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Abstract

In this paper we prove that there exists a random sequence θi for the Glimm scheme

such that the approximate solution uǫ(t) converges to the exact semigroup solution Stū of

the strictly hyperbolic system of conservation laws

ut + f(u)x = 0, u(t = 0) = ū

as follows: for all T ≥ 0 it holds

lim
ε→0

‖uε(T )− ST ū‖1√
ε| log ε| = 0.

This result is the extension of the analysis of [8] to the general case, when no assumptions

on the flux f are made besides strict hyperbolicity. As a corollary, we obtain a deterministic

version of the Glimm scheme for the general system case, extending the analysis of [14].

The analysis requires an extension of the quadratic interaction estimates obtained in

[3] in order to analyze interaction occurring during an interval of time.
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1. Introduction

A strict hyperbolic system of conservation laws in one space dimension

(see [5]) is a system of PDEs of the form

ut + f(u)x = 0, (1.1)

where u : [0,∞) × R → R
n is the unknown and f : Ω ⊆ R

n → R
n is a given

smooth (C3) map, called flux, defined on a neighborhood Ω of a compact set

K ⊆ R
n and satisfying the strict hyperbolicity condition, i.e. the Jacobian

Df(u) of f has n distinct eigenvalues

λ1(u) < · · · < λn(u) (1.2)

in each point u ∈ Ω of its domain. Throughout this paper, we will assume

w.l.o.g. that 0 ∈ K ⊆ Ω and

λk(u) ∈ [0, 1] for all k and for all u. (1.3)

This can always be achieved by a change of variable in the (t, x)-plane. As

it is customary, denote by r1(u), . . . , rn(u) the right eigenvalues (normalized

to 1) associated to λ1(u), . . . , λn(u) respectively:

Df(u)rk(u) = λk(u)rk(u), for all k = 1, . . . , n and for all u ∈ Ω.

Equation (1.1) is usually coupled with an initial datum

u(t = 0) = ū, (1.4)

where ū : R → R
n is a given map, with sufficiently small total variation.

W.l.o.g. we assume also that ū has compact support.

It is well known that classical (smooth) solutions to the Cauchy problem

(1.1)−(1.4) are in general not defined on the whole time interval [0,∞), even

if the initial datum is smooth, because they develop discontinuities in finite

time. On the other hand, the notion of distributional solution is too weak

to guarantee the uniqueness. For this reasons the notion of solution which

is typically used is the following one.

Definition 1.1. A map u : [0,∞)×R → R
n belonging to L1

loc is said to be

a weak solution of the Cauchy problem (1.1)−(1.4) if:
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(1) u satisfies equation (1.1) in the sense of distributions;

(2) u is continuous as a map [0,∞) → L1
loc(R;R

n);

(3) at time t = 0, u(0, x) = ū(x);

(4) u satisfies some additional admissibility criteria, which follow from phys-

ical or stability considerations and guarantee the uniqueness of the solu-

tion.

Many admissibility criteria have been proposed in the literature: just to

name a few, the Lax-Liu condition on shocks (see [10, 12, 13]), the entropy

condition (see [11]), the vanishing viscosity criterion (see [2]). We do not

want to enter into details: the interested reader can refer to the cited liter-

ature.

1.1. The Riemann problem

The basic ingredient to solve the Cauchy problem (1.1)−(1.4) is the

solution of the Riemann problem, i.e. the Cauchy problem when the initial

datum has the simple form

u(0, x) = ū(x) =

{
uL if x < 0,

uR if x ≥ 0.
(1.5)

The solution of the Riemann problem (1.1)−(1.5) was obtained first by

P. Lax in 1957 [10], under the assumption that each characteristic field is

either genuinely non linear (GNL), i.e

∇λk(u) · rk(u) 6= 0 for any u,

or linearly degenerate (LD), i.e.

∇λk(u) · rk(u) = 0 for any u.

In this case, if |uR − uL| ≪ 1, using the Implicit Function Theorem, one

can find intermediate states uL = ω0, ω1, . . . , ωn = uR such that each pair of

adjacent states (ωk−1, ωk) can be connected by either a shock or a rarefaction

wave or a contact discontinuity of the k-th family. The complete solution is

now obtained by piecing together the solutions of the n Riemann problems

(ωk−1, ωk) on different sectors of the (t, x)-plane.
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In the general case (here and in the rest of the paper, by general case

we mean that no assumption on f is made besides strict hyperbolicity), the

solution to the Riemann problem (uL, uR) was obtained by S. Bianchini and

A. Bressan in [2]. They first construct, for any left state uL and for any

family k = 1, . . . , n, a curve s → T ks u
L of admissible right states, defined

for s ∈ R small enough, such that the Riemann problem (uL, T ks u
L) can be

solved by (countable many) admissible shocks (in the sense of being limits

of travelling profiles for the viscosity approximation), contact discontinuities

and rarefactions waves. Then, as in the GNL/LD case, the global solution of

(uL, uR) is obtained by piecing together the solutions of n Riemann problems,

one for each family: namely by using the Implicit Function Theorem to write

uR = T nsn ◦ · · · ◦ T 1
s1u

L

and solve each Riemann problem (ωk−1, ωk) with admissible waves of the

k-th family, where

ωk = T ksk ◦ · · · ◦ T
1
s1u

L.

In Section 2.1 we briefly recall the construction of the admissible curves

s 7→ T ks u
L.

1.2. Glimm approximate solutions in the GNL/LD case

The first result about existence of solutions to the Cauchy problem

(1.1)−(1.4) can be found in the celebrated paper by J. Glimm [9] in 1965,

in which the existence of solutions is proved under the assumption that each

characteristic field is either GNL or LD. In [9], for all ε > 0 an approximate

solution uε(t, x) is constructed by recursion as follows. First of all, take a

sampling sequence {ϑi}i∈N ⊆ [0, 1]. The algorithm starts choosing, at time

t = 0, an approximation ūε of the initial datum ū, such that ūε is compactly

supported, right continuous, piecewise constant with jumps located at points

t = mε, m ∈ Z. We can thus separately solve the Riemann problems located

at (t, x) = (0,mε), m ∈ Z. Thanks to (1.3), the solution uε(t, x) can now be

prolonged up to time t = ε. At t = ε a restarting procedure is used. The

value of uε at time ε is redefined as

uε(ε+, x) := uε(ε−,mε + ϑ1ε), if x ∈ [mε, (m+ 1)ε). (1.6)
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The solution u(ε, ·) is now again piecewise constant with compact support,

with discontinuities on points of the form x = mε, m ∈ Z. If the sizes of

the jumps are sufficiently small, we can again solve the Riemann problem at

each point (t, x) = (ε,mε), m ∈ Z and thus prolong the solution up to time

2ε, where again the restarting procedure (1.6) is used, with ϑ2 instead of

ϑ1. The above procedure can be repeated on any time interval [iε, (i+ 1)ε],

i ∈ N, as far as the size of the jump at each grid point (iε,mε), i ∈ N,m ∈ Z,

remains small enough: this is the case whenever

Tot.Var.(uε(t);R) ≪ 1. (1.7)

In order to prove (1.7), Glimm introduced a uniformly bounded decreasing

functional

t 7→ QGlimm(t) ≤ O(1)Tot.Var.(ū)2,

such that at any time iε, i ∈ N,

Tot.Var.(uε(iε+);R) − Tot.Var.(u(iε−);R)

≤ O(1)
(
QGlimm(iε−)−QGlimm(iε+)

)
. (1.8)

Here and in the following O(1) denotes a constant which depends only on the

flux f and on the sampling sequence {ϑi}i. As an immediate consequence, we

get Tot.Var.(uε(t);R) ≤ O(1)Tot.Var.(uε(0);R) ≪ 1 and thus the solution

uε(t, x) can be defined on the whole (t, x)-plane [0,∞) × R. The uniform

bound on the Tot.Var.(uε(t);R) yields a compactness on the family {uε}ε:
we can thus extract a converging subsequence, which turns out to be, for

almost every sampling sequence {ϑi}i, a weak admissible solution of the

Cauchy problem (1.1)−(1.4).

In 1977 T.-P. Liu [14] gave a deterministic version of Glimm’s result,

showing that if the sampling sequence is equidistributed, i.e. for all λ ∈ [0, 1],

lim
j→∞

♯{i ∈ N | 1 ≤ i ≤ j and ϑi ∈ [0, λ]}
j

= λ,

then the subsequence extracted from {uε}ε converges to a weak admissible

solution of (1.1)−(1.4).
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The analysis of the stability in L1 of the solution of (1.1)−(1.4) w.r.t the

initial datum ū led to the introduction of the notion of standard Riemann

semigroup.

Definition 1.2. A standard Riemann semigroup for the system of con-

servation laws (1.1) is a map S : D × [0,∞) → D, defined on a domain

D ⊆ L1(R;Rn) containing all functions with sufficiently small total varia-

tion, with the following properties:

(1) for some Lipschitz constants L,L′,

‖Stū− Ssv̄‖1 ≤ L‖ū− v̄‖1 + L′|t− s|, for all ū, v̄ ∈ D, t, s ≥ 0; (1.9)

(2) if ū ∈ D is piecewise constant, then for t > 0 sufficiently small Stū coin-

cides with the solution of (1.1)−(1.4), which is obtained by piecing to-

gether the standard self-similar solutions of the corresponding Riemann

problems.

If it exists, the standard Riemann semigroup is unique [4].

In the GNL/LD case it is proved (see, among others, [6, 7, 16]) that the

standard Riemann semigroup exists and that at any time t ≥ 0 the solution

u(t) obtained as limit of Glimm approximations uε(t), for the initial datum

ū, coincides with the semigroup trajectory Stū. We will discuss in the next

section the general case.

Relying on the existence of the standard Riemann semigroup for GNL/LD

systems, in 1998 A. Bressan and A. Marson [8] further improved the Glimm

sampling method, constructing an equidistributed sequence {ϑi}, satisfying
the additional assumption:

sup
λ∈[0,1]

∣∣∣∣∣λ− ♯{i ∈ N | j1 ≤ i < j2 and ϑi ∈ [0, λ]}
j2 − j1

∣∣∣∣∣ ≤ C · 1 + log(j2 − j1)

j2 − j1
.

(1.10)

Using this sequence, they were able to prove that the rate of convergence

of the Glimm approximate solutions uε(t) to the semigroup weak admissible

solution u(t) = Stū at every fixed time t is given by

lim
ε→0

∥∥uε(t, ·)− Stū
∥∥
L1∣∣ log ε

∣∣√ε = 0. (1.11)
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1.3. Glimm approximate solutions in the general case

All the results cited in the previous section were obtained under the

assumption that each characteristic field is either GNL or LD. In this section

we consider now the general case, when this assumption is removed and the

only requirement is that the system is strictly hyperbolic (1.2).

The problem of finding a suitable decreasing potential to bound the

increase of t 7→ Tot.Var.(uε(t);R) for a Glimm approximate solution uε (see

(1.8)) was solved first by T.-P. Liu in [15] for fluxes f with a finite number

of inflection points. Later, in [1], Bianchini solved the problem for general

fluxes, introducing the cubic functional

t 7→ Qcubic(t) :=

n∑

k=1

∫∫
|σk(t, sk)− σ(t, s′k)|dskds′k ≤ O(1)Tot.Var.(uε(t))3,

where sk, s
′
k are two waves of the k-th family in the approximate solution

at time t and σk(t, sk), σk(t, s
′
k) denote their speed (see Section 2.4 for a

precise definition). In [2] Bianchini and Bressan also proved that every

strictly hyperbolic f admits a standard Riemann semigroup St of vanishing

viscosity solutions with small total variation obtained as the (unique) limit

of solutions to the viscous parabolic approximations

ut + f(u)x = µuxx,

when the viscosity µ→ 0. The semigroup S is defined on

D :=
{
u ∈ L1(R;Rn)

∣∣ Tot.Var.(u) ≪ 1, lim
x→−∞

u(x) ∈ K
}

and satisfies the Lipschitz condition

‖Stū− Ssv̄‖1 ≤ L‖ū− v̄‖1 + L′|t− s|, for any ū, v̄ ∈ D, t, s ≥ 0. (1.12)

Aim of this paper is to prove that the same rate of convergence (1.11)

obtained by Bressan and Marson in the GNL/LD case holds also in the gen-

eral case, when no assumption on f is made except its strictly hyperbolicity.

In particular we prove the following theorem.



242 STEFANO MODENA AND STEFANO BIANCHINI [March

Theorem 1.3. Consider the Cauchy problem (1.1)−(1.4) and assume that

the system (1.1) is strictly hyperbolic. Let uε be a Glimm approximate so-

lution with mesh size ε > 0 and sampling sequence satisfying (1.10), and

denote by t 7→ Stū the semigroup of vanishing viscosity solutions. Then for

every fixed time T ∈ [0,+∞) the following limit holds:

lim
ε→0

∥∥uε(T, ·)− ST ū
∥∥
1√

ε| log ε| = 0. (1.13)

1.4. Bressan’s and Marson’s technique

We recall now the technique used by A. Bressan and A. Marson in [8] to

prove Theorem 1.3 in the GNL/LD case. In particular we wish to highlight

which is the point in Bressan’s and Marson’s proof which can not be easily

extended to the general case, where no assumption of f is made except its

strict hyperbolicity, and whose detailed proof is given in this paper, using

the tools introduced by the authors in [3].

Bressan’s and Marson’s technique is as follows. Thanks to the Lipschitz

property of the semigroup (1.9), in order to estimate the distance

∥∥uε(T, ·)− ST ū
∥∥
L1 ,

we can partition the time interval [0, T ] in subintervals Ja := [ta, ta+1] and

estimate the error
∥∥uε(ta+1)− Sta+1−tau

ε(ta)
∥∥
L1 (1.14)

on each interval Ja. The error (1.14) on Jr comes from two different sources:

(1) first of all there is an error due to the algorithm itself: indeed, in a Glimm

approximate solution, roughly speaking, we give each wave either speed

0 or speed 1 (according to the sampling sequence {ϑi}i), while in the

exact solution it would have a speed in [0, 1], but not necessarily equal

to 0 or 1;

(2) secondly, there is an error due to the fact that some waves can be created

at times t > ta, some waves can be canceled at times t < ta+1 and, above

all, some waves, which are present both at time ta and at time ta+1, can

change their speeds, when they interact with other waves.
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The first error source is estimated by choosing the intervals Ja sufficiently

large in order to use estimate (1.10) with j2 − j1 ≫ 1.

The second error source can be estimated (choosing the intervals Ja not

too large) if we are able to (uniformly) bound the change in speed of the

waves present in the approximate solution. In the GNL/LD case, this was

achieved by Liu in [14], where he provided a wave tracing algorithm which

splits each wavefront in the approximate solution into a finite number of

discrete waves, whose trajectories can be traced and whose changes in speed

at any interaction time are bounded by the corresponding decrease of the

functional QGlimm. In particular, using Liu’s wave tracing, Bressan and

Marson prove that for any i1, i2 ∈ N, on the time interval [t1, t2], t1 = i1ε,

t2 = i2ε, it holds

∥∥uε(t2)− St2−t1u
ε(t1)

∥∥
1

≤ O(1)

[(
QGlimm(t2)−QGlimm(t1)

)
+

1 + log(i2 − i1)

i2 − i1
+ ε

]
(t2 − t1).(1.15)

As ε→ 0, it is convenient to choose the asymptotic size of the intervals Ja in

such a way that the errors in (1) and (2) have approximately the same order

of magnitude. In particular, the estimate (1.13) is obtained by choosing

|Ja| ≈
√
ε log | log ε|.

