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Abstract

The conditions for weak convergence of a sequence of probability measures on metric

spaces of nonlinear operators defined on some subsets of a real separable Banach space

are established. The nonlinear operators of interest include either continuous operators

or cadlag (continu à droite, limites à gauche) operators defined in this article. As the

domains of the operators are certain compact sets, the limiting probability measures are

the generalizations of the Wiener measure and the Poisson measure on the metric spaces of

continuous and cadlag real functions defined on the unit interval, respectively. As the lim-

iting probability measure is the generalized Wiener measure, the result is a generalization

of Donsker’s theorem.

1. Introduction

Let C([0, 1], R) and D([0, 1], R) be the complete metric spaces of contin-

uous real functions endowed with the uniform topology (see [4], Chapter 2,

p. 80) and cadlag real functions endowed with the Skorohod topology (see

[4], Chapter 3, p. 125) on the unit interval, respectively. Let C and D be the

corresponding Borel σ-fields. Weak convergence of a sequence of probability

measures on either {C([0, 1], R), C} or {D([0, 1], R),D} given some sufficient

conditions has been proved (see [4], Theorem 7.1, Theorem 7.5, and Theo-

rem 13.1). Basically, the tightness of the sequence of probability measures

and weak convergence of the finite-dimensional distributions are two main

conditions. As the limiting measure is the Wiener measure, the result is
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Donsker’s theorem (see [4], Theorem 8.2). Further, the limiting probability

measure can be the Poisson measure (see [4], Example 12.3). In addition,

weak convergence theory in D([0, 1], R) can be applied to prove the conver-

gence of the empirical process to the Brownian bridge (see [4], Theorem 14.3;

also see [5], Chapter 1.1).

Relative little has been done for weak convergence of probability mea-

sures on the space of continuous operators, possibly nonlinear, from a subset

of a real separable Banach space X to a real separable Banach space Y (see

[2], p. 30; [16], Section 1.5) or to the space of certain operators from the

subset of the space X to the space Y , i.e., the results for operator-valued

random variables or probability measures on the space of nonlinear oper-

ators. Operator theory has been at the heart of research in analysis (see

[1]). Moreover, as implied by [13], considering nonlinear case should be es-

sential. The following are some examples related to nonlinear operators and

the results developed in this article. Let X and Y be normed spaces in these

examples.

Example 1. The continuous operators from X into Y .

Example 2. Suppose that the underlying dth order partial differential equa-

tion can be expressed as

D

[

µ, x(µ),
∂x(µ)

∂µ1
, . . . ,

∂|α|x(µ)

∂µα1
j1

· · · ∂µαr
jr

, · · · , ∂
dx(µ)

∂µd
p

]

= F (x)(µ)

= 0,

where µ = (µ1, . . . , µp)
t ∈ Rp, p > 1, D is a real or complex function,

F : Dom(F ) ⊂ X → Y is an operator, α = (α1, . . . , αr), |α| =
∑r

k=1 αk ≤ d,

αk are non-negative integers, {j1, . . . , jr} ⊂ {1, . . . , p}, and where Dom(F )

is the domain of the operator F . As indicated by [8], the great advantage

of interpreting PDE problem in the operator form is that the general and

elegant results of functional analysis can be used to study the solvability of

various equations involving the differential operator. For nonlinear differen-

tial equation, the operator might not be linear. As the underlying equation

is not deterministic and is involving some random quantities, the resulting

differential operator is the realization of an operator-valued random variable.



2016] WEAK CONVERGENCE OF PROBABILITY MEASURES 487

Example 3. Consider the mathematical programming problem of which

goal is to find the minimizer

F̂ = argmin
F∈S

T (F ),

subject to

gi(F ) ≤ 0, i = 1, . . . , I,

hj(F ) = 0, j = 1, . . . , J,

where S is a subset consisting of nonlinear operators from X into Y and T ,

gi and hj are functionals defined on S.

Example 4. One of the fundamental quantities in robustness theory is the

Huber function. One of the generalizations of the Huber function to the

infinite dimensional spaces is F : X → X (see [14]),

F (x) = xmin

[

1,
‖c‖Z1

‖U(x)‖Z2

]

,

if ||U(x)||Z2 6= 0 and F (x) = x if ||U(x)||Z2 = 0, where Z1 and Z2 are

normed spaces, c ∈ Z1 is a bounded function, U : X → Z2 is considered as

a continuous linear operator. Note that F is not a linear operator.

Example 5. Consider the following nonparametric regression model in statis-

tics,

y = F (x) + ε,

where y is a Y -valued random variables, F defined on some subset of X is

a Y -valued nonlinear operator, and ε is a Y -valued random variable. Rel-

atively few theoretical results such as consistency and weak convergence of

the nonlinear estimators (operators) have been established. However, one

theorem concerning weak convergence of the operators of interest (see [15])

is based on the result developed in this article .

Developing useful results for the operators in the above examples holds

promise for the wide applications of nonlinear functional analysis to a variety

of scientific areas. As considering the measure space of the nonlinear opera-

tors, the occurring problem is when can a sequence of measurable functions

on the space converge in different notions? Weak convergence of a sequence
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of measures is one mode of convergence and is one of main research topics in

mathematics, particularly in probability or statistics. Note that weak con-

vergence theory corresponding to nonlinear operators might also hold the

promise for wide applications to the above examples.

The goal of this article is to establish the conditions for weak conver-

gence of a sequence of probability measures on the metric space of nonlinear

operators from the possibly unbounded subset of X to the space Y . The

proofs for these results mainly follow the ones of [4]. In next section, the

results concerning weak convergence of a sequence of probability measures

on the complete and separable metric space of continuous operators defined

on the compact set of X are given. The sufficient conditions corresponding

to the tightness of the sequence of probability measures and weak conver-

gence of the finite-dimensional distributions are established. Furthermore,

a sequence of operator-valued random variables is defined and proved to

converge in distribution to a random variable of which distribution is the

proposed generalized Wiener measure, i.e., the generalization of the Wiener

measure on {C([0, 1], R), C}. Section 3 concerns with weak convergence cor-

responding to the cadlag operator defined in this article. In Section 3.1, a

metric for the space of cadlag operators is defined. Weak convergence of a se-

quence of operator-valued random variables on the metric space to a random

variable of which distribution is the proposed generalized Poisson measure,

i.e., the generalization of the Poisson measure on {D([0, 1], R),D}, is proved.
Moreover, another metric for the subspace of the metric space in Section 3.1

is defined in Section 3.2 and the results concerning both completeness and

separability of the corresponding metric space are given. Thus, the sufficient

conditions analogous to the ones in the Polish space of continuous operators

are established for weak convergence of a sequence of probability measures

on the Polish space of cadlag operators. Since additional lemmas might

be required for some theorems and the proofs are long, the proofs of these

theorems in Section 2 and Section 3 are given in Section 4 and Section 5,

respectively. Note that the extended results for the space of cadlag operators

on some unbounded set along with the proofs of some theorems and lemmas

are delegated to the supplementary materials, which can be found at

http://web.thu.edu.tw/wenwei/www/papers/bnSupplement2016.pdf/.

Hereafter, let (Ω,Σ, P ) be the probability space on which the random

variables of interest are defined, where Ω is a sample space, Σ is the σ-field of

http://web.thu.edu.tw/wenwei/www/papers/bnSupplement2016.pdf/
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Borel subsets of Ω, and P is a probability measure on (Ω,Σ). Furthermore,

Pf−1, the induced probability measure on (Ω∗,Σ∗), is defined by Pf−1(A) =

P ({x : f(x) ∈ A}), where f : Ω → Ω∗ is a Borel measurable function and

A ∈ Σ∗. As Ω has been specified, the probability measure P on Σ rather

than on (Ω,Σ) is used for succinctness. The notation || · ||Z is denoted as the

norm of the normed space Z. The metric space with the metric d induced

by the norm is d(z1, z2) = ||z1 − z2||Z for z1, z2 ∈ Z. Two results have been

extensively used in the proofs. One is Theorem 2.7 of [4] referred to as the

mapping theorem while the other is the lemma given in Section 8.1 of [7]

referred to as the converging together lemma.

2. Weak Convergence of Probability Measures on

Metric Space of Continuous Operators

LetK be a compact set of the real separable Banach spaceX and contain

zero element. Since a compact subset of any metric space is bounded, K is

bounded. Assume that the range of the norm function on K is [0, 1], i.e.,

0 ≤ ||x||X ≤ 1, x ∈ K. Denote B(a, r) and B̄(a, r) as the open ball and

closed ball with the center a and the radius r in a metric space, respectively.

Let F : K → Y be the continuous operator with the domain K and Y be

the Borel σ-field of subsets of Y . Note that F is also bounded. The metric

space [C(K,Y ), ρ] of the Y -valued continuous operators defined on K with

the metric

ρ(F1, F2) = sup
x∈K

‖F1(x)− F2(x)‖Y ,

is of interest, where F1, F2 ∈ [C(K,Y ), ρ]. Let [C(K,Y ), ρ] be the Borel σ-

field generated by the open sets of C(K,Y ). Also, let πx1···xk
: C(K,Y ) → Y k

be the natural projection defined by πx1···xk
(F ) = [F (x1), . . . , F (xk)] and Yk

be the Borel σ-field or product σ-field (see [3], Theorem 4.43) of subsets of

the product space Y k, where x1, . . . , xk ∈ K. Note that πx is continuous

and thus Borel measurable. In addition, Y and Y k are both metric spaces

with the metrics induced by ‖·‖Y and ‖·‖Y k , respectively. The metric space

[C(K,Y ), ρ] is separable and complete, i.e., a Polish space, by Lemma 3.83

and Lemma 3.85 of [3]. For a Y -valued Radon Gaussian variable g, let

Σ(g) = sup
||T ||Y ∗≤1,T∈Y ∗

{E{[T (g)]2}}1/2,
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where Y ∗ is the topological dual space of Y . In the following, the proposed

generalized Wiener measure is defined first.

