CURVES CONTAINED IN A SMOOTH HYPERPLANE SECTION OF A VERY GENERAL QUINTIC 3-FOLD

EDOARDO BALLICO

Dipartimento di Matematica, Università di Trento, 38123 Povo (TN), Italy.
E-mail: edoardo.ballico@unitn.it

IIIII

Abstract

Let $W \subset \mathbb{P}^{4}$ a very general quintic hypersurface. We study the existence/nonexistence of non-complete intersection curves $T \subset W$ with T spanning a hyperplane H and $H \cap W$ smooth (non-existence if the hyperplanes vary in a family not containing a line or a conic of W).

1. Introduction

Let T be an integral algebraic variety over \mathbb{C}. We say that a property α is true for a general (resp. a very general) point of T if there is a finite (resp. countable) union Δ of proper subvarieties of T such each $o \in T \backslash \Delta$ satisfies α. Let $W \subset \mathbb{P}^{4}$ be a very general complex projective hypersurface of degree 5 , i.e. any $W \in\left|\mathcal{O}_{\mathbb{P}^{4}}(5)\right|$ outside a countable union Δ of proper subvarieties of $\left|\mathcal{O}_{\mathbb{P}^{4}}(5)\right|$. These hypersurfaces are the target of Clemens' conjecture, which states that for each positive integer d the hypersurface W has only finitely many degree d rational curves, all of them smooth, except degree 5 plane sections of W (of course of degree 5) with geometric genus 0 ([3], [4], [5], 6], [11], 12], 13], 15]). It is expected that one can say more about curves contained in the intersection of W with a hyperplane (see 16, Corollaire at page 610] for general hypersurfaces of \mathbb{P}^{4} of degree ≥ 7), e.g. each smooth rational curve of degree ≥ 4 should span \mathbb{P}^{4}. In this note we

[^0]look at curves (with arbitrary geometric genus), which are contained in a hyperplane H, but they are not the complete intersection of $W \cap H$ with another hypersurface. Let $\mathbb{P}^{4 \vee}$ denote the set of all hyperplanes of \mathbb{P}^{4}. Fix any integral and quasi-projective family \mathbb{I} of integral curves $T \subset W$. We assume that for a general $T \in \mathbb{I}$ there is a unique hyperplane H containing T. Restricting if necessary \mathbb{I} we assume that this is true for all $T \in \mathbb{I}$. We call $\pi(\mathbb{I})$ the set of all hyperplanes spanned by some $T \in \mathbb{I}$. For any $T \in \mathbb{I}$ let $\langle T\rangle$ denote the hyperplane spanned by T. We make the following restrictive assumptions:

1. the hyperplanes move, i.e. $\operatorname{dim}(\pi(\mathbb{I}))>0$;
2. a general $H \in \pi(\mathbb{I})$ is not tangent to W;
3. a general $H \in \pi(\mathbb{I})$ contains no line of W.

In this note we prove the following result.
Theorem 1. Let $W \subset \mathbb{P}^{4}$ be a very general quintic hypersurface. Assume the existence of an integral positive dimensional quasi-projective variety $\mathbb{I} \subset$ $\operatorname{Chow}(W)$ such that any $T \in \mathbb{I}$ spans a hyperplane $\langle T\rangle, W \cap\langle T\rangle$ is smooth, T is not the complete intersection of $W \cap\langle T\rangle$ with another hypersurface and $\operatorname{dim}(\pi(\mathbb{I}))>0$. Assume the non-existence of a line $L \subset W$ such that $L \subset H$ for all $H \in \pi(\mathbb{I})$. Then there is a smooth conic $D \subset W$ such that $\pi(\mathbb{I})$ is an open subset of the pencil of all hyperplanes containing D and for a very general $T \in \mathbb{I}$ we have $\mathcal{O}_{W \cap\langle T\rangle}(T) \cong \mathcal{O}_{W \cap\langle T\rangle}(x)(-y D)$ for some $x, y \in \mathbb{Z}$.