Estimate (1.15) is precisely the point in Bressan’s and Marson’s proof

which can not be easily extended to the general case, because the functional

QGlimm is not of help in this case. Improving the results recently obtained

by the authors in [3], in this paper a suitable functional

Υ : [0,+∞) → [0,+∞), Υ(0) ≤ O(1)Tot.Var.(u0),

is constructed, such that for any i1, i2 ∈ N, i1 < i2,

∥∥uε(t2)−St2−t1uε(t1)
∥∥
1
≤ O(1)

[(
Υ(t2)−Υ(t1)

)
+
1 + log(i2 − i1)

i2 − i1

]
(t2− t1).

(1.16)

In order to prove (1.16), one could be tempted to use the well known

semigroup inequality (see [5])

‖uε(t2)− St2−t1u
ε(t1)‖1 ≤ L

∫ t2

t1

lim sup
h→0

∥∥uε(t+ h)− Shu
ε(t)
∥∥
1

h
dt.
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However, for a Glimm solution uε this estimate can not be directly applied,

because it does not take into account the error due to the restarting pro-

cedure. To go beyond this difficulty, in the same spirit as in [8], we will

introduce in Section 3 a “wavefront” map

ψ : [t1, t2]× R → R
n

with the following properties:

ψ(t2, x) = uε(t2, x), (1.17a)
∥∥St2−t1ψ(t1)− ψ(t2)

∥∥
1
≤ O(1)

[(
Υ(t1)−Υ(t2)

)
+
1+log(i2−i1)

i2−i1

]
(t2−t1),

(1.17b)
∥∥ψ(t1)− uε(t1)

∥∥
1
≤ O(1)

(
Υ(t1)−Υ(t2)

)
(t2 − t1). (1.17c)

Clearly (1.16) is an immediate consequence of (1.17) and the Lipschitz con-

tinuity of the semigroup St.

Remark 1.4. Notice that all the functionals QGlimm, Qcubic,Υ are defined

on the approximate solution uε, or, in other words, they depend on ε, even if

we do not write this dependence explicitly. What is important, is that they

are decreasing and uniformly (i.e. without any reference to ε) bounded at

t = 0.

1.5. Proof of Theorem 1.3

We conclude this introduction proving Theorem 1.3 in the general case,

assuming that estimate (1.16) holds and using Bressan’s and Marson’s tech-

niques. Fix T, ε > 0, say T = īε+ ε′ for some integer ī and some ε′ ∈ [0, ε).

In connection with a constant δ ≥ ε (whose precise value will be specified

later), we construct a partition of the interval [0, īε] into finitely many subin-

tervals Ja = [ta, ta+1], inserting the points ta = iaε inductively as follows.

Set i0 := 0. If the integers i0 < i1 < · · · < ia < ī have already been defined,

then

(i) if Υε(iaε) − Υε
(
(ia + 1)ε

)
≤ δ, let ia+1 be the largest integer ≤ ī such

that (ia+1 − ia)ε ≤ δ and Υε(iaε)−Υε(ia+1ε) ≤ δ;

(ii) if Υε(iaε)−Υa
(
(ia + 1)ε

)
> δ, define ia+1 := ia + 1.
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Clearly iA = ī for some integer A ≤ ī. Call A′,A′′ respectively the set of in-

dices a for which the alternative (i), (ii) holds. Observe that the cardinalities

of these sets can be bounded by

♯A′ ≤ O(1)
T

δ
, ♯A′′ ≤ O(1)

Tot.Var.(u0)
2

δ
≤ O(1)

T

δ
(1.18)

for δ ≪ 1. On each subinterval Ja, a ∈ A′ we can apply (1.16), thus obtaining

∥∥uε(ia+1ε)− S(ia+1−ia)εu
ε(iaε)

∥∥
1

≤ O(1)

[(
Υε(ia+1ε)−Υε(iaε)

)
+
1+log(ia+1 − ia)

ia+1 − ia
+ ε

]
(ia+1 − ia)ε. (1.19)

On the other hand, on each interval Ja with a ∈ A′′, the 1-Lipschitz conti-

nuity of uε : [0,∞) → L1(R;Rn) implies that

∥∥uε(ia+1ε)− S(ia+1−ia)εu
ε(iaε)

∥∥
1
≤ (ia+1 − ia)ε = ε. (1.20)

Using the Lipschitz property (1.12) of the semigroup we get

∥∥uε(̄iε)− Sīεu
ε(0)

∥∥ ≤
A−1∑

a=0

∥∥∥S(̄i−ia+1)εu(ia+1ε)− S(̄i−ia)εu(iaε)
∥∥∥
1

≤ L

A−1∑

a=0

∥∥∥u(ia+1ε)− S(ia+1−ia)εu(iaε)
∥∥∥
1

(by (1.19)−(1.20)) ≤ O(1)

{
∑

a∈A′

[(
Υε(ia+1ε)−Υε(iaε)

)

+
1 + log(ia+1 − ia)

ia+1 − ia
+ ε

]
(ia+1 − ia)ε+

∑

a∈A′′

ε

}

(by Points (i), (ii) above) ≤ O(1)

{
∑

a∈A′

(
δ2 + ε+ ε log

δ

ε
+ εδ

)
+
∑

a∈A′′

ε

}

(by (1.18)) ≤ O(1)T

(
δ +

ε

δ
+
ε

δ
log

δ

ε
+ ε

)
.

Hence

∥∥uε(T )− STu0
∥∥ ≤

∥∥uε(T )− uε(̄iε)
∥∥+

∥∥uε(̄iε)− Sīεu
ε(0)

∥∥
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+
∥∥Sīεuε(0)− Sīεu0

∥∥+
∥∥Sīεu0 − STu0

∥∥

≤ O(1)max{1, T}
(
δ +

ε

δ
+
ε

δ
log

δ

ε
+ ε
)
. (1.21)

Since (1.21) holds for any δ ≥ ε, choosing δ(ε) :=
√
ε, we finally obtain

(1.13).

1.6. Notations

• For s ∈ R, define

I(s) :=

{
(0, s] if s ≥ 0,

[s, 0) if s < 0.

• Let X be any set and let f : I(s′) → X, g : s′ + I(s′′) → X;

- if s′s′′ ≥ 0 and f(s′) = g(s′), define

f ∪ g : I(s′ + s′′) → X,

(
f ∪ g

)
(x) :=

{
f(x) if x ∈ I(s′),

g(x) if x ∈ s′ + I(s′′);
(1.22)

- if s′s′′ < 0, define

f △ g : I(s′ + s′′) → X,

(f △ g)(x) :=

{
f(x) if |s′| ≥ |s′′|, x ∈ I(s′ + s′′),

g(x) if |s′| < |s′′|, x ∈ I(s′ + s′′).
(1.23)

• For a continuous real valued function f , we denote its convex envelope

in the interval [a, b] as conv [a,b]f .

• Given a totally ordered set (A,�), we define a partial pre-ordering on

2A setting, for I, J ⊆ A,

I ≺ J if and only if for a ∈ I, b ∈ J it holds a ≺ b.

We will also write I � J if either I ≺ J or I = J , i.e. we add the

diagonal to the relation, making it a partial ordering.

• The L∞ norm of a map g : [a, b] → R
n will be denoted either by ‖g‖∞

or by ‖g‖L∞([a,b]), if we want to stress the domain of g; similar notation

for the L1-norm.
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• Given a C1 map g : R → R and an interval I ⊆ R, possibly made by a

single point, let us define the Rankine-Hugoniot speed

σrh(g, I) :=

{
g(sup I)−g(inf I)

sup I−inf I if I is not a singleton,
dg
du(I) if I is a singleton.

2. Summary of the Paper [3] with a Modified Version of the

Quadratic Potential

In [3] an estimate on the change of the speeds of the infinitesimal waves

present in a Glimm approximate solution uε is provided. This estimate is

achieved in two steps. First of all it is proved that at each grid point (iε,mε),

i ∈ N, m ∈ Z, the change in speed of the waves interacting at (iε,mε)

is bounded by a quantity A(iε,mε), called amount of interaction. Then

it is shown that there exists an uniformly bounded, decreasing functional

t 7→ Υ(t) such that at each time iε

∑

m∈Z

A(iε,mε) ≤ O(1)
(
Υ(iε−) −Υ(iε+)

)
.

The functional Υ(t) is defined as the sum of some already known decreasing

functionals (see Section 2.4 below) and of a new quadratic functional t 7→
Q(t), whose definition requires a careful analysis of waves collisions. Aim

of this section is to summarize the main results present in the cited paper

[3], providing meanwhile a stronger definition of the functional Q(t). This

stronger definition is needed to prove estimate (1.16) in Section 5 and thus

Theorem 1.3.

2.1. Entropic self similar solution to the Riemann problem

As we pointed out in Section 1.1, the crucial point to solve the Riemann

problem (1.1)−(1.5) is to find, for any left state uL, a curve s 7→ T ks u
L of

admissible right state, defined for |s| ≪ 1, such that the Riemann problem

(uL, T ks u
L) can be solved by (countable many) admissible shocks (in the sense

of limit of viscosity approximations), contact discontinuities and rarefaction

waves. In the GNL/LD case the admissible curve s 7→ T ks u
L coincides with

the rarefaction curve for s ≥ 0 and with the shock curve for s ≤ 0 (see
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[5]). In the general case, however, the situation is much more difficult and

the problem was completely solved by Bianchini and Bressan in [2]. Here

we describe just the main points of their construction, in order to recall the

notations we will need.

First of all, for any index k ∈ {1, . . . , n}, through a Center Manifold

technique, one can find a neighborhood of the point (0, 0, λk(0)) of the form

Dk :=
{
(u, vk, σk) ∈ R

n × R× R
∣∣ |u| ≤ ρ, |vk| ≤ ρ, |σk − λk(0)| ≤ ρ

}

for some ρ > 0 (depending only on f) and a smooth vector field

r̃k : Dk → R
n, r̃k = r̃k(u, vk, σk),

satisfying

r̃k(u, 0, σk) = rk(u),

∣∣∣∣
∂r̃k
∂σk

(u, vk, σk)

∣∣∣∣ ≤ O(1)
∣∣vk
∣∣. (2.1)

We will call r̃k the k-generalized eigenvector. The characterization of r̃k is

that

Dk ∋ (u, vk, σk) 7→
(
u, vk r̃k, σk

)
∈ R

n × R
n × R

is a parameterization of a center manifold near the equilibrium (0, 0, λk(0)) ∈
Dk for the ODE of traveling waves

(
A(u)− σI

)
ux = uxx ⇐⇒





ux = v

vx = (A(u)− σI)v

σx = 0

where A(u) = Df(u), the Jacobian matrix of the flux f , and I is the identity

n× n matrix.

Associated to the generalized eigenvectors, we can define smooth functions

λ̃k : Dk → R by

λ̃k(u, vk, σk) :=
〈
lk(u), A(u)r̃k(u, vk, σk)

〉
.

We will call λ̃k the k-generalized eigenvalue. By (2.1) and the definition of
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λ̃k, we can get

λ̃k(u, 0, σk) = λk(u),

∣∣∣∣
∂λ̃k
∂σk

(u, vk, σk)

∣∣∣∣ ≤ O(1)|vk|. (2.2)

For the construction of the generalized eigenvectors and eigenvalues and the

proof of (2.1), (2.2), see Section 4 of [2].

Then, by a fixed point technique one can now prove that there exist

η > 0 (depending only on f), such that for

k ∈ {1, . . . , n}, uL ∈ B(0, ρ/2), 0 ≤ s < η,

there is a curve

γ : [0, s] → Dk

τ 7→ γ(τ) = (u(τ), vk(τ), σk(τ))

such that u, vk ∈ C1,1([0, s]), σk ∈ C0,1([0, s]) and this curve is the unique

solution to the system





u(τ) = uL +

∫ τ

0
r̃k(γ(ς))dς

vk(τ) = fk(γ; τ) − conv [0,s]fk(γ; τ)

σk(τ) =
d

dτ
conv [0,s]fk(γ; τ)

(2.3)

where

fk(γ; τ) :=

∫ τ

0
λ̃k(γ(ς))dς (2.4)

and conv [0,s]fk is the convex envelope of fk in the interval [0, s]:

conv [a,b]g(u) := sup

{
h(u)

∣∣∣ h : [a, b] → R is convex and h ≤ g

}
.

In the case s < 0 a completely similar result holds, replacing the convex

envelope with the concave one.

If we want to stress the dependence of the curve γ on uL and s we will use
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the notation

γ(uL, s)(τ) =
(
u(uL, s)(τ), vk(u

L, s)(τ), σk(u
L, s)(τ)

)
.

Finally the curve of admissible right states (−η, η) ∋ s 7→ T ks u
L is

defined as T ks u
L := u(uL, s)(s).

2.2. Elementary estimates on the merging of two Riemann

problems

Consider two contiguous Riemann problem

uM = T ns′n ◦ · · · ◦ T 1
s′1
uL, uR = T ns′′n ◦ · · · ◦ T 1

s′′1
uM , (2.5)

and the Riemann problem obtained joining them,

uR = T nsn ◦ · · · ◦ T 1
s1u

L.

In particular the curves of the incoming Riemann problems are

γ′1 = (u′1, v
′
1, σ

′
1) := γ1(u

L, s′1), γ
′
k = (u′k, v

′
k, σ

′
k) := γk

(
u′k−1(s

′
k−1), s

′
k

)

for k = 2, . . . , n,

γ′′1 = (u′′1 , v
′′
1 , σ

′′
1 ) := γ1(u

M , s′′1), γ′′k = (u′′k, v
′′
k , σ

′′
k) := γk

(
u′′k−1(s

′′
k−1), s

′′
k

)

for k = 2, . . . , n,

while the outcoming ones are

γ1 = (u1, v1, σ1) := γ1(u
L, s1), γk = (uk, vk, σk) := γk

(
uk−1(sk−1), sk

)

for k = 2, . . . , n.

We will denote by f ′k, f
′′
k , fk the reduced fluxes associated by (2.4) to γ′k, γ

′′
k , γk

respectively; for simplicity, we will assume that γ′′k and f ′′k are defined on

s′k + I(s′′k), instead of I(s′′k) and f ′′k (s
′
k) = f ′k(s

′
k): indeed, it is clear that

adding a constant to f̃k does not vary system (2.3).
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Fix an index k ∈ {1, . . . n} and consider the points (Figure 1)

uL1 := uL, uLk := T k−1
s′′
k−1

◦ T k−1
s′
k−1

◦ · · · ◦ T 1
s′′1

◦ T 1
s′1
uL, k ≥ 2

uMk := T ks′
k
uLk , uRk := T ks′′

k
uMk , k = 1, . . . , n.

By definition, the Riemann problem between uLk and uMk is solved by wave-

fronts of the k-th family with total strength s′k and the Riemann problem

between uMk and uRk is solved by wavefront of the k-th family with total

strength s′′k. Denote by γ̃′k = (ũ′k, ṽ
′
k, σ̃

′
k) the curve which solves the Riemann

problem [uLk , u
M
k ] and by f̃ ′k the associated reduced flux (see (2.4)).

