Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 11 (2016), No. 3, pp. 571-578 DOI: http://dx.doi.org/10.21915/BIMAS.2016303

CLOSED RANGE PROPERTY FOR $\overline{\partial}$ ON THE POINCÁRE DISK

XIAOSHAN LI

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, China. E-mail: xiaoshanli@whu.edu.cn

Abstract

Making use of the Poincáre inequality with respect to a complete metric on the real line, we will give an elementary proof of the closed range property for $\overline{\partial}$ -operator on the unit disk endowed with Poincáre metric.

1. Introduction

 $\overline{\partial}$ -equation plays a central role in complex analysis and geometry. On bounded domains in \mathbb{C}^n , there are two pioneer work related to the existence and regularity of the $\overline{\partial}$ -equation see ([7], [8], [6], [10]).

Theorem 1.1 (Hörmander). Let $\Omega \in \mathbb{C}^n$ be a bounded pseudoconvex domain. Let $f \in L^2_{(p,q)}(\Omega)$ with $\overline{\partial}f = 0$ in the sense of distribution, where $0 \leq p \leq n, 1 \leq q \leq n$. Then there exists $u \in L^2_{(p,q-1)}(\Omega)$ such that $\overline{\partial}u = f$. Moreover, $||u|| \leq C||f||$, where C is a constant only depending on the diameter of Ω and q.

Theorem 1.1 tells us that on bounded pseudoconvex domains the ∂ equation always have solutions. This is equivalent to say that the cohomology $H^{p,q}_{L^2,\overline{\partial}}(\Omega) := \frac{\text{Ker}\overline{\partial}}{\text{Im}\overline{\partial}}$ associated to the $\overline{\partial}$ -operator vanishes for any $q \geq 1$.
Thus, the range of $\overline{\partial}$ -operator denoted by $\text{Rang}(\overline{\partial})$ is a closed subspace of $L^2_{(p,q)}(\Omega)$.

Received July 23, 2016 and in revised form August 16, 2016.

AMS Subject Classification: 32W05, 35N15, 58J32.

Key words and phrases: $\overline{\partial}$ -operator, closed range, Poincáre disk.

XIAOSHAN LI

When the boundary $\partial \Omega$ is smooth, we have the boundary regularity for $\overline{\partial}$ -equation.

Theorem 1.2 (Kohn). Let $\Omega \subseteq \mathbb{C}^n$ be a bounded pseudoconvex domain with C^{∞} smooth boundary. For any $f \in C^{\infty}_{(p,q)}(\overline{\Omega})$ with $\overline{\partial}f = 0$ for $0 \le p \le n, 1 \le q \le n$ there exists $u \in C^{\infty}_{(p,q-1)}(\overline{\Omega})$ such that $\overline{\partial}u = f$.

When the domain is not pseudoconvex, there are also plentiful results (see [12], [13], [14]) related to the existence and regularity for $\overline{\partial}$ -equation. Let Ω_1 and Ω_2 be two bounded pseudoconvex domains in $\mathbb{C}^n, n \geq 3$ with $\Omega_2 \Subset \Omega_1$. Put $\Omega = \Omega_1 \setminus \overline{\Omega}_2$. Then the subelliptic estimate does not hold on Ω in general. Making use of the growing weights $e^{-t|z|^2}$ when t large, for $1 \leq q \leq n-2$, the author in [12] established a weaker estimate than the one obtained by Hörmander [7] on pseudoconvex domains which is sufficient to prove that $H_{L^2,\overline{\partial}}^{p,q}(\Omega)$ is a finite dimensional space. This also implies that the range of $\overline{\partial}$ -operator from $L_{p,q-1}^2(\Omega)$ to $L_{p,q}^2(\Omega)$ is a closed subspace. In a recent work [14], Shaw completely solved the $\overline{\partial}$ -problems on annulus with smooth boundaries in \mathbb{C}^n .

Theorem 1.3 (Shaw). Let Ω be the annulus between two bounded pseudoconvex domains in \mathbb{C}^n with smooth boundaries. If we denote by $H_{L^2,\overline{\partial}}^{p,q}(\Omega)$ the cohomology associated to the $\overline{\partial}$ -operator, then $H_{L^2,\overline{\partial}}^{p,q}(\Omega) = 0$ for any $0 \le p \le n, 1 \le q \le n-2$. In the critical case, for q = n-1, $H_{L^2,\overline{\partial}}^{p,n-1}(\Omega) = \infty$.

When studying the extension of CR functions from the boundary of a complex manifold or the extension of CR structures to complex structures, it is useful to consider the $\overline{\partial}$ -problems on domains with mixed boundary conditions. For this subject, we refer the readers to [1, 2, 3, 9, 11].

