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Abstract

We introduce a model reduction method for elliptic PDEs with random input, which

follows the heterogeneous stochastic finite element method framework and exploits the

compactness of the solution operator in the stochastic direction on local regions of the

spatial domain. This method consists of two stages and suits the multi-query setting. In

the offline stage, we adaptively construct local stochastic basis functions that can cap-

ture the stochastic structure of the solution space in local regions of the domain. This

is achieved through local Hilbert-Karhunen-Loève expansions of sampled stochastic so-

lutions with randomly chosen forcing functions. In the online stage, for given forcing

functions, we discretize the equation using the heterogeneous coupling of spatial basis

with the constructed local stochastic basis, and obtain the numerical solutions through

Galerkin projection. Convergence of the online numerical solutions is proved based on

the thresholding in the offline stage. Numerical results are presented to demonstrate the

effectiveness of this model reduction method.

1. Introduction

Analysis of complex systems requires not only a fine understanding of

the underlying physics, but also recognition of the intrinsic uncertainties and

their influences on the quantities of interest (QoIs). Uncertainty Quantifica-

tion (UQ) is an emerging discipline that aims at addressing the latter issue
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and has attracted growing interest recently. In this work we consider UQ of

the following second order linear elliptic equation with random input data,

which can be used to model diffusion processes,

{

−div (a(x, ω)∇u(x, ω)) = f(x), x ∈ D, ω ∈ Ω,

u(x, ω)|∂D = 0.
(1.1)

Here D is a bounded convex polygon domain in Rd, and (Ω,F , P ) is a

probability space. We simply assume that Ω ⊂ Rm, and the dimension of

the stochastic input ω is m. We also assume that f(x) ∈ L2(D), and a(x, ω)

is bounded and uniformly elliptic, i.e., there exist λmin and λmax such that

P (ω ∈ Ω : a(x, ω) ∈ [λmin, λmax], ∀x ∈ D) = 1. (1.2)

The existence of solution to (1.1) is a consequence of the Lax-Milgram

theorem, and we have

‖u(x, ω)‖L2(H1

0
(D),Ω) ≤ C‖f(x)‖H−1(D), (1.3)

where L2(H1
0 (D),Ω) is the Hilbert space of functions u(x, ω) that satisfy

‖u(x, ω)‖L2(H1

0
(D),Ω) =

(
∫

Ω
‖u(x, ω)‖2H1

0
(D)dP

)1/2

< +∞. (1.4)

There exist a vast literature on numerically solving stochastic partial dif-

ferential equations (SPDE), and we list a few of those related to our present

work below. Perturbation methods [30, 1, 28] start with expanding the

stochastic solution via Taylor expansion and result in a system of determin-

istic equations by truncating after certain order. One limitation of perturba-

tion methods is that the magnitude of the input and output uncertainty must

be small compared with their respective means. Monte Carlo type methods

[10, 36] sample the stochastic equation according to the underlying probabil-

ity distribution, and compute the statistics of the solutions based on these

samples. The main issue for Monte Carlo type methods is that the root-

mean-square error decays very slowly as O(M−1/2), where M is the number

of samples. The polynomial chaos methods [2, 48, 37, 43, 3, 32, 49, 20] ex-

ploit the smooth dependence of the solution on the random variables, and
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discretize the equation using orthogonal polynomials in the stochastic direc-

tion to achieve spectral accuracy. Polynomial chaos methods suffer from the

curse of dimensionality since the degree of freedom grows exponentially fast

with the stochastic dimension.

Efficient computation of SPDE with high dimensional stochastic input

remains as an outstanding challenge. For these challenging problems there

exist some methods [16, 23, 19, 5, 29, 18, 42, 9, 8, 7], that exploit the sparsity

of the expansion of u(x, ω) with respect to the polynomial chaos to reduce

the computational cost. Several types of model reduction methods have

been proposed for these challenging problems with high stochastic dimension,

including the dynamic orthogonal formulation [13, 14, 35, 41, 15] for time-

dependent problems, the principal generalized decomposition method [45,

38, 22], low-rank decomposition of the stochastic solutions [12, 17], and the

reduced basis method [40, 4, 39].

These high stochastic dimension problems become even more challeng-

ing in the multi-query setting where the equations need to be solved for

multiple times with different forcing functions f(x) ∈ L2(D) or boundary

conditions. For the multi-query problems, the model reduction methods

mentioned above may not be efficient since one needs to construct the op-

timal reduced basis functions for each query. Another approach of model

reduction [12, 26] is to construct a set of basis functions that can approx-

imate the whole solution space for a family of boundary conditions and

forcing functions. The identification of such a set of basis functions may be

expensive, but once they are constructed, effective reduced model can be

built and the computation cost for each query can be significantly reduced.

In [12], the authors construct problem-dependent stochastic basis functions

through Karhunen-Loève expansion of sampled stochastic solutions, and use

these data-driven stochastic basis functions, instead of orthogonal polynomi-

als to discretize the equation. In [26], the authors propose a heterogeneous

stochastic finite element method (HSFEM) framework, which uses the het-

erogeneous coupling of spatial basis functions with local stochastic basis

functions to approximate the solution space. This framework allows us to

exploit the compactness of the solutions space in the stochastic direction on

local regions of the spatial domain. We will follow the HSFEM framework

in this paper and propose a method suited for the multi-query setting.
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The staring point of our method is the compactness of the solution op-

erator in the stochastic direction, which is a direct consequence of the fact

that we have assumed the forcing function f(x) to be in L2(D), not just

H−1(D). Like many other model reduction techniques, our method consists

of offline and online stages. In the offline stage, we first cover the physical

domain D using overlapping sub-domains Di, i = 1, . . . N , and build the cor-

responding partition of unity functions ψi(x). We employ the methodology

of randomized range finding algorithms and randomly choose several L2(D)

forcing functions f1(x), . . . fK(x). Then we solve the equation (1.1) using ex-

isting SPDE solver to get the corresponding solutions ui(x, ω), i = 1, 2 . . . K,

and restrict these sampled stochastic solutions to each sub-domain Di. The

local stochastic basis functions on Di are adaptively extracted from the sam-

pled solutions through the local Hilbert-Karhunen-Loève expansions, based

on some a posteriori error estimates, and can accurately capture the local

stochastic structure of the solution space. Then we construct the tensor

product of local stochastic basis functions with local spatial basis functions

to approximate the local solution space on each Di. These local approxima-

tion spaces are then combined together using the partition of unity functions

to get the final offline trial space Vh. In the online stage, we obtain the nu-

merical solution uh(x, ω) from the constructed offline trial space Vh through

the Galerkin projection. Since the total degree of freedom in our method is

significantly less than that of the polynomial chaos methods, we can achieve

considerable computational savings in the online stage.

Compared with the previous work [26], our present work has the fol-

lowing features: 1) the use of the Hilbert-Karhunen-Loève expansion, the

a posterior error estimates, and the partition of the unity formulation al-

low us to prove the convergence of the online numerical solution (with high

probability); 2) the constructed local stochastic basis functions are the same

for spatial basis functions supported on the same local region, thus we can

achieve significant savings on the storage of the local stochastic basis.

This rest of this paper is organized as follows. In section 2, we show

the compactness of the solution operator to equation (1.1) and review the

Heterogeneous Stochastic FEM framework. In section 3, we detail the con-

struction of the local stochastic basis functions through Hilbert-Karhunen-

Loève expansions of sampled solutions in the offline stage, and the Galerkin

projection procedure in the online stage. We also prove the convergence of
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the online numerical solution. In section 4, we address several issues regard-

ing the practical implementation of our method. In section 5, we present

numerical results to demonstrate the efficiency of our method. Concluding

remarks are made in section 6.