Definition 2.1. A generalized Wiener measure Wφ, a probability measure

on the space [C(K,Y ), ρ], is the distribution of a C(K,Y )-valued random

variable Wφ with the following properties:

(i) φ : K → [0, 1] is a function with its range equal to the unit interval

[0, 1] and φ(x) = 0 if and only if x = 0.

(ii) Wφ({F : F ∈ C(K,Y ), F (0) = 0}) = 1.

(iii) The random variable Wφ(x) = πx(Wφ) for x 6= 0 under Wφ is a Y -

valued centered Radon Gaussian variable. In other words, for any

continuous linear functional T ∈ Y ∗ on Y , T [Wφ(x)] is a real-valued

Gaussian variable with mean 0. Furthermore,

Σ [Wφ(x)] = sup
‖T‖Y ∗≤1,T∈Y ∗

{E{{T [Wφ(x)]}2}}1/2 = [φ(x)]1/2.

(iv) For 0 ≤ φ(x0) ≤ φ(x1) ≤ · · · ≤ φ(xk) ≤ 1, the random variables

Wφ(x1) − Wφ(x0), Wφ(x2) − Wφ(x1),. . . , Wφ(xk) −Wφ(xk−1) are in-

dependent under Wφ.

The generalized Wiener measure can be constructed based on the follow-

ing results. First, the following theorem establishes the sufficient conditions

for the tightness of a sequence of probability measures {Pn} on [C(K,Y ), ρ],

which is one of main conditions for weak convergence of {Pn}. Let

w(F,∆) = sup
‖x1−x2‖X≤∆

‖F (x1)− F (x2)‖Y

for F ∈ [C(K,Y ), ρ]. Note that the function w(·,∆) on [C(K,Y ), ρ] is

continuous for fixed ∆ and hence measurable with respect to [C(K,Y ), ρ]

and R, where R is the Borel σ-field of subsets of R. Let K∗ be a countable

dense subset of K.

Theorem 2.1. If {Pnπ
−1
xi

} is relatively compact for each xi ∈ K∗ and there

exist a ∆ and an n0 such that

Pn ({F : w(F,∆) ≥ ǫ1}) ≤ ǫ2, n ≥ n0,
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for every positive ǫ1 and ǫ2, then the sequence of probability measures {Pn}
on the metric space [C(K,Y ), ρ] is tight.

The following two theorems give the sufficient conditions for weak con-

vergence of the sequence of probability measures {Pn} and the convergence

of a sequence of C(K,Y )-valued random variables Fn in distribution to a

C(K,Y )-valued random variable F . The notation ⇒ denotes weak conver-

gence or convergence in distribution.

Theorem 2.2. If Pn is tight and Pnπ
−1
x1···xk

⇒ Qx1···xk
for all x1, . . . , xk in

K, then there exists a probability measure P on the space [C(K,Y ), ρ] with

Pπ−1
x1···xk

= Qx1···xk
such that the sequence of probability measures {Pn} on

[C(K,Y ), ρ] converges weakly to P , where Qx1···xk
is a probability measure

on (Y k,Yk).

As P is known, a direct result based on Theorem 2.2 is given below.

Note that weak convergence of the finite dimensional distributions of {Pn}
to a probability measure P in a set holds if Pnπ

−1
x1···xk

⇒ Pπ−1
x1···xk

for all

x1, . . . , xk in the set.

Corollary 2.1. Let {Pn} and P be probability measures on the space

[C(K,Y ), ρ]. If {Pn} is tight and weak convergence of the finite dimensional

distributions of {Pn} to P in K holds, then {Pn} converges weakly to P .

The convergence of a sequence of C(K,Y )-valued random variables Fn

in distribution to a C(K,Y )-valued random variable F can be established

based on the above theorems. Let the random vector

πx1···xk
(F) = [F(x1), . . . ,F(xk)] ,

where F(xi) is the random variable with the value equal to the projection

of F at xi and at every sample point.

Theorem 2.3. If

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ǫ] = 0,

for each positive ǫ and {πx1···xk
(Fn)} converges in distribution to Gx1···xk

for

all x1, . . . , xk in K, then there exists a C(K,Y )-valued random variable F
with the distribution of πx1···xk

(F) equal to the one of the Y k-valued random



492 WEN HSIANG WEI [September

variable Gx1···xk
such that the sequence of C(K,Y )-valued random variables

{Fn} converges in distribution to the C(K,Y )-valued random variable F .

Proof. Let PFn be the distribution of Fn. By the equation and Theorem

2.1 then, {PFn} is tight. By the convergence of {πx1···xk
(Fn)} in distribution

to Gx1···xk
for all x1, . . . , xk in K and tightness of {PFn}, the result follows

by Theorem 2.2. ���

The equation in the above theorem, the counterpart of the one given in

Theorem 2.1, is the key for the tightness of the corresponding sequence of

probability measures. The following corollary, a direct result by Theorem

2.3, is a generalization of Theorem 7.5 of [4]. Note that the convergence of

the finite dimensional distributions of Fn to F in K holds if {πx1···xk
(Fn)}

converges in distribution to πx1···xk
(F) for all x1, . . . , xk in K.

Corollary 2.2. Let {Fn} and F be C(K,Y )-valued random variables. If

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ǫ] = 0,

for each positive ǫ and the convergence of the finite dimensional distributions

of Fn to F in K holds, then {Fn} converges in distribution to F .

Based on the above results, a sequence of random variables can be con-

structed and its limiting distribution is the generalized Wiener measure.

Consider a C(K,Y )-valued random variable Fn defined by

Fn(x,w) =
S⌊nφ(x)⌋(w)√

n
+

cn(x)ξ⌊nφ(x)⌋+1(w)√
n

,

for w ∈ Ω, where φ is the function given in (i) of Definition 2.1 and assumed

to be continuous, cn(x) = nφ(x) − ⌊nφ(x)⌋, S⌊nφ(x)⌋ =
∑⌊nφ(x)⌋

i=1 ξi, S0 = 0,

ξi are independent copies of a Y -valued random variables ξ, and ⌊·⌋ is the

Gauss’s floor function. Given the conditions related to the size of the net

for K, the existence of the generalized Wiener measure can be proved and

the generalization of Donsker’s theorem can be obtained, as indicated by

the following theorem. One difference between (a) and (b) of the theorem is

the assumptions imposed on ξ, one being centered Radon Gaussian and the

other satisfying the central limit theorem (CLT), i.e.,
∑n

i=1 ξi/n
1/2 converg-

ing weakly in the Banach space Y (see [10], Chapter 10). Since the proof of
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(b) is analogous to the one of (a), the proof is delegated to the supplementary

materials.

Theorem 2.4. Let the function φ satisfy the Lipschitz condition, i.e., there

exists a constant L such that |φ(x1)−φ(x2)| ≤ L||x1 −x2||X for x1, x2 ∈ K.

(a) Suppose that Y is a cotype 2 Banach space (see [10, Chap. 9]) and ξ is a

centered Radon Gaussian variable with Σ(ξ) = 1. If there exists a positive

number δ such that for a ∆-net for K, ∆ < δ, the number of points in

the net, v, satisfies the inequality v ≤ h(∆−1)∆−1, then there exists

a probability measure Wφ on the metric space [C(K,Y ), ρ] as given in

Definition 2.1, where h is an increasing function, h(n) = o[n−1 exp(an)]

for any positive number a > 0, and where n is a positive number.

(b) Suppose that the symmetric ξ satisfies
∑n

i=1 ξi/
√
n ⇒ W, i.e., ξ satisfy-

ing CLT, where W is a Y -valued centered Radon Gaussian variable with

Σ(W) = 1. If there exists a positive number δ and a positive number C

such that for a ∆-net for K, ∆ < δ, the number of points in the net, v,

satisfies the inequality v ≤ C∆−1, then the sequence of C(K,Y )-valued

random variables {Fn} converges in distribution to the random variable

Wφ.

3. Weak Convergence of Probability Measures on Metric Spaces

of Cadlag Operators

The results in Section 2 are mainly for continuous random operators.

However, the space [C(K,Y ), ρ] might not be suitable for Poisson-type ran-

dom operators, i.e, the cadlag random operators. The generalizations of

several results given in Section 12, Section 13 and Section 16 of [4] and

[11] are given in this section and supplementary materials. In Section 3.1

and Section 3.2, the cadlag operators on compact domains are of interest,

while the ones on an unbounded domain are considered in the supplemen-

tary materials. In Section 3.1, the generalized Poisson measure is defined

and a sequence of random variables is constructed and proved to converge in

distribution to an operator-valued random variable having the generalized

Poisson measure as its distribution. In Section 3.2, a metric playing the

role analogous to the Skorohod metric on D[0, 1] is defined and the associ-

ated space of cadlag operators is proved to be Polish. Then, the sufficient
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conditions for the tightness of a sequence of probability measures and weak

convergence of the sequence of probability measures are established. More-

over, the results given in Section 3.2 are extended to cadlag operators on

the unbounded domain in the supplementary materials. The relation < in

the subset S of X is defined by x1 < x2 provided that ||x1||X < ||x2||X .

Note that the relation is a linear order in terms of the equivalence class

[c] = {x : ‖x||X = c, x ∈ S}, where c ∈ R and the equivalence relation is the

equality of the normed values. In this section, the relation is used for the

elements of the subsets of X. The cadlag operator of interest is defined first.

Definition 3.1. Let S be a bounded subset of X and there exist elements x

and x in S such that ||x||X = infx∈S ||x||X and ||x||X = supx∈S ||x||X . The

cadlag Y -valued operator defined on S has the following properties:

(i) The right-hand limit at any x0 in S ∩ {x : ||x||X = ||x||X}c exists and

is equal to F (x0), i.e., for every ǫ > 0 there is a δ > 0 such that ‖F (x) −
F (x0)‖Y < ǫ for x ∈ S, x > x0, and ‖x− x0‖X < δ. The notation is defined

by

F (x0) = F (x+0 ) = lim
x→x0,x>x0

F (x).