Similarly, let γ̃′′k = (ũ′′k, ṽ
′′
k , σ̃

′′
k) be the curve solving the Riemann problem

[uMk , u
R
k ] and let f̃ ′′k be the associated reduced flux. Clearly, γ̃′k, f̃

′
k are defined

on I(sk), while, since we are going to perform the patching (1.22), (1.23),

we will assume as above that γ̃′′k and f̃ ′′k are defined on s′k + I(s′′k) (instead

of I(s′′k)) and that f̃ ′′k (s
′
k) = f̃ ′k(s

′
k).

As in [3], define the following quantities, called amounts of interaction.

Definition 2.1. The quantity

Atrans(uL, uM , uR) :=
∑

1≤h<k≤n

|s′k||s′′h|

is called the transversal amount of interaction associated to the two Riemann

problems (2.5).

For s′k > 0, we define cubic amount of interaction of the k-th family for the

two Riemann problems (uL, uM ), (uM , uR) as follows:

(1) if s′′k ≥ 0,

Acubick (uL, uM , uR) :=

∫ s′
k

0

[
conv [0,s′

k
]f

′
k(τ)−conv [0,s′

k
+s′′

k
]

(
f ′k ∪ f ′′k

)
(τ)
]
dτ

+

∫ s′
k
+s′′

k

s′
k

[
conv [s′

k
,s′′

k
]f

′′
k (τ)−conv [0,s′

k
+s′′

k
]

(
f ′k ∪ f ′′k

)
(τ)
]
dτ ;

(2) if −s′k ≤ s′′k < 0

Acubick (uL, uM , uR) :=

∫ s′
k
+s′′

k

0

[
conv [0,s′

k
+s′′

k
]f

′
k(τ)− conv [0,s′

k
]f

′
k(τ)

]
dτ
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+

∫ s′
k

s′
k
+s′′

k

[
conc [s′

k
+s′′

k
,s′

k
]f

′
k(τ)−conv [0,s′

k
]f

′
k(τ)

]
dτ ;

(3) if s′′k < −s′k,

Acubick (uL, uM , uR) :=

∫ 0

s′
k
+s′′

k

[
conc [s′

k
+s′′

k
,s′

k
]f

′′
k (τ)−conc [s′

k
+s′′

k
,0]f

′′
k (τ)

]
dτ

+

∫ s′
k

0

[
conc [s′

k
+s′′

k
,s′

k
]f

′′
k (τ)−conv [0,s′

k
]f

′′
k (τ)

]
dτ.

Here conc [a,b]g denotes the concave envelope of a function f in the interval

[a, b]:

conc [a,b]g(u) := inf

{
h(u)

∣∣∣ h : [a, b] → R is concave and h ≥ g

}
.

Similar definitions can be given if s′k < 0, interchanging convex envelopes

with concave.

The amount of cancellation of the k-th family is defined by

Acanck (uL, uM , uR) :=

{
0 if s′ks

′′
k ≥ 0,

min{|s′k|, |s′′k|} if s′ks
′′
k < 0.

The amount of creation of the k-th family is defined by

Acrk (u
L, uM , uR) :=

[
|sk| − |s′k + s′′k|

]+
.

If s′ks
′′
k ≥ 0, we define the quadratic amount of interaction of the k-family

associated to the two Riemann problems (2.5) by

A
quadr
k (uL, uM , uR) :=





f̃ ′k(s
′
k)−conv [0,s′

k
+s′′

k
]

(
f̃ ′k ∪ f̃ ′′k

)
(s′k) if s′k>0, s′′k>0,

conc [s′
k
+s′′

k
,0]

(
f̃ ′k ∪ f̃ ′′k

)
(s′k)−f̃ ′k(s′k) if s′k<0, s′′k<0,

0 if s′ks
′′
k≤0.

Finally we define the total amount of interaction associated to the two Rie-
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Figure 1: Elementary curves of two interacting Riemann problems before and after
transversal interactions.

mann problems (2.5) as

A(uL, uM , uR) := Atrans(uL, uM , uR) +
n∑

h=1

(
A
quadr
h (uL, uM , uR)

+Acanch (uL, uM , uR) + Acubich (uL, uM , uR)
)
.

It is well known (see [1]) that

n∑

k=1

∣∣sk − (s′k + s′′k)
∣∣ ≤ O(1)

[
Atrans(uL, uM , uR) +

n∑

k=1

Acubick (uL, uM , uR)

]
.

and thus

Acrk (u
L, uM , uR) ≤ Atrans(uL, uM , uR) +

n∑

h=1

Acubich (uL, uM , uR).

The distance between incoming and outgoing Riemann problems can be

estimated as follows (see [3], Theorem 3.3).

Theorem 2.2. For any k = 1, . . . , n,
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• if s′ks
′′
k ≥ 0, then

∥∥(u′k ∪ u′′k)− uk
∥∥
L∞(I(s′

k
+s′′

k
)∩I(sk))∥∥(v′k ∪ v′′k)− vk

∥∥
L∞(I(s′

k
+s′′

k
)∩I(sk))∥∥(σ′k ∪ σ′′k)− σk

∥∥
L1(I(s′

k
+s′′

k
)∩I(sk))∥∥∥∥

(
d2f ′k
dτ2

∪ d2f ′′k
dτ2

)
− d2fk

dτ2

∥∥∥∥
L1(I(s′

k
+s′′

k
)∩I(sk))





≤ O(1)A(uL, uM , uR);

• if s′ks
′′
k < 0, then

∥∥(u′k △ u′′k)− uk
∥∥
L∞(I(s′

k
+s′′

k
)∩I(sk))∥∥(v′k △ v′′k)− vk

∥∥
L∞(I(s′

k
+s′′

k
)∩I(sk))∥∥(σ′k △ σ′′k)− σk

∥∥
L1(I(s′

k
+s′′

k
)∩I(sk))∥∥∥∥

(
d2f ′k
dτ2

△
d2f ′′k
dτ2

)
− d2fk

dτ2

∥∥∥∥
L1(I(s′

k
+s′′

k
)∩I(sk))





≤ O(1)A(uL, uM , uR);

Remark 2.3. In the statement of Theorem 3.3 in [3] only the inequalities

about u, σ, d
2fk
dτ2

are explicitly proved, while the ones about v are not. How-

ever it is not difficult to see that the proof used for u, σ and d2fk
dτ2

can be

adapted also to v.

2.3. Lagrangian representation for the Glimm approximate

solution uε

In this section we recall the notion, introduced in [3], of Lagrangian

representation of an approximate solution uε (ǫ above) to the Cauchy prob-

lem (1.1)−(1.4) obtained by the Glimm scheme, and we state the theorem

about the existence of a Lagrangian representation satisfying some useful

additional properties. At the end of the section we introduce some notions

related to the Lagrangian representation; in particular, the notion of effective

flux feffk (t) of the k-th family at time t.

Let us first introduce some notation related to the Glimm approximate
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solution uε. For any grid point (iε,mε), i ≥ 0, m ∈ Z, set

ui,m := uε(iε,mε),

and assume that the Riemann problem (ui,m−1, ui,m) is solved by

ui,m = T n
si,mn

◦ · · · ◦ T 1
si,m1

ui,m−1,

moreover denote by

σi,mk : I(si,mk ) → R, k = 1, . . . , n,

the speed function of the k-th wavefront solving the Riemann problem (ui,m−1,

ui,m).

Let us introduce also the following notation for the transversal, cubic and

quadratic amounts of interaction and for the amounts of creation and can-

cellation related to the two Riemann problems (ui,m−1, ui−1,m−1), (ui−1,m−1,

ui,m) which interact at grid point (iε,mε):

Atrans(iε,mε) := Atrans(ui,m−1, ui−1,m−1, ui,m),

and for k = 1, . . . , n,

Acubick (iε,mε) := Acubick (ui,m−1, ui−1,m−1, ui,m),

Acanck (iε,mε) := Acanck (ui,m−1, ui−1,m−1, ui,m),

Acrk (iε,mε) := Acrk (ui,m−1, ui−1,m−1, ui,m),

A
quadr
k (iε,mε) := A

quadr
k (ui,m−1, ui−1,m−1, ui,m).

We now introduce the notion of Lagrangian representation. Given a

piecewise constant approximate solution uε constructed by the Glimm scheme

(see Section 1.2, for any time t ≥ 0 define the quantities

L+
k (t) :=

∑

m∈Z

[
si,mk

]+
, L−

k (t) := −
∑

m∈Z

[
si,mk

]−
, if t ∈ [iε, (i + 1)ε).

It is easy to see that |L+
k (t)|+ |L−

k (t)| ≤ O(1)Tot.Var.(uε(t)).
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Definition 2.4. A Lagrangian representation for uε is a set W called the

set of waves, together with

• the maps

family : W → {1, . . . , n} the family of the wave w ∈ W,

S : W → {±1} the sign of the wave w ∈ W ,

tcr : W → [0,+∞) the creation time of the wave w ∈ W,

tcanc : W → (0,+∞] the cancellation time of the wave w ∈ W,

• a relation, which we will denote by ≤,

• the map, called position function,

x :
{
(t, w) ∈ [0,∞) ×W

∣∣ tcr(w) ≤ t < tcanc(w)
}
→ R,

which satisfy the conditions (1)−(4) below.

For convenience, set

Wk :=
{
w ∈ W

∣∣ family(w) = k
}
,

Wk(t) :=
{
w ∈ Wk

∣∣ tcr(w) ≤ t < tcanc(w)
}
,

W±
k (t) :=

{
w ∈ Wk(t)

∣∣ S(w) = ±1
}
.

The additional conditions to be satisfied by a Lagrangian representation

are the following:

(1) for any family k, time t, sign ±1, the relation ≤ is a total order both

on W+
k (t) and on W−

k (t); if I ⊆ W±
k (t) is an interval in the order set

(W±
k (t),≤), we will say that I is an interval of waves (i.o.w.) at time t;

(2) the map x satisfies:

(a) for fixed time t, x(t, ·) : Wk(t) → R is increasing;

(b) for fixed w ∈ W, the map x(·, w) : [tcr(w), tcanc(w)) → R is Lipschitz;

(c) for any point (t̄, x̄) ∈ [0,+∞)× R, all the waves in

Wk(t̄, x̄) := x(t̄)−1(x̄) ∩Wk

have the same sign;
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(3) there exist maps Φk(t) : Wk(t) → I
(
L−
k (t)

)
∪ I
(
L+
k (t)

)
such that

Φk(t)|W+
k
(t) : W+

k (t) → I
(
L+
k (t)

)
is an isomorphism of ordered sets, while

Φk(t)|W−

k
(t) : W−

k (t) → I
(
L−
k (t)

)
is an antisomorphism of ordered sets;

(4) there exist maps γ̂k(t) : Wk(t) → Dk ⊆ R
m×R×R, γ̂k(t) =

(
ûk(t), v̂k(t),

σ̂k(t)
)
, such that

(a) for any x̄ ∈ R, setting

uL := lim
x→x̄−

uε(t, x), uR := lim
x→x̄+

uε(t, x),

the collection of curves

{
Φk(t)

(
Wk(t, x̄)

)
∋ τ 7→ γ̂k

(
t,Φk(t)

−1(τ)
)}

k=1,...,n
,

solves the Riemann problem (uL, uR);

(b) for any w ∈ W±
k (iε), if t

canc(w) ≥ (i + 1)ε, then for any time t ∈
[iε, (i + 1)ε) it holds

x(t, w) =

{
x(iε, w) if ϑi+1 ≥ σ̂k(iε, w),

x(iε, w) + (t− iε) if ϑi+1 < σ̂k(iε, w).

The following theorem is taken from [3, Theorem 4.1].

Theorem 2.5. There exists at least one Lagrangian representation for the

approximate solution uε constructed by the Glimm scheme, which moreover

satisfies the following conditions: for any grid point (iε,mε) ∈ Nε×Zε,

(a) the set Wk(iε,mε) ∩Wk((i − 1)ε) is an i.o.w. both at time (i− 1)ε and

at time iε, while the set Wk(iε,mε) \ Wk((i − 1)ε) is an i.o.w. at time

iε;

(b) the map

Φk((i− 1)ε)(Wk(iε,mε) ∩Wk((i− 1)ε))

Φk(iε)◦Φk((i−1)ε)−1

−→ Φk(iε)(Wk(iε,mε) ∩Wk((i− 1)ε))

is an affine map with Lipschitz constant equal to 1.

Definition 2.6. Fix t̄ ≥ 0. Let I ⊆ Wk(t̄) be an interval of waves at

time t̄. Set I := Φk(t̄)(I). By Property (3) of the Definition of Lagrangian
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representation, I is an interval in R (possibly made by a single point). Let

us define:

• the Rankine-Hugoniot speed given to the interval of waves I by a func-

tion g : R → R as

σrh(g,I) :=
{
g(sup I)−g(inf I)

sup I−inf I if I is not a singleton,

g′(I) if I is a singleton;

• for any w ∈ I, the entropic speed given to the wave w by the Riemann

problem I and the flux function g as

σent(g,I, w) :=





d

dτ
conv Ig

(
Φk(t̄)(w)

)
if Sk(w) = +1,

d

dτ
conc Ig

(
Φk(t̄)(w)

)
if Sk(w) = −1.

If σrh(g,I) = σent(g,I, w) for any w ∈ I, we will say that I is entropic w.r.t.

the function g.

We will also say that the Riemann problem I with flux function g divides

w,w′ if σent(g,I, w) 6= σent(g,I, w′).

Definition 2.7. For each family k = 1, . . . , n and for each time t ≥ 0 define

the effective flux of the k-th family at time t as any C1,1 function

feffk (t, ·) : [L−
k , L

+
k ] → R

whose second derivative satisfies the following relation:

∂2feffk (t, ·)
∂τ2

(τ) :=
dλ̃k(γ̂k(t, w))

dτ
,

for L1-a.e. τ ∈ [L−
k , L

+
k ], where w = Φk(t)

−1(τ) and L1 denotes the one

dimensional Lebesgue measure on R.

2.4. Glimm-type functionals

We have already observed (see Sections 1.2, 1.3) that the main tool to

get a priori estimates on the Glimm approximate solutions is to find suitable
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decreasing functional. Here we recall the definitions of some Glimm-type

functional, which we will use throughout the paper.

Definition 2.8. Define the total variation along curves as

V (t) :=
n∑

k=1

∑

m∈Z

|si,mk |, for any t ∈ [iε, (i + 1)ε).

Define the transversal interaction functional as

Qtrans(t) :=

n∑

k=1

k−1∑

h=1

∑

m>m′

|si,m′

k ||si,mh |, for any t ∈ [iε, (i + 1)ε).

Define the cubic interaction functional as

Qcubic(t) :=

n∑

k=1

∑

m,m′∈Z

∫

I(si,m
k

)

∫

I(si,m
′

k
)

∣∣σi,mk (τ)− σi,m
′

k (τ ′)
∣∣dτ ′dτ.

The following statements hold: for the proofs, see [5], [1].

Proposition 2.9. There exists a constant C > 0, depending only of the flux

f , such that for any time t ≥ 0

1

C
Tot.Var.(u(t)) ≤ V (t) ≤ CTot.Var.(u(t)).