Fix a hyperplane $H \subset \mathbb{P}^{4}$. The set of all smooth quintic surfaces $S \subset H$ with $\operatorname{Pic}(S) \neq \mathbb{Z} \mathcal{O}_{S}(1)$ is a countable union of subvarieties of codimension 4, plus the set of all $S \subset H$ containing either a line or a smooth conic (17, Th. 0.2]; 18] shows that this is not true for surfaces with large degree) and their union is dense in the Zariski topology and in the euclidean topology of $\left|\mathcal{O}_{\mathbb{P}^{3}}(5)\right|([2])$. Since $\operatorname{dim}\left(\mathbb{P}^{4 \vee}\right)=4$, a dimensional count suggests that a general quintic 3 -fold $W \subset \mathbb{P}^{4}$ contains at most countably many curves T spanning a hyperplane H containing no line and no conic of W and with T not a complete intersection of $W \cap H$ and another hypersurface. Call \mathcal{H}_{d} the set of all hyperplanes $H=\langle T\rangle$ for some T as above with $\operatorname{deg}(T)=d$. For any $H \in \mathcal{H}_{d}$ the surface $H \cap W$ has families of non-complete intersection subcurve with arbitrarily large dimension (use $\mathcal{O}_{W \cap H}(x)(y T)$) with $y \in \mathbb{Z} \backslash\{0\}$ and $x \gg|y|)$. So the question is not about the non-existence of large families of
non-complete intersection degenerate subcurve of W, but that the associated hyperplanes do not move, i.e. if for each d the set \mathcal{H}_{d} is finite. See Remark 4 for the finiteness of $\mathcal{H}_{d}, d \leq 5$.

Question 1. Is \mathcal{H}_{d} finite for all $d \geq 6$? Is $\bigcup_{d \geq 6} \mathcal{H}_{d}$ dense in $\mathbb{P}^{4 \vee}$ (in the Zariski and/or the euclidean topology)?

Question 2. Let $W \subset \mathbb{P}^{4}$ be a very general quintic hypersurface. Is there a finite upper bound for the rank of the Picard scheme (resp. class group) for all smooth (resp. all) hyperplane sections of W ? Is this upper bound equal to 3 ?

See Remarks [1, 2 and 3 for smooth hyperplane sections of a general quintic 3 -fold and with Picard group of rank ≤ 3.

We thanks a referee for useful suggestions.

2. Proof of Theorem 1

Let \mathcal{W} denote the set of all smooth quintic hypersurfaces $W \subset \mathbb{P}^{4}$ satisfying the thesis of [5]. In particular for each $W \in \mathcal{W}$ we assume that for each integer $x \leq 11$ the smooth 3 -fold W contains finitely many curves of degree x and geometric genus 0 , all of them smooth and pairwise disjoint, except rational plane quintics, and all of them with normal bundle isomorphic to a product of two line bundles of degree -1 . For instance W contains no reducible conic. For any positive integers d let \mathbb{I}_{d} be the set of all (T, W) with $W \in \mathcal{W}, T \subset W$ and T a degree d integral, rational curve. It is known that \mathbb{I}_{d} is irreducible if and only if $d \leq 11$ ([5, Theorem 1.1], [12]). We only need the irreducibility of \mathbb{I}_{d} for very low d to check in the following remarks that certain natural hyperplane sections of a general $W \in \mathcal{W}$ have a Picard group with the expected rank.