2. Review of the Heterogeneous Stochastic FEM Framework

2.1. Compactness of the solution operator

Using the Lax-Milgram theorem, we can obtain that for f(x) ∈ H−1(D),

the solution to equation (1.1) has the following upper and lower bounds,

‖u(x, ω)‖L2(H1

0
(D),Ω) ≤ C‖f(x)‖H−1(D),

‖u(x, ω)‖L2(H1

0
(D),Ω) ≥ c‖f(x)‖H−1(D)

(2.1)

where c and C depend only on λmin and λmax (1.2). We denote the solution

space of (1.1) for f(x) ∈ H−1(D) as V , and according to (2.1), V is a

closed subspace of L2(H1
0 (D),Ω). We denote L−1 as the linear operator

that maps from f(x) ∈ H−1(D) to V , then (2.1) implies that L−1 is a

homeomorphism. We denote IL2(D)→H−1(D) as the embedding operator from

L2(D) to H−1(D), which is compact according to the Sobolev space theory

[21]. Then the solution operator to equation (1.1),

T : f(x) ∈ L2(D) → u(x, ω) ∈ L2(H1
0 (D),Ω), (2.2)

has the following decomposition,

T = L−1IL2(D)→H−1(D). (2.3)

The compactness of T follows immediately from the compactness of

IL2(D)→H−1(D) and the continuity of L−1. To quantify the compactness of

T , we introduce the definition of Kolmogorov n-width.

Definition 2.1 (Kolmogorov n-width). Denote A as a bounded set in ba-

nach space X, and let Xn be an n-dimensional subspace of X, then the

Kolmogorov n-width of A is

dn(A) = inf
Xn

sup
x∈A

inf
y∈Xn

‖x− y‖. (2.4)
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The Kolmogorov n-width of the image of unit ball under T , namely,

T (B0(1)), characterizes the approximability of T using low rank operators.

And we introduce the following definition,

Definition 2.2 (Approximability of a compact operator). For a compact

linear operator T , we define dn(T ) that measures the approximability of T

using a rank-n operator,

dn(T ) = inf
Tn

‖T − Tn‖, (2.5)

where Tn runs over rank-n linear operators.

One can easily verify that dn(T ) = dn(T (B0(1))).

Due to the fact that L−1 is a homeomorphism, (2.1), the approximability

of T is of the same order as that of IL2(D)→H−1(D). To be specific, based on

(2.3) and (2.1), we have

dn(T ) = inf
Tn

‖T − Tn‖ = inf
Tn

‖L−1(IL2(D)→H−1(D) − LTn)‖, (2.6)

≤ C inf
Tn

‖IL2(D)→H−1(D)−LTn‖=C inf
In=LTn

‖IL2(D)→H−1(D)−In‖. (2.7)

Note that In = LTn runs over all rank-n operator from L2(D) to H−1(D),

so we get dn(T ) ≤ Cdn(In). Similarly, using the lower bound in (2.1), we

get dn(T ) ≥ cdn(In). Altogether, we obtain that

dn(T ) ∈ [cdn(I), Cdn(I)], (2.8)

where c and C depend on λmin and λmax, but do not depend on the dimen-

sion of ω.

The compactness of IL2(D)→H−1(D) is well known, see [6, 33, 27]. The fol-

lowing theorem can be obtained by analyzing the eigenvalues of the Laplace

operator. See [6].

Theorem 2.1 (Compactness of IL2(D)→H−1(D)).

dN (I) =
1

2
√
π

( |D|
Γ(1 + d/2)N

)1/d

(1 + o(1)), N → ∞, (2.9)

where d is the dimension of the physical domain D.
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The above theorem and (2.8) imply that

dN (T ) = O(N−1/d). (2.10)

As a consequence, there exist O(h−d) basis functions in L2(H1
0 (D),Ω), such

that for any f(x) ∈ L2(D) and the corresponding solution to (1.1) u(x, ω),

we have the following approximation property

inf
v(x,ω)∈Vh

‖u(x, ω) − v(x, ω)‖L2(H1

0
(D),Ω) ≤ h‖f‖L2(D), (2.11)

where Vh is the finite dimensional space spanned by these O(h−1/d) basis

functions.

Note that in (2.11), the number of basis functions required to obtain the

O(h) approximation accuracy is O(h−d), and this is optimal and indepen-

dent of the stochastic dimension. It is a direct consequence of the uniform

ellipticity of the equation (1.2), and our assumption that the forcing func-

tion f(x) has higher integrability, namely it lives in L2(D), not just H−1(D).

This fact implies that the model (1.1) with high dimensional stochastic input

can, at least in principle, be effectively reduced.

2.2. The heterogeneous stochastic FEM framework

Due to the global nature of the elliptic operator in (1.1), it is in gen-

eral not easy to construct an effective set of basis functions to obtain the

optimal approximation property (2.11). Besides, we hope that these basis

functions have compact support so that the corresponding stiffness matrix in

the Galerkin projection is sparse and easy to invert. For the above reasons,

we give up the optimal approximation property (2.11) and seek to construct

basis functions that have compact support and are easy to represent.

For deterministic elliptic equations, the piecewise linear basis functions

are employed to approximate the solution space [44]. In the stochastic set-

ting, we use the product of these spatial basis with some stochastic basis to

approximate the solution. And this leads us to the heterogeneous stochastic

finite element (HSFEM) framework proposed in [26]. The HSFEM frame-

work employs a finite dimensional subspace of L2(H1
0 (D),Ω) taking the fol-
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lowing form to discretize equation (1.1),

Vh =
{

n
∑

i=1

ki
∑

j=0

cjiφi(x)ξ
j
i (ω)

}

. (2.12)

The φi(x), i = 1, . . . n are a set of finite element spatial basis functions,

and ξji (ω), j = 0, . . . ki are the stochastic basis functions associated with

φi(x). The key feature of the above finite dimensional space is that dif-

ferent stochastic basis functions are used to couple with different spatial

basis functions. Since φi(x) has local support, the associated stochastic

basis ξji (ω), j = 0, . . . ki are called local stochastic basis. The above finite-

dimensional space allows for spatially heterogeneous stochastic structure of

the solution space. The numerical results obtained in [26] reveal that the

solution spaces to elliptic equations with several types of random input have

strong spatially heterogeneous stochastic structure, which justifies the use

of the HSFEM framework for stochastic elliptic equations.

After constructing the trial space (2.12) that has good approximation

property, we can obtain numerical solution uh(x, ω) through the Galerkin

projection. Namely, we seek uh(x, ω) ∈ Vh, such that

∫

Ω

∫

D
∇u(x, ω)a(x, ω)∇v(x, ω)dxdP =

∫

Ω

∫

D
f(x)v(x, ω)dxdP, (2.13)

for all v(x, ω) ∈ Vh. The numerical solution obtained from above enjoys the

following quasi-optimality

‖u(x, ω) − uh(x, ω)‖L2(H1

0
(D),Ω) ≤ C inf

v(x,ω)∈Vh

‖u(x, ω) − v(x, ω)‖L2(H1

0
(D),Ω).

(2.14)

The total number of basis functions in (2.12) is K =
∑n

i=1(ki + 1) =

nk̄ + n, where k̄ is the average of ki. Correspondingly, the stiffness matrix

formed in (2.13) is K×K and sparse. The success of the HSFEM framework

relies on constructing Vh that has good approximating property and small ki.

