{align*}
I\left(t^{1-\delta} y_{0}\right) & \leq C t^{4}(\log t)^{6}(8 t)^{\beta} \int_{\left|y-x_{0}\right|<1}|u(y)|^{2} d y+C t^{8-\frac{3 \delta}{2}}\left(\frac{t^{\delta}}{t^{\delta}+\frac{1}{10}}\right)^{\beta} \\
& \leq C(8 t)^{\beta+10} I\left(t y_{0}\right)+C t^{8}\left(\frac{t^{\delta}}{t^{\delta}+\frac{1}{10}}\right)^{\beta} \\
& \leq C(8 t)^{2 \beta} I\left(t y_{0}\right)+C t^{8}\left(\frac{t^{\delta}}{t^{\delta}+\frac{1}{10}}\right)^{\beta} \tag{3.13}
\end{align*}
$$

provided $\beta \geq \beta_{2}$. For simplicity, by denoting

$$
A(t)=2 \log 8 t, \quad B(t)=\log \left(\frac{t^{\delta}+\frac{1}{10}}{t^{\delta}}\right)
$$

(3.13) becomes

$$
\begin{equation*}
I\left(t^{1-\delta} y_{0}\right) \leq C\left\{\exp (\beta A(t)) I\left(t y_{0}\right)+t^{8} \exp (-\beta B(t))\right\} \tag{3.14}
\end{equation*}
$$

Now, we consider two cases. If

$$
\exp \left(\beta_{2} A(t)\right) I\left(t y_{0}\right) \geq t^{8} \exp \left(-\beta_{2} B(t)\right)
$$

then we have

$$
I\left(x_{0}\right)=I\left(t y_{0}\right) \geq t^{8} \exp \left(-\beta_{2}(A(t)+B(t))\right)=t^{8}(8 t)^{-2 \beta_{2}}\left(\frac{t^{\delta}+\frac{1}{10}}{t^{\delta}}\right)^{-\beta_{2}}
$$

that is

$$
\begin{equation*}
I\left(t y_{0}\right) \geq t^{-2 \beta_{2}+8}=t^{-2 t^{\kappa}+8} \geq \exp \left(-2 t^{\kappa} \log t\right) \tag{3.15}
\end{equation*}
$$

for any fixed $t \geq t_{2}$. Note that we have used the relation $\beta_{2}=t^{\kappa}$ in (3.15).

On the other hand, if

$$
\exp \left(\beta_{2} A(t)\right) I\left(t y_{0}\right)<t^{8} \exp \left(-\beta_{2} B(t)\right),
$$

then we can pick a $\tilde{\beta}>\beta_{2}$ such that

$$
\begin{equation*}
\exp (\tilde{\beta} A(t)) I\left(t y_{0}\right)=t^{8} \exp (-\tilde{\beta} B(t)) \tag{3.16}
\end{equation*}
$$

Solving $\tilde{\beta}$ from (3.16) and using (3.14), we have that

$$
\begin{align*}
I\left(t^{1-\delta} y_{0}\right) & \leq C \exp (\tilde{\beta} A(t)) I\left(t y_{0}\right) \\
& =C\left(I\left(t y_{0}\right)\right)^{\tau}\left(t^{8}\right)^{1-\tau} \\
& \leq C t^{8}\left(I\left(t y_{0}\right)\right)^{\tau}, \tag{3.17}
\end{align*}
$$

where $\tau=\frac{B(t)}{A(t)+B(t)}$.
It is time to prove Theorem 1.1. Let $\left|x_{0}\right|=t$ for $t \geq t_{2}^{\frac{1}{1-\delta}}$ and $y_{0}=\frac{x_{0}}{t}$, then we can write

$$
\begin{equation*}
t=\mu^{\left((1-\delta)^{-s}\right)} \tag{3.18}
\end{equation*}
$$

for some positive integer s and $t_{2} \leq \mu<t_{2}^{\frac{1}{1-\delta}} \leq t_{2}^{2}$. For simplicity, we define $d_{j}=\mu^{\left((1-\delta)^{-j}\right)}$ and $\tau_{j}=\frac{B\left(d_{j}\right)}{A\left(d_{j}\right)+B\left(d_{j}\right)}$ for $j=1,2 \cdots s$. Define

$$
J=\left\{1 \leq j \leq s: \exp \left(d_{j}^{\kappa} A\left(d_{j}\right)\right) I\left(d^{j} y_{0}\right) \geq d_{j}^{8} \exp \left(-d_{j}^{\kappa} B\left(d_{j}\right)\right)\right\}
$$

Now, we divide it into two cases. If $J=\emptyset$, we only need to consider (3.17). Using (3.17) iteratively starting from $t=d_{1}$, we have that

$$
\begin{align*}
I\left(\mu y_{0}\right) & \leq C\left(d_{1}^{8}\right)\left(I\left(d_{1} y_{0}\right)\right)^{\tau_{1}} \\
& \leq C^{s}\left(d_{1} d_{2} \cdots d_{s}\right)^{8}\left(I\left(x_{0}\right)\right)^{\tau_{1} \tau_{2} \cdots \tau_{s}} \tag{3.19}
\end{align*}
$$