(ii) The left-hand limit at any x0 in S ∩ {x : ||x||X = ||x||X}c exists, i.e., for
every ǫ > 0 there is a δ > 0 and a y0 ∈ Y such that ‖F (x) − y0‖Y < ǫ for

x ∈ S, x < x0, and ‖x− x0‖X < δ. The notation is defined by

y0 = F (x−0 ) = lim
x→x0,x<x0

F (x).

The above Y -valued operator is right-continuous and has left-hand limit

on S. The sum F1 + F2 of two cadlag operators F1 and F2 on S is

(F1 + F2)(x) = F1(x) + F2(x)

and the scalar product αF of the cadlag operator F on S is

(αF )(x) = αF (x)

for x ∈ S, where α ∈ R.
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3.1. Generalized Poisson measure

The compact set K̃1 ⊂ X of interest in this and next subsections has

the following property: K̃1 6= {0}, {x : x = cx0/||x0||X , 0 ≤ c ≤ 1} ⊂ K̃1 for

any x0 6= 0 in K̃1, and 0 < ||x0||X ≤ 1. The equivalence classes of interest

are [c] = {x : ‖x||X = c, x ∈ K̃1}, where 0 ≤ c ≤ 1.

In the following, the space of the cadlag Y -valued operators is intro-

duced. Then, both the Skorohod metric imposed on the space and the gen-

eralized Poisson measure can be defined on the associated measure space.

Definition 3.2. Let D(K̃1, Y ) be the space (or set) of the cadlag Y -valued

operators defined on K̃1 with the following properties:

(i) F is bounded, i.e., ||F ||sup = supx∈K̃1
||F (x)||Y < ∞ for F ∈ D(K̃1, Y ).

(ii) {F (x) : ||x||X = 1, x ∈ K̃1} is totally bounded for F ∈ D(K̃1, Y ).

Denote

w1(F, S̃1) = sup
x,x∗∈S̃1

||F (x)− F (x∗)||Y ,

where S̃1 is any subset of K̃1. In addition, let

w
′

1 (F,∆) = inf
{si}

max
i

w1 {F, [si−1, si)} ,

and

w
′

1 (F,∆, x) = inf
{si}

max
i

w1 {F, [si−1, si)x} ,

where {si}, called ∆-sparse, is any sequence satisfying 0 = s0 < s1 < · · · <
sk = 1 and min1≤i≤k(si − si−1) > ∆, [a, b) = {x : a ≤ ||x||X < b, x ∈ K̃1},
[a, b)x = {cx/||x||X : a ≤ c < b} for x ∈ K̃1, and 0 ≤ a < b ≤ 1. Hereafter

the interval notation implicitly corresponds to the one in X and the interval

of real numbers will be described explicitly.

In the following, the Skorohod metric for the cadlag random operators

is defined first. The Poisson convergence, the generalized Poisson measure,

as weak convergence of a sequence of probability measures, is given then.

Definition 3.3. Denote Λ1 as a class of functions λ defined on K̃1 with the

following properties:
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(i) λ : K̃1 → K̃1 mapping [0, 1]x onto [0, 1]x for x ∈ K̃1, is a strictly increas-

ing function in terms of paths, i.e., λ(x1) > λ(x2) if x1 > x2, x1, x2 ∈
[0, 1]x, and a continuous function.

(ii) λ has an inverse λ−1.

(iii) λ(x) = x as ‖x‖X = 1.

The Skorohod function on D(K̃1, Y )×D(K̃1, Y ) corresponding to the

class Λ1 is defined by

d1(F1, F2) = inf
λ∈Λ1

max (‖λ− I‖sup, ‖F1 − F2λ‖sup)

for F1, F2 ∈ D(K̃1, Y ), where I is the identity map,

||λ− I||sup = sup
x∈K̃1

‖λ(x) − x‖X ,

and F2λ is the composition of the operator F2 and the function λ.

The metric ρ corresponding to the norm is defined by ρ(F1, F2) = ||F1−
F2||sup = supx∈K ||F1(x) − F2(x)||Y on the space C(K,Y ), where F1, F2 ∈
C(K,Y ). However, the Skorohod metric can not be induced by the norm on

the space D(K̃1, Y ). Note that [D(K̃1, Y ), d1] being a metric space and the

measurability of the projection operator πx1...xk
, given and proved in Section

5, are required to define the generalized Poisson measure, where x1, . . . , xk ∈
K̃1. Let [D(K̃1, Y ), d1] be the Borel σ-field of subsets of [D(K̃1, Y ), d1].

Definition 3.4. A generalized Poisson measure Pφ,α, a probability measure

on the metric space {[D(K̃1, Y ), d1], [D(K̃1, Y ), d1]}, is the distribution of a

D(K̃1, Y )-valued random variable F with the following properties:

(i) φ : K̃1 → [0, 1] is a function with its range equal to the unit interval

[0, 1] of real numbers and φ(x) = 0 if and only if x = 0.

(ii) Pφ,α({F : F ∈ [D(K̃1, Y ), d1], F (0) = 0}) = 1.

(iii) The random variable F(x) = πx(F) for x 6= 0 under Pφ,α is a Y -valued

Poisson variable with mean αφ(x), i.e.,

Pφ,α

({

F : F ∈ D(K̃1, Y ), F (x) ∈ Ai

})

= e−αφ(x) [αφ(x)]
i

i!
, i = 0, 1, 2, . . . ,

and

Pφ,α

({

F : F ∈ D(K̃1, Y ), F (x) ∈ A∗
i

})

= 0,
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where Ai = {z : ‖z‖Y = i, z ∈ Y } and A∗
i ∈ Y is any proper measurable

subset of Ai.

(iv) For 0 ≤ φ(x0) ≤ φ(x1) ≤ · · · < φ(xk) ≤ 1, the random variables

F(x1) − F(x0), F(x2) − F(x1),. . . , F(xk) − F(xk−1) are independent

under Pφ,α.

As Y = R, K̃1 = [0, 1], and φ(x) = x, the generalized Poisson measure

is the Poisson measure on the real-valued Poisson process. The general-

ized Poisson measure depends on one more ”parameter” φ than the Poisson

measure. Since the set Ai might have multiple sample points, there may

exist two different probability measures satisfying the first equation given in

condition (iii), but may assign different probabilities corresponding to the

subsets of Ai. The possibility can be excluded by the second equation in

condition (iii).

The proof of next theorem is analogous to Theorem 12.6 of [4]. By

imbedding a set with probability one in Y ∞ = Y × Y × · · · endowed with a

certain metric topology and using the Portmanteau theorem (see [4], Theo-

rem 2.1), the result of weak convergence can be obtained then. Let K̃1c be

a countable dense set of K̃1.

Theorem 3.1. If there exists a set E ∈ [D(K̃1, Y ), d1] satisfying that P (E) =

Pn(E) = 1, Fn(x) −→
n→∞

F (x) for all x in K̃1c implies Fn −→
n→∞

F in the Skoro-

hod topology for F,Fn ∈ E, and weak convergence of the finite dimensional

distributions of {Pn} to P in K̃1c holds, then the sequence of probability

measures {Pn} converges weakly to the probability measure P .

Proof. The metric in Y ∞ is defined by

ρ(y∞1 , y∞2 ) =

∞
∑

i=1

a−iρ∗(y1i, y2i)

b+ ρ∗(y1i, y2i)
,

for y∞1 = (y11, y12, . . .), y
∞
2 = (y21, y22, . . .) in Y ∞, where a > 1, b > 0,

and ρ∗(y1i, y2i) = ‖y1i − y2i‖Y . Let K̃1c = {xi : i = 1, 2, . . .} and π :

D(K̃1, Y ) → Y ∞ defined by π(F ) = [F (x1), F (x2), . . .] and πk : Y ∞ → Y k

by πk(y
∞
1 ) = (y11, y12, . . . , y1k).

Next is to prove the measurability of π which can imbed the set of

D(K̃1, Y ) into Y ∞. Since Y is a Polish space, Y ∞ is second-countable and
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hence separable by Theorem 30.2 of [12]. Further, because ρ(yn, z) −→
n→∞

0

implies ρ∗(yni, zi) −→
n→∞

0, πk is continuous and hence Borel measurable. Let

the ball (Borel) σ-field of subsets of Y ∞ be Y∞ and let the class of finite-

dimensional sets i.e., the sets of the form π−1
k (S), S ⊂ Yk, be Y∞

f . Since πk

is Borel measurable, Y∞
f ⊂ Y∞. Note that Y∞

f is a π system and there exist

open subsets in Y∞
f satisfying

N(y∞1 , r∗, k) = {y∞2 : ‖y2i − y1i‖Y < r∗, i = 1, . . . , k, y∞2 ∈ Y ∞} ⊂ B(y∞1 , r),

i.e., {N(y∞1 , r∗, k)} being a base for the topology of Y ∞, where y∞1 is any

element in Y ∞, r > 0, and r∗ < b[(a − 1)r − a−k] by choosing some value

of k. Therefore, Y∞
f generates the Borel σ-field Y∞ and is a separating

class of Y∞ (see [4], p. 9). This gives that π is Borel measurable owing to

π−1[π−1
k (S)] = π−1

x1...xk
(S).

Finally, because for each y∞1 and r, N(y∞1 , r∗, k) ⊂ B(y∞1 , r), Y ∞ is sep-

arable, and the class of boundaries of N(y∞1 , r∗, k), r∗ < b[(a − 1)r − a−k],

contains uncountably many disjoint sets, Y∞
f is a convergence-determining

class (see [4], p. 18) of Y∞ by Theorem 2.4 of [4]. Thus, since weak con-

vergence of the finite dimensional distributions of {Pn} to P in K̃1c holds,

Pnπ
−1 ⇒ Pπ−1 by the fact that Y∞

f is both the separating and convergence-

determining class of Y∞. The proof then follows along with the lines given

in the second paragraph of the proof of Theorem 12.6 of [4] by replacing R∞

with Y ∞ and (D,D) with {[D(K̃1, Y ), d1], [D(K̃1, Y ), d1]}. ���

Note that the conditions P (E) = Pn(E) = 1 and pointwise convergence

implying convergence in the Skorohod topology play the similar role to the

tightness of {Pn}. For a real-valued Poisson process, it is a limit of a sequence

of random functions based on the sum of Bernoulli random variables (see [4],

Example 12.3). Analogous result follows for a sequence of random operators

defined as follows. For each n, x ∈ K̃1, and w ∈ Ω,

Fn(x,w) =
∑

j≤⌊nφ(x)⌋

ξnj(w)

as x 6∈ [1] and

Fn(x,w) =
∑

j≤(n−1)

ξnj(w),
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as x ∈ [1], where ξnj, j = 1, 2, . . ., are independent copies of a Y -valued

Bernoulli random variables ξ taking values y and 0 with probabilities α/n

and 1 − α/n, respectively, φ(x) = ||x||X , and where ‖y‖Y = 1. Let zi =

iy, i = 0, 1, . . .. Note that the sample paths Fn of Fn take values on zi.