Related to the $\overline{\partial}$ -problems, there are also generous results related to the closed range property for the $\overline{\partial}$ -operator. In the view of functional analysis, if we denote by $\operatorname{Rang}(\overline{\partial})$ the range of $\overline{\partial}$ in the L^2 -setting which is closed, then it will give us probability to solve the $\overline{\partial}$ -equation. In [14], Shaw proved that the $\overline{\partial}$ -operator has closed range property in the critical case when q = n-1 on annulus between two bounded pseudoconvex domains with smooth boundaries although the cohomology group is of infinity dimension. Recently, Shaw and Thiébaut in [15] show that if $\Omega \in \mathbb{C}^2$ is a domain with Lipschitz boundary such $\mathbb{C}^2 \setminus \Omega$ is connected, then the $\overline{\partial}$ -operator will not have closed range from $L^2(\Omega)$ to $L^2_{(0,1)}(\Omega)$ if Ω is not pseudoconvex. Let Ω be a bounded domain in \mathbb{C}^n or in a complex manifold. Usually, the Hermitian metric we choose on Ω is induced from the ambient Hermitian manifold. However, if we choose a Hermitian metric on Ω which is a complete Riemann metric or in particular we choose the Bergman metric on Ω , Donnelly and Fefferman [5] proved

Theorem 1.4. Let Ω be a strictly pseudoconvex domain in \mathbb{C}^n endowed with its Bergman metric. If p + q = n, then $H_{L^2,\overline{\partial}}^{p,q}(\Omega)$ has infinity dimension and the complex Laplacian associated to $\overline{\partial}$ -operator has closed range.

In this note, we will consider $\overline{\partial}$ -operator on the unit disk endowed with Poincáre metric which is the Bergman metric on the unit disk. Making use of the Poincáre inequality with respect to a complete metric on the real line, we will give an elementary proof of the closed range property for $\overline{\partial}$ -operator in the L^2 -setting.

2. Closed Range Property for $\overline{\partial}$ -operator on Pincáre Disk

Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk in complex plane \mathbb{C} with coordinates denoted by z = x + iy and let $h = \frac{1}{(1-|z|^2)^2} dz \otimes d\overline{z}$ be the Pincáre metric which is a complete metric on D. For q = 0, 1, let $L^2_{(0,q)}(D,h)$ be the completion of smooth (0,q)-forms which have compact support in D under the inner product induced by the Poincáre metric. When q = 0, we write $L^2(D,h) = L^2_{(0,0)}(D,h)$ for convenience. Let $\overline{\partial} : L^2(D,h) \to L^2_{(0,1)}(D,h)$ be the range of $\overline{\partial}$ -operator in $L^2_{(0,1)}(D,h)$. Set $H^{0,1}_{L^2,\overline{\partial}}(D) = \frac{L^2_{(0,1)}(D,h)}{\operatorname{Rang}(\overline{\partial})}$. Then

Theorem 2.1. $H^{0,1}_{L^2,\overline{\partial}}(D)$ is an infinite dimensional space and $\operatorname{Rang}(\overline{\partial})$ is closed in $L^2_{(0,1)}(D,h)$.

Proof. First, let $f = f(z)d\overline{z}$ be any smooth (0, 1)-form with f smooth up to the boundary ∂D . The L^2 -norm of f with respect to the Pincáre metric on D is given by

$$||f||^2 = \int_D \langle f(z)d\overline{z}|f(z)d\overline{z}\rangle_h dv,$$

where $dv = \frac{1}{(1-|z|^2)^2} dx \wedge dy$ is the volume form with respect to the Poincáre metric on the unit disk. Obviously, $f \in L^2_{(0,1)}(D,h)$. In particular, for any

XIAOSHAN LI

 $m \in \mathbb{N}$, set $f_m = z^m d\overline{z}$. We will show that the equation $\overline{\partial} u = f_m$ will not have a solution $u \in L^2(D, h)$. We prove this by seeking a contradiction. It is obvious that $\overline{\partial}(z^m\overline{z}) = f_m$. Suppose we have a solution $u_m \in L^2(D, h)$ such that $\overline{\partial} u_m = f_m$. Then $\overline{\partial}(u_m - z^m\overline{z}) = 0$ in the sense of distribution. Thus, $u_m - z^m\overline{z}$ is a holomorphic function on D. By Taylor's expansion

$$u_m = z^m \overline{z} + \sum_{k=0}^{\infty} a_k z^k.$$

By the assumption $u_m \in L^2(D, h)$ we have

$$\int_{D} \left(\sum_{k=0}^{\infty} a_k z^k + z^m \overline{z} \right) \overline{\left(\sum_{k=0}^{\infty} a_k z^k + z^m \overline{z} \right)} \frac{1}{(1-|z|^2)^2} dx \wedge dy < \infty.$$
(2.1)