Remark 1. Fix a general $W \in \mathcal{W}$. W has 2875 lines and any two of them are disjoint (10], 13, page 158]). Take lines $L, R \subset W$ such that $L \neq R$. Since $L \cap R=\emptyset, L \cup R$ spans a hyperplane $H \subset \mathbb{P}^{4}$. Since $h^{1}\left(\mathbb{P}^{4}, \mathcal{I}_{L \cup R}(5)\right)=0$ for any 2 disjoint lines L, R of \mathbb{P}^{4}, the Galois group of the covering $\mathbb{I}_{1} \rightarrow \mathcal{W}$ is 2 -transitive (or see the case $n=4$ of [10]). Set $S:=H \cap W$. We claim that S is smooth. Since the Galois group G of the covering $\mathbb{I}_{1} \rightarrow \mathcal{W}$ is 2transitive, this is true for one pair (L, R) if and only if it is true for all pairs of different lines of W. Fix two disjoint lines $D, T \subset H$ and let $Y \subset H$ be a
general degree 5 surface containing $D \cup T$. Since a general $W \in \mathcal{W}$ contains a pair of disjoint lines and G is 2 -transitive, to prove that S is smooth it is sufficient to prove that Y is smooth. Since $D \cup T$ is the base locus of $\left|\mathcal{I}_{D \cup T, H}(5)\right|, Y$ is smooth outside $D \cup T$ by Bertini's theorem. Since $D \cup T$ is a smooth curve, Y is smooth by [7, Theorem 2.1] (in the set-up of [7, Theorem 2.1] either $\operatorname{Sing}(Y)=\emptyset$ or $\operatorname{Sing}(Y)$ has codimension 2 in $D \cup T)$. We claim that for a very general S the $\operatorname{group} \operatorname{Pic}(S)$ has rank 3, generated by L, R and $\mathcal{O}_{S}(1)$. It is sufficient to prove that for a very general $Y \operatorname{Pic}(Y)$ has rank 3 , generated by D, T and $\mathcal{O}_{Y}(1)$. We have $h^{1}\left(H, \mathcal{I}_{D \cup T}(t)\right)=0$ for all $t \geq 1$ and so for each $t \geq 2$ a very general surface $Y \subset H$ containing $D \cup T$ is normal with class group freely generated by $\mathcal{O}_{Y}(1), D$ and T (1 , Theorem 1.1]). Let $J \subset H$ be any line with $J \neq T$ and $J \neq D$. Since $5>\operatorname{deg}(D \cup T \cup J)$, it is easy to check that $h^{1}\left(H, \mathcal{I}_{D \cup T \cup J}(5)\right)=0$, i.e. $h^{0}\left(H, \mathcal{I}_{D \cup T \cup J}(5)\right)=h^{0}\left(H, \mathcal{I}_{D \cup T \cup J}(5)\right)-6+\sharp(J \cap(D \cup T))$. Since H has ∞^{4} lines, only ∞^{3} of them meeting $D \cup T$, only ∞^{1} intersecting both D and T, and Y is general in $\left|\mathcal{I}_{D \cup T, H}(5)\right|, D$ and T are the only lines contained in Y. Hence L and R are the only lines of S and hence (by the irreducibility of \mathbb{I}_{1}) for a general $W \in \mathcal{W}$ no 3 of the lines of W are contained in a hyperplane and there are $\binom{2875}{2}$ hyperplanes of \mathbb{P}^{4} containing 2 lines of W and none of them is tangent to W.