The following corollary indicates the convergence of the sequence of random

operators in distribution to the random element with the generalized Poisson

measure as its distribution.

Corollary 3.1. Let F be the D(K̃1, Y )-valued random variable having the

following properties:

(i) The distribution of F is the generalized Poisson measure given in Def-

inition 3.4 with φ(x) = ||x||X and Ai consisting of only one point zi.

(ii) The sample paths of F are nondecreasing operators which take values

on zi, take the same value at the points in the same equivalence class,

and the jumps at the points of discontinuity are equal to 1, i.e., for

w ∈ Ω, F(x1, w) = zi,F(x2, w) = zj, i ≤ j, F(x,w) = F(x∗, w),

and ‖F(xd, w)‖Y − ‖F(x−d , w)‖Y = 1 provided that ||x1||X ≤ ||x2||X ,

‖x‖X = ‖x∗‖X , and F(·, w) is discontinuous at xd.

(iii)

P (F(x) −F(x−) 6= 0, x ∈ [1]) = 0.

Then, {Fn} converges in distribution to F .

Proof. Let E ∈ [D(K̃1, Y ), d1] and any F in E be a nondecreasing cadlag

operator, have jumps of exactly 1 at its points of discontinuity, only take

values on the set {zi} and take the same value at the points in the equivalence

class, F (0) = 0 , and have no jump at [1]. Since all sample paths of Fn are

in the set E and F has properties (i), (ii), and (iii), the condition P (E) =

Pn(E) = 1 in Theorem 3.1 holds. The point convergence for F ∈ E implying

the convergence in the Skorohod topology is proved as follows. Suppose that

Fn(x) −→
n→∞

F (x) for x ∈ K̃1c and Fn, F ∈ E. Since there are at most finitely

many equivalence classes at which the jumps ||F (x) − F (x−)||Y exceed a

given positive number by the equation lim∆→0w
′

1 (F,∆) = 0 and the jump

is 1, F has only finitely many discontinuity classes [t1], . . . , [tk] (see Remark

5.1 in Section 5.1). Let Kǫi = {x : ti − ǫ ≤ ||x||X ≤ ti + ǫ} for any given

positive ǫ, i.e., x ∈ [ti− ǫ, ti+ ǫ], and ti < 1. Then, for n > n0, Fn must have

a single jump class in each Kǫi and agree with F in K̃1 ∩ (∪iKǫi)
c. Since
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d1(Fn, F ) = d1(F,Fn), it suffices to consider that the jump classes [tni] of Fn

satisfy tni > ti. Then, Fn(x) = F (x) as x ∈ Kǫi, ||x||X < ti, and ||x||X ≥ tni.

If

λn(x) =

{

xa(ti−ǫ) + ǫ−1‖x− xa(ti−ǫ)‖X(xatni − xa(ti−ǫ)), x ∈ [ti − ǫ, ti)xa

xatni + ǫ−1‖x− xati‖X(xa(ti+ǫ) − xatni), x ∈ [ti, ti + ǫ]xa

for x ∈ [ti−ǫ, ti+ǫ]xa and every xa in K̃1, then λn(xati) = xatni , ||λn−I||sup ≤
2ǫ, and Fn[λn(x)] = F (x), where xat = txa/||xa||X , 0 ≤ t ≤ 1. Thus,

{Fn} converges to F in the Skorohod topology. Therefore, the condition

that pointwise convergence implies convergence in the Skorohod topology in

Theorem 3.1 holds.

It remains to prove that weak convergence in terms of the finite-dimen-

sional distributions, i.e., the last condition given in Theorem 3.1, holds. Since

Fn(x) =
∑

j≤⌊nφ(x)⌋ ξnj, x 6∈ [1], is a binomial random variables B(⌊nφ(x)⌋,
α/n) taking values on zi, i.e.,

P [Fn(x) = zi] =

(⌊nφ(x)⌋
i

)

(α

n

)i (

1− α

n

)⌊nφ(x)⌋−i
,

{Fn(x)} converges in distribution to the random variable F(x) under Pφ,α

with Ai = {zi} by Poisson convergence and property (i) of F . Note that

the Poisson convergence also holds for Fn(x), x ∈ [1]. Furthermore, because

Fn(x1) =
∑

j≤⌊nφ(x1)⌋
ξnj and Fn(x2) − Fn(x1) =

∑

⌊nφ(x2)⌋<j≤⌊nφ(x2)⌋
ξnj

are independent, {[Fn(x1),Fn(x2) − Fn(x1)]} converges in distribution to

[F(x1),F(x2) − F(x1)] by the Poisson convergence and the mapping theo-

rem, where F(x1) and F(x2)− F(x1) are independent under Pφ,α. Finally,

{[Fn(x1),Fn(x2)]} converges in distribution to [F(x1),F(x2)] by employing

the mapping theorem again. The convergence of {[Fn(x1), . . . ,Fn(xk)]} in

distribution to [F(x1), . . . ,F(xk)] can be proved analogously. ���

3.2. Cadlag operators with a compact domain

The Poisson convergence is a special case of the general weak conver-

gence theory on the space D(K̃1, Y ). In the following, several theorems

concerning the sufficient conditions for weak convergence of a sequence of
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probability measures on D◦(K̃1, Y ), the subset of D(K̃1, Y ), are given. Sep-

arability and completeness of the space D◦(K̃1, Y ) in the sense of a suitable

metric are crucial for the tightness of the sequence of probability measures,

which is one of the sufficient conditions for weak convergence of the sequence

of probability measures. However, the space [D◦(K̃1, Y ), d1] might not be

complete. By defining another metric d◦1, the space can be separable and

complete as the space of real-valued cadlag functions on the unit interval

[0, 1] of real numbers. The class of functions corresponding to the new met-

ric is defined first.

Definition 3.5. Let Λ◦
1 be the subset of Λ1 with property (i) given in Defi-

nition 3.3 replaced with the following property:

(i)∗ λ : K̃1 → K̃1, mapping [0, 1]x to [0, 1]x for x ∈ K̃1, is a strictly increas-

ing function, i.e., λ(x1) > λ(x2) if x1 > x2, x1, x2 ∈ K̃1, and a continuous

function.

Denote the function

w
′′

1 (F,∆) = max

{

w
′

1(F,∆),max
q

w1 [F,B
∗(xq1,∆)]

}

,

where {xq1} is a ∆-net for the equivalence class [1], {xq1} ⊂ [1], B∗(xq1,∆) ⊂
{B(xq1,∆) ∩ [1]}, ∪qB

∗(xq1,∆) = [1], and the sets B∗(xq1,∆) are disjoint.

Definition 3.6. Let D◦(K̃1, Y ), the subset of D(K̃1, Y ), have the following

property: For F ∈ D◦(K̃1, Y ), the equation

lim
∆→0

w
′′

1 (F,∆) = 0

holds.

In addition, the Skorohod functions onD◦(K̃1, Y )×D◦(K̃1, Y ) corresponding

to the class Λ◦
1 are defined by

d∗1(F1, F2) = inf
λ∈Λ◦

1

max {‖λ− I‖sup, ‖F1 − F2λ‖sup}

and

d◦1(F1, F2) = inf
λ∈Λ◦

1

max

{

sup
x∗<x,x∗,x∈K̃1

∣

∣

∣

∣

log

[‖λ(x)‖X − ‖λ(x∗)‖X
‖x‖X − ‖x∗‖X

]∣

∣

∣

∣

,

‖λ− I‖sup, ‖F1 − F2λ‖sup
}
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for F1, F2 ∈ D◦(K̃1, Y ).

Note that d∗1 and d◦1 are metrics. The routine proof of d∗1 and d◦1 be-

ing metrics is not presented. The function w
′′

1 plays the role similar to

w in Section 2. The function w
′′

1 (·,∆) on [D◦(K̃1, Y ), d◦1] is measurable

with respect to [D◦(K̃1, Y ), d◦1] and R for fixed ∆ owing to w
′

1(·,∆) be-

ing upper semicontinuous and maxq w1 [·, B∗(xq1,∆)] being continuous on

[D◦(K̃1, Y ), d◦1]. A special example of D◦(K̃1, Y ) is D([0, 1], R). As K̃1

is one-dimensional, for example, the unit interval [0, 1] of real numbers,

w
′′

1 = w
′

1. As D
◦(K̃1, Y ) = D([0, 1], R), the function maxq w1[F,B

∗(xq1,∆)]

is not required for the development of weak convergence theory. Note that

the property in the above definition is associated with separability of the

space D◦(K̃1, Y ).

Similar to the metric space of interest in Section 2, [D◦(K̃1, Y ), d◦1] is a

Polish space as indicated by the following theorem. The long proof of the

theorem is delegated to the supplementary materials.

Theorem 3.2. The metric space [D◦(K̃1, Y ), d◦1] is separable and complete,

i.e., a Polish space.

In the following, the theorems concerning both the tightness and weak

convergence of a sequence of probability measures of interest are the counter-

parts of the ones in Section 2. First, the theorem below gives the sufficient

conditions for the tightness of the sequence of probability measures. Let

K̃∗
1c be a countable dense set of K̃1 and contains a countable dense set of

the equivalence class [1].