Since φi(x) has local support near node point xi, the associated stochastic

basis functions ξji (ω), j = 0, . . . ki approximate the stochastic structure of

the solution near xi. In [26], the following operator, which maps the forcing

f(x) ∈ L2(D) to the stochastic part of the solution on a single node point
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xi, is investigated,

Ti : f(x) ∈ L2(D) → u(xi, ω)− ū(xi, ω) ∈ L2(Ω). (2.15)

It is shown in [26] that Ti is a compact linear operator, and has the following

singular value decomposition,

Tif(x) =

∞
∑

j=1

σji

∫

D
f(x)φji (x)dxξ

j
i (ω), (2.16)

where φji (x), σ
j
i , ξ

j
i (ω), j = 1, . . .∞ are obtained from the Karhunen-Loève

expansion of G(xi, y, ω),

G(xi, y, ω) = Ḡ(xi, y) +

∞
∑

j=1

σjiφ
j
i (x)ξ

j
i (ω). (2.17)

G(xi, y, ω) is the Green’s function of (1.1), and the Karhunen-Loève ex-

pansion will be introduced in section 3.2. Since for the physical dimension

d = 2, 3, G(xi, y, ω) ∈ L2(D×Ω), see [46, 24], we have
∑∞

j=1(σ
j
i )

2 ≤ C, where

C is independent of the stochastic dimension of the problem. Consequently,

to obtain order ǫ accuracy in approximating Ti in the sense of (2.5), at most

O(ǫ−2) stochastic basis functions are required [26]. This upper bound is ob-

tained only under the assumption that equation (1.1) is uniformly elliptic,

and it is independent of the stochastic dimension of the problem.

The numerical results in [26] show that the singular values of Ti decay

exponentially fast, namely, Ti has a low rank structure. Thus a very small

number of stochastic basis functions are enough to approximate the range

of Ti very well in the sense of (2.5). This result illustrates the compactness

of the solution operator in the stochastic direction in local regions of the

domain, and reveals the potential advantage of the HSFEM framework for

stochastic elliptic equations.

The HSFEM framework can be viewed as a generalization of the poly-

nomial chaos methods by using problem-dependent and local stochastic basis

functions instead of orthogonal polynomials. This generalization enables us

to significantly reduce the total degree of freedom, and consequently the

computational cost. In this paper, we follow the HSFEM framework, and
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propose an effective method to construct the local stochastic basis func-

tions through local Hilbert-Karhunen-Loève expansion to sampled solutions

of (1.1). Compared with the previous method in [26], the present work allows

us to rigorously control the error in the online numerical solution uh(x, ω),

and can bring in savings on the storage of the local stochastic basis. These

will be detailed in the next section.

3. Construction of the Local Stochastic Basis through

Local Hilbert-Karnuen-Loève Expansion

3.1. Local approximation of the solution space

To construct the local stochastic basis functions, we first cover the physi-

cal domain D using sub-domainsDi, i = 1, . . . N , and construct the partition

of unity functions ψi(x) [34] . Namely, they satisfy

D =

N
⋃

i=1

Di, support(ψi(x)) ⊂ Di, ψi(x) ≥ 0,

N
∑

i=1

ψi(x) = 1 for x ∈ D.

(3.1)

We make additional assumptions about this partition of unity that the

number of sub-domains Dj that intersects Di is bounded, and

N ≤ C

Hd
, diam(Di) = O(H), |∇ψi(x)| ≤

C

H
. (3.2)

The above assumptions can be easily satisfied by using a uniform coarse

mesh of size H.

Then we consider the solution space to (1.1) restricted on a sub-domain

Di, namely u(x, ω)|Di
. We seek to construct local stochastic basis functions

ξji (ω), j = 0, . . . ki that capture the stochastic structure of the solution on

Di, and use the following tensor product space to approximate u(x, ω)|Di
,

Vh,i = span{ξ0i (ω), ξ1i (ω), . . . ξkii (ω)} ⊗ span{φ1i (x), φ2i (x), . . . φni

i (x)} (3.3)

where φji (x) are the piecewise linear finite element basis functions on a fine

mesh of size h and with support on Di. In this work we focus on model

reduction in the stochastic direction, thus assume for simplicity that the

spatial variation of the solution can be captured accurately by the fine mesh
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of size h. Namely, we neglect the error from the spatial discretization using

finite dimensional space

span{φ1i (x), φ2i (x), . . . φni

i (x)}. (3.4)

We construct these ξji (ω) through the Hilbert-Karhunen-Loève expansion of

sampled solutions.

3.2. The Hilbert-Karhunen-Loève expansion

For a stochastic process u(x, ω) ∈ L2(D × Ω), it can be expanded in a

Fourier type series as

u(x, ω) = ū(x) +

∞
∑

i=1

σiφi(x)ξi(ω), (3.5)

where φi(x) and ξi(ω) are orthonormal vectors in L2(D) and L2(Ω) respec-

tively. The above expansion (3.5) is called the Karhunen-Loève (KL) expan-

sion of u(x, ω) ∈ L2(D × Ω), [47, 11], and the φi(x) can be constructed as

the eigenvectors of the covariance function C(x, y) = Cov(u(x, ω), u(y, ω)),

∫

D
C(x, y)φi(y)dy = σ2i φi(x). (3.6)

The random variable ξi(x) can be computed as

ξi(ω) =
1

σi

∫

D
(u(x, ω) − ū(x))φi(x)dx. (3.7)

The truncated KL expansion is known as the best low rank approxima-

tion of a second order stochastic process in the L2(D × Ω) sense. However,

for our problem, we want to construct stochastic basis ξji (ω), j = 0, . . . ki,

such that the expanded tensor product space (3.3) approximates u(x, ω)|Di

in L2(H1(Di),Ω) sense, not L2(D × Ω) sense. This is because according

to (2.14), the Galerkin projection formulation seeks the best approximation

of the solution within the trial space in L2(H1
0 (D),Ω). This consideration

naturally leads us to the Hilbert-Karhunen-Loève expansion [17].
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For a stochastic process u(x, ω) ∈ L2(H1(D),Ω), we have the following

Fourier type expansion,

u(x, ω) = ū(x) +

∞
∑

i=1

σiψi(x)ξi(ω), (3.8)

where ψi(x) and ξi(ω) are orthonormal vectors in H1(D) and L2(Ω) respec-

tively. The difference between (3.8) and (3.5) is that the spatial basis ψi(x)

in (3.8) is orthonormal in H1(D), while the spatial basis φi(x) in (3.5) is

orthonormal in L2(D).

To obtain the above Hilbert-Karhunen-Loève (HKL) expansion, we first

choose a complete set of orthonormal basis in H1(D), and denote them

as Ψj(x), j = 1, . . .∞. For each ω ∈ Ω, we consider the projection of

u(x, ω)− ū(x) on this basis, and denote the coefficients of the projection as

c(j, ω). Namely,

u(x, ω)− ū(x) =
∞
∑

j=1

c(j, ω)Ψj(x). (3.9)

One can easily see that c(j, ω) ∈ L2(N × Ω), where N is the set of natural

numbers. We actually have ‖c(i, ω)‖L2(N×Ω) = ‖u(x, ω)‖L2(H1

0
(D),Ω), thus we

can do KL expansion to c(j, ω) and get

c(j, ω) =

∞
∑

i=1

σili(j)ξi(ω), (3.10)

where li(j) and ξi(ω) are orthonormal vectors in L2(N ) and L2(Ω) respec-

tively.