Theorem 2.10. The following hold:

(1) the functionals t 7→ V (t), Qtrans(t), Qcubic(t) are constant on each interval

[iε, (i + 1)ε);

(2) they are bounded by powers of the Tot.Var.(u(t)) as follows:

V (t) ≤ O(1)Tot.Var.(u(t)),

Qtrans(t) ≤ O(1)Tot.Var.(u(t))2,

Qcubic(t) ≤ O(1)Tot.Var.(u(t))3;

(3) there exist constants c1, c2, c3 > 0, depending only on the flux f , such

that for any i ∈ N, defining

Qknown(t) := c1V (t) + c2Q
trans(t) + c3Q

cubic(t),
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it holds

∑

m∈Z

[
Atrans(iε,mε) +

n∑

k=1

(
Acanck (iε,mε) + Acubick (iε,mε)

)]

≤ Qknown((i − 1)ε)−Qknown(iε). (2.6)

2.5. Analysis of waves collisions

This section corresponds to [3, Section 5]. Here however we introduce a

new definition of characteristic interval associated to a pair of waves (w,w′)

and a new definition of the partition of this interval. These new definitions

provide the correct setting to define the new quadratic interaction potential

which we are going to introduce in Section 2.6 and which will be used in

Section 5 to prove estimate (1.16) and thus Theorem 1.3.

We first introduce the following equivalence relation ⊲⊳: for any fixed

time t̄ ∈ [iε, (i + 1)ε) and for any couple of waves w,w′ ∈ Wk(t), we set

w ⊲⊳ w′ if and only if

tcr(w) = tcr(w′) and x(t, w) = x(t, w′) for any t ∈
[
tcr(w), (i + 1)ε

]
.

(2.7)

and we denote the equivalence classes as

E(t̄, w) :=
{
z ∈ Wk(t̄)

∣∣∣ tcr(z) = tcr(w) and x(t, w) = x(t, z)

for any t ∈
[
tcr(w), (i + 1)ε

)}
.

Definition 2.11. Let t̄ be a fixed time and let w,w′ ∈ Wk(t̄). We say that

• w,w′ interact at time t̄ if x(t̄, w) = x(t̄, w′);

• w,w′ have already interacted at time t̄ if there is t ≤ t̄ such that w,w′

interact at time t;

• w,w′ have never interacted at time t̄ if for all t ≤ t̄, they do not interact

at time t.

• w,w′ will interact after time t̄ if there is t > t̄ such that w,w′ interact

at time t.
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• w,w′ are joined in the real solution at time t̄ if there is a right neighbor-

hood of t̄, say [t̄, t̄+ζ), such that they interact at any time t ∈ [t̄, t̄+ζ);

• w,w′ are divided in the real solution at time t̄ if they are not joined at

time t̄.

Remark 2.12. It t̄ 6= iε for each i ∈ N, then two waves are divided in the

real solution if and only if they have different position. If t̄ = iε, they are

divided if there exists a time t > t̄, arbitrarily close to t̄, such that w,w′

have different positions at time t.

Definition 2.13. Fix a time t̄ and two k-waves w,w′ ∈ Wk(t̄), w < w′.

Assume that w,w′ are divided in the real solution at time t̄. Define the time

of last splitting tsplit(t̄, w,w′) (if w,w′ have already interacted at time t̄) and

the time of next interaction tint(t̄, w,w′) (if w,w′ will interact after time t̄)

by the formulas

tsplit(t̄, w,w′) := max
{
t < t̄ | x(t, w) = x(t, w′)

}
,

tint(t̄, w,w′) := min
{
t > t̄ | x(t, w) = x(t, w′)

}
.

Given two k-waves w,w′ ∈ Wk and given a time t ∈ [0,∞), we define the

property

p(t, w,w′) : “either w,w′ ∈ Wk(t) and they are divided at time t in

the real solution or at least one between w,w′ does not

belong to Wk(t)”.

Definition 2.14. Let t1 ≤ t2, be two times. Let w,w′ ∈ Wk(t2) be

two k-waves. Assume that they have the same sign and that they satisfy

p(t1, w,w
′). We define the characteristic interval I(t1, t2, w,w′) of w,w′ at

time t2 starting from time t1 as follows. Assume first that t2 = iε for some

i ∈ N.

(1) If at least one between w,w′ does not belong toWk(t1) or w,w
′ ∈ Wk(t1),
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but they have never interacted at time t1, then

I(t1, t2, w,w′)=





{
z ∈ Wk(t2) | S(z)=S(w) and z<E(t2, w′)

}
∪ E(t2, w′)

if tcr(w) ≤ tcr(w′),

E(t2, w) ∪
{
z ∈ Wk(t2) | S(z)=S(w) and z>E(t2, w)

}

if tcr(w) > tcr(w′);

(2) If w,w′ ∈ Wk(t1) and they have already interacted at time t1, we have

to distinguish two cases:

(a) if t1 = tsplit(t1, w,w
′), then argue by recursion:

• if t2 = t1 = tsplit(t1, w,w
′), set

I(t1, t2, w,w′) := W(t1, x(t1, w)) = W(t1, x(t1, w
′));

• if t2 = iε > (i− 1)ε ≥ t1 = tsplit(t1, w,w
′), define I(t1, t2, w,w′)

as the smallest interval in (W±
k (t2),≤) which contains I(t1, (i −

1)ε, w,w′) ∩Wk(t2), i.e.

I(t1, t2, w,w′) :=
{
z ∈ Wk(t2)

∣∣∣ S(z) = S(w) = S(w′)

and ∃ y, y′ ∈ I(t1, (i − 1)ε, w,w′) ∩Wk(t2) such that y≤z≤y′
}
.

(b) if t1 > tsplit(t1, w,w
′), set

I(t1, t2, w,w′) = I(tsplit(t1, w,w′), t2, w,w
′).

Finally set

I(t1, t2, w,w′) := I(t1, iε, w,w′) for t2 ∈ [iε, (i + 1)ε).

As in [3], we define now a partition P(t1, t2, w,w
′) of the characteristic

interval I(t1, t2, w,w′), with the properties that each element of P(t1, t2, w,w
′)

is an interval of waves at time t2, entropic w.r.t. the flux f
eff
k (t2) of Definition

2.7.

Definition 2.15. As before, let t1 ≤ t2, be two times. Let w,w′ ∈ Wk(t2)

be two k-waves. Assume that they have the same sign and that they satisfy

p(t1, w,w
′). Assume first that t2 = iε, i ∈ N.
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(1) If at least one between w,w′ does not belong toWk(t1) or w,w
′ ∈ Wk(t1),

but they have never interacted at time t1, then the equivalence classes

of the partition P(t1, t2, w,w
′) are singletons.

(2) Assume now that w,w′ have already interacted at time t1; we distinguish

two cases:

(a) if t1 = tsplit(t1, w,w
′), argue by recursion:

• if t2 = t1 = tsplit(t1, w,w
′), then P(t1, t2, , w,w

′) is given by the

equivalence relation

z ∼ z′ ⇐⇒
{
z, z′ are not divided by the Riemann problem

Wk(t1, x(t1, w)) with flux function feffk (t1, ·);

• if t2 = iε > (i − 1)ε ≥ t1 = tsplit(t1, w,w
′), then P(t1, t2, w,w

′)

is given by the equivalence relation

z ∼ z′ ⇐⇒








z, z′ belong to the same

equivalence class J ∈ P(t1, (i− 1)ε, w,w′)

and the Riemann problem J ∩Wk(t2)

with flux feffk (t2, ·) does not divide them




or
[
tcr(z) = tcr(z′) = t2 and z = z′

]
.

It is not difficult to see that the previous definition is well posed,

since J ∩W(iε) is an interval of waves at time iε.

(b) if t1 > tsplit(t1, w,w
′), set

P(t1, t2, w,w
′) = P(tsplit(t1, w,w

′), t2, w,w
′).

Finally extend the definition of P(t1, t2, w,w
′) for any time t2 ∈ [iε, (i+1)ε),

setting

P(t1, t2, w,w
′) = P(t1, iε, w,w

′) for any t̄ ∈ [iε, (i + 1)ε).

We collect now the main results about the characteristic interval and

its partition. In this paper the definitions of the characteristic interval

I(t1, t2, w,w′) and of the associated partition P(t1, t2, w,w
′) are different

from the analog definitions given in [3]. However the results we present now
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can be proved with the same techniques as in [3, Section 5]. For this reason

we just state the results, omitting the proofs.

The following proposition corresponds to [3, Proposition 5.12] and can

be proved in a similar way.

Proposition 2.16. Let t1 ≤ t2, be two times. Let w,w′ ∈ Wk(t2) be two k-

waves. Assume that they have the same sign and that they satisfy p(t1, w,w
′).

Let J ∈ P(t1, t2, w,w
′). Then x(t2, ·) is constant on J and J is an entropic

interval of waves at time t2 w.r.t. the flux function feffk (t2, ·).

Definition 2.17. Let A,B two sets, A ⊆ B. Let P be a partition of B.

We say that P can be restricted to A if for any C ∈ P, either C ⊆ A or

C ⊆ B \ A. We also write

P|A :=
{
C ∈ P

∣∣ C ⊆ A
}
.

Clearly P can be restricted to A if and only if it can be restricted to B \A.
The following proposition is the equivalent to [3, Proposition 5.14] and

can be proved in an analogous way.

Proposition 2.18. Let t1 ≤ t2, be two times. Let w,w′, z, z′ ∈ Wk(t2)

be two k-waves, z ≤ w < w′ ≤ z′. Assume that they have the same sign

and that they satisfy both p(t1, w,w
′) and p(t1, z, z

′). Then P(t1, t2, z, z
′)

can be restricted both to I(t1, t2, z, z′)∩I(t1, t2, w,w′) and to I(t1, t2, z, z′) \
I(t1, t2, w,w′).

The following proposition is the equivalent to [3, Proposition 5.15] and

can be proved in an analogous way.

Proposition 2.19. Let t1 ≤ t2, be two times. Let w,w′, z, z′ ∈ Wk(t2) be

two k-waves, z ≤ w < w′ ≤ z′. Assume that they have the same sign and

that they satisfy both p(t1, w,w
′) and p(t1, z, z

′).

(1) If w,w′ ∈ Wk(t1) and they have already interacted at time t1, if z, z
′ ∈

I(t1, t2, , w,w′) and if tcr(z), tcr(z′) ≤ tsplit(t1, w,w
′), then I(t1, t2, , z, z′)

= I(t1, t2, , w,w′) and P(t1, t2, z, z
′) = P(t1, t2, w,w

′).

(2) If w,w′ ∈ Wk(t1) and they have already interacted at time t1, but at

least one wave between z, z′ is created after tsplit(t1, w,w
′), then z, z′

have never interacted at time t1.
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(3) If either w,w′ ∈ Wk(t1) and they have never interacted at time t1, or if

at least one between w,w′ does not belong to Wk(t1), then the partition

P(t1, t2, z, z
′) is made of singletons.

2.6. New quadratic potential

Let t ∈ [0,+∞) be a fixed time and let w,w′ ∈ Wk(t) be two k-waves

having the same sign. In this section we introduce the weight qk(t, w,w
′)

of the pair of waves w,w′ at time t; as we have already pointed out, the

definition we present here is different (and stronger) from the one we gave

in [3]. We proceed as follows.

First of all, fix three times t1 ≤ t2 ≤ t3. Assume that w,w′ ∈ Wk(t2) ∩
Wk(t3). Assume also that p(t1, w,w

′) holds and that t3 ∈ Nε. We set

qk(t1, t2, t3, w,w
′) :=

πk(t1, t2, t3, w,w
′)

dk(t1, t2, t3, w,w′)
,

where πk(t1, t2, t3, w,w
′), dk(t1, t2, t3, w,w

′) are defined as follows. Let

J ,J ′ ∈ P(t1, t2, w,w
′), such that w ∈ J , w′ ∈ J ′,

K,K′ ∈ P(t1, t3, w,w
′), such that w ∈ K, w′ ∈ K′,

(2.9)

be the elements of the partition of I(t1, t2, w,w′) and I(t1, t3, w,w′) contain-

ing w,w′ respectively. Set

G := K ∪
{
z ∈ J

∣∣ z > K
}
, G′ := K′ ∪

{
z ∈ J ′

∣∣ z < K′
}
, (2.10)

and

B := K ∪
{
z ∈ Wk(t2)

∣∣ S(z) = S(w) = S(w′) and K < z < K′
}
∪ K′.

Using a version of [3, Lemma 5.11] adapted to our new definition of the

characteristic intervals and partitions, one can easily prove that G,G′ are

i.o.w.s at time t2. We can thus define

πk(t1, t2, t3, w,w
′) :=

[
σrh(feffk (t2),G) − σrh(feffk (t2),G′)

]+

and

dk(t1, t2, t3, w,w
′) := L1

(
Φk(t2)(B)

)
.
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Remark 2.20. It is easy to see that qk(t1, t2, t3, w,w
′) is uniformly bounded:

in fact,

0 ≤ qk(t1, t2, t3, w,w
′) =

πk(t1, t2, t3, w,w
′)

dk(t1, t2, t3, w,w′)
≤ ‖D2feffk (t2)‖∞ ≤ O(1).

Fix now two times t1 ≤ t2 such that w,w′ ∈ Wk(t2) and p(t1, w,w
′)

holds. Define

qk(t1, t2, w,w
′) := sup

t3≥t2
t3∈Nε

w,w′∈Wk(t3)

qk(t1, t2, t3, w,w
′). (2.11)

Finally, for any fixed time t and for any w,w′ ∈ Wk(t), define

qk(t, w,w
′) :=





qk(t, t, w,w
′), if w,w′ are divided in

the real solution at time t2,

0, otherwise.

(2.12)

Remark 2.21. Notice that the definition of the weight q(t, w,w′) is different

and stronger from the old definition of the weight we gave in [3] and which

we will denote by qold(t, w,w′). Indeed,

qoldk (t, w,w′)=





qk(t, t, t
int(t, w,w′)−ε, w,w′) if w,w′ are divided at time t

and will interact after time t,

0 otherwise.

Hence

qoldk (t, w,w′) ≤ qk(t, w,w
′) (2.13)

As in [3], we can finally define the functional Qk(t) as

Qk(t) := Q+
k (t) +Q−

k (t),

where

Q+
k (t) :=

∫ L+
k
(t)

0
dτ

∫ L+
k
(t)

τ
dτ ′qk

(
t,Φk(t)

−1(τ),Φk(t)
−1(τ ′)

)

and
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Q−
k (t) :=

∫ 0

L−

k
(t)
dτ

∫ 0

τ
dτ ′qk

(
t,Φk(t)

−1(τ ′),Φk(t)
−1(τ)

)
.

Remark 2.22. Clearly Qk(t) is constant on the time intervals [iε, (i+ 1)ε)

and it changes its value only at times iε, i ∈ N.

This functional Qk, whose definition is different from the one in [3], still

satisfies [3, Theorem 6.3]. We state now this theorem and we give a brief

sketch of how its proof in [3] can be adapted to the new setting.

Theorem 2.23. For any i ∈ N, i ≥ 1, it holds

Qk(iε) −Qk((i − 1)ε)

≤ −
∑

m∈Z

A
quadr
k (iε,mε) +O(1)Tot.Var.(u(0);R)

∑

m∈Z

A(iε,mε). (2.14)

Sketch of the Proof. The proof is analogous to the proof of [3, Theorem

6.3]. We will not enter into details. Some notations, which will be used again

later, are introduced here.