Theorem 3.3. If {Pnπ
−1
xi

} is relatively compact for each xi ∈ K̃∗
1c and for

every positive ǫ1 and ǫ2 there exist a ∆ and an n0 such that

Pn

({

F : w
′′

1 (F,∆) ≥ ǫ1

})

≤ ǫ2, n ≥ n0,

then the sequence of probability measures {Pn} on [D◦(K̃1, Y ), d◦1] is tight.

The next theorem gives the sufficient conditions for weak convergence

of the sequence of probability measures. Let K̃∗
1P be a set of x such that πx

on either [D◦(K̃1, Y ), d∗1] or [D◦(K̃1, Y ), d◦1] is continuous except the set of

points of P -measure 0.



2016] WEAK CONVERGENCE OF PROBABILITY MEASURES 503

Theorem 3.4. If {Pn} is tight and weak convergence of the finite dimen-

sional distributions of {Pn} to a probability measure P in K̃∗
1P holds, then the

sequence of probability measures {Pn} on [D◦(K̃1, Y ), d∗1] or [D◦(K̃1, Y ), d◦1]

converges weakly to P .

4. Proofs of Main Theorems in Section 2

For succinctness, the argument w ∈ Ω corresponding to a random vari-

able has been suppressed, for example, F(x,w) being replaced with F(x).

4.1. Theorem 2.1

4.1.1. Lemmas used for proving Theorem 2.1

The theorem which establishes the sufficient conditions for the tightness

of the sequence of probability measures {Pn} on [C(K,Y ), ρ] is based on the

following two lemmas. The first lemma gives the sufficient and necessary

conditions for the characterization of a relatively compact set in [C(K,Y ), ρ].

Lemma 4.1. A set A in C(K,Y ) is relatively compact if and only if the

following conditions hold:

(i) The set Ai = {πxi(F ) : F ∈ A} is relatively compact for each xi ∈ K∗.

(ii)

lim
∆→0

sup
F∈A

w(F,∆) = 0.

Proof. Since A is relatively compact, it is totally bounded. Thus, for ǫ > 0,

there exists a finite ǫ-net {Fj,ǫ, j = 1, . . . , n} for A such that ρ(Fj,ǫ, F ) < ǫ

for any F in A and some j. Then, {πxi(Fj,ǫ), j = 1, . . . , n} is an ǫ-net for Ai

because

‖πxi(Fj,ǫ)− πxi(F )‖Y ≤ ρ(Fj,ǫ, F ) < ǫ.

Therefore, Ai is totally bounded in Y . Since Y is complete, Ai is relatively

compact thus. To prove that condition (ii) holds, let {Fj,ǫ/3, j = 1, . . . ,m}
be a finite ǫ/3-net, i.e., ρ(Fj,ǫ/3, F ) < ǫ/3 for any F in A and some j. Since

K is compact, every Fj,ǫ/3 in the net is uniformly continuous on K and hence
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there exists a ∆ such that ||Fj,ǫ/3(x) − Fj,ǫ/3(x
∗)||Y < ǫ/3 for any Fj,ǫ/3 in

the net and for ||x− x∗||X < ∆. Then,

‖F (x) − F (x∗)‖Y ≤ 2ρ(F,Fj,ǫ/3) + ‖Fj,ǫ/3(x)− Fj,ǫ/3(x
∗)‖Y < ǫ.

This gives that A is uniformly equicontinuous and condition (ii) holds.

Conversely, by condition (ii), given ǫ > 0, there exists a ∆ such that

w(F,∆) < ǫ/3 for all F in A. Further, choose inK∗ a finite ∆-net {x1, . . . , xk}
for K and hence there exists a xi such that ||x − xi||X < ∆ and ||Fn(x) −
Fn(xi)||Y < ǫ/3 for any x in K and any sequence {Fn} in A. Next, by

condition (i), there exists a subsequence {F ∗
n} of {Fn} such that {F ∗

n(x)}
converges to a limit for any x in K∗. Thus, there exists an N such that for

n,m > N , ||F ∗
n(xi)− F ∗

m(xi)||Y < ǫ/3 for all xi. Then, for any x in K,

‖F ∗
n(x)− F ∗

m(x)‖Y
≤ ‖F ∗

n(x)− F ∗
n(xi)‖Y + ‖F ∗

n(xi)− F ∗
m(xi)‖Y + ‖F ∗

m(xi)− F ∗
m(x)‖Y

< ǫ,

and hence ρ(F ∗
n , F

∗
m) < ǫ. {F ∗

n} is a Cauchy sequence in the Polish space

[C(K,Y ), ρ] and this gives that A is relatively compact. ���

Remark 4.1. The sufficient and necessary conditions for a set of continu-

ous functions to be totally bounded on a compact metric space are uniform

boundedness and uniform equicontinuity (see [4], Theorem 7.2; [6], Theorem

2.4.7). Condition (ii) in the above lemma results in the uniform equiconti-

nuity over A, while condition (i) corresponds to the one in a more general

version of Ascoli’s theorem (see [12], Theorem 47.1).

The following lemma establishes the condition for the existence of a

sequence of probability measures Pn of which values as close to 1 as possible

on the set A satisfying condition (i) in the above lemma.

Lemma 4.2. If the sequence of probability measures {Pn} on [C(K,Y ), ρ]

satisfies that {Pnπ
−1
xi

} is relatively compact for each xi ∈ K∗, there exists

a measurable set A such that the set Ai = {πxi(F ) : F ∈ A} is relatively

compact for each xi ∈ K∗ and Pn(A) ≥ 1− ǫ for every ǫ > 0 and each n.
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Proof. Because Y is complete and separable and the sequence of probability

measures {Pnπ
−1
xi

} is relatively compact, {Pnπ
−1
xi

} is tight by Prohorov’s

theorem (see [4], Section 5) and there exists a compact set Si ⊂ Y such

that Pnπ
−1
xi

(Si) ≥ 1 − ǫ/2i,i = 1, 2, . . ., for each n and any ǫ > 0. Let the

measurable set A = ∩iπ
−1
xi

(Si). Then,

Pn(A) = 1− Pn

{

∪i

[

π−1
xi

(Si)
]c}

≥ 1−
∑

i

Pn

{[

π−1
xi

(Si)
]c}

≥ 1− ǫ.

Finally, Ai = {πxi(F ) : F ∈ A} ⊂ Si and hence the closure of Ai is compact,

i.e., Ai being relatively compact. ���

4.1.2. Proof for Theorem 2.1

By Lemma 4.2, there exists a measurable set A satisfying that the set

Ai = {πxi(F ) : F ∈ A} for each xi in K∗ and i = 1, 2, . . ., is relatively

compact and Pn(A) ≥ 1 − ǫ/2 for all n and every ǫ > 0. By the inequal-

ity for Pn, choose ∆1k so that B1k = {F : w(F,∆1k) < 1/k}, k = 1, . . . ,

and Pn(B1k) ≥ 1 − ǫ/2k+1 for n ≥ n0, where n0 depends on B1k. Since

[C(K,Y ), ρ] is Polish, any probability measure defined on [C(K,Y ), ρ] is

tight. Thus, there exists a compact set B2k such that Pn(B2k) ≥ 1− ǫ/2k+1

for n < n0. Further, by Lemma 4.1, there exists a ∆2k such that B2k ⊂
{F : w(F,∆2k) < 1/k}. Therefore, Pn(Bk) ≥ 1 − ǫ/2k+1 for all n, where

Bk = {F : w(F,∆k) < 1/k}, k = 1, . . . , and ∆k = min(∆1k,∆2k). The

set A ∩ (∩kBk) satisfies conditions (i) and (ii) given in Lemma 4.1, i.e.,

the set being relatively compact. Let the compact set K1 be the closure of

A ∩ (∩kBk). Then,

Pn(K1) ≥ 1− Pn [A
c ∪ (∩kBk)

c]

≥ 1−
[

Pn(A
c) +

∞
∑

k=1

Pn(B
c
k)

]

≥ 1− ǫ.

for all n.
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4.2. Theorem 2.2

4.2.1. Lemma used for proving Theorem 2.2

Because the space [C(K,Y ), ρ] is separable, the ball σ-field generated

by the open balls and the Borel σ-field are identical. The following lemma

indicates that the cylinder σ−field σ(πx : x ∈ K) (see [9], p. 16), i.e., the

σ-field generated by the class of sets {π−1
x (S) : S ∈ Y, x ∈ K}, is the Borel

σ−field of subsets of [C(K,Y ), ρ]. In addition, this lemma also indicates

that the class of finite-dimensional sets {π−1
x1···xk

(S) : S ∈ Yk} is a separating

class (see [4], p. 9) for the Borel σ-field [C(K,Y ), ρ].

Lemma 4.3. σ(πx : x ∈ K) = [C(K,Y ), ρ] and the class of finite-dimensional

sets {π−1
x1···xk

(S) : S ∈ Yk} is a separating class of [C(K,Y ), ρ], where

x1, . . . , xk ∈ K.

Proof. πx is Borel, i.e., for each B in Y, π−1
x (B) = {F : F (x) ∈ B} ∈

[C(K,Y ), ρ]. Therefore, σ(πx : x ∈ K) ⊂ [C(K,Y ), ρ].

On the other hand, for any F0 in C(K,Y ) and ǫ > 0,

B̄(F0, ǫ) = {F : ρ(F,F0) ≤ ǫ} = ∩x∈K∗

{

F : F (x) ∈ B̄ [F0(x), ǫ]
}

.

This implies that the closed ball in [C(K,Y ), ρ] falls in the cylinder σ-field

σ(πx : x ∈ K) and the ball σ-field is a subset of σ(πx : x ∈ K) then. Because

[C(K,Y ), ρ] is separable, the Borel σ-field [C(K,Y ), ρ] is the ball σ-field and

also a subset of σ(πx : x ∈ K) thus, i.e., [C(K,Y ), ρ] ⊂ σ(πx : x ∈ K).

Therefore, σ(πx : x ∈ K) = [C(K,Y ), ρ].