Taking polar coordinates, for any $0 < \tau < 1$,

$$\sum_{k=0}^{\infty} |a_k|^2 \int_0^{\tau} \frac{r^{2k+1}}{(1-r^2)^2} dr + (a_{m-1} + \overline{a_{m-1}}) \int_0^{\tau} \frac{r^{2m+1}}{(1-r^2)^2} dr + \int_0^{\tau} \frac{r^{2m+3}}{(1-r^2)^2} dr < \infty.$$

$$(2.2)$$

By (2.2), for any $0 < \tau < 1$, we have

$$(a_{m-1} + \overline{a_{m-1}}) \int_0^\tau \frac{r^{2m+1}}{(1-r^2)^2} dr < \infty.$$
(2.3)

Taking $\tau \to 1$ and since the integral on the left hand side of (2.3) is divergent, thus we have $a_{m-1} + \overline{a_{m-1}} = 0$. Substituting it to (2.2) and taking $\tau \to 1$, we have $\int_0^1 \frac{r^{2m+3}}{(1-r^2)^2} dr < \infty$. Contradiction. Thus the equation $\overline{\partial} u = f_m$ does not have any solution $u \in L^2(D, h)$. This implies that $\dim H^{0,1}_{L^2,\overline{\partial}}(D) = \infty$.

For the second part of Theorem 2.1, we need to show that exists a constant c > 0 such that

$$\|\overline{\partial}g\|^2 \ge c\|g\|^2, \forall g \in \text{Dom}(\overline{\partial}) \cap \text{Ker}(\overline{\partial})^{\perp}.$$
(2.4)

First, we show that $\operatorname{Ker}(\overline{\partial}) = \{0\}$. For any $u \in \operatorname{Ker}(\overline{\partial})$, we have $\overline{\partial}u = 0$ and

$$\int_{D} |u|^2 \frac{1}{(1-|z|^2)^2} dx \wedge dy < \infty.$$
(2.5)

By Taylor's expansion, $u = \sum_{k=0}^{\infty} a_k z^k$. Substituting it to (2.5) and using

the polar coordinates we have

$$\sum_{k=0}^{\infty} |a_k|^2 \int_0^1 \frac{r^{2k+1}}{(1-|r|^2)^2} < \infty.$$
(2.6)

Since the integral on the left hand side of (2.6) is divergent for every k, thus $a_k = 0$, $\forall k$, that is, u = 0.

We only need to prove (2.4) when $g \in \text{Dom}(\overline{\partial})$. Since the Poincáre metric on D is complete, then $C_0^{\infty}(D)$ is dense in $\text{Dom}(\overline{\partial}) \subset L^2(D,h)$. Thus we only need to prove (2.4) when $g \in C_0^{\infty}(D)$.

Set $z = re^{i\theta}$. Since

$$\frac{\partial g}{\partial r} = \frac{\partial g}{\partial z} e^{i\theta} + \frac{\partial g}{\partial \overline{z}} e^{-i\theta} \\ \left| \frac{\partial g}{\partial r} \right|^2 \le 2 \left(\left| \frac{\partial g}{\partial z} \right|^2 + \left| \frac{\partial g}{\partial \overline{z}} \right|^2 \right).$$
(2.7)

Since

we have

$$\begin{split} \|\overline{\partial}g\|^2 &= \int_D |\overline{\partial}g|_h^2 \frac{1}{(1-|t|^2)^2} i dz \wedge d\overline{z} \\ &= \int_D \left|\frac{\partial g}{\partial \overline{z}}\right|^2 i dz \wedge d\overline{z} \\ &= \frac{1}{2} \int_D \left(\left|\frac{\partial g}{\partial \overline{z}}\right|^2 + \left|\frac{\partial g}{\partial z}\right|^2\right) i dz \wedge d\overline{z}. \end{split}$$
(2.8)

The last equality in (2.8) comes from the assumption that $g \in C_0^{\infty}(D)$. Substituting (2.7) to (2.8), we have

$$\|\overline{\partial}g\|^2 \ge c_1 \int_0^{2\pi} d\theta \int_0^1 \left|\frac{\partial g}{\partial r}\right|^2 r dr.$$
(2.9)

Before the computing of the norm ||g|| with respect to the Poincáre metric, we first give the following Poincáre type inequality on the real line.

Lemma 2.1. Let f be a smooth function over [0,1] and f(1) = 0, then

$$\int_{0}^{1} |f(x)|^{2} \frac{x}{(1-x)^{2}} dx \le c_{0} \int_{0}^{1} |f'(x)|^{2} x dx$$
(2.10)

where c_0 is a constant which does not depend on f.