By (3.18) and (3.19), we obtain that

$$
\begin{align*}
I\left(\mu y_{0}\right) & \leq C^{(\log \log t /|\log (1-\delta)|)} t^{8 / \delta}\left(I\left(x_{0}\right)\right)^{\tau_{1} \tau_{2} \cdots \tau_{s}} \\
& \leq t^{\tilde{C}_{0} / \delta}\left(I\left(x_{0}\right)\right)^{\tau_{1} \tau_{2} \cdots \tau_{s}}, \tag{3.20}
\end{align*}
$$

where \tilde{C}_{0} depends on λ, n. It is easily to see that

$$
\frac{1}{\tau_{j}}=\frac{2 \log \left(8 d_{j}\right)+\log \left(1+0.1 d_{j}^{-\delta}\right)}{\log \left(1+0.1 d_{j}^{-\delta}\right)} \leq \frac{4 \log \left(8 d_{j}\right)}{\log \left(1+0.1 d_{j}^{-\delta}\right)} \leq 160 d_{j}^{\delta} \log \left(d_{j}\right)
$$

and thus

$$
\begin{align*}
\frac{1}{\tau_{1} \tau_{2} \cdots \tau_{s}} & \leq(160 \log \mu \log t)^{s}\left(d_{1} \cdots d_{s}\right)^{\delta} \\
& \leq t \omega(t) \tag{3.21}
\end{align*}
$$

where $\omega(t)=(\log t)^{4 \log (\log t)}$. Raising both sides of (3.20) to the power $\frac{1}{\tau_{1} \tau_{2} \cdots \tau_{s}}$ and using (3.21), we obtain that

$$
\begin{align*}
\left(\min \left\{I\left(\mu y_{0}\right), 1\right\}\right)^{t \omega(t)} & \leq I\left(\mu y_{0}\right)^{\frac{1}{\tau_{1} \tau_{2} \cdots \tau_{s}}} \\
& \leq e^{\left(\tilde{C}_{0} / \delta\right) t \omega(t)}\left(I\left(x_{0}\right)\right) \tag{3.22}
\end{align*}
$$

Next, if $J \neq \emptyset$, let l be the largest integer in J. Then from (3.15) we have

$$
\begin{equation*}
I\left(d_{l} y_{0}\right) \geq d_{l}^{-2 d_{l}^{\kappa}+8} \tag{3.23}
\end{equation*}
$$

Iterating (3.17) starting from $t=d_{l+1}$ yields

$$
\begin{align*}
I\left(d_{l} y_{0}\right) & \leq C^{s-l}\left(d_{l+1} \cdots d_{s}\right)^{8}\left(I\left(x_{0}\right)\right)^{\tau_{l+1} \cdots \tau_{s}} \\
& \leq C^{(\log \log t /|\log (1-\delta)|)}\left(t / d_{l}\right)^{8 / \delta}\left(I\left(x_{0}\right)\right)^{\tau_{l+1} \cdots \tau_{s}} \\
& \leq t^{\tilde{C}_{0} / \delta}\left(I\left(x_{0}\right)\right)^{\tau_{l+1} \cdots \tau_{s}} \tag{3.24}
\end{align*}
$$

It is enough to assume $I\left(d_{l} y_{0}\right)<1$. Repeating the computations in (3.21), we can see that

$$
\begin{equation*}
\frac{1}{\tau_{l+1} \cdots \tau_{s}} \leq\left(t / d_{l}\right) \omega(t) \tag{3.25}
\end{equation*}
$$

Hence, combining (3.23), (3.24) and using (3.25), we get that

$$
\begin{equation*}
t^{-\tilde{C}_{3} t^{\kappa} \log (t)} \leq e^{\left(\tilde{C}_{0} / \delta\right) t \omega(t)}\left(I\left(x_{0}\right)\right) \tag{3.26}
\end{equation*}
$$

where \tilde{C}_{3} is an absolute constant. The proof is complete in view of (3.15), (3.22) and (3.26).

Acknowledgments

The authors were supported in part by the Ministry of Science and Technology, Taiwan.

References

1. R. Finn, Stationary solutions of the Navier-Stokes equations, Proc. Symp. Appl. Math. Amer. Math. Soc., 17 (1965), 121-153.
2. R. Finn, On steady-state solutions for the Navier-Stokes partial differential equations, Arch. Rational Mech. Anal., 3 (1959), 381-396.
3. L. Hörmander, The analysis of linear partial differential operators, Vol. 3, SpringerVerlag, Berlin/New York, 1985.
4. C.L. Lin, G. Nakamura and J.N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients, Duke Math Journal, 155 (2010), No. 1, 189-204.
5. C. L. Lin, G. Uhlmann and J. N. Wang, Asymptotic behavior of solutions of the stationary Navier-Stokes equations in an exterior domain, Indiana University Mathematics Journal, 60 (2011), No. 6, 2093-2106.
6. M. Mitrea and S. Monniaux, Maximal regularity for the Lamé system in certain classes of non-smooth domains, J. Evol. Equ., DOI 10.1007/s00028-010-0071-1.
7. V. Sverak and T. P. Tsai, On the spatial decay of 3-D steady-state Navier-Stokes flows, Comm in PDE, 25 (2000), 2107-2117.

[^0]: Received March 31, 2015 and in revised form September 2, 2015.
 AMS Subject Classification: 35B60, 76D05.
 Key words and phrases: Quantitative uniqueness estimates, Navier-Stokes equations, Carleman estimates.