First of all observe that it is sufficient to prove inequality (2.14) separately

for Q+
k and Q−

k . Let us thus concentrate our attention of Q+
k , since the

analysis on Q−
k is completely similar. For any m ∈ Z, set

JLm := Φk((i− 1)ε)
({
w ∈ W+

k ((i− 1)ε)
∣∣∣ x((i− 1)ε, w) = (m− 1)ε,

x(iε, w) = mε
})
,

JRm := Φk((i− 1)ε)
({
w ∈ W+

k ((i− 1)ε)
∣∣∣ x((i− 1)ε, w) = mε,

x(iε, w) = mε
})
,

(2.15)
Jm := JLm ∪ JRm,
Km := Φk(iε)

(
Wk(iε,mε) ∩W+

k (iε)
)
,

Sm := Φk((i− 1)ε)
(
Wk(iε,mε) ∩Wk((i− 1)ε)

)
,

Tm := Φk(iε)
(
Wk(iε,mε) ∩Wk((i− 1)ε)

)
.

Observe that if τ, τ ′ ∈ JLm (or τ, τ ′ ∈ JRm), then w := Φ−1
k ((i − 1)ε)(τ) and

w′ := Φ−1
k ((i − 1)ε)(τ ′) are not divided in the real solution at time (i − 1)ε

and thus qk((i − 1)ε, w,w′) = 0.
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Similarly, if τ, τ ′ ∈ Km, τ < τ ′, setting again w := Φ−1
k (iε)(τ), w′ :=

Φ−1
k (iε)(τ ′) then either w,w′ are not divided at time iε, and thus qk(iε, w,w

′) =

0, or they are divided at time iε, i.e. they have different positions at times

t ∈ (iε, (i + 1)ε). In this second case, by definition tsplit(iε, w,w′) = iε;

for any fixed j ∈ N, j ≥ i, with w,w′ ∈ Wk(jε), with notations similar to

(2.9)−(2.10), denote by

J ,J ′ ∈ P(iε, iε, w,w′), such that w ∈ J , w′ ∈ J ′,

K,K′ ∈ P(iε, jε, w,w′), such that w ∈ K, w′ ∈ K′.

the element of the partition containing w,w′ at time iε and at time jε

respectively, and set

G := K ∪
{
z ∈ J

∣∣ z > K
}
, G′ := K′ ∪

{
z ∈ J ′

∣∣ z < K′
}
.

Using the monotonicity properties of the derivative of the convex envelope

and the fact that the element of the partition P(iε, iε, w,w′) are entropic

w.r.t. the function feffk (iε), we obtain

0 ≥ σrh(feffk (iε),J )− σrh(feffk (iε),J ′) ≥ σrh(feffk (iε),G) − σrh(feffk (iε),G′).

Thus πk(iε, iε, jε, w,w
′) = 0 = qk(iε, iε, jε, w,w

′), for any j ≥ i such that

w,w′ ∈ Wk(jε). Hence, by (2.11) and (2.12),

qk(iε, w,w
′) = qk(iε, iε, w,w

′) = sup
j≥i

w,w′∈Wk(jε)

qk(iε, iε, jε, w,w
′) = 0.

We can thus perform the following computation:

Q+
k (iε) −Q+

k ((i− 1)ε)

≤
∑

m<m′

[∫∫

Tm×Tm′

qk

(
iε,Φk(iε)

−1(τ),Φk(iε)
−1(τ ′)

)
dτdτ ′

+

∫∫

(Km×Km′ )\(Tm×Tm′ )
qk

(
iε,Φk(iε)

−1(τ),Φk(iε)
−1(τ ′)

)
dτdτ ′

−
∫∫

Sm×Sm′

qk

(
(i− 1)ε,Φk((i− 1)ε)−1(τ),Φk((i− 1)ε)−1(τ ′)

)
dτdτ ′

]
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−
∑

m∈Z

∫∫

JL
m×JR

m

qk

(
(i−1)ε,Φk((i−1)ε)−1(τ),Φk((i− 1)ε)−1(τ ′)

)
dτdτ ′.

Now the tree terms in the r.h.s. of the last inequality are estimated separately

as follows.

1. The integral over pairs of waves such that at least one of them is created

at time iε is estimated exactly in the same way as is [3, Section 6.3]:

∑

m<m′

∫∫

(Km×Km′ )\(Tm×Tm′ )
qk(iε)dτdτ

′

≤ O(1)Tot.Var.(u(0))
∑

m∈Z

A(iε,mε). (2.16)

2. The variation of the integral over pairs of waves which exist both at

time (i − 1)ε and at time iε and which do not interact at time iε is

estimated by

∑

m<m′

[ ∫∫

Tm×Tm′

qk(iε)dτdτ
′ −
∫∫

Sm×Sm′

qk((i− 1)ε)dτdτ ′
]

≤ O(1)Tot.Var.(u(0))
∑

r∈Z

A(iε, rε). (2.17)

in the following way:

(a) first one adapts the proof of [3, Lemma 6.6] to show that for any t1 ≤
(i − 1)ε < iε ≤ t3, for any pair of waves w,w′ ∈ Wk(iε) ∩Wk(t3),

if p(t1, w,w
′) holds, setting mε := x(iε, w) ≤ x(iε, w′) =: m′ε, we

have

∣∣∣dk
(
t1, iε, t3, w,w

′
)
− dk

(
t1, (i − 1)ε, t3, w,w

′
)∣∣∣≤O(1)

m′∑

r=m

A(iε, rε),

πk
(
t1, iε, t3, w,w

′
)
− πk

(
t1, (i− 1)ε, t3, w,w

′
)
≤O(1)

m′∑

r=m

A(iε, rε),

and thus

qk(t1, iε, t3, w,w
′)− qk(t1, (i− 1)ε, t3, w,w

′)
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≤ O(1)
1∣∣Φk(iε)(w′)−Φk(iε)(w)

∣∣
m′∑

r=m

A(iε, rε). (2.18)

(b) then one observes that tsplit(iε, w,w′) = tsplit((i− 1)ε, w,w′), since

x(iε, w) 6= x(iε, w′);

(c) finally one uses the new definition of qk, (2.11)−(2.12) to prove that

qk(iε, w,w
′)− qk((i− 1)ε, w,w′)

≤ O(1)
1∣∣Φk(iε)(w′)−Φk(iε)(w)

∣∣
m′∑

r=m

A(iε, rε),

and then one concludes by the elementary estimate

∑

m<m′

1∣∣Φk(iε)(w′)−Φk(iε)(w)
∣∣
m′∑

r=m

A(iε, rε)

≤ O(1)Tot.Var.(uε(t))
∑

r

A(iε, rε).

3. Finally the estimate on the pairs of waves which are divided at time

(i− 1)ε and are interacting at time iε:

−
∑

m∈Z

∫∫

JL
m×JR

m

qk((i− 1)ε)dτdτ ′

≤ −
∑

m∈Z
S(Wk(iε,mε))=1

A
quadr
k (iε,mε)

+O(1)Tot.Var.(u(0))
∑

m∈Z

A(iε,mε), (2.19)

is an immediate consequence of the analogous estimate [3, Inequality

(6.9)] and of the fact that the new definition of qk is “stronger” than

the old one, inequality (2.13).

It is easy to see that inequality (2.14) in the statement of Theorem 2.23

follows from (2.16), (2.17), (2.19). ���

As an immediate consequence of the previous theorem and of estimate

(2.6), we get the following corollary.
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Corollary 2.24. There exists a constant C = C(f) > 0, depending only on

f such that the functional

t 7→ Υ(t) := Q(t) +CQknown(t)

is uniformly bounded at t = 0 by

Υ(0) ≤ O(1)Tot.Var.(ū),

it is decreasing and at each time step iε, i ∈ N, it decreases at least of

1

2

∑

m∈Z

A(iε,mε) ≤ Υ((i− 1)ε) −Υ(iε). (2.20)

3. The Wavefront Map ψ

We have seen in Section 1.4 that a key point to prove Theorem 1.3 on the

rate of convergence of the Glimm scheme is to construct, for any i1, i2 ∈ N,

a map

ψ : [i1ε, i2ε]× R → R
n

which satisfies the Properties in (1.17). In this section we first explicitly

define the map ψ, which trivially satisfies Property (1.17a), and we construct

a Lagrangian representation for the map ψ; then we state Theorem 3.3, on

the variation in time of the speed of the waves in ψ, whose proof will be

the subject of Sections 4 and 5; finally, using Theorem 3.3, we prove that ψ

satisfies also Properties (1.17b) and (1.17c).

3.1. Definition of ψ

We start with the explicit definition of ψ. This map ψ is constructed

more or less as in [8], with some slight modification. Set for simplicity t1 :=

i1ε and t2 := i2ε. The definition of ψ is given backward in time, starting from

time t2 and going backward to time t1. First of all we set ψ(t2, x) := uε(t2, x)

for any x ∈ R, so that Property (1.17a) is trivially satisfied. Then we define

two Riemann solvers, a starting RS and a transversal RS: both act backward

in time and produce a self-similar wavefront solution, with a finite number

of wavefronts. The starting RS is used at time t2 = i2ε to define ψ on a

left neighborhood [t̃, t2] of t2. Then, anytime two wavefronts collide at some
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time t̄ ∈ (t1, t2), assuming that ψ is defined on the time interval [t̄, t2], we

use the transversal RS to prolong ψ on a left neighborhood of t̄.

The starting Riemann Solver. This is the Riemann Solver used at time

t = t2. It is defined as follows. For m, r ∈ Z, m ∈ [r − (i2 − i1), r], set

šm rk := S
(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

)

L1

(
Φk(i1ε)

(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

))

= S
(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

)

L1

(
Φk(i2ε)

(
Wk(i1ε,mε) ∩Wk(i2ε, rε)

))
. (3.1)

Notice that, by the monotonicity of the map w → x(t, w), if šm rk , šm r
′

k′ 6= 0

and r < r′, then k ≤ k′. Fix now r ∈ Z and for m ∈ [r − (i2 − i1), r] set

ψr−(i2−i1) r := T n
s
r−(i2−i1) r
n

◦ · · · ◦ T 1

s
r−(i2−i1) r

1

(
ui2,r−1

)
,

ψm r := T nsm r
n

◦ · · · ◦ T 1
sm r
1

(
ψm−1 r

)
.

The (backward) solution to the Riemann problem (ui2,r−1, ui2,r) is now de-

fined as follows: for any m = r− (i2− i1), . . . , r there is a physical wavefront

traveling with speed

λ̌m r :=
rε−mε

i2ε− i1ε
(3.2)

which connects the left state ψm−1 r with the right state ψm r ; moreover,

there is one more non-physical wavefront, traveling with speed equal to λ̌ :=

−1 connecting ψr r to ui2,r.

The transversal Riemann solver. This RS is used every time two (or

more) wavefronts collide at a time in (t1, t2). We assume w.l.o.g. that every

collision involves exactly two wavefronts: the rules can be easily extended

to the case of several simultaneous collisions, because the outcome does not

depend on the order of the collisions. Assume thus that at point (t̄, x̄),

t̄ ∈ (t1, t2) two wavefronts collide. We have to distinguish two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the

collision the first wavefront is traveling with speed λ′ and it is connecting
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Figure 2: The wavefronts of the function ψ: the pink region ∆cr(x) is used in the
proof of Proposition 3.6.

the states

ψM = T ns′n ◦ · · · ◦ T 1
s′1
ψL,

while the second wavefront is traveling with speed λ′ < λ′′ and it is connect-

ing the states

ψR = T ns′′n ◦ · · · ◦ T 1
s′′1
ψM .

Notice that, by the monotonicity of the map w 7→ x(t, w), there exists

k̄ ∈ {1, . . . , n} such that s′′1, . . . , s
′′
k̄
= 0 and s′

k̄+1
, . . . , s′n = 0. Hence the

interaction at (t̄, x̄) is purely transversal. The (backward) Riemann problem

(ψL, ψR) at point (t̄, x̄) is now solved as follows. Define the intermediate

states

ψ̃M := T ns′′n ◦ · · · ◦ T 1
s′′
k̄+1

ψL, ψ̃R := T ns′
k̄

◦ · · · ◦ T 1
s′1
ψM ,

The solution for times t ≤ t̄ around the point (t̄, x̄) is made by a physi-

cal wavefront traveling with speed λ′′ connecting ψL and ψ̃M ; a physical

wavefront traveling with speed λ′ connecting ψ̃M and ψ̃R; a non-physical

wavefront traveling with speed λ̌ = −1 connecting ψ̃R and ψR.
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Case 2: one of the two colliding wavefronts is non-physical. Assume that

the non-physical wavefront is connecting ψL with ψM , while the physical

wavefront is traveling with speed λ and it is connecting

ψR = T nsn ◦ · · · ◦ T 1
s1ψ

M .

Define the intermediate state

ψ̃M := T nsn ◦ · · · ◦ T 1
s1ψ

L.

The solution around (t̄, x̄) for times t ≤ t̄ is now made by a physical wave-

front traveling with speed λ connecting ψL with ψ̃M and by a non-physical

wavefront traveling with speed λ̌ = −1 and connecting ψ̃M with ψR.

It is not difficult to see that the definition of ψ is well posed.

3.2. Lagrangian representation for ψ

In the same spirit as in Section 2.3 we introduce now a sort of Lagrangian

representation for the wavefront solution ψ. We are not interested here in

defining a general notion of Lagrangian representation, since the map ψ is a

map ad hoc constructed to get estimate (1.15).

First of all, let us analyze the physical waves. For any k = 1, . . . , n the

set of the physical waves of the k-th family in ψ is the set Wk(t1) ∩Wk(t2).

Set, for any k = 1, . . . , n,

Ľ±
k := L1

(
Φk(i2ε)

(
W±
k (i1ε) ∩W±

k (i2ε)
))

= L1
(
Φk(i1ε)

(
W±
k (i1ε) ∩W±

k (i2ε)
))
.

Define also the position map for the physical waves in ψ and follows:

y : [t1, t2]×
n⋃

k=1

(
Wk(t1) ∩Wk(t2)

)
→ R,

y(t, w) := x(t2, w)−
x(t2, w)− x(t1, w)

t2 − t1
(t2 − t).

Notice that y takes values in the discontinuity points of ψ, it is increasing in

w and affine in t.
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The analog of the collection of the maps {Φk(t)}t∈[0,∞) (see Definition 2.4)

for ψ is the map

Ψk : Wk(t1) ∩Wk(t2) →
[
− Ľ−

k , 0
)
∩
(
0,+Ľ+

k

]

defined by

Ψk(w) := S(w)L1

(
Φk(t1)

({
w′ ∈ Wk(t1) ∩Wk(t2)

∣∣ S(w′) = S(w) and

w′ ≤ w
}))

= S(w)L1

(
Φk(t2)

({
w′ ∈ Wk(t1) ∩Wk(t2)

∣∣ S(w′) = S(w) and

w′ ≤ w
}))

.

The restriction Ψ : W+
k (t1) ∩ W+

k (t2) → I(Ľ+
k ) is an isomorphism of or-

dered sets, while the restriction Ψ : W−
k (t1) ∩W−

k (t2) → I(Ľ−
k ) is an anti-

isomorphism of ordered sets.

Notice that while the maps Φk(t) for uε depends on the time, the map Ψk

for ψ does not, since the total amount of physical waves in ψ is constant in

time.

We define also the maps γ̌k(t, ·) := (ǔk(t, ·), v̌k(t, ·), σ̌k(t, ·)) and the effective

flux f̌effk (t, ·) at any time t ∈ [t1, t2) as follows. Fix a time t; assume first that

no wavefront collision takes place at time t. Fix any point x ∈ R. Assume

that

u(t, x) = T nsn ◦ · · · ◦ T 1
s1u(t, x−);

denote by {γk}k, γk = (uk, vk, σk) : I(sk) → R
n+2 the collection of curves

which solve the Riemann problem (u(t, x−), u(t, x+)) and by fk : I(sk) → R

the associated reduced flux. Since

Ψk|y(t)−1(x)∩Wk
: y(t)−1(x) ∩Wk → a+ I(sk)

is an (anti)isomorphism of ordered sets for some a ∈ R, we can define

γ̌k(t, ·) : y(t)−1(x̄) ∩Wk → Dk ⊆ R
n+2, γ̌k(t, w) := γk(Ψk(w)− a).
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Using the fact that, for fixed time t, the position map y takes values in the

discontinuity points of ψ, γ̌k(t, w) is defined for any k-wave w.