The above expansion combined with (3.9) gives us the Hilbert-Karhunen-

Loève expansion of u(x, ω) (3.10), with ξi(ω) and σi given by (3.10), and

ψi(x) given by
∑∞

j=1 li(j)Ψj(x), namely,

u(x, ω) = ū(x) +

∞
∑

i=1

σi





∞
∑

j=1

li(j)Ψj(x)



 ξi(ω). (3.11)

The first several stochastic basis functions in (3.8) capture the stochastic

structure of u(x, ω), and span the best low dimensional space (3.3) approxi-

mating u(x, ω)|Di
in L2(H1(Di),Ω).
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We will employ the philosophy of randomized range finding algorithms,

and apply the HKL expansion to sampled solutions u(x, ω)|Di
to construct

the local stochastic basis.

3.3. Randomized range finding algorithm

The problem of constructing effective local stochastic basis functions is

essentially a range-finding problem, which can be formulated as the following:

for a matrix T , we want to find a matrix Q with orthonormal columns such

that its column space captures the main action of T .

To be precise, we want the following holds,

‖T −QQTT‖ ≤ ǫ. (3.12)

Note that QQT in the above equation is the projection operator to the

column space of Q.

The idea of the randomized range finding algorithms is the following:

assuming that the operator T has low rank, namely, its singular values de-

cay very fast, then the main action of T can be captured in the image of

some random matrix Ω under T , TΩ, with high probability. Therefore,

one can extract the orthonormal matrix Q approximating the range of T

from TΩ using the Gram-Schmidt orthogonalization. See [25, 31] for more

about these randomized range finding algorithms. Once we have got some

Q approximating the range of T , we can use the following Lemma 3.1 (see

[25]) to verify that the condition (3.12) holds with high probability. To be

specific, we choose the matrix B in Lemma 3.1 as T − QQTT , and draw r

random vectors ω(i). We use T to act on these ω(i), i = 1, . . . r, and compute

the residuals after projecting the images Tω(i) to the column space of Q,

namely ‖(I −QQT )Tω(i)‖. If all the r number of residuals are smaller than
ǫ
α

√

π
2 , then the condition (3.12) holds except with probability α−r.

Lemma 3.1. Let B be a real m × n matrix. Fix a positive integer r and

a real number α > 0. Draw an independent family of standard Gaussian

vectors

{ω(i) : i = 1, 2 . . . , r}. (3.13)
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Then

‖B‖ ≤ α

√

2

π
max

i=1,...,r
‖Bω(i)‖ (3.14)

except with probability α−r.

The good thing about the randomized range-finding algorithms and the

error estimation (3.14) is that they do not require access to each entry of

the matrix T , and only require the matrix-vector multiplication. For our

problem, this matrix-vector multiplication corresponds to solving (1.1) with

certain f(x), which we have access to using existing SPDE solvers. So we can

employ the randomized range finding philosophy and the error estimation

(3.14) in our problem to construct local stochastic basis and the correspond-

ing tensor product space (3.3). These will be detailed in the next subsection.

3.4. Constructing local stochastic basis through HKL expansion

We consider approximating the range of operator RDi
T using (3.3)

for our problem, where RDi
is the restriction on Di. For f(x) ∈ L2(D),

RDi
Tf = u(x, ω)|Di

, where u(x, ω) is the corresponding solution to (1.1).

The following algorithm returns local stochastic basis functions on subdo-

mains Di, i = 1, . . . N , such that the resulting tensor production spaces (3.3)

can accurately approximate the range of RDi
T .

1. Discretizing the domain of T , L2(D).

To apply RDi
T to some random vector, we first discretize the domain

of T , namely, L2(D). We select a complete set orthonormal basis func-

tions of L2(D), and denote them as Φi(x), i = 1, . . .∞. In our numer-

ical examples, the domain D is [0, 1]d, and the L2(D) basis functions

are chosen to be the Fourier modes. We then use the first L basis

functions Φi(x), i = 1, . . . L to discretize L2(D). Note that L2(D) is

infinite-dimensional, and cannot be approximated using only finite ba-

sis functions. But in practice, we discretize equation (1.1) in the spatial

direction using a fine mesh of size h, thus we can discard the Fourier

modes that cannot be resolved by the fine mesh without losing accu-

racy, see [26]. To be specific, we discretize L2(D) using the following

basis,

⊗d
i=1{1, . . . , 2 sin(2πlxi), 2 cos(2πlxi)}, (3.15)
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where l = 1/h. Then the number of basis functions used to discretize

L2(D) is L = (2l + 1)d.

2. Constructing random vectors (3.13) for the purpose of error

estimation

In the a posteriori error estimation procedure (3.14), we need to choose

r random vectors ω(i), i = 1, . . . r, and compute Tω(i). In our construc-

tion of the local stochastic basis, we do this before we obtain the Q

because we need the error estimation to adaptively add local stochastic

basis.

We choose r independent standard Gaussian vectors in RL, ωi(j), i =

1, . . . r, j = 1, . . . L, and construct the corresponding r forcing functions

using the L2(D) basis Φi(x) (3.15) chosen in the previous step. We get

fi(x) =
∑L

j=1 ωi(j)Ψj(x), i = 1, . . . r. Then we solve equation (1.1)

using existing solver with these forcing functions fi(x). Details re-

garding our numerical discretization are given in section 4. We restrict

the numerical solutions on each domain Di, and denote these samples

as uji (x, ω), i = 1, . . . N , j = 1, . . . r.

The above process corresponds to computing Tω(i), i = 1, . . . r in (3.14).

After we get Q in step 4, we can apply I −QQT to Tω(i) to estimate

‖T −QQTT‖ using Lemma 3.1.

3. Initializing the local stochastic basis on each Di

The initial local stochastic basis functions on all the subdomains Di

only contain ξ0i (ω) = 1. During the construction process in the follow-

ing steps, more local stochastic basis functions will be added.

4. Drawing random vector f and extracting stochastic basis from

the HKL expansion.

Randomly choose a L2(D) forcing function as in step 2, f(x). We

solve equation (1.1) using f(x), and restrict the numerical solution

u(x, ω) to each domain Di. On each Di, we compute the projection of

u(x, ω)|Di
− ū(x)|Di

to the tensor product space (3.3) using the already

constructed local stochastic basis functions. We denote the residual of

the projection as uei (x, ω), which contains the part of the solution that

cannot be captured by the constructed local stochastic basis. Then

we do the Hilbert-Karhunen-Loève expansion to the residue uei (x, ω)
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following the procedure described in the previous section. And the

H1(Di) norm used in (3.9) is chosen to be:

‖u(x, ω)|Di
‖H1(Di) = (

∫

Di

(
1

H2
u(x, ω)2 + |∇u(x, ω)|2)dx)1/2. (3.16)

Note that we put a 1/H2 weight in front of the L2 norm, the reason

of which will be clear in our proof of the convergence of the online

numerical solutions. We then add the stochastic basis in the HKL

expansion of uei (x, ω) to the set of local stochastic basis functions on

Di. Details concerning the discretization of the numerical solutions

are given in section 4.

5. A posteriori error estimation

Then we use the newly obtained set of local stochastic basis functions

on eachDi to form the tensor product space (3.3), and project the saved

uji (x, ω) onto this tensor product space. We compute the L2(H1(Di),Ω)

norm of the residuals. By doing so we are actually computing

‖(I −QQT )Tω(i)‖L2(H1(Di),Ω), i = 1, . . . r. (3.17)

If on Di, for all the r sampled solutions uji (x, ω), j = 1, . . . r, the

residuals are less than

α−1
√

π/2ǫHd/2, (3.18)

then we mark that the construction of local stochastic basis functions

on Di is complete, and will not add local stochastic basis functions on

Di any more.