Remark 2. Fix a general $W \in \mathcal{W}$ and take any line $L \subset W$ and any smooth conic $D \subset W$. We know that $D \cap L=\emptyset$. Here we check that $D \cup L$ spans \mathbb{P}^{4} and hence we cannot get a hyperplane section with Picard group of rank at least 3 taking the linear span of $D \cup L$. Take any hyperplane $H \subset \mathbb{P}^{4}$, any smooth conic $T \subset H$ and any line $R \subset H$ such that $R \cap T=\emptyset$. The set of all such triples (H, T, R) has dimension 16 . Since $h^{1}\left(\mathbb{P}^{4}, \mathcal{I}_{R \cup T}(5)\right)=$ $h^{1}\left(H, \mathcal{I}_{R \cup T, H}(5)\right)=0$, we have $h^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{R \cup T}(5)\right)=\binom{9}{4}-17$. Hence a general $W \in \mathcal{W}$ contains no $T \cup R$. The set of all hyperplanes $H \subset \mathbb{P}^{4}$ containing D is a pencil. Since the dual variety of a smooth hypersurface of degree >1 is a hypersurface), there is $H \subset \mathbb{P}^{4}$ with $H \supset D$ and $H \cap W$ singular. We check here that a general hyperplane $H \subset \mathbb{P}^{4}$ with $H \supset D$ is smooth. We fix a hyperplane $H \subset \mathbb{P}^{4}$ and a smooth conic $D \subset \mathbb{P}^{4}$. Since the homogeneous ideal of D in H is generated by forms of degree ≤ 2, a general element of $S \in\left|\mathcal{I}_{D, H}(5)\right|$. Any smooth quintic hypersurface $W^{\prime} \subset \mathbb{P}^{4}$ with $W^{\prime} \cap H=S$ contains a conic D and a hyperplane $H \supset D$ with $H \cap W^{\prime}$ smooth. Since \mathbb{I}_{2} is irreducible, for a general $W \in \mathcal{W}$ this is true for all conics contained in W.

Remark 3. Let Γ be the set of all complete intersection $T \subset \mathbb{P}^{4}$ of one hyperplane and 2 quadric hypersurfaces. The set Γ is an irreducible variety of dimension 20. Fix any $T \in \Gamma$. Since $h^{1}\left(\mathbb{P}^{4}, \mathcal{I}_{T}(5)\right)=0$, we have $h^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{T}(5)\right)=\binom{9}{4}-20$. Therefore a general $W \in \mathcal{W}$ contains only finitely may $T \in \Gamma$, all of them smooth elliptic curves, and the associated incidence correspondence \mathbb{E} is irreducible and $\operatorname{dim}(\mathbb{E})=125$. Fix a general $W \in \mathcal{W}$ and take $T \in \Gamma$ with $T \subset W$. Call H the linear span of T. Since W has only ∞^{3} tangent hyperplanes and $\operatorname{dim}(\mathcal{W})=\operatorname{dim}(\mathbb{E})$, for a general W the surface $W \cap H$ is smooth (or you may quote [7, Theorem 2.1]). Since the homogeneous ideal of T in H is generated by two smooth quadric surfaces, a general quintic surface $S \subset H$ containing T is smooth. By [1, Theorem 1.1] $\operatorname{Pic}(S)$ is freely generated by T and $\mathcal{O}_{S}(1)$. Since \mathbb{E} is irreducible, we get that $W \cap H$ is freely generated by T and $\mathcal{O}_{W \cap H}(1)$.

Remark 4. Fix a general $W \in \mathcal{W}$ and assume the existence of an integral curve $T \subset W$ of degree $d \leq 5$ and whose linear span $\langle T\rangle$ has dimension ≤ 3. First assume that $\langle T\rangle$ is a plane. We know the cases $d=1,2$ since W has 2875 lines and 609,250 conics, all of them smooth ([13, Theorem 3.1]). If $d=5$, then T is a plane section of W. If $d=3$, then T is linked by $\langle T\rangle$ to a plane conic contained in W (we also know by [5] that T is a smooth elliptic curve). If $d=4$, then T is linked by $\langle T\rangle$ to a line contained in W and so we know that W has 2875 integral 3-dimensional families of such curves T. Now assume that $\langle T\rangle$ is a hyperplane. If $d=3$, then T is a rational normal curve and we know that W has only finitely many such curves. If $d=4$ the irreducibility of \mathbb{I}_{4} and [5] gives that any such T is a smooth elliptic curve (see Remark 3 for a description of this case). Now assume $d=5$. We have have $p_{a}(T) \leq 2$ by Castelnuovo's upper bound for the arithmetic genus of non-degenerate curves. We have $h^{1}\left(\mathbb{P}^{4}, \mathcal{I}_{T}(5)\right)=h^{1}\left(H, \mathcal{I}_{T}(5)\right)=0$ $([9])$. Hence $h^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{T}(5)\right)=\binom{9}{4}-25-1+p_{a}(T)$. Since $\operatorname{dim}\left(\mathbb{P}^{4 \vee}\right)=4$ and H contains only ∞^{20} non-degenerate curves with degree 5 and $p_{a}(T) \in\{0,1,2\}$, we get that a general $W \in \mathcal{W}$ contains such a curve T only if $p_{a}(T)=2$. In this case the singular ones have lower dimension. Hence W only has finitely many T, each of them being smooth and of genus 2 . In particular \mathcal{H}_{5} is finite.