We also define

f̌effk : [−Ľ−
k , Ľ

+
k ] → R

as any C1,1 map such that

d2f̌effk (t)

dτ2
(τ) =

dλ̃
(
γ̌(t, w)

)

dτ
, with τ = Ψk(w).

Now, if t = t2 or if t is a time when a collision between two wavefronts

takes place, we extend the definitions of γ̌k(t) and f̌effk (t) in order to have

left-continuous in time maps.

Remark 3.1. We usually want our maps to be right-continuous in time.

In this case, however, we are using backward-in-time Riemann solvers, and

thus it is quite natural to require that t 7→ γk(t) is left-continuous in time.

Finally, we define the wavefront speed of a wave w ∈ Wk(t1) ∩Wk(t2) as

λ̌(w) :=
x(i2ε, w) − x(i1ε, w)

i2ε− i1ε
=

y(i2ε, w) − y(i1ε, w)

i2ε− i1ε
,

which coincides with (3.2).

As for the Glimm approximate solution uε, we say that a set I ⊆
W±
k (t1) ∩ W±

k (t2) is an interval of waves for ψ if I is an interval in the

ordered set
(
W±
k (t1)∩W±

k (t2),≤
)
. The following definition is the analog of

Definition 2.6.

Definition 3.2. Fix t̄ ∈ [t1, t2]. Let I ⊆ Wk(t1) ∩Wk(t2) be an interval of

waves for ψ. Set I := Ψk(I). Since the restriction of Ψk to positive (resp.

negative) waves is an isomorphism (resp. anti-isomorphism) of ordered sets,

I is an interval in R (possibly made by a single point). Let us define:

• the Rankine-Hugoniot speed given to the interval of waves I by a func-

tion g : R → R as

σrh(g,I) :=
{
g(sup I)−g(inf I)

sup I−inf I if I is not a singleton,

g′(I) if I is a singleton;
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• for any w ∈ I, the entropic speed given to the wave w by the Riemann

problem I and the flux function g as

σent(g,I, w) :=





d

dτ
conv Ig

(
Ψk(w)

)
if Sk(w) = +1,

d

dτ
conc Ig

(
Ψk(w)

)
if Sk(w) = −1.

If σrh(g,I) = σent(g,I, w) for any w ∈ I, we will say that I is entropic

w.r.t. the function g. We will also say that the Riemann problem I with flux

function g divides w,w′ if σent(g,I, w) 6= σent(g,I, w′).

Let us now analyze the non-physical waves. The set of non-physical

wavefront is defined as

W0 :=
{
(t, x)

∣∣ in (t, x) a non-physical wavefront is generated
}
.

We are labeling each non-physical wavefront with the point in the (t, x) plane

in which it is generated.

Since the speed of the non-physical wavefronts is strictly less than the speed

of any physical wave, we will refer to the set of non-physical wavefronts also

as the set of waves of the 0-th family.

Clearly W0 is a finite set. For any non-physical wavefronts α = (t̄, x̄) ∈
W0, we define its creation time tcr(α) := t̄ and its position y(t, α) = x̄−(t−t̄).
Moreover, if t is any time when no collision between wavefronts takes place,

we define the strength of the non-physical wavefront α as

s(t, α) :=
∣∣∣ψ
(
t, y(t, α) +

)
− ψ

(
t, y(t, α) −

)∣∣∣;

then, as usual, we extend the definition to all times in (t1, t2] in order to

have a left-continuous in time map. Finally define

W0(t) :=
{
α ∈ W0

∣∣ tcr(α) ≥ t
}
.

We will call W0(t2) the set of primary non-physical wavefronts and W0 \
W0(t2) the set of secondary non-physical wavefronts.
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3.3. The main theorem on ψ

In this section we state the main theorem about physical and non-

physical waves in ψ, which will be proved in Sections 4 and 5, and, using

this theorem, we prove estimates (1.17b) and (1.17c).

Theorem 3.3. With the same notations as before,

(1) the following bounds on physical waves hold:

∫ Ľ+
k

−Ľ−

k

{
Tot.Var.

(
ǔk
(
·,Ψ−1(τ)

)
; (t1, t2)

)

+
∣∣∣
(
ǔk(t2, ·) − ûk(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣
}
dτ

∫ Ľ+
k

−Ľ−

k

{
Tot.Var.

(
v̌k
(
·,Ψ−1(τ)

)
; (t1, t2)

)

+
∣∣∣
(
v̌k(t2, ·) − v̂k(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣
}
dτ

∫ Ľ+
k

−Ľ−

k

{
Tot.Var.

(
σ̌k
(
·,Ψ−1(τ)

)
; (t1, t2)

)

+
∣∣∣
(
σ̌k(t2, ·)− σ̂k(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣
}
dτ





≤ O(1)
[
Υ(t1)−Υ(t2)

]
,

where (ûk, v̂k, σ̂k) is the curve solving the exact Riemann problems at

time t2 (i.e. with all waves in W(t2) ∩ (i2ε,mε), m ∈ Z).

(2) the following bound on non-physical waves holds:

∑

α∈W0

[
Tot.Var.

(
s(·, α);

(
t1, t

cr(α)
))
+s
(
tcr(α), α

)]
≤O(1)

[
Υ(t1)−Υ(t2)

]
.

As an immediate consequence, we get the following corollary. For any k =

1, . . . , n, for any physical wave w ∈ Wk(t1) ∩Wk(t2) and for any t ∈ (t1, t2],

set

řk(t, w) := r̃k

(
ǔk(t, w), v̌k(t, w), σ̌k(t, w)

)
,

r̂k(t, w) := r̃k

(
ûk(t, w), v̂k(t, w), σ̂k(t, w)

)
.
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Corollary 3.4. It holds

∫ Ľ+
k

−Ľ−

k

{
Tot.Var.

(
řk
(
·,Ψ−1(τ)

)
; (t1, t2)

)
+
∣∣∣
(
řk(t2, ·)−r̂k(t2, ·)

)
◦Ψ−1

k (τ)
∣∣∣
}
dτ

≤ O(1)
[
Υ(t1)−Υ(t2)

]
.

As we have already said, the proof of Theorem 3.3 is the subject of

Sections 4 and 5. We now use Theorem 3.3 and Corollary 3.4 to prove

estimates (1.17b)−(1.17c) and thus complete the proof of Theorem 1.3.

Proposition 3.5 (Estimate (1.17b)). It holds

∥∥St2−t1ψ(t1)−ψ(t2)
∥∥
1
≤ O(1)

[(
Υ(t1)−Υ(t2)

)
+

1 + log(i2 − i1)

i2 − i1

]
(t2 − t1).

Proof. We make use the semigroup estimate

∥∥ψ(t2)− St2−t1ψ(t1)
∥∥
1
≤ L

∫ t2

t1

lim sup
h→0

∥∥ψ(t+ h)− Shψ(t)
∥∥
1

h
dt. (3.3)

Since the map ψ is piecewise constant at any fixed time t, it is not hard to

see that the integrand on the r.h.s. can be estimated as

lim sup
h→0

∥∥ψ(t+ h)− Shψ(t)
∥∥
1

h

≤
n∑

k=1

∫

Ψk

(
Wk(t1)∩Wk(t2)

)
∣∣∣λ̌
(
Ψ−1(τ)

)
− σ̌

(
t,Ψ−1(τ)

)∣∣∣dτ + 2
∑

α∈W0(t)

s(t, α).

For the term concerning the non-physical waves, we easily obtain

∑

α∈W0(t)

s(t, α) ≤
∑

α∈W0(t)

∣∣s(t, α)− s
(
tcr(α), α

)∣∣+ s
(
tcr(α), α

)

≤
∑

α∈W0

[
Tot.Var.

(
s(·, α);

(
t1, t

cr(α)
))

+ s
(
tcr(α), α

)]

(by Theorem 3.3) ≤ O(1)
[
Υ(t1)−Υ(t2)

]
.

For the term concerning the physical waves, we argue as follows. Fix any
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τ ∈ Ψk

(
W(t1) ∩W(t2)

)
and set w := Ψ−1(τ).

∣∣λ̌(w)−σ̌(t, w)
∣∣

≤
∣∣∣∣λ̌(w) −

1

i2 − i1

i2−1∑

i=i1

σ̂(iε, w)

∣∣∣∣ +
∣∣∣∣

1

i2 − i1

i2−1∑

i=i1

σ̂(iε, w) − σ̂(i2ε, w)

∣∣∣∣

+

∣∣∣∣σ̂(i2ε, w) − σ̌(t, w)

∣∣∣∣

≤
∣∣∣∣λ̌(w) −

1

i2 − i1

i2−1∑

i=i1

σ̂(iε, w)

∣∣∣∣ +Tot.Var.

(
σ̂(·, w);

(
t1, t2 +

ε

2

))

+
∣∣σ̂(t2, w)− σ̌(t2, w)

∣∣ +Tot.Var.
(
σ̌(·, w);

(
t1, t2

))
. (3.4)

To estimate the first term of the last summation we use the same technique

as in [14]. Define first the map

ω : [0, 1] × [0, 1] → R, ω(σ, ϑ) :=

{
−σ if σ ≤ ϑ

1− σ if σ > ϑ.

Set

σmin := min
i=i1,...,i2−1

σ̂(iε, w), σmax := max
i=i1,...,i2−1

σ̂(iε, w),

and

J :=
{
i ∈ [i1, i2 − 1]

∣∣ σmax ≤ ϑi ≤ σmin
}
,

K :=
{
i ∈ [i1, i2 − 1]

∣∣ ϑi < σ̂(i1ε, w)
}
.

We thus have

∣∣∣∣λ̌(w)−
1

i2 − i1

i2−1∑

i=i1

σ̂(iε, w)

∣∣∣∣

=

∣∣∣∣
1

i2 − i1

i2−1∑

i=i1

ω
(
σ̂(iε, w), ϑi

)∣∣∣∣

=
1

i2 − i1

∣∣∣∣
i2−1∑

i=i1

[
ω
(
σ̂(iε, w), ϑi

)
− ω

(
σ̂(i1ε, w), ϑi

)]
+ ω

(
σ̂(i1ε, w), ϑi

)∣∣∣∣

=
1

i2 − i1

∣∣∣∣∣
∑

i/∈J

(
σ̂(i1ε, w)− σ̂(iε, w)

)
+
∑

i∈J

(
σ̂(i1ε, w) − σ̂(iε, w) + ai

)
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+
∑

i/∈K

(
− σ̂(i1ε, w)

)
+
∑

i∈K

(
1− σ̂(i1ε, w)

)∣∣∣∣∣

(Here ai is a number in {−1, 0, 1})

=
1

i2 − i1

∣∣∣∣∣
∑

i/∈J

(
σ̂(i1ε, w) − σ̂(iε, w)

)
+
∑

i∈J

(
σ̂(i1ε, w) − σ̂(iε, w) + ai

)

−σ̂(i1ε, w)(i2 − i1) + ♯K
∣∣∣∣∣

≤ 1

i2 − i1

(
i2−1∑

i=i1

∣∣∣σ̂(i1ε, w)− σ̂(iε, w)
∣∣∣ + ♯J +

∣∣∣♯K − σ̂(i1ε, w)(i2 − i1)
∣∣∣
)

≤
(
2
∣∣∣σ̂max − σ̂min

∣∣∣+
∣∣∣∣
♯J

i2 − i1
−
(
σ̂max − σ̂min

)∣∣∣∣+
∣∣∣∣
♯K

i2 − i1
− σ̂(i1ε, w)

∣∣∣∣

)

(using (1.10))

≤ O(1)

[
Tot.Var.

(
σ̂(·, w);

(
t1, t2 +

ε

2

))
+

1 + log(i2 − i1)

i2 − i1

]
. (3.5)

Using (3.4), (3.5), Corollary 2.24 and Theorem 3.3 we thus get

∫

Ψk

(
Wk(t1)∩Wk(t2)

)
∣∣∣λ̌
(
Ψ−1(τ)

)
− σ̌

(
t,Ψ−1(τ)

)∣∣∣dτ

≤ O(1)

∫

Ψk

(
Wk(t1)∩Wk(t2)

)
{
1 + log(i2 − i1)

i2 − i1

+Tot.Var.

(
σ̂
(
·,Ψ−1

k (τ)
)
;
(
t1, t2 +

ε

2

))

+
∣∣∣σ̂
(
t2,Ψ

−1
k (τ)

)
− σ̌

(
t2,Ψ

−1
k (τ)

)∣∣∣+Tot.Var.
(
σ̌(·,Ψ−1

k (τ));
(
t1, t2

))
}
dτ

≤ O(1)

{
1 + log(i2 − i1)

i2 − i1
+Υ(t1)−Υ(t2)

}
.

Therefore, using (3.3), integrating over all times t ∈ [i1ε, i2ε] we get the

conclusion. ���

Proposition 3.6 (Estimate (1.17c)). It holds

∥∥ψ(t1)− uε(t1)
∥∥
1
≤ O(1)

(
Υ(t1)−Υ(t2)

)
(t2 − t1).
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Proof. Fix any x ∈ R. Consider the segment on the (t, x)-plane joining

(t1, x) and (t2, x− (t2 − t1)). Assume that x /∈ Zε and that no non-physical

wavefront travels on this segment (this holds for all but finitely many x ∈ R).

Define the set of k-waves which cross this segment in uε and in ψ respectively:

Wcross
k (uε, x) :=

{
w ∈ Wk

∣∣ there exists t =: tcross(uε, x, w) ∈ (t1, t2)

such that x(t, w) = x− (t− t1)
}
,

Wcross
k (ψ, x) :=

{
w ∈ Wk(t1) ∩Wk(t2)

∣∣ there exists

t =: tcross(ψ, x,w) ∈ (t1, t2)

such that y(t, w) = x− (t− t1)
}
.

Since, for any wave w ∈ Wk(t1) ∩Wk(t2), x(t1, w) = y(t1, w) and x(t2, w) =

y(t2, w),

Wcross
k (ψ, x) = Wcross

k (uε, x) ∩Wk(t1) ∩Wk(t2).

Moreover, if a k-wave w ∈ Wcross
k (ψ, x), then its position at time t1 must be

x(t1, w) = y(t1, w) ∈
[
x− 2(t2 − t1), x

]
,

while if w ∈ Wcross
k (uε, x) \ Wcross

k (ψ, x), then either it is created at some

grid point in the triangle

∆cr(x) :=
[(
t1, x− 2(t2 − t1)

)
,
(
t2, x− (t2 − t1)

)
,
(
t1, x

)]

or it is canceled at some grid point in the triangle

∆canc(x) :=
[(
t2, x− (t2 − t1)

)
,
(
t1, x

)
,
(
t2, x+ (t2 − t1)

)]
.