Otherwise we go back to step 4 and continue adding local stochastic

basis functions until the constructions are complete on all Di.

The above algorithm will stop within L steps. For each domain Di, we

denote the resulting tensor product space (3.3) as Vh,i, and the projection

operator to Vh,i as Pi. Then we have that for each Di, with exceptional

probability less than Lα−r, the following holds,

‖RDi
T − PiRDi

T‖ ≤ ǫHd/2, (3.19)
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where the norm is taken as the operator norm mapping from L2(D) to

L2(H1(Di),Ω). Namely, the resulting local tensor product space (3.3) can

capture the local solution space on Di.

We comment that the construction of local stochastic basis can be quite

expensive since it involves solving (1.1) multiple times using existing SPDE

solver. However, if the solution space has low stochastic dimension in local

regions of the domain, which is observed to be true based on our numerical

results, then we can construct the local stochastic basis by solving the SPDE

(1.1) for only a few times.

Our model reduction method does not apply to problems where the

equation (1.1) only needs to be solved for once, because the offline stage of

our method already involves solving (1.1) for several times to construct the

local stochastic basis. However, if the equation (1.1) needs to be solved for

multiple times using different L2(D) forcing functions, then our method can

offer considerable computational savings because once the local stochastic

basis has been constructed, we can use them to build a reduced model with

significantly less degree of freedom, and solve the equation efficiently in the

online stage.

3.5. Coupling of local stochastic basis with the spatial basis

After we get the local stochastic basis functions and the correspond-

ing tensor product space (3.3), we multiply them by the partition of unity

functions ψi(x) (3.1) and combine them together. We finally get the finite

dimensional space approximating the solutions to (1.1), Vh,

Vh =

N
∑

i=1

ψi(x)Vh,i. (3.20)

It can be expanded as

Vh = {
N
∑

i=1

ni
∑

j=1

ki
∑

l=1

cj,li ψi(x)φ
j
i (x)ξ

l
i(ω) : c

j,l
i ∈ R}, (3.21)

where i is the index of the partition of unity sub-domain Di, j is the index of

spatial basis functions on each Di, and l is the index of the local stochastic

basis function constructed on Di.
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With the above trial space, we then use the Galerkin projection method

to get the numerical solution. Namely, we seek uh(x, ω) ∈ Vh, such that for

all i = 1, . . . N , j = 1, . . . ni, l = 0, . . . ki,

∫

Ω

∫

D
∇uh(x, ω)a(x, ω)∇(ψi(x)φ

j
i (x)ξ

l
i(ω))dxdP

=

∫

Ω

∫

D
f(x)ψi(x)φ

j
i (x)ξ

l
i(ω)dxdP. (3.22)

Recall that the a posteriori error estimation in the offline stage guar-

antees that, with high probability, the tensor product space (3.3) on each

subdomain Di can accurately approximate the solutions restricted on Di.

Using this local approximation property (3.19), we have the following con-

vergence result.

Theorem 3.1. Consider solving (1.1) using the trial space (3.21), and the

Galerkin projection (3.30). Then with high probability, we have

‖u(x, ω) − uh(x, ω)‖L2(H1

0
(D),Ω) ≤ Cǫ‖f‖L2(D). (3.23)

Recall that we have assumed the physical mesh of size h can resolve

the spatial variation of the solution space, and neglect the numerical error

originating from the space discretization. Namely, we focus on the error

coming from the model reduction in the stochastic direction.

Proof. Based on the local approximation property (3.19), we know that

with high probability, there exist cj,li , j = 1, . . . ni, l = 0, . . . ki, such that

‖u(x, ω) −
ni
∑

j=1

ki
∑

l=0

cj,li φj(x)ξ
l
i(ω)‖L2(H1(Di),Ω) ≤ ǫHd/2‖f(x)‖L2(D), (3.24)

where we have neglected the discretization error in the spatial direction,

and the H1(Di) norm is the weighted norm defined in (3.16). We de-

note
∑ni

j=1

∑ki
l=0 c

j,l
i φj(x)ξ

l
i(ω) as uhi (x), then according to (3.21), we have

ψi(x)u
h
i (x) ∈ Vh. Since

∑N
i=1 ψi(x) = 1, we have

u(x, ω)−
N
∑

i=1

ψi(x)u
h
i (x, ω) =

N
∑

i=1

ψi(x)(u(x, ω) − uhi (x, ω)). (3.25)
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Then we have

∇(u(x, ω)−
N
∑

i=1

ψi(x)u
h
i (x, ω))

=

N
∑

i=1

(∇ψi(x)(u(x, ω) − uhi (x, ω)) + ψi(x)∇(u(x, ω) − uhi (x, ω))). (3.26)

Consequently, we get

‖u(x, ω)−
N
∑

i=1

ψiu
h
i (x, ω)‖2L2(H1

0
(D),Ω)

=

∫

Ω

∫

D
|∇(u(x, ω)−

N
∑

i=1

ψiu
h
i (x, ω))|2dxdP (3.27)

≤ C
N
∑

i=1

∫

Ω

∫

D
(∇ψi(x)(u(x, ω) − uhi (x, ω))

+ψi(x)∇(u(x, ω)− uhi (x, ω)))
2dxdP, (3.28)

where the constant C depends on the number of overlapping neighborhoods

for each subdomain Di.

Recall that we have assumed ψi(x) ∈ [0, 1], ∇ψi(x) ≤ C
H , then we have

‖u(x)−
N
∑

i=1

ψiu
h
i (x, ω)‖2L2(H1

0
(D),Ω)

≤ C
N
∑

i=1

∫

Ω

∫

Di

1

H2
(u(x, ω)−uhi ω))2+|∇(u(x, ω)−uhi (x, ω))|2dxdP. (3.29)

Finally, using the local error estimate (3.24) and the fact N = O(1/hd), we

get

‖u(x, ω)−
N
∑

i=1

ψiu
h
i (x, ω)‖2L2(H1

0
(Di),Ω) ≤

N
∑

i=1

ǫ2Hd‖f(x)‖2L2(D)

≤ Cǫ2‖f(x)‖2L2(D). (3.30)

Since
∑N

i=1 ψiu
h
i (x, ω) ∈ Vh, we get that

inf
v(x,ω)∈Vh

‖u(x, ω)− v(x, ω)‖L2(H1

0
(D),Ω) ≤ Cǫ‖f(x)‖L2(D). (3.31)
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Based on the quasi-optimal property of the Galerkin projection (2.14), we get

the following convergence result for the numerical solution uh(x, ω). With

high probability,

‖u(x, ω) − uh(x, ω)‖ ≤ Cǫ‖f(x)‖L2(D). (3.32)

���

4. Implementation of the Resulting Model Reduction Method

4.1. The implementation of the HKL expansion

To implement the HKL expansion, we need to first find a complete

orthonormal basis in H1(Di) and do the projection (3.9), where the H1(Di)

norm is defined as (3.16). We have assumed that the fine physical mesh

of size h can resolve the spatial variation of the solution, so we will do the

HKL expansion in the discrete setting. On each domain Di, we construct the

stiffness matrix Si that corresponds to the norm (3.16). Then the columns

of S
−1/2
i form a complete set of orthonormal H1(Di) basis functions for the

discretized space of H1(Di). For a discrete H1(Di) function u(x), S
1/2
i u

gives us the coefficient of the projection (3.9). After the H1(Di) projection,

we need to do KL expansion to c(i, ω) (3.10). We first compute its covariance

C(i, j) and then obtain the expansion following (3.6), (3.7), after which we

finally get the HKL expansion of a L2(H1(Di),Ω) function according to

(3.11).