{π−1
x1···xk

(S) : S ∈ Yk} ⊂ [C(K,Y ), ρ] because πx1···xk
is continuous and

hence measurable with respect to [C(K,Y ), ρ] and Yk. Further, because the

class of finite-dimensional sets {π−1
x1···xk

(S) : S ∈ Yk} is a π system and

generates the cylinder σ−field, it is a separating class owing to the Borel

σ-field [C(K,Y ), ρ] being the cylinder σ−field σ(πx : x ∈ K). ���

4.2.2. Proof of Theorem 2.2

Since {Pn} is tight, it is relatively compact by Prohorov’s theorem.

Thus, there exists a further subsequence {Pni(m)
} of every subsequence {Pni}

of {Pn} converges weakly to a probability measure P . Then, {Pni(m)
π−1
x1···xk

}
converges weakly to Pπ−1

x1···xk
by the mapping theorem and hence Pπ−1

x1···xk
=
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Qx1···xk
. Since the class of finite-dimensional sets is a separating class of

[C(K,Y ), ρ] by Lemma 4.3, the result follows by Theorem 2.6 of [4].

4.3. Theorem 2.4 (a)

{Fn} satisfying the conditions given in Theorem 2.3 is proved. The

following lemma indicates that {Fn} satisfies the equation

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ǫ] = 0,

given in Theorem 2.3.

4.3.1. Lemma used for proving Theorem 2.4 (a)

In the following lemma, Y is a real separable Banach space, not neces-

sarily a cotype 2 Banach space.

Lemma 4.4. The sequence of C(K,Y )-valued random variables {Fn} sat-

isfies the condition

lim
∆→0

lim sup
n→∞

P [w(Fn,∆) ≥ ǫ] = 0,

given in Theorem 2.3.

Proof. The following inequality is proved first,

P [w(Fn,∆) ≥ 2ǫ1] ≤
v
∑

i=1

P

[

sup
s∈B(xi,2∆)

‖Fn(s)−Fn(xi)‖Y ≥ ǫ1

]

,

for given ǫ1 > 0, where 0 ≤ ||x1||X ≤ · · · ≤ ||xv||X ≤ 1 and {xi : i = 1, . . . , v}
is a finite ∆-net for K. As ||s−x||X ≤ ∆, s and x fall in some neighborhood

B(xi, 2∆) because there exists a xi such that ||x− xi||X < ∆ and hence

‖s− xi‖X ≤ ‖s− x‖X + ‖x− xi‖X < 2∆.

Then,

‖F (s)− F (x)‖Y ≤ ‖F (s)− F (xi)‖Y + ‖F (xi)− F (x)‖Y
and hence
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w(F,∆) ≤ 2 max
1≤i≤v

sup
s∈B(xi,2∆)

‖F (s)− F (xi)‖Y .

The objective inequality is obtained by

P [w(Fn,∆) ≥ 2ǫ1] ≤ P
[

max
1≤i≤v

sup
s∈B(xi,2∆)

‖Fn(s)−Fn(xi)‖Y ≥ ǫ1

]

≤
v
∑

i=1

P
[

sup
s∈B(xi,2∆)

‖Fn(s)−Fn(xi)‖Y ≥ ǫ1

]

.

Based on the above inequality, the next step is to prove the inequality

P [w(Fn,∆) ≥ 2ǫ1]

≤ v

[

6P

(

max
k≤m

‖Sk‖Y ≥ n1/2ǫ1
3

)

+ P

(

‖ξ‖Y ≥ n1/2ǫ1
3

)]

,

where Sk =
∑k

i=1 ξi and m = ⌊2nL∆⌋. Because

Fn(s)−Fn(xi)

=

(

S⌊nφ(s)⌋ − S⌊nφ(xi)⌋

)

n1/2
+

cn(s)ξ⌊nφ(s)⌋+1

n1/2
− cn(xi)ξ⌊nφ(xi)⌋+1

n1/2

and by the Lipschitz condition imposed on φ,

|nφ(s)− nφ(xi)| ≤ nL‖s− xi‖X < 2nL∆,

the set in the sample space satisfies

{

sup
s∈B(xi,2∆)

||Fn(s)−Fn(xi)||Y ≥ ǫ1

}

⊂
{{

sup
s∈B(xi,2∆)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

S⌊nφ(s)⌋ − S⌊nφ(xi)⌋

)

n1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Y

≥ ǫ1
3

}

∪
{

sup
s∈B(xi,2∆),s 6=xi

‖ξj1(s)+1‖Y
n1/2

≥ ǫ1
3

}

∪
{‖ξj2+1‖Y

n1/2
≥ ǫ1

3

}

}

⊂
{{

max
max(0,j2−m)<k≤j2

∣

∣

∣

∣

∣

∣

∣

∣

Sk − Sj2

n1/2

∣

∣

∣

∣

∣

∣

∣

∣

Y

≥ ǫ1
3

}

∪
{

max
j2<k≤(j2+m)

∣

∣

∣

∣

∣

∣

∣

∣

Sk − Sj2

n1/2

∣

∣

∣

∣

∣

∣

∣

∣

Y

≥ ǫ1
3

}
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∪
{

max
max(0,j2+1−m)≤k<j2+1

‖ξk‖Y
n1/2

≥ ǫ1
3

}

∪
{

max
j2+1<k≤(j2+1+m)

‖ξk‖Y
n1/2

≥ ǫ1
3

}

∪
{‖ξj2+1‖Y

n1/2
≥ ǫ1

3

}}

,

where j1(s) = ⌊nφ(s)⌋ and j2 = ⌊nφ(xi)⌋. By Proposition 2.3 of [10] and

subadditivity, the inequality holds.

To complete the proof, the Etemadi’s inequality (see [4], M19) can be

generalized for the Y -valued random variable, i.e.,

P

(

max
k≤m

‖Sk‖Y ≥ 3ǫ1

)

≤ 3max
k≤m

P (‖Sk‖Y ≥ ǫ1) .

Then, by the Etemadi’s inequality, Lemma 3.1 of [10], and the condition for

the size of the net for K,

P [w(Fn,∆)≥2ǫ1] ≤ v

[

6P

(

max
k≤m

‖Sk‖Y ≥ n1/2ǫ1
3

)

+P

(

‖ξ‖Y ≥ n1/2ǫ1
3

)]

≤ 42Lnh(∆−1)

m
max
k≤m

P

(

‖Sk‖Y ≥ n1/2ǫ1
9

)

≤ 3402Lλ2h(∆−1)

ǫ21
max
k≤m

P
(

‖Sk‖Y ≥ m1/2λ
)

=
3402Lλ2h(∆−1)

ǫ21
max
k≤m

P
(

‖k−1/2Sk‖Y ≥ m1/2k−1/2λ
)

≤
3402Lλ2h

(

162Lλ2

ǫ21

)

exp
{

−[λ−M(ξ)−1]2

2[Σ(ξ)]2

}

ǫ21
,

for ∆ < δ, where M(ξ) is the median of ||ξ||Y , k−1/2Sk is centered Radon

Gaussian owing to ξ being centered Radon Gaussian and λ = 9−1m−1/2n1/2ǫ1.

By the condition for the size of the net for K again, given ǫ1 and ǫ2, there

exist a ∆0 associated with a λ0 and an n0 such that

P [w(Fn,∆0) ≥ 2ǫ1] ≤ ǫ2, n ≥ n0. ���

4.3.2. Proof of Theorem 2.4 (a)

By Lemma 4.4, the equation in Theorem 2.3 holds. The convergence
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of the finite-dimensional distributions of Fn to those of the random variable

having a generalized Wiener measure given in Definition 2.1 as its distribu-

tion is proved as follows.

If x = 0, {Fn(0) = 0} converges in distribution to Wφ(0). If x 6= 0 and

cn(x) = 0, Fn(x) is a centered Radon Gaussian variable with Σ[Fn(x)] =

(⌊nφ(x)⌋/n)1/2. Then, {Fn(x)} converges in distribution to a centered

Radon Gaussian variable Wφ(x) with Σ[Wφ(x)] = [φ(x)]1/2 owing to Y

being a cotype 2 Banach space and by employing Theorem 10.7 of [10]

first and then the converging together lemma. If x 6= 0 and cn(x) 6= 0,

Fn(x) = S⌊φ(x)⌋/n
1/2 + ξ∗n(x), where ξ∗n(x) = cn(x)ξ⌊nφ(x)⌋+1/n

1/2. By

Lemma 3.1 of [10], for any ǫ1 > 0 and ǫ2 > 0, there exists an n0 such

that for n > n0

P (‖ξ∗n(x)‖Y > ǫ1) ≤ P

[

|‖ξ‖Y −M(ξ)| > n1/2ǫ1
cn(x)

−M(ξ)

]

≤ exp

{−
[

n1/2ǫ1
cn(x)

−M(ξ)
]2

2[Σ(ξ)]2

}

< ǫ2.

Because {S⌊φ(x)⌋/n
1/2} converges in distribution to a centered Radon Gaus-

sian variable Wφ(x) with Σ[Wφ(x)] = [φ(x)]1/2, {Fn(x)} converges in dis-

tribution to the centered Radon Gaussian variable Wφ(x) by the converging

together lemma.

To prove that {Fn(x)} and {Fn(y) − Fn(x)} converge in distribution

to Wφ(x) and Wφ(y) −Wφ(x), respectively, let φ(y) ≥ φ(x), where Wφ(x)

and Wφ(y) are centered Radon Gaussian variables and Wφ(y) − Wφ(x) is

independent of Wφ(x). Since both S⌊nφ(y)⌋/n
1/2 and S⌊nφ(x)⌋/n

1/2 are cen-

tered Radon Gaussian variables, (S⌊nφ(y)⌋ − S⌊nφ(x)⌋)/n
1/2 independent of

S⌊nφ(x)⌋/n
1/2, and {cn(y)ξ⌊nφ(y)⌋+1/n

1/2} and {cn(x)ξ⌊nφ(x)⌋+1/n
1/2} con-

verge to 0 in probability as n → ∞, {[Fn(x),Fn(y) − Fn(x)]} converges

in distribution to [Wφ(x),Wφ(y) − Wφ(x)] by the mapping theorem and

the converging together lemma. By employing the mapping theorem again,

{[Fn(x),Fn(y)]} converges in distribution to [Wφ(x),Wφ(y)]. By the anal-

ogous argument, it can be proved that {[Fn(x1), . . . ,Fn(xk)]} converges

in distribution to [Wφ(x1), . . . ,Wφ(xk)] , where φ(x1) ≤ · · · ≤ φ(xk) and

Wφ(x1),Wφ(x2)−Wφ(x1), . . . ,Wφ(xk)−Wφ(xk−1) are independent. Thus,
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by Theorem 2.3, {Fn} converges in distribution to the random variable Wφ

and the distribution of Wφ is the generalized Wiener measure Wφ.