Proof of Theorem 1. Take \mathbb{I} as in the statement of Theorem [1. Assume for the moment that $\operatorname{dim}(\mathbb{I})=1$. Fix a general $p \in \mathbb{P}^{4}$. We assume $p \notin W$ and that $p \notin H$ for a general $H \in \pi(\mathbb{I})$, say $p \notin\langle T\rangle$ for all $T \in \mathbb{I}$ in a dense
open subset \mathbb{J} of \mathbb{I}. Let $\ell: \mathbb{P}^{4} \backslash\{p\} \rightarrow \mathbb{P}^{3}$ denote the linear projection from p. We get a family $\ell(T), T \in \mathbb{J}$, of $\operatorname{deg}(T)$ integral space curves and a family $\ell(W \cap\langle T\rangle)$ of degree 5 surfaces with $\ell(T) \subset \ell(W \cap\langle T\rangle)$. Fix $T \in \mathbb{J}$. Since W is not a cone with vertex p, there are only finitely many $T_{1} \in \mathbb{J}$ with $\ell\left(W \cap\left\langle T_{1}\right\rangle\right)=\ell(W \cap\langle T\rangle)$. Since $\operatorname{dim}(\mathbb{J})=1$ and $\operatorname{dim}\left(\mathbb{P}^{4 \vee}\right)=4$, taking the linear projection from varying $W \in \mathcal{W}$ we get a family Γ of smooth degree 5 surfaces of \mathbb{P}^{3} such that each $S \in \Gamma$ contains a $\operatorname{deg}(T)$ integral curve and Γ has codimension ≤ 3 in $\left|\mathcal{O}_{\mathbb{P}^{3}}(5)\right|$. By [17, Th. 0.2] a general $S \in \Gamma$ contains either a line or a conic (see [8] and [16] for the characterization of the surfaces containing a line). Since W contains only finitely many lines and conics, all of them smooth, either there is a line $L \subset H$ for all $H \in \pi(\mathbb{J})$ or there is a smooth conic D such that $D \subset \pi(T)$ for all $T \in \mathbb{I}$. We excluded the former case. Assume the existence of the conic D. Since $h^{0}\left(\mathbb{P}^{4}, \mathcal{I}_{D}(1)\right)=2$, \mathbb{I} is induced by the pencil of all hyperplanes containing D. To conclude (for a general $W \in \mathcal{W}$) it is sufficient to prove that a general degree 5 surface $S \subset \mathbb{P}^{3}$ containing a smooth conic T is smooth and $\operatorname{Pic}(S)$ is freely generated by $\mathcal{O}_{S}(T)$ and $\mathcal{O}_{S}(1)$. S is smooth, because the homogeneous ideal of D is generated by forms of degree ≤ 2 (or you may quote [7, Theorem 2.1]). $\operatorname{Pic}(S)$ is freely generated by $\mathcal{O}_{S}(T)$ and $\mathcal{O}_{S}(1)$ by [14, II.3.8] or [1, Theorem 1.1], because $h^{1}\left(\mathcal{I}_{T}(t)\right)=0$ and a general $A \in\left|\mathcal{I}_{T}(t)\right|$ is smooth for all $t>0$.