4.2. Selecting local stochastic basis functions from HKL expansion

In step 4 of the algorithm in section 3.4, where we described how to

construct local stochastic basis, if the construction of local stochastic basis

has not been completed on Di, we add all the stochastic basis functions

extracted from the HKL expansion of uie(x, ω) to the set of local stochastic

basis functions on Di. However, those stochastic basis functions that cor-

respond to very small singular values σi in the HKL expansion of uie(x, ω)

cannot capture the main stochastic structure of the solution space. So in

our numerical implementation, we will only add those stochastic basis func-

tions corresponding to singular values σi > α
√

π/8ǫHd/2 to the set of local

stochastic basis. We also set a limit for the number of local stochastic basis
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to be added at each time step. This makes sure that the constructed local

stochastic basis can capture the main action of the solution operator in the

stochastic direction.

4.3. Simplification of the trial space

Consider the trial space Vh that we construct in (3.21). One can see

that the piecewise linear spatial basis φj(x) on the fine mesh of size h may

arise multiple times, and this is because it may have support on multiple

subdomains Di. Let j1, j2...jp be the index of the subdomains Di that φj

has support on, then the following basis functions of the trial space (3.21)

contain φj(x),

φj(x)ψj1(x)⊗ {ξ0j1(ω), . . . ξ
kj1
j1

(ω)}, . . . φj(x)ψjp(x)⊗ {ξ0jp(ω), . . . ξ
kjp
jp

(ω)}.
(4.1)

We choose H >> h in our implementation, because of which we can

make the assumption that

φj(x)ψjp(x) ≈ φj(x). (4.2)

Then the representation of the finite dimensional space Vh can be simpli-

fied as the coupling of spatial basis φj(x) on the fine mesh with the local

stochastic basis functions on Dj1 ,Dj2 , . . . Djp .

Vh =

n
∑

j=1

span{φj(x)ξ0j1(ξ), φj(x)ξ1j1 . . . φj(x)ξ
kjp
jp

} (4.3)

We re-label these local stochastic basis functions associated with φj(x) as

ξij(ω), i = 0, . . . Kj . Note that ξ
i
j(ω), i = 0, . . . Kj come from HKL expansions

on different sub-domains Di, thus can be linearly dependent. In this case the

corresponding stiffness matrix formed in (3.30) will be singular. To overcome

this, we apply an additional Gram-Schmidt orthogonalization procedure to

ξij(ω), i = 0, . . . Kj , during which we throw away the local stochastic basis

functions that are redundant. We say ξij(ω) is redundant if infck ‖ξij(ω) −
∑i−1

k=0 ckξ
k
j (ω)‖L2(ω) ≤ ǫ/10. We denote the resulting local stochastic basis
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functions as ξij(ω), i = 0, . . . kj , then the trial space Vh is simplified to

Vh =
{

n
∑

i=1

ki
∑

j=0

cjiφi(x)ξ
j
i (ω) : c

j
i ∈ R

}

. (4.4)

Note that in the above simplified trial space (4.4), the partition of unity

functions (3.1) do not appear due to our simplification (4.2). However, the

partition of unity formulation is necessary for our proof of the convergence

of online numerical solutions (3.23).

4.4. Discretization in the spatial direction

In our numerical examples in this paper, we consider 2D problems on

the square domain D = [0, 1]× [0, 1]. We first discretize the domain D using

uniform coarse square mesh of size H = 1/I, and get N = (I − 1)2 interior

coarse mesh nodes. We denote these interior node points as xi, i = 1, . . . (I−
1)2, then for each xi, we choose the local square of size 2H and centered at

xi as the partition of unity subdomain Di. We can easily construct partition

of unity function ψi(x) that has support on Di and satisfies property (3.1).

Then we put a fine right triangular mesh of size h on D, which refines of

the partition of unity constructed above. Correspondingly, we discretize the

function space H1(D) using the span of piecewise linear functions on this

fine mesh. This coarse-fine mesh discretization is illustrated in Figure 1.

After the simplification of the trial space Vh described in the previous

subsection, for the spatial basis functions φj(x) that are supported on the

same coarse-grid square of size H×H, their associated local stochastic basis

functions are the same.

4.5. Discretization in the stochastic direction

There are basically two ways of discretization in the stochastic direction.

The first one is choosing a set of orthogonal polynomials, H1(ω), . . . HM (ω),

and representing the offline sampled numerical solutions and the constructed

local stochastic basis functions as the linear combination of these orthogonal

polynomials. If we use the Galerkin polynomial chaos method to solve the

SPDE in the offline stage, then we are using this way of discretization. The
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Figure 1: A sub-main Di with fine mesh discretization. In the center is the coarse
node point xi.

local stochastic basis functions will be stored as length-M vectors, corre-

sponding to the coefficients in their expansion using orthogonal polynomials

Hi(ω), i = 1, . . .M .

The second method, which is the one that we employ in our numerical

examples, is to discretize the probability space and measure (Ω, P ) using a

set of sampling points and weights, (θi, wi), i = 1, . . .M . If we use stochastic

collocation method in the offline stage, then θk correspond to the collocation

points. θk and wk are determined by the underlying distribution of ω. If

we use Monte Carlo method in the offline stage, then θk are the selected

sampling points, and wi = 1/M . In our numerical examples in the next

section, we use the stochastic collocation method in the offline stage, and the

sampling points and corresponding weights are chosen based on the Smolyak

sparse grid collocation points. [43, 37]

4.6. The online Galerkin projection

After we simplified the trial space according to section 4.3, we get a trial

space taking the following form

Vh =
{

n
∑

i=1

ki
∑

j=0

cjiφi(x)ξ
j
i (ω) : c

j
i ∈ R

}

, (4.5)
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where ξ0i (ω) = 1, and for each i, ξji (ω), j = 0, . . . ki are orthonormal in L2(Ω).

Let K =
∑n

i=1 ki+n, then the stiffness matrix MS corresponding to (4.5) is

of size K ×K. We define R as the relabelling function that maps each pair

(i, j), i = 1, . . . n, j = 0, . . . ki to the global index of the basis φi(x)ξ
j
i (ω):

R(i, j) =
∑i−1

l=1(kl+1)+j+1. With this relabeling function, we can compute

the stiffness matrix as

MS(R(i1, j1), R(i2, j2)) =

∫

Ω

∫

D
ξj1i1 (ω)∇φi1(x)a(x, ω)ξ

j2
i2
(ω)∇φi2(x)dxdP.

(4.6)

Then we consider computing the load vector b ∈ RK corresponding to

forcing function f(x). We have

b(R(i, j), 1) =

∫

Ω

∫

D
ξji (ω)φi(x)f(x)dxdP. (4.7)

Recall that the local stochastic basis functions ξji (ω), j ≥ 1 are orthogo-

nal to ξ0i (ω) = 1, i.e., they have mean 0. As a consequence, the corre-

sponding entries in the load vector (4.7) vanish. Namely, only the entries

b(R(i, 0), 1), i = 1, . . . n are non-zero.