5. Proofs of Main Theorems in Section 3

5.1. Basic lemmas in Section 3

The following three lemmas are useful for the proofs of the main theo-

rems in Section 3. The first lemma indicates that the operators in D(K̃1, Y )

can not ”jump” uncountably along every path [0, 1]x = {cx/||x||X : 0 ≤ c ≤
1}.

Lemma 5.1. For each F in D(K̃1, Y ),

lim
∆→0

w
′

1 (F,∆, x) = 0,

for any x ∈ K̃. Further, if

lim
∆→0

w
′

1 (F,∆) = 0,

the following equation

lim
∆→0

sup
x∈K̃1

w
′

1 (F,∆, x) = 0

holds.

Proof. By the proof analogous to Lemma 1 of Section 12 of [4] and the

arguments in the section, lim∆n→0w
′

1 (F,∆n, x) = 0 for any x in K̃1, where

∆n → 0 as n → ∞.

Next is to prove that the equation lim∆→0w
′

1 (F,∆) = 0 implies the

equation lim∆→0 supx∈K̃1
w

′

1 (F,∆, x) = 0. Because w
′

1(F,∆, x) ≤ maxi

w1{F, [si−1, si)x},

sup
x∈K̃1

w
′

1 (F,∆, x) ≤ sup
x∈K̃1

max
i

w1 {F, [si−1, si)x} ≤ max
i

w1{F, [si−1, si)},

for any ∆-sparse division {si}. The result holds thus. ���
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Remark 5.1. The first two equations in Lemma 5.1 indicate the differ-

ence between D(K̃1, Y ) and D([0, 1], R) (see [4], Lemma 1, p. 122), i.e.,

the first equation satisfied in D(K̃1, Y ) and the second equation satisfied in

D([0, 1], R). Because

w
′

1 (F,∆) = inf
{si}

max
i

sup
x∈K̃1

w1 {F, [si−1, si)x} ,

it implies that the division {si} is path independent, i.e., not relying on the

separate path [0, 1]x. In addition, the first equation implies that there are

only countably many discontinuities along every path [0, 1]x. On the other

hand, the second equation indicates that there are only countably many dis-

continuous equivalence classes. As X is one-dimensional, the two equations

are equivalent. In addition, the cadlag operator in D(K̃1, Y ) satisfying the

third equation also satisfies the first equation.

The second lemma indicates that [D(K̃1, Y ), d1] is a metric space. Since

the proof is quite routine and not presented.

Lemma 5.2. d1 is a metric on D(K̃1, Y ) and hence [D(K̃1, Y ), d1] is a

metric space.

The third lemma indicates the measurability of the projection function

πx1...xk
.

Lemma 5.3. πx1...xk
: [D(K̃1, Y ), d1] → Y k is measurable with respect to

the σ-fields [D(K̃1, Y ), d1] and Yk, i.e., a Borel measurable function.

Proof. It suffices to prove that πx is Borel measurable. Then, by Theorem

4.43 and Lemma 4.48 of [3], πx1...xk
is Borel measurable. If the point con-

vergence of a sequence of continuous operators {hm} to πx can be proved,

πx is Borel measurable by Corollary 4.25 and Lemma 4.30 of [3], where

hm : D(K̃1, Y ) → Y , m = 1, 2, . . ., 0 < ‖x‖X = c < 1. To establish the

sequence of continuous operators {hm}, the result that Fn −→
n→∞

F in the

Skorohod topology implies the point convergence of Fn at the continuity

points of F with the restriction to [0, 1]x is required. To prove the result,

suppose that {Fn} converges to F in the Skorohod topology and x0 ∈ [0, 1]x
is the continuity point of F with restriction to [0, 1]x. Then, there exists an

n0 such that d1(Fn, F ) < ǫ1 for any positive ǫ1 and n > n0. Thus, there
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exists a λn ∈ Λ1 such that ||λn − I||sup < ǫ1 and ||Fn −Fλn||sup < ǫ1. Since

F is continuous at x0, there exists a δ such that ||F (x∗)− F (x0)||Y < ǫ2 for

||x∗ − x0||X < δ, x∗ ∈ [0, 1]x, and any given positive ǫ2. Then, for ǫ1 < δ,

‖Fn(x0)− F (x0)‖Y ≤ ||Fn − Fλn||sup + ‖F [λn(x0)]− F (x0)‖Y ≤ ǫ1 + ǫ2.

Next is to prove the point convergence of {hm} to πx. Let the Bochner

integral hm(F ) = m
∫

Em
F ∗du, where F ∗ : Em → Y is defined by F ∗(t) =

F (tx/||x||X ), Em = {t : c ≤ t < c + 1/m, t ∈ R} is the interval of

real numbers, and u is the Lebesgue measure on the real line. Note that
∫

Em
||F ∗(t)||Y du(t) < ∞ (see [3], Theorem 11.43) and hence F ∗ is Bochner

integrable, i.e., hm being well-defined. Note that the analogous result to the

one in Lemma 5.1 also follows for the domain [c, c + 1/m)x, i.e.,

lim
∆→0

inf
{si}

max
i

w1 {F, [si−1, si)x} = 0,

where {si} is any ∆-sparse division for the interval [c, c+1/m] of real num-

bers. Therefore, there are only countably many discontinuities of F along

the path [c, c+ 1/m)x and hence only countably many discontinuities of F ∗

in Em. As Fn −→
n→∞

F in the Skorohod topology, F ∗
n(t) −→

n→∞
F ∗(t) for points

t outside a Lebesgue measure 0 and there exist λn ∈ Λ1 and some positive

integer N such that

||Fn||sup ≤ ||Fn − Fλn||sup + ||Fλn||sup
≤ d1(Fn, F ) + ||Fλn||sup + ǫ/2

≤ ||Fλn||sup + ǫ

= ||F ||sup + ǫ

for n > N and any ǫ > 0. Therefore, hm(Fn) −→
n→∞

hm(F ) by dominated

convergence theorem (see [3], Theorem 11.45) for Bochner integral. There-

fore, hm is continuous in the Skorohod topology by Theorem 21.3 of [12]

and hence Borel measurable. By the right continuity of F at x, ||hm(F ) −
πx(F )||Y −→

m→∞
0. Finally, π0 is continuous in the Skorohod topology and

hence Borel measurable owing to

‖π0(Fn)− π0(F )‖Y = ‖Fn(0)− F (0)‖Y ≤ d1(Fn, F ).
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The proof for πx, ‖x‖X = 1, being continuous is analogous to the one

for π0. ���

5.2. Theorem 3.3

5.2.1. Lemmas used for proving Theorem 3.3

The following two lemmas are the counterparts of Lemma 4.1 and Lemma

4.2 in the proof of Theorem 2.1.

Lemma 5.4. A set A in [D◦(K̃1, Y ), d◦1] is relatively compact if the following

conditions hold:

(i) The set Ai = {πxi(F ) : F ∈ A} is relatively compact for each xi ∈ K̃∗
1c.

(ii)

lim
∆→0

sup
F∈A

w
′′

1 (F,∆) = 0.

On the other hand, if the set A is relatively compact, then condition (ii)

holds.

Proof. The proof of sufficiency can be divided into two parts. The set A

being totally bounded in the sense of d∗1 is established in the first part which

the set A being relatively compact in the sense of d◦1 can be deduced from

and established in the second part.

Let the division 0 = tn0 < tn1 < · · · < tnkn = 1 with maxi(tni −
tn(i−1)) ≤ 1/n and n = 1, 2, . . .. In addition, let F̂∆(x) = F (xni) for x ∈
[tn(i−1), tni) and F̂∆(x) = F (xq1) for x ∈ B∗(xq1,∆), where xni ∈ [tn(i−1)]

and ({xni} ∪ {xq1}) ⊂ K̃∗
1c. By condition (ii), for given ǫ > 0, there exist ∆

and F̂∆ depending on F such that w
′

1(F,∆) < ǫ, maxq w1[F,B
∗(xq1,∆)] < ǫ

and d∗1(F̂∆, F ) < ǫ for any F ∈ A. The inequality d∗1(F̂∆, F ) < ǫ has been

established in the proof of Theorem 3.2 given in the supplementary material.

Let S be the closure of the set (∪i{F (xni) : F ∈ A})∪(∪q{F (xq1) : F ∈ A}).
S is compact by condition (i). Thus, there exists a finite ǫ-net H for S.

Let N be the finite set of the operators that assume on each [tn(i−1), tni)

and B∗(xq1,∆) a constant value from H. Then, let F̂ ∗
∆ in N defined by



2016] WEAK CONVERGENCE OF PROBABILITY MEASURES 515

F̂ ∗
∆(x) = hni for x ∈ [tn(i−1), tni) and F̂ ∗

∆(x) = hq1 for x ∈ B∗(xq1,∆), where

||hni − F (xni)||Y < ǫ and ||hq1 − F (xq1)||Y < ǫ. Thus,

d∗1(F̂
∗
∆, F ) ≤

∣

∣

∣

∣

∣

∣
F̂ ∗
∆ − F̂∆

∣

∣

∣

∣

∣

∣

sup
+ d∗1(F̂∆, F )

< 2ǫ.

Therefore, N is a finite 2ǫ-net for A and A is totally bounded in the sense

of d∗1.

Next is to prove that A is totally bounded in the sense of d◦1 and hence

A is relatively compact because of completeness of D◦(K̃1, Y ) (see [4], M5).