Now assume $\operatorname{dim}(\mathbb{I})>1$. Take any integral $\mathbb{I}^{\prime} \subset \mathbb{I}$ such that $\operatorname{dim}\left(\mathbb{I}^{\prime}\right)=1$ and $\operatorname{dim}\left(\pi\left(\mathbb{I}^{\prime}\right)\right)>0$. By part (a) either there is a conic $D \subset H$ for all $H \in \pi\left(\mathbb{I}^{\prime}\right)$ or there is a line $L \subset H$ for all $H \in \pi\left(\mathbb{I}^{\prime}\right)$. Since W has only finitely many lines or conic, the same line or the same conics works for all \mathbb{I}^{\prime}. If there is a conic, then $\operatorname{dim}(\mathbb{I})=1$, a contradiction. We excluded the case of a line in the statement of Theorem 1 , but by the irreducibility of \mathbb{I}_{1} we also know that for a general $W \in \mathcal{W}$, any line $L \subset W$ and a general hyperplane H containing L the surface $W \cap H$ is smooth and its Picard scheme is freely generated by $\mathcal{O}_{W \cap H}(1)$ and $L(14$, II.3.8] or [1, Theorem 1.1]).

References

1. J. Brevik and S. Nollet, Noether-Lefschetz theorem with base locus, Int. Math. Res. Not. IMRN 2011, No. 6, 1220-1244.
2. C. Ciliberto, J. Harris and R. Miranda, General components of the Noether-Lefschetz locus and their density in the space of all surfaces, Math. Ann., 282 (1988), 667-680.
3. H. Clemens, Some results about Abel-Jacobi mappings, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 289-304, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984.
4. E. Cotterill, Rational curves of degree 10 on a general quintic threefold, Comm. Algebra, 33 (2005), 1833-1872.
5. E. Cotterill, Rational curves of degree 11 on a general quintic 3-fold, Quart. J. Math., 63 (2012), 539-568.
6. D'Almeida, Courbes rationnelles de degré 11 sur une hypersurface quintique générale de \mathbb{P}^{4}, Bull. Sci. Math., 136 (2012), 899-903.
7. S. Diaz and D. Harbater, Strong Bertini theorems, Trans. Amer. Math. Soc. 324 (1991), No. 1, 73-86.
8. M. Green, Components of maximal dimension in the Noether-Lefschetz theorem, J. Differential Geomety, 27 (1988), 295-302.
9. L. Gruson, R. Lazarsfeld and Ch. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math., 72 (1983), 491-506.
10. J. Harris, Galois groups of enumerative problems, Duke Math. J., 50 (1983), 11271135.
11. T. Johnsen and S. Kleiman, Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra, 24 (1996), 2721-2753.
12. T. Johnsen and S. Kleiman, Toward Clemens' Conjecture in Degrees between 10 and 24, Serdica Math. J., 23 (1997), 131-142.
13. S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math. 60 (1986), 151-162.
14. A. F. Lopez, Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc., 89, (1991).
15. P. G. J. Nijsse, Clemens' conjecture for octic and nonic curves, Indag. Math., 6 (1995), 213-221.
16. C. Voisin, Une précision concernant le théorème de Noether, Math. Ann., 280 (1988), 605-611.
17. C. Voisin, Composantes de petite codimension du lieu de Noether-Lefschetz, Comm. Math. Helvetici, 64 (1989), 515-526.
18. C. Voisin, Contrexemple à une conjecture de J. Harris, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), No. 10, 685-687.
19. C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geometry, 44 (1996), No. 1, 200-213.
20. C. Voisin, Correction to "On a conjecture of Clemens on rational curves on hypersurfaces", J. Differential Geometry, 49 (1998), 601-611.

[^0]: Received January 20, 2016 and in revised form March 28, 2016.
 AMS Subject Classification: 14M10, 14C22, 14M05.
 Key words and phrases: Quintic 3-fold, complete intersection, Clemens' conjecture, space curves, Noether-Lefschetz.
 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