Then we solve equation

MSc = b, (4.8)

to get the coefficient cji and recover the numerical solution via assembling

the basis functions φi(x)ξ
j
i (ω),

uh(x, ω) =

n
∑

i=1

ki
∑

j=0

cjiφi(x)ξ
j
i (ω). (4.9)

If the quantities of interest are mean and variance of the solution, then they

can be computed efficiently without assembling the basis functions. Namely,

ū(xi) = c0i , σ[u(xi, ω)] = (

ki
∑

j=1

(cji )
2)1/2. (4.10)

4.7. Computational cost of the model reduction method

The model reduction method introduced in this work consists of two
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stages, the offline stage and the online stage. The major computational cost

in the offline stage includes the following.

1. Solving the SPDE (1.1) for several times using existing SPDE solver,

like Galerkin polynomial chaos methods, or stochastic collocation meth-

ods using sparse grid. This corresponds to step 2 and step 4 of the

algorithm in section 3.4 to construct local stochastic basis. We employ

the stochastic collocation method in our numerical results in the next

section.

2. To construct the local stochastic basis functions in step 4 of the algo-

rithm in section 3.4, we need to do the HKL expansion to the residual

uie(x, ω). The major cost is computing the eigen-decomposition of the

covariance matrix of c(j, ω). Fortunately, the HKL expansion is done

on local regions of the domain Di, which contains ni fine mesh grid

points. If ni is small, then this part of cost is small. More importantly,

the HKL expansions and the extractions of the local stochastic basis

are independent on each sub-domain Di, thus can easily be done in

parallel.

3. In simplification of the representation of the trial space in section 4.3,

we need a Gram-Schmidt orthogonalization procedure and throw away

redundant stochastic basis. If the number of constructed local stochas-

tic basis functions is small on each sub-domain Di, then this compu-

tational cost is small. This can also be done in parallel for different

sub-domains.

4. In formulating the stiffness matrix (4.6), we need to do a lot of integra-

tion in the stochastic direction. However, the integrations on different

fine mesh triangle elements are independent from each other, thus they

can be done in parallel to accelerate the calculation.

The online computational cost mainly comes from solving the linear system

(4.8). MS is a sparse matrix since φi(x) has compact support, and of size

(

n
∑

i=1

(ki + 1)) × (

n
∑

i=1

(ki + 1)). (4.11)
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Recall that if we use the Galerkin polynomial chaos method to solve equation

(1.1) and useM orthogonal basis functions, then it is equivalent to choosing

the local stochastic basis

ξji (ω) = Hj(ω), j = 1, . . .M, (4.12)

in the HSFEM framework, and the corresponding linear system is of size

Mn×Mn. (4.13)

So if k̄ =
∑n

i=1
ki

n is less than M , then our method involves less degree of

freedom. Based on our numerical results, the resulting k̄ in our examples

are significantly smaller than M .

5. Numerical Results

In this section, we apply the model reduction method developed in the

previous sections to several problems to demonstrate its efficiency. We con-

sider 2D problems that are defined on the domain D = [0, 1]× [0, 1] and take

the following form:

{

−div(a(x, y, ω)∇x,yu(x, y, ω)) = f(x, y),

u(x, y, ω)|D = 0.
(5.1)

In the spatial direction, we discretize the domain as shown in section 4.4,

and choose H = 1/8, h = 1/64. We get 49 subdomains Di and 3969 piece-

wise linear spatial basis functions φi(x). In the stochastic direction, we use

the Smolyak sparse grid collocation points to discretize the problem, and

denote the resulting collocation points and weights as (θk, wk), k = 1, . . .M .

With the above discretization, we use stochastic collocation method in the

offline stage to construct the local stochastic basis functions. In the a poste-

rior error estimation procedure (3.14) in constructing local stochastic basis

functions, we choose r = 10. Namely, we use 10 sampled solutions in step 2

of section 3.4 to verify the approximation property of the constructed local

stochastic basis (3.3). In extracting local stochastic basis functions in step 4

of section 3.4, we base on the principles stated in section 4.2. We choose at



2016] ELLIPTIC PDES WITH RANDOM INPUT 205

most 4 basis functions from the local HKL expansion of the residual uei (x, ω)

at each single step.

For the purpose of evaluating the effectiveness of our model reduction

strategy, we assume that the spatial and stochastic discretization can resolve

the variations of the solution. With this assumption, we neglect the error in

the discretization of the problem, and use the stochastic collocation solution

usc(x, ω) as the reference to measure the error in our online numerical solu-

tions uh(x, ω). Then the only source of error in uh(x, ω) is from our model

reduction, since we only select a very small number of local stochastic basis

functions to approximate the solution space in the stochastic direction.

In each of our numerical examples, we compute the following quantities.

1. The average number of local stochastic basis functions associated with

each spatial basis function. If k̄ =
∑n

i=1
ki

n is small, then the solution

space to (1.1) is very compact in the stochastic direction on local regions

of the spatial domain. Moreover, recall that in the online stage of our

method, we use the Galerkin method to obtain the numerical solution,

and we have in total
n
∑

i=1

ki + n = nk̄ + n (5.2)

degrees of freedom. So k̄ measures the size of the constructed trial

space and the efficiency of our model reduction method in the online

stage.

2. The number of sampled solutions that we use to construct the local

stochastic basis.

Note that in step 4 of the algorithm in section 3.4, solutions to (1.1)

using randomly chosen forcing functions are generated. The major

computational cost in the offline stage comes from this step. If we

can construct the local stochastic basis using a very small number of

sampled solutions, then the offline computational cost will also be small.

3. The error in mean and standard deviation of the solution, which are the

two primary quantities of interest in uncertainty quantification prob-

lems.

E[uh(x, ω)]− E[usc(x, ω)], (5.3)
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σ[uh(x, ω)]− σ[usc(x, ω)]. (5.4)

4. The relative L2(D × Ω) error of the numerical solution,

Ek =
‖uh(x, ω)− u(x, ω)‖L2(D×Ω)

‖u(x, ω)− ū(x, ω)‖L2(D×Ω)
. (5.5)

Note that the denominator above is the L2 norm of the stochastic part

of the solution, so Ek measures the capacity of our method in capturing

the stochastic part of the solution.

5.1. A 2D problem with Gaussian random input

The first example we consider is a 2D problem with Gaussian random

input. The Gaussian random variables in the coefficient violate the uniform

ellipticity condition (1.2) of the equation, thus our analysis in section 2 will

not apply. However, our numerical results suggest that even in this case,

our model reduction method still works well. The coefficient of the problem

a(x, y, ω) is given by the following

log a(x, y, ω) =
1

4

4
∑

m=1

ωm(sin(mπx) + cos((5−m)πy)), (5.6)

where ωm,m = 1, . . . 4 are independent standard Gaussian random variables.

In the stochastic direction, we discretize the problem using the 8-th

order smolyak sparse grid collocation points, and get M = 1305 sampling

points. In the a posteriori error estimation step in our construction of the

local stochastic basis, namely, step 5 of section 3.4, we choose (3.18) to be

α
√

π/2ǫH = 2× 10−2. (5.7)

There are in total 6 sampled stochastic solutions generated in step 4

of section 3.4 to construct the local stochastic basis functions, which means

that the offline computational cost of our model reduction method is small

and only several times of that using traditional solvers. After the offline

stage, the average number of local stochastic basis functions associated with

each spatial basis function is

k̄ ≈ 18. (5.8)
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Figure 2: Error in expectation and standard deviation of our online numerical
solution uh(x, ω).

For this problem, the number of local stochastic basis functions is quite

small compared with the degree of freedom in the stochastic direction for

the stochastic collocation method, which is M = 1305. This means our

method can achieve significant computational savings in the online stage.