Since ψ(t2) = uε(t2), we can now write

∣∣ψ(t1, x)− uε(t1, x)
∣∣

=
∣∣∣
[
ψ
(
t1, x

)
− ψ

(
t2, x− (t2 − t1)

)]
−
[
uε
(
t1, x

)
− uε

(
t2, x− (t2 − t1)

)]∣∣∣

=

∣∣∣∣
n∑

k=1

∫

Ψk

(
Wcross

k
(ψ,x)

)
{
řk

(
tcross

(
ψ, x,Ψ−1

k (τ)
)
,Ψ−1

k (τ)
)

−r̂k
(
tcross

(
uε, x,Ψ−1(τ)

)
,Ψ−1(τ)

)}
dτ

∣∣∣∣
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+O(1)

{ ∑

(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z

(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}

≤
n∑

k=1

∫

Ψk

(
Wcross

k
(ψ,x)

)
{∣∣∣∣řk

(
tcross

(
ψ, x,Ψ−1

k (τ)
)
,Ψ−1

k (τ)
)
−řk

(
t2,Ψ

−1
k (τ)

)∣∣∣∣

+

∣∣∣∣řk
(
t2,Ψ

−1
k (τ)

)
− r̂k

(
t2,Ψ

−1
k (τ)

)∣∣∣∣

+

∣∣∣∣r̂k
(
t2,Ψ

−1
k (τ)

)
− r̂k

(
tcross

(
uε, x,Ψ−1(τ)

)
,Ψ−1(τ)

)∣∣∣∣

}
dτ

+O(1)

{ ∑

(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z

(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}

≤
n∑

k=1

∫

Ψk

(
x−1([x−2(t2−t1),x])

)
{∣∣∣∣Tot.Var.

(
řk
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)

+

∣∣∣∣řk
(
t2,Ψ

−1
k (τ)

)
− r̂k

(
t2,Ψ

−1
k (τ)

)∣∣∣∣

+

∣∣∣∣Tot.Var.
(
r̂k
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)∣∣∣∣

}
dτ

+O(1)

{ ∑

(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z

(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}
.

Hence, integrating over all x ∈ R, we get

∫ +∞

−∞

∣∣ψ(t1, x)− uε(t1, x)
∣∣dx

≤
∫ +∞

−∞

{
n∑

k=1

∫

Ψk

(
x−1([x−2(t2−t1),x])

)
[∣∣∣∣Tot.Var.

(
řk
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)

+

∣∣∣∣řk
(
t2,Ψ

−1
k (τ)

)
− r̂k

(
t2,Ψ

−1
k (τ)

)∣∣∣∣

+

∣∣∣∣Tot.Var.
(
r̂k
(
·,Ψ−1

k (τ)
)
; (t1, t2)

)∣∣∣∣

]
dτ

+O(1)

{ ∑

(i,m)∈N×Z

(iε,mε)∈∆cr(x)

Acr(iε,mε) +
∑

(i,m)∈N×Z

(iε,mε)∈∆canc(x)

Acanc(iε,mε)

}}
dx
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(using Fubini’s Theorem and Corollaries 2.24 and 3.4 )

≤ O(1)
[
Υ(t1)−Υ(t2)

]
(t2 − t1),

which is what we wanted to get. ���

4. Analysis of the Interactions in ψ

In this and next section we prove Theorem 3.3. We will follow the

same technique we used in [3]. In particular this section is devoted to study

the local part of the theorem: we introduce a suitable notion of amount of

interaction and we prove that at any interaction the variation of ûk, v̂k, σ̂k

is bounded by such amount of interaction.

In the next section, we will prove the global part of the theorem, i.e.

that the sum of all the amounts of interactions is bounded by the decrease

of Υ in the time interval [t1, t2].

The crucial point is that the new definition of the functional Q we gave

in Section 2.6 is the one we need to prove Theorem 3.3, as we will see in the

next section.

4.1. Amounts of interaction at the final time t2

Instead of defining immediately the amounts of interactions at any point

(i2ε, rε), r ∈ Z, it is more convenient (to avoid too heavy notations) to

consider first a more abstract situation, and then apply it to our analysis.

Fix a left state uL, a right state uR and a collection of A vectors

sa = (sa1, . . . , s
a
n) ∈ R

n, a = 0, 1, . . . , A.

The Riemann problem (uL, uR) is solved by the collection of curves
{
γk
}
k=1,...,n

,

where

γk : I(sk) → D ⊆ R
n+2, γk = (uk, vk, σk),

and denote by fk : I(sk) → R the associated reduced fluxes.

Assume that for any fixed k = 1, . . . , n,

• all the sak, a ∈ {1, . . . , A}, and sk have the same sign;
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•
∣∣∣
∑A

a=1 s
a
k

∣∣∣ ≤ |sk|.

Observe that our assumptions describe precisely the collisions taking place

at any point (i2ε,mε), m ∈ Z.

Set Iak :=
∑

b<a s
b
k + I(sak). Let Θk : I

(∑A
a=1 s

a
k

)
→ I(sk) be any increasing

map such that for each a = 0, 1, . . . , A, Θk|Ia
k
is an affine map with slope

equal to 1. Denote by Θ−1
k its pseudo-inverse, which turns out to be a

continuous map. Set Jak :=
{
τ ∈ I(sk)

∣∣ Θ−1
k (τ) ∈ Iak

}
.

Set u0 := uL and for any a = 1, . . . , A,

ua := T nsan ◦ · · · ◦ T 1
sa1
ua−1.

Assume that the Riemann problem (ua−1, ua) is solved by the collection of

curves {γak}k=1,...,n, with γ
a
k = (uak, v

a
k , σ

a
k). Assume moreover that, for any

k and a, γak is defined on Iak .

We can now define:

• the transversal amount of interaction as

Btrans(uL, s1, . . . , sA, u
R) :=

A∑

a=0

A∑

b=a+1

n∑

k=1

k−1∑

h=1

|sak||sbh|;

• the quadratic amount of interaction of the k-th family as

B
quadr
k (uL, s1, . . . , sA, u

R)

:=





∥∥∥ d
dτ conv I(sk)fk −

⋃A
a=0

d
dτ conv Ja

k
fk

∥∥∥
1

if sk ≥ 0,

∥∥∥ d
dτ conc I(sk)fk −

⋃A
a=0

d
dτ conc Iak fk

∥∥∥
1

if sk < 0;

• the amount of creation of the k-th family as

Bcrk (u
L, s1, . . . , sA, u

R) :=

∣∣∣∣sk −
A∑

a=1

sak

∣∣∣∣;

• the global amount of interaction as

B(uL, s1, . . . , sA, u
R)
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:= Btrans(uL, s1, . . . , sA, u
R) +

n∑

k=1

[
B
quadr
k (uL, s1, . . . , sA, u

R)

+Bcrk (u
L, s1, . . . , sA, u

R)
]
.

We have used the letter B instead of A to distinguish these amounts of inter-

action from the amounts of interactions concerning two merging Riemann

problems, already introduced in Section 2.2.

Proposition 4.1. For any k = 1, . . . , n, the following inequalities hold

∥∥∥∥
A⋃

a=1

uak − uk ◦Θk −
(
u1k(0) − uk(0)

)∥∥∥∥
∞

∥∥∥∥
A⋃

a=1

vak − vk ◦Θk

∥∥∥∥
∞

∥∥∥∥
A⋃

a=1

σak − σk ◦Θk

∥∥∥∥
1





≤ O(1)B(uL, s1, . . . , sA, u
R).

The proof can be achieved using the same techniques as in [3, Section 3] and

for this reason it is omitted here.

Recall now the definition of šm rk in (3.1) and define the vector

šm r :=
(
šm r1 , . . . , šm rn

)
.

Applying the previous definitions to the collisions taking place at time t2 =

i2ε, we can define, for any r ∈ Z,

Btrans(i2ε, rε) := Btrans(ui2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r),

B
quadr
k (i2ε, rε) := B

quadr
k (ui2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r), k = 1, . . . , n

Bcr(i2ε, rε) := Bcrk (u
i2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r), k = 1, . . . , n,

B(i2ε, rε) := B(ui2,r−1, šr−(i2−i1) r, . . . , šr r, ui2,r).

Applying Proposition 4.1, we obtain the following corollary.
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Corollary 4.2. It holds

∥∥∥
(
ǔk(t2−, ·)− ûk(t2, ·)

)
◦Ψ−1

k −
(
ǔk(t2−, 0)− ûk(t2, 0)

)∥∥∥
L∞

(
[−Ľ−

k
,Ľ+

k
]
)

∥∥∥
(
v̌k(t2−, ·)− v̂k(t2, ·)

)
◦Ψ−1

k

∥∥∥
L∞

(
[−Ľ−

k
,Ľ+

k
]
)

∥∥∥
(
σ̌k(t2−, ·)− σ̂k(t2, ·)

)
◦Ψ−1

k

∥∥∥
L1
(
[−Ľ−

k
,Ľ+

k
]
)





≤ O(1)
∑

r∈Z

B(i2ε, rε).

4.2. Amounts of interaction at times t ∈ (t1, t2)

Let t ∈ (t1, t2) and let (t, x) be a point where two wavefronts collide. As

in Section 3.1, we have to distinguish two cases.

Case 1: both the colliding wavefronts are physical. Assume that before the

collision the first wavefront is traveling with speed λ′ and it is connecting

the states

ψM = T ns′
k̄

◦ · · · ◦ T 1
s′1
ψL,

while the second wavefront is traveling with speed λ′ < λ′′ and it is connect-

ing the states

ψR = T ns′′n ◦ · · · ◦ T 1
s′′
k̄

ψM .

We have already observed that the interaction at (t̄, x̄) is purely transversal.

Define thus the (transversal) amount of interaction at (t, x) as

Btrans(t, x) :=
k̄∑

k=1

n∑

h=k̄+1

|s′k||s′′h|.

Case 2: one of the two colliding wavefronts is non-physical. Assume that

the non-physical wavefront α is connecting ψL with ψM , while the physical

wavefront is traveling with speed λ and it is connecting

ψR = T nsn ◦ · · · ◦ T 1
s1ψ

M .

Also in this case the interaction is purely transversal. Define thus the amount
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of interaction at (t, x) as

B(t, x) := Btrans(t, x) := s(t+, α)

n∑

k=1

|sk| = |ψM − ψL|
n∑

k=1

|sk|.

The following proposition covers both the case of a collision between

physical wavefronts and the case of a collision between a physical and a

non-physical wavefront.

Proposition 4.3. The following hold.

(1) For any k = 1, . . . , n, for the k-physical waves y(t)−1(x) ∩Wk located at

(t, x) in the wavefront map ψ, we have

∥∥∥
(
ǔk(t+, ·)−ǔk(t−, ·)

)
◦Ψ−1

k −
(
ǔk(t+, 0)−ûk(t−, 0)

)∥∥∥
L∞

(
Ψk(y(t)−1(x)∩Wk)

)
∥∥∥
(
v̌k(t+, ·)− v̌k(t−, ·)

)
◦Ψ−1

k

∥∥∥
L∞

(
Ψk(y(t)−1(x)∩Wk)

))
∥∥∥
(
σ̌k(t+, ·)− σ̌k(t−, ·)

)
◦Ψ−1

k

∥∥∥
L1
(
Ψk(y(t)−1(x)∩Wk)

)





≤ O(1)Btrans(t, x).

(2) If both wavefronts interacting at (t, x) are physical, denoting by α the

non-physical wavefront generated at (t, x), its initial strength can be es-

timated by
∣∣s
(
tcr(α), α

)∣∣ ≤ O(1)Btrans(t, x).

(3) If one of the two wavefronts interacting at (t, x) is a non-physical wave-

front α, the variation of the strength of α can be estimated by

|s(t+, α)− s(t−, α)| ≤ O(1)Btrans(t, x).

The proof of this proposition can again be obtained with the same techniques

as in [3, Section 3], and thus it is omitted here.

5. Estimates on the Amounts of Interaction in ψ

In this section we prove the following theorem, which is the global part

of the proof of Theorem 3.3. The proof of this theorem is the last step in
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order to complete the proof of the convergence rate of the Glimm scheme,

Theorem 1.3.

Theorem 5.1. The sum of all amounts of interaction in the time inter-

val (t1, t2] is bounded by the decrease of the functional Υ in the same time

interval, i.e.

∑

r∈Z

B(i2ε, rε) +
∑

(t,x) int. pt.
t∈(t1,t2)

Btrans(t, x) ≤ O(1)
(
Υ(t1)−Υ(t2)

)
.

The proof is a direct consequence of the following three propositions.

Proposition 5.2 (Transversal amounts of interactions). It holds

∑

r∈Z

Btrans(i2ε, rε) +
∑

(t,x) int. pt.
t∈(t1,t2)

Btrans(t, x) ≤ O(1)
(
Υ(t1)−Υ(t2)

)
.

Proof. Since for any wave w ∈ Wk(t1) ∩Wk(t2),

x(t1, w) = y(t1, w), x(t2, w) = y(t2, w),

and thus the waves which have to cross in ψ also cross in uε, it is not difficult

to see that

∑

r∈Z

Btrans(i2ε, rε) +
∑

(t,x) int. pt.
t∈(t1,t2)

Btrans(t, x) ≤
i2∑

i=i1+1

∑

m∈Z

Atrans(iε,mε)

(by (2.20)) ≤ O(1)
(
Υ(i2ε)−Υ(t1)

)
,

which is what we wanted to prove. ���

Proposition 5.3 (Amounts of creation). It holds
∑

r∈Z

Bcrk (i2ε, rε) ≤ O(1)
(
Υ(t1)−Υ(t2)

)
.

Proof. It is fairly easy to see that

∑

r∈Z

Bcrk (i2ε, rε) ≤
i2∑

i=i1+1

∑

m∈Z

Acr(i2ε,mε),

and thus, again using (2.20), we get the conclusion. ���
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Proposition 5.4 (Quadratic amounts of interaction). It holds

∑

r∈Z

B
quadr
k (i2ε, rε) ≤ O(1)

(
Υ(t1)−Υ(t2)

)
. (5.1)

The proof of this proposition is much more difficult than the previous two.

However, the technique we will use is the same we used in [3] to prove

estimate (2.19) on the decreasing part of the functional Q(t). Here, however,

the new definition of the functional Q(t) we presented in Section 2.6 plays

a crucial role, since, with the old definition (the one in [3]), the decrease of

Q in the time interval [t1, t2] is not big enough to prove (5.1).

Proof. Introduce first the following sets:

Er :=
{
(w,w′) ∈ Wk(i2ε, rε)×Wk(i2ε, rε)

∣∣∣ w < w′,

x(t1, w) < x(t1, w
′)
}
, r ∈ Z,

Fr :=
{
(w,w′) ∈ Wk(i2ε, rε)×Wk(i2ε, rε)

∣∣∣ w < w′,

max
{
tcr(w), tcr(w′)

}
> t1

}
, r ∈ Z,

(5.2)

E :=
⋃

r∈Z

Er, F :=
⋃

r∈Z

Fr, (5.3)

E i :=
{
(w,w′) ∈ E

∣∣∣ tint(t1, w,w′) = iε
}
, i = i1 + 1, . . . , i2.

We need now the following four lemmas, which conclude the proof of the

proposition.

Lemma 5.5. For any r ∈ Z,

B
quadr
k (i2ε, rε) ≤ O(1)

∫∫

(Ψk×Ψk)(Er∪Fr)
qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′.

Proof. We assume for the sake of simplicity that the k-waves interacting at

(i2ε, rε) are positive, the negative case being completely similar. We divide

the proof in several steps.