[September

Proof.

$$\begin{split} &\int_{0}^{1} |f(x)|^{2} \frac{x}{(1-x)^{2}} dx \\ &= \int_{0}^{1} |f(x)|^{2} x \left(\frac{1}{1-x}\right)' dx \\ &= \frac{|f(x)|^{2} x}{1-x} \Big|_{0}^{1} - \int_{0}^{1} \frac{1}{1-x} (|f(x)|^{2} + xf'(x)\overline{f(x)} + xf(x)\overline{f'(x)}) dx \\ &= -\int_{0}^{1} \frac{1}{1-x} (|f(x)|^{2} + xf'(x)\overline{f(x)} + xf(x)\overline{f'(x)}) dx \\ &\leq 2 \int_{0}^{1} \frac{x}{1-x} |f(x)| \cdot |f'(x)| dx \\ &= 2 \int_{0}^{1} \frac{\sqrt{x}}{(1-x)} |f(x)| \cdot \sqrt{x} |f'(x)| dx \\ &\leq \varepsilon \int_{0}^{1} |f(x)|^{2} \frac{x}{(1-x)^{2}} + \frac{1}{\varepsilon} \int_{0}^{1} |f'(x)|^{2} x dx \end{split}$$
(2.11)

That is,

$$\int_{0}^{1} |f(x)|^{2} \frac{x}{(1-x)^{2}} dx \leq \frac{1}{\varepsilon(1-\varepsilon)} \int_{0}^{1} |f'(x)|^{2} x dx \qquad (2.12)$$

Now, we turn to the proof of the main theorem. Since g has compact support in D, we use the estimate (2.10) in Lemma 2.1 and we have

$$\int_{0}^{1} \left| \frac{\partial g}{\partial r} \right|^{2} r dr \geq c_{0} \int_{0}^{1} |g(r,\theta)|^{2} \frac{r}{(1-r)^{2}} dr$$
$$\geq c_{0} \int_{0}^{1} |g(r,\theta)|^{2} \frac{r}{(1-r^{2})^{2}} dr \qquad (2.13)$$

Substituting (2.13) to (2.9) we have

$$\|\overline{\partial}g\|^2 \ge c_1 c_0 \|g\|^2, \quad \forall g \in C_0^\infty(D).$$

$$(2.14)$$

We get the conclusion of (2.4) and thus the $\operatorname{Rang}(\overline{\partial})$ is closed in $L^2_{(0,1)}(D,h)$.

576

Acknowledgments

This work was supported by Central university research Fund 2042015kf0049. The author also would like to thank Professor M. -C. Shaw for many helpful discussions on various topics on $\overline{\partial}$ -equations during his visit at the University of Notre Dame.

References

- D. Catlin, Sufficient conditions for the extension of CR structures, J. Geom. Aanlysis (4), 467-538, 1994.
- D. Catlin and S. Cho, Extension of CR structure on three dimensional compact pseudoconvex CR manifolds, Math. Ann., 334(2006), 253-280.
- 3. S. Cho, Extension of CR structure on pseudoconvex CR manifolds with one degenerate eigenvalue, *Tohoku Math. J.*, **55** (2003), 321-360.
- S. C. Chen and M. C. Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001.
- H. Donnelly and C. Fefferman, L²-cohomology and index theorem for the Bergman metric, Ann. Math. (2), **118** (1983), no. 3, 593-618.
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. viii+146 pp.
- 7. L. Hörmander, L^2 estimates and existence theorems for the $\overline{\partial}$ operator, Acta Math., **113** (1965), 89-152.
- L. Hörmander, An Introduction to Complex Analysis in Several Variables, Third Edition, North-Holland, 1990.
- X. Huang and X. Li, ∂-equation on a lunar domain with mixed boundary conditions, Trans. Amer. Math. Soc., 368 (2016), no. 10, 6915-6937.
- J. J. Kohn, Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc., 181 (1973), 273-292.
- X. Li and M. C. Shaw, ∂-equation on annulus with mixed boundary conditions, Bull. Inst. Math. Acad. Sin. (N.S.), 8 (2013), no. 3, 399-411.
- M-. C. Shaw, Duality between harmonic and Bergman spaces, Geometric analysis of several complex variables and related topics, 161-171, Contemp. Math., 550, Amer. Math. Soc., Providence, RI, 2011.
- M-. C. Shaw, Global solvability and regularity for ∂ on an annulus between two weakly pseudoconvex domains, *Trans. Amer. Math. Soc.*, **291** (1985), no. 1, 255-267.

XIAOSHAN LI

- M-. C. Shaw, The closed range property for ∂ on domains with pseudoconcave boundary, Complex Analysis, 307-320, Trends Math., Birkhauser/Springer Basel AG, Basel, 2010.
- M. C. Shaw and L. T. Christine, On the Hausdorff property of some Dolbeault cohomology groups, *Math. Z.*, **274** (2013), no. 3-4, 1165-1176, 2013.