In the online stage, we test our method using the following forcing func-

tion

f(x, y) = −1 + x− 2y. (5.9)

Errors in mean and expectation of our numerical solution are plotted in

Figure 2, from which we can see that our method achieves high accuracy in

the two primary quantities of interest.

The relative error in the stochastic part of the solution, (5.5), is quite

small,

Ek = 3.667 × 10−2. (5.10)

And this implies that our model reduction method can capture the main

part of the stochastic solution.
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To sum up, by solving the equation (1.1) using existing solvers for only

a few times in the offline stage, our model reduction method can effectively

construct a small number of local stochastic basis functions that can accu-

rately capture the stochastic structure of the solutions.

5.2. A 2D model problem with high-dimensional stochastic input

In this example, the random coefficient a(x, y, ω) in (5.1) is given by

log a(x, y, ω) =
1

4

12
∑

m=1

ωm(sin(mπx) + cos((13 −m)πy)), (5.11)

where ωm,m = 1, 2 . . . 12 are independent random variables uniformly dis-

tributed on [−1/2,−1/2].

Note that the ωk, k = 1, . . . 12 contribute equally to the L2(D × Ω)

norm of log(a(x, ω)), thus none of them can be neglected, which means

this problem has genuine high stochastic dimension. We use the 4th order

sparse grid collocation points to discretize (Ω, P ) as we did in the previous

example, and get totallyM = 2096 sampling points. In the a posteriori error

estimation step in our construction of the local stochastic basis, namely, step

5 of section 3.4, we choose (3.18) to be

α
√

π/2ǫH = 10−2. (5.12)

There are 9 sampled stochastic solutions generated in step 4 of sec-

tion 3.4 to construct the local stochastic basis functions, which is not large.

After the offline stage, the average number of local stochastic basis functions

associated with each spatial basis function is

k̄ ≈ 36. (5.13)

For this problem with 12 dimension of stochastic input, the number of local

stochastic basis functions is quite small compared with the degree of freedom

in the stochastic direction for the stochastic collocation method, which is

M = 2096. This means we can achieve significant computational savings in

the online stage.
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Figure 3: Error in expectation and standard deviation of our online numerical
solution uh(x, ω).

In the online stage, we test our method using the following forcing func-

tion

f(x, y) = −1 + x− 2y. (5.14)

Errors in mean and expectation of our numerical solution are plotted in

Figure 3, and from it we can see that our method achieves high accuracy in

the two primary quantities of interest.

The relative error in the stochastic part of the solution, (5.5), is,

Ek = 6.697 × 10−2. (5.15)

And this implies that our model reduction method can capture the main

part of the stochastic solution.

For this example with high-dimensional stochastic input, we observe

again that our model reduction method can construct effective local stochas-

tic basis functions that capture the stochastic structure of the solution space

to (1.1) on local regions of the physical domain. The offline computational

cost is not too large, and our method can achieve significant computational

saving in the online stage.
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5.3. A 2D example with discontinuous coefficient

In this example, we consider the case in which the coefficient a(x, y, ω)

has discontinuities. To introduce the random coefficient, we first divide the

domain D = [0, 1] × [0, 1] into 4 parts:

D1 = [0, 1/2] × [0, 1/2], D2 = [1/2] × [0, 1/2],

D3 = [0, 1/2] × [1/2, 1], D4 = [1/2, 1] × [1/2, 1].
(5.16)

And the coefficient is given by

a(x, y, ω)

=



















































1+exp(
3
∑

k=1

2ωk(sin(2kπx) + cos(2(4− k)πy))), (x, y) ∈ D1,

1+exp(1+
6
∑

k=4

2ωk(sin(2(k − 3)πx)+cos(2(7 − k)πy))), (x, y) ∈ D2,

1+exp(2+
9
∑

k=7

2ωk(sin(2(k − 6)πx)+cos(2(10 − k)πy))), (x, y) ∈ D3,

1+exp(3+
12
∑

k=10

2ωk(sin(2(k − 9)πx)+cos(2(13 − k)πy)), (x, y) ∈ D4.

(5.17)

where ωi, i = 1, . . . 12 are independent random variables uniformly dis-

tributed in [−1/2, 1/2]. Again, we can see that the 12 random variables

ωi, i = 1, . . . 12 contribute equally to the L2(D×Ω) norm of log(a(x, y, ω)−1).

Thus this problem has genuine high stochastic dimension.

Our discretizations in both the spatial and stochastic directions for this

problem are the same as our previous example. We finally get M = 2096

collocation points. In the a posteriori error estimation step in our construc-

tion of the local stochastic basis, namely, step 5 of section 3.4, we choose

(3.18) to be

α
√

π/2ǫH = 4× 10−4. (5.18)

There are 18 sampled stochastic solutions generated in step 4 of sec-

tion 3.4 to construct the local stochastic basis functions. After the offline

stage, the average number of local stochastic basis functions associated with

each spatial basis function is

k̄ ≈ 31. (5.19)
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Figure 4: Error in expectation and standard deviation of our online numerical
solution uh(x, ω).

For this problem with 12 dimension of stochastic input, the number of local

stochastic basis functions is quite small compared with the degree of freedom

in the stochastic direction for the stochastic collocation method, which is

M = 2096. This means we can achieve significant computational savings in

the online stage.

In the online stage, we test our method using the following forcing func-

tion

f(x, y) = −1 + x− 2y. (5.20)

Errors in mean and expectation of our numerical solution are plotted in

Figure 3, and from it we can see that our method achieves high accuracy in

the two primary quantities of interest.

The relative error in the stochastic part of the solution, (5.5), is quite

small,

Ek = 6.717 × 10−2, (5.21)

and this implies that our model reduction method can capture the main part

of the stochastic solution.
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Figure 5: The distribution of local stochastic basis functions constructed on each
sub-domain.

For each coarse grid node point xi, there exists a subdomainDi centered

at xi. The number of local stochastic basis functions generated on each Di

are different, the distribution of which is plotted in Figure 5. From this

figure we can see that more local stochastic basis functions are constructed

on region D1, which according to (5.17), is the region where the random

part of the coefficient has stronger effect. This result reveals that our model

reduction method can recognize the heterogeneous stochastic structure of the

solution space in the offline stage, and put more stochastic basis functions

in regions where the solution has richer stochastic structure.

6. Concluding Remarks

A model reduction method for elliptic partial differential equations with

random input is introduced. This method follows the Heterogeneous Stochas-

tic FEM framework proposed recently, and employs the heterogeneous cou-

pling of spatial basis with stochastic basis to approximate the solution space.

This framework allows us to exploit the compactness of the solution space

in the stochastic direction.

This method consists of two stages, the offline and online stages, and

suits the multi-query setting. In the offline stage, we sample the stochastic



2016] ELLIPTIC PDES WITH RANDOM INPUT 213

solutions using randomly chosen forcing functions for a number of times,

and construct the local stochastic basis for the HSFEM framework through

the local Hilbert-Karhunen-Loève expansions of the sampled solutions. The

local stochastic basis functions are chosen adaptively, and can capture the

stochastic structure of the solution space in local regions of the spatial do-

main. In the online stage, for different forcing functions, we obtain the nu-

merical solutions using the trial space obtained in the offline stage through

the Galerkin projection. We prove the convergence of the online numerical

solutions based on the thresholding in the offline stage.

Several numerical examples are presented to demonstrate the imple-

mentation and efficiency of the method. Our numerical results suggest that

the proposed method can effectively identify the compact structure of the

solution space and construct reduced models without losing high accuracy.
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