Step 1. Set uL := ui2,r−1, uR := ui2,r and

sak := s
r−(i2−i1)+a
k
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for any a = 0, 1, . . . , i2 − i1 =: A. As in Section 4.1, let

sa := (sa1, . . . , s
a
n),

let {γk}k=1,...,n, γk : I(sk) → D ⊆ R
n+2 be the collection of curves which

solve the Riemann problem (uL, uR) and let fk be the associated reduced

flux. Define also

Θk := Φk(t2) ◦Ψ−1
k |

Ψk

(
Wk(i2ε,rε)∩Wk(t1)

).

It is not difficult to see that there exists two real numbers ζ, ζ ′ ∈ R such that

Ψk

(
Wk

(
i2ε, rε

)
∩Wk

(
i1ε, (r − (i2 − i1) + a)ε

))
= ζ+

∑

b<a

sbk+I(sak)=:Iak ,

Φk(t2)
(
Wk(i2ε, rε)

)
= ζ ′ + I(sk),

and

Θk : ζ + I
( A∑

a=1

sak
)
→ ζ ′ + I(sk)

is an increasing map and for each a = 0, 1, . . . , A the restriction Θk|Ia
k
is

an affine map with slope equal to 1. We are thus exactly in the situation

described in Section 4.1 and therefore we can define the intervals Jak :=
{
τ ∈

ζ ′+I(sk)
∣∣ Θ−1

k (τ) ∈ Iak
}
. Notice, moreover, that the effective flux feffk (t2) at

time t2 and the flux fk associated to the Riemann problem (uL, uR) coincide

up to affine functions, i.e.

d2

dτ2
conv ζ′+I(sk)f

eff
k (t2)(ζ

′ + τ) =
d2

dτ2
conv I(sk)fk(τ), τ ∈ I(sk).

Hence, by the properties of the convex envelope, we can compute the quadratic

amount of interaction Bquadr(i2ε, rε) using the effective flux feffk (t2) instead

of fk:

B
quadr
k (i2ε, rε) :=

∥∥∥∥
d

dτ
conv⋃A

a=0 J
a
k
feffk (t2)−

A⋃

a=0

d

dτ
conv Ja

k
feffk (t2)

∥∥∥∥
1

.

By triangular inequality, it is enough to prove that for any b = 1, . . . , A,

∥∥∥∥
d

dτ
conv⋃b

a=0 J
a
k

feffk (t2)−
( d
dτ

conv⋃b−1
a=0

feffk (t2) ∪
d

dτ
conv Jb

k
feffk (t2)

)∥∥∥∥
1
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≤
∫∫

(
⋃b−1

a=0 J
a
k
)×Jb

k

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′. (5.4)

The technique we use to prove (5.4) is the same as in [3, Proposition 6.9].

Step 2. Set

τM := sup

b−1⋃

a=0

Jak = inf Jbk,

and

τL := max

{
τ ∈

b−1⋃

a=0

Jak

∣∣∣∣ conv⋃b−1
a=0 J

a
k

feffk (t2)(τ) = conv⋃b
a=0 J

a
k

feffk (t2)(τ)

}
,

τR := min

{
τ ∈ Jbk

∣∣∣∣ conv Jb
k
feffk (t2)(τ) = conv⋃b

a=0 J
a
k
feffk (t2)(τ)

}
.

W.l.o.g. we assume that τL < τM < τR, otherwise there is nothing to prove.

It is quite easy to see that

B
quadr
k (iε, rε) =

1

τR − τL

[
σrh
(
feffk (t2), (τL, τM ]

)
− σrh

(
feffk (t2), (τM , τR]

)]

×L2
(
(τL, τM ]× (τM , τR]

)
,

and thus it is sufficient to prove that

1

τR − τL

[
σrh
(
feffk (t2), (τL, τM ]

)
−σrh

(
feffk (t2), (τM , τR]

)]
L2
(
(τL, τM ]×(τM , τR]

)

≤
∫ τM

τL

∫ τR

τM

qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′. (5.5)

Observe that, by Proposition 2.16,

d
(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
≤ τR − τL;

hence (5.5) will follow if we prove that

[
σrh
(
feffk (t2), (τL, τM ]

)
− σrh

(
feffk (t2), (τM , τR]

)]
L2
(
(τL, τM ]× (τM , τR]

)

≤
∫ τM

τL

∫ τR

τM

πk
(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′. (5.6)
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Step 3. Let

L := Ψ−1
k

(
(τL, τM ]

)
, R := Ψ−1

k

(
(τM , τR]

)
.

We will identify waves through the equivalence relation ⊲⊳, already intro-

duced in (2.7): for any couple of waves w,w′ ∈ L∪R, set w ⊲⊳ w′ if and only

if

tcr(w) = tcr(w′) and x(t, w) = x(t, w′) for any t ∈
[
tcr(w), iε

)
.

The sets

L̂ := L
/
⊲⊳, R̂ := R

/
⊲⊳

are finite and totally ordered by the order ≤ of Wk(t2). Moreover for any

ξ ∈ L̂, ξ′ ∈ R̂, let w ∈ ξ, w′ ∈ ξ′ and set

I(t1, t2, ξ, ξ′) := I(t1, t2, w,w′), P(t1, t2, ξ, ξ
′) := P(t1, t2, w,w

′),

and

Î(t1, t2, ξ, ξ′) := I(t1, t2, ξ, ξ′)
/
⊲⊳ .

It is not hard to see that the above definitions are well posed and that

Î ⊆ L̂ ∪ R̂.

Now we partition the rectangle L̂ × R̂ in sub-rectangles, as follows. For

any non empty rectangle Ĉ := L̂C × R̂C ⊆ L̂ × R̂, define (see Figure 3)

Π0(Ĉ) :=
[
L̂C∩Î(t1, t2,max L̂C ,min R̂C)

]
×
[
R̂C∩Î(t1, t2,max L̂C ,min R̂C)

]
,

Π1(Ĉ) :=
[
L̂C ∩Î(t1, t2,max L̂C ,min R̂C)

]
×
[
R̂C \ Î(t1, t2,max L̂C ,min R̂C)

]
,

Π2(Ĉ) :=
[
L̂C \ Î(t1, t2,max L̂C,min R̂C)

]
×
[
R̂C \ Î(t1, t2,max L̂C ,min R̂C)

]
,

Π3(Ĉ) :=
[
L̂C \ Î(t1, t2,max L̂C,min R̂C)

]
×
[
R̂C ∩Î(t1, t2,max L̂C ,min R̂C)

]
.

Clearly
{
Π0(Ĉ),Π1(Ĉ),Π2(Ĉ),Π3(Ĉ)

}
is a disjoint partition of Ĉ.

For any set A, denote by A<N the set of all finite sequences taking values

in A. We assume that ∅ ∈ A<N, called the empty sequence. There is a natural
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Figure 3: Partition of Ĉ := L̂C × R̂C .

ordering E on A<N: given α, β ∈ A<N,

αE β ⇐⇒ β is obtained from α by adding a finite sequence.

A subset D ⊆ A<N is called a tree if for any α, β ∈ A<N, α E β, if β ∈ D,

then α ∈ D.

Define a map Ψ̂ : {0, 1, 2, 3}<N −→ 2L̂×R̂, by setting

Ψ̂α =

{
L̂ × R̂, if α = ∅,
Πzn ◦ · · · ◦ Πz1(L̂ × R̂), if α = (z1, . . . , zL) ∈ {0, 1, 2, 3}<N \ {∅}.

For α ∈ {0, 1, 2, 3}<N , let L̂α, R̂α be defined by the relation Ψ̂α = L̂α × R̂α.

Define a tree D in {0, 1, 2, 3}<N setting

D :=
{
∅
}

∪
{
α = (z1, . . . , zL) ∈ {0, 1, 2, 3}<N

∣∣∣ L ∈ N,

Π̂α 6= ∅, zl 6= 0 for l = 1, . . . , L− 1

}
.

See Figure 4.

Since Π0(Π0(Ĉ)) = Π0(Ĉ) for any Ĉ ⊆ L̂× R̂, this implies, together with the

fact that L̂ × R̂ is a finite set, that D is a finite tree.
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Figure 4: Partition of L ×R using the tree D.

For any α ∈ D, set

Lα :=
⋃

ξ∈L̂α

ξ, Rα :=
⋃

ξ′∈R̂α

ξ′,

Lα := Ψk(Lα), Rα := Ψk(Rα).

The idea of the proof is to show that, for each α ∈ D, on the rectangle

Lα ×Rα it holds

[
σrh(feffk (t2), Lα)− σrh(feffk (t2), Rα)

]
L2(Lα ×Rα)

≤
∫

Lα×Rα

πk(t1, t2, τ, τ
′)dτdτ ′. (5.7)

The conclusion will follow just considering that ∅ ∈ D and L∅ = (τL, τM ],

R∅ = (τM , τR].

Step 4. Using Propositions 2.16, 2.18, 2.19, it is possible to prove that 5.7

holds for each α = (z1, . . . zL) ∈ D such that zL = 0.

This is a major part of the proof, in which the partitions P(t1, t2, w,w
′) are

widely used, but we don’t prove this step explicitly, since its proof can be

obtained adapting the proofs of [3, Lemmas 6.10-6.11].

Step 5. We prove now that (5.7) holds for any α ∈ D by (inverse) induction
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on the tree. If α is a leaf of the tree, then, by definition, the last component

of α is equal to zero, and thus (5.7) has already been proved in Step 4. If α

is not a leaf, then

Ψ̂α = Ψ̂α0 ∪ Ψ̂α1 ∪ Ψ̂α2 ∪ Ψ̂α3

and thus

Lα ×Rα =
(
Lα0 ×Rα0

)
∪
(
Lα1 ×Rα1

)
∪
(
Lα2 ×Rα2

)
∪
(
Lα3 ×Rα3

)
.

The estimate (5.7) holds on Lα0×Rα0 by Step 4, while it holds on Lαa×Rαa,
a = 1, 2, 3, by inductive assumption. Hence we can write

[
σrh(feffk (t2), Lα)− σrh(feffk (t2), Rα)

]
L2(Lα ×Rα)

=

∫∫

Lα×Rα

[
dfeffk (t2)

dτ
(τ)− dfeffk (t2)

dτ
(τ ′)

]
dτdτ ′

=

3∑

a=0

∫∫

Lαa×Rαa

[
dfeffk (t2)

dτ
(τ)− dfeffk (t2)

dτ
(τ ′)

]
dτdτ ′

=

3∑

a=0

[
σrh(feffk (t2), Lαa)− σrh(feffk (t2), Rαa)

]
L2(Lαa ×Rαa)

≤
3∑

a=0

∫∫

Lαa×Rαa

πk
(
t1, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′

=

∫∫

Lαa×Rαa

πk
(
t1, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′.

As already observed, for α = ∅, we get inequality (5.6), thus concluding the

proof of the lemma. ���

Lemma 5.6. It holds
∫∫

(Ψk×Ψk)(F)
qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
dτdτ ′

≤ O(1)

i2∑

i=i1+1

∑

m∈Z

Acrk (iε,mε).

Proof. The proof is an easy consequence of the definition (5.2)−(5.3) of the

sets Fr,F and the fact that the weights qk are uniformly bounded, Remark

2.20. ���
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Lemma 5.7. It holds
∫∫

(Ψk×Ψk)(E)
qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)

−qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′

≤ O(1)

i2∑

i=i1+1

∑

m∈Z

A(iε,mε).

Proof. Fix (w,w′) ∈ E . Observe that for any i = i1, . . . , i2,

∣∣∣Φk(iε)(w′)− Φk(iε)(w)
∣∣∣ ≥

∣∣∣Ψk(iε)(w
′)−Ψk(iε)(w)

∣∣∣, (5.8)

since Ψ takes into account only the waves which are in Wk(i1ε) ∩Wk(i2ε).

Then notice that

q
(
tint(t1, w,w

′)− ε, w,w′
)

= q
(
tint(t1, w,w

′)− ε, tint(t1, w,w
′)− ε, w,w′

)

= q
(
t1, t

int(t1, w,w
′)− ε, w,w′

)

≥ q
(
t1, t

int(t1, w,w
′)− ε, t2, w,w

′
)
.

Hence

∆qk(w,w
′) = q

(
t1, t2, t2, w,w

′
)
− q
(
tint(t1, w,w

′)− ε, w,w′
)

≤ q
(
t1, t2, t2, w,w

′
)
− q
(
t1, t

int(t1, w,w
′)− ε, t2, w,w

′
)

≤
i2∑

i=tint(t1,w,w′)/ε

[
q
(
t1, iε, t2, w,w

′
)
− q
(
t1, (i− 1)ε, t2, w,w

′
)]

(by (2.18))

≤ O(1)

i2∑

i=tint(t1,w,w′)/ε

1

|Φk(iε)(w′)− Φk(iε)(w)|
∑

m∈Z

A(iε,mε)

(by (5.8))

≤ O(1)
1

|Ψk(w′)−Ψk(w)|

i2∑

i=i1+1

∑

m∈Z

A(iε,mε).
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Therefore

∫∫

(Ψk×Ψk)(E)
qk

(
t1, t2, t2,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)

− qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)

≤ O(1)

i2∑

i=i1+1

∑

m∈Z

A(iε,mε)

∫∫

(Ψk×Ψk)(E)

dτdτ ′

|τ ′ − τ |

≤ O(1)L2
((

Ψk ×Ψk

)
(E)
) i2∑

i=i1+1

∑

m∈Z

A(iε,mε)

≤ O(1)

i2∑

i=i1+1

∑

m∈Z

A(iε,mε). ���

Lemma 5.8. It holds

∫∫

(Ψk×Ψk)(E)
qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′

≤ O(1)
(
Υ(t1)−Υ(t2)

)
.

Proof. It holds

∫∫

(Ψk×Ψk)(E)
qk

(
tint
(
t1,Ψ

−1
k (τ),Ψ−1

k (τ ′)
)
− ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′

=

i2∑

i=i1+1

∫∫

(Ψk×Ψk)(Ei)
qk

(
(i− 1)ε,Ψ−1

k (τ),Ψ−1
k (τ ′)

)
dτdτ ′

=

i2∑

i=i1+1

∫∫
(
Φk((i−1)ε)×Φk((i−1)ε)

)
(Ei)

qk

(
(i− 1)ε,Φk((i− 1)ε−1(τ),

Φk((i− 1)ε)−1(τ ′)

)
dτdτ ′

(see (2.15))

≤
i2∑

i=i1+1

∑

m∈Z

∫∫

JL
m×JR

m

q((i− 1)ε)dτdτ ′

(using (2.16)−(2.17) and the fact that for waves w,w′ interacting at time iε,
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q(iε, w,w′) = 0).

≤
i2∑

i=i1+1

(
Q((i− 1)ε) −Q(iε)

)
+O(1)Tot.Var.(ū)

i2∑

i=i1+1

∑

m∈Z

A(iε,mε)

(since Qknown is decreasing in time)

≤
i2∑

i=i1+1

(
Q((i− 1)ε) −Q(iε)

)
+C

(
Qknown((i− 1)ε) −Qknown(iε)

)

+O(1)Tot.Var.(ū)

i2∑

i=i1+1

∑

m∈Z

A(iε,mε)

(by the definition of Υ and Corollary 2.24)

≤ O(1)

i2∑

i=i1+1

(
Υ((i− 1)ε)−Υ(iε)

)

= O(1)
(
Υ(t1)−Υ(t2)

)
.

The conclusion of the proof of Proposition 5.4 is an immediate consequence

of the previous four lemmas, Corollary 2.24 and Proposition 5.3. ���
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