The inequality d◦1(F1, F2) ≤ 4∆ + supx∈K̃1
w

′

1 (F1,∆, x) given that 0 < ∆ ≤
1/4 and d∗1(F1, F2) < ∆2 has been established in the proof of Lemma 3.1

given in the supplementary materials. Using this inequality, the following

inequality

d◦1(F1, F2) ≤ 4∆ + sup
x∈K̃1

w
′

1 (F1,∆, x)

≤ 4∆ + w
′

1 (F1,∆) ,

can be established if 0 < ∆ ≤ 1/4 and d∗1(F1, F2) < ∆2. Furthermore, there

exists a ∆ < min(ǫ/8, 1/4) such that 4∆ + w
′

1 (F,∆) < ǫ for any positive

ǫ and any F ∈ A by condition (ii). Then, the ∆2-net in the sense of the

metric d∗1 is a finite ǫ-net in the sense of the metric d◦1 because for any F ∈ A

there exists an operator F̂ ∗
∆ in the net satisfying d∗1(F, F̂

∗
∆) < ∆2 and hence

d◦1(F, F̂
∗
∆) < ǫ. Therefore, A is totally bounded in the sense of d◦1.

The proof of A being relative compact implying condition (ii) is given in

the following. By the property given in Definition 3.6, there exists a sequence

{∆n} such that both sequences {w′

1(·,∆n)} and {maxq w1[·, B∗(xq1,∆n)]}
defined onD◦(K̃1, Y ) satisfying w

′

1(F,∆n) ↓ 0 and maxq w1[F,B
∗(xq1,∆n)] ↓

0 for every F in D◦(K̃1, Y ). Further, w
′

1(·,∆) is upper semi-continuous for

fixed ∆ while maxq w1[·, B∗(xq1,∆)] is continuous for fixed ∆. Thus, by

Dini’s theorem given in M8 of [4], condition (ii) holds. ���

Lemma 5.5. If the sequence of probability measures {Pn} on the metric

space [D◦(K̃1, Y ), d◦1] satisfies that {Pnπ
−1
xi

} is relatively compact for each

xi ∈ K̃∗
1c, there exists a measurable set A such that Ai = {πxi(F ) : F ∈ A}

is relatively compact for each xi ∈ K̃∗
1c and Pn(A) ≥ 1− ǫ for every ǫ > 0.
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Proof. The proof is analogous to the one of Lemma 4.2. ���

5.2.2. Proof of Theorem 3.3

By replacing the function w with the function w
′′

1 , using Theorem 3.2

and by using Lemma 5.4 and Lemma 5.5 in place of Lemma 4.1 and Lemma

4.2, respectively, the proof is analogous to the one of Theorem 2.1.

5.3. Theorem 3.4

5.3.1. Lemma used for proving Theorem 3.4

Since [D◦(K̃1, Y ), d∗1] and [D◦(K̃1, Y ), d◦1] are separable, both [D◦(K̃1, Y ),

d∗1] and [D◦(K̃1, Y ), d◦1] are equivalent to the ball σ-fields generated by the

open balls in the two metric spaces. In the following, the counterpart of

Lemma 4.3 for the Borel σ-field [D◦(K̃1, Y ), d∗1] or [D◦(K̃1, Y ), d◦1] is given.

Let K̃∗
1 be a dense set of K̃1 and contain the equivalence class [1].

Lemma 5.6. σ(πx : x ∈ K̃∗
1 ) = D◦(K̃1, Y ) and {π−1

x1···xk
(Sk) : Sk ∈

Yk, x1, . . . , xk ∈ K̃∗
1} is a separating class of D◦(K̃1, Y ), where πx1···xk

:

D◦(K̃1, Y ) → Y k is the projection operator defined on D◦(K̃1, Y ) and where

D◦(K̃1, Y ) and D◦(K̃1, Y ) are the space and the Borel σ-field, respectively,

either in the sense of the metric d∗1 or the metric d◦1.

Proof. Since σ(πx : x ∈ K̃∗
1 ) ⊂ [D◦(K̃1, Y ), d∗1], it suffices to prove that

[D◦(K̃1, Y ), d∗1] ⊂ σ(πx : x ∈ K̃∗
1 ).

Let F̂∆, {xni}, and [tn(i−1), tni), be the operator and sets given in the

proof of Theorem 3.3. Let πK̃∆
be the projection random variable corre-

sponding to the set K̃∆ = ({xni} ∪ {xq1}), where ({xni} ∪ {xq1}) ⊂ K̃∗
1 .

Note that πK̃∆
is measurable with respect to σ(πx : x ∈ K̃∗

1 ) and YN , where

N is the number of elements in K̃∆. Let the random variable V∆ : Y N →
D◦(K̃1, Y ) take value V∆(z) ∈ D◦(K̃1, Y ) and the operator V∆(z) take con-

stant values zni over the set [tn(i−1), tni) and zq1 over B∗(xq1,∆), where zni

and zq1 are the elements of z, the number of elements in the set {zni}∪{zq1}
is N , and z ∈ Y N . Then, V∆ is continuous because

d∗1 [V∆(zm),V∆(z)] ≤ ‖V∆(zm)− V∆(z)‖sup
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and ||V∆(zm)−V∆(z)||sup −→
m→∞

0 as zm −→
m→∞

z. Thus, V∆πK̃∆
is measurable

with respect to σ(πx : x ∈ K̃∗
1 ) and [D◦(K̃1, Y ), d∗1] and V∆πK̃∆

(F ) = F̂∆.

Since

d∗1[V∆πK̃∆
(F ), F ] = d∗1

(

F̂∆, F
)

≤ max
[

w
′′

1 (F,∆),∆
]

,

(see the proof of Theorem 3.2 given in the supplementary materials), there

exists a sequence {∆n} such that for any F ∈ D◦(K̃1, Y ), d∗1[V∆nπK̃∆n
(F ), F ]

−→
n→∞

0 as ∆n −→
n→∞

0. Further, because D◦(K̃1, Y ) is separable, the iden-

tity operator I(F ) = F = limn→∞ V∆nπK̃∆n
(F ) is measurable with respect

to σ(πx : x ∈ K̃∗
1 ) and [D◦(K̃1, Y ), d∗1] by Corollary 4.30 of [3]. Thus,

[D◦(K̃1, Y ), d∗1] ⊂ σ(πx : x ∈ K̃∗
1 ). Moreover, [D◦(K̃1, Y ), d◦1] ⊂ σ(πx : x ∈

K̃∗
1 ) because d◦1 and d∗1 are equivalent.

Since the class of finite-dimensional sets {π−1
x1···xk

(Sk) : Sk ∈ Yk, x1, . . .,

xk ∈ K̃∗
1} is a π-system and generates σ(πx : x ∈ K̃∗

1 ), it is a separating class

for D◦(K̃1, Y ). ���

5.3.2. Proof of Theorem 3.4

For any probability measureQ, let K̃∗
1Q satisfy that πx on [D◦(K̃1, Y ), d∗1]

or [D◦(K̃1, Y ), d◦1] is continuous except the set of points of Q-measure 0 for

each x ∈ K̃∗
1Q. Then, K̃∗

1Q is the dense set of K̃1, contains the equivalence

class [1], and (K̃∗
1Q)

c∩K̃1 contains only countable equivalence classes [c]. The

properties of the set are proved as follows. Let J[c] = {F : F (x−) 6= F (x), x ∈
[c]} and J[c],1/n = {F : ||F (x) − F (x−)||Y > 1/n, x ∈ [c]}, where 0 < c < 1.

For every fixed positive integers m and n, if there are infinitely many sets

J[xmni],1/n for which Q(J[xmni],1/n) ≥ 1/m, then Q(lim supi→∞ J[xmni],1/n) ≥
1/m which contradicts with the fact that at most finitely many equiva-

lence classes [cni] satisfy supx∈[cni] ||F (x−) − F (x)||Y ≥ 1/n by the equa-

tion lim∆→0w
′

1 (F,∆) = 0, i.e., only finitely many equivalence classes with

”jumps” exceeding or equal to 1/n. Therefore, there can be only finitely

many equivalence classes [xmni] satisfying Q(J[xmni],1/n) ≥ 1/m. Let K̃1Q =

K̃1 ∩ (∪m ∪n ∪i[xmni])
c and hence Q(J[c]) = limn→∞Q(J[c],1/n) = 0 for



518 WEN HSIANG WEI [September

c ∈ K̃1Q owing to J[c],1/n ↑ J[c], where J[c],1/n ↑ J[c] is denoted as J[c],1 ⊂
J[c],1/2 ⊂ · · ·. πx is continuous as x ∈ [1] owing to

‖πx(Fn)− πx(F )‖Y = ‖Fn(x)− F (x)‖Y ≤ d∗1(Fn, F ) ≤ d◦1(Fn, F ),

for x ∈ [1] and K̃1Q ⊂ K̃∗
1Q, K̃

∗
1Q has the required properties.

Next, by the tightness of {Pn}, there exists a further subsequence

{Pni(m)
} of every subsequence {Pni} of {Pn} converging weakly to a proba-

bility measure Q, i.e., Pni(m)
⇒ Q. Then, Pni(m)

π−1
x1...xk

⇒ Qπ−1
x1...xk

for all

x1, . . . , xk ∈ K̃∗
1Q by the mapping theorem. Thus, let K̃∗∗

1 = K̃∗
1P ∩K̃∗

1Q. K̃
∗∗
1

is a dense set of K̃1 and contains the equivalence class [1] because (K̃∗∗
1 )c∩K̃1

contains only countable equivalence classes and both K̃∗
1P and K̃∗

1Q contain

the equivalence class [1]. Then, by weak convergence of the finite dimensional

distributions of {Pn} to P in K̃∗∗
1 , P = Q because Pπ−1

x1...xk
= Qπ−1

x1...xk
for

x1, . . . , xk ∈ K̃∗∗
1 and the class of finite-dimensional sets {π−1

x1···xk
(Sk) : Sk ∈

Yk, x1, . . . , xk ∈ K̃∗∗
1 } is a separating class by Lemma 5.6. Finally, by The-

orem 2.6 of [4], the result follows.
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