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Abstract

By using holomorphic Morse inequalities we prove that sufficiently small deformations

of a pseudoconcave domain in a projective manifold is Moishezon.

1. Introduction

Let X be a compact complex manifold with strongly pseudoconcave
boundary. The question of projectively embedding X has been studied in
[1], [4], [5], |[11], [13]. In particular the generalization of Kodaira’s embedding
theorem would give an intrinsic characterisation of projective pseudoconcave
manifolds in terms of positive line bundles. Our model is the case when X
admits a positively embedded (i.e. with positive normal bundle) smooth
compact divisor Z. By a rigidity theorem of Griffiths [13] we infer that
global sections in high tensor powers of the the associated bundle [Z] embed
a small neighbourhood of Z in the projective space. In particular X has a

maximal number of independent meromorphic functions.
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We will be concerned in the sequel with general positive line bundles.
Since for dim X = 2 there exists examples of strongly pseudoconcave man-
ifolds which possess positive line bundles but cannot be even compactified
(see Andreotti-Siu[5]) we will restrict ourselves to the case dim X > 3. For
an analysis of the case dim X = 2, see Epstein—Henkin [11].

A first step towards the Kodaira embedding of X is to find holomorphic
sections in the tensor powers EF of a positive line bundle E over X. We
will prove an existence criterion giving a lower bound for dim H°(X, E¥) in
terms of geometric data such as the Levi form of 0X and the curvature of
E. As a corollary we see that, roughly speaking, if the volume of X in the
metric 1c(E) exceeds the volume of 0X times a constant expressing the size
of the Levi form and of the curvature «c(F) near the boundary, the ring
P k0 H O(X, Ek) contains local coordinates for each point outside a proper
analytic set of X. Since for dim X > 3 there exists a compactification X
which contains X as an open set we deduce that X is Moishezon. We remind
that by an important theorem of Moishezon a compact complex manifold
with a maximal number of independent meromorphic functions (this be-
ing the definition of Moishezon manifolds) is not far from being projective.
Namely, there exists a proper projective modification of X. This implies that
modifiying X along a proper analytic set (which may cut the boundary) we
obtain an open set in a projective manifold. Note that the main result of
Andreotti-Tomassini [4] (see also [5]) says that if @y, H 0(X, E*) separates
points and gives local coordinates on X there exists a projective manifold X
containing X as an open set. Our aim is to find geometric conditions which
imply the hypothesis in Andreotti—Tomassini theorem.

In the pesent paper we work actually with a more general class of man-
ifolds, namely g—concave manifolds. In this terminology, strongly pseudo-
concave manifolds correspond to l1-concave manifolds. As application of
the existence theorem we prove a stability property for certain g—concave
manifolds. Let us consider the complement X of a sufficiently small neigh-
bourhood of a submanifold of codimension > 3 in a projective manifold.
Assume that we perform a small perturbation of the complex stucture of
X such that along a (not necessaraly compact) smooth divisor the structure
remains unchanged. Then the resulting manifold still has a maximal number
of meromorphic functions. If moreover the canonical bundle is positive, any
small perturbation suffices for the result to hold.
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2. Description of the Results

In this paper we shall be concerned with pseudoconcave (for short con-
cave) complex manifolds. We understand concavity in the sense of Andreotti—
Grauert [2]. A manifold X of dimension n is called g—concave if there exists
a smooth function ¢ : X — (a,b] where a = infp € {—-c0} UR, b € R,
such that X. := {¢ > ¢} € X for all ¢ € (a,b] and 199y has at least
n — q + 1 positive eigenvalues outside an exceptional compact set K. The
prime examples of such manifolds arise as complements of complex subman-
ifolds of compact manifolds. More precisely, let M be a compact complex
manifold and A C M of dimension q. Then M ~\ A is (¢ + 1)—concave (see
§4.). Tt is well known (see [1]) that for a g—concave manifold X (¢ < n —1)
the transcedence degree degtr/C(X) of the meromorphic function field is at
most the complex dimension of X. In analogy to the corresponding notion
for compact manifolds we say that a g—concave manifold is Moishezon if
degtr C(X) = dimc X.

Let us consider now a projective manifold M, a submanifold A € M
and the concave manifold X := M ~ A. Our aim is to study to what extent
small deformations of the sublevel sets X, for small values of ¢ > inf ¢ (i.e.
for X, close to X)) give rise to concave Moishezon manifolds. As a matter
of fact we may consider small neighbourhoods V' of A, which means that
X, C M NV for small ¢ > infep. Then M \ V is pseudoconcave in the
sense of Andreotti and the notion of Moishezon manifold still makes sense

(see [1]).

Stability Theorem. Let M be a compact projective manifold and let Z be
an ample smooth divisor. Let A C M be a complex submanifold of codimen-
ston at least 3. Then for any sufficiently small neighbourhood V of A and
for any sufficiently small deformation of the complex structure of M 'V
leaving T(Z) invariant, the manifold M ~ 'V with the new structure is a
pseudoconcave Moishezon manifold. If the canonical bundle Ky is positive,
the statement holds for any small enough perturbation.

Let us note that the sublevel sets X, are also ¢g—concave manifolds if
K € X.. Our method is based on L? estimates for (0,1)—forms on X,
and for this reason we need at least 3 positive eigenvalues for 190, that
is codim A = n — ¢ > 3. While this condition may seem technical we can
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explain it as follows. The existence of L? estimates for (0,1)-forms imply
the finiteness of the first cohomology group H'(X, F) for holomorphic vector
bundles F' over X. By the Andreotti-Grauert theory [2, 13, [15] we have
dim HP(X,F) < oo forp<n—(¢+1)—1=n—q¢—2but dim H?(X, F) = oo
for p = n— q— 1 if the Levi form is non-degenerate on the boundary (see [3,
Théoréme 2|). Therefore we have to impose n —q—1>11ie n—q> 2.

An immediate consequence is the following.

Corollary 2.1. Let M be a compact projective manifold and let let Z be an
ample smooth divisor. Let A C M be a complex submanifold of codimension
at least 3. Then for any sufficiently small neighbourhood V of A and for
any deformation of the complex structure of M which is sufficiently small
on M\V and leaves T'(Z) invariant, the manifold M with the new structure
is Moishezon.

In order to prove the Stability Theorem we need a differential geometric
criterion for a g—concave manifold to be Moishezon. For compact manifolds
the type of results we need were proved by Siu [27] and Demailly [9]. They
derive asymptotic Morse inequalities for the cohomology groups with val-
ues in the tensor powers of a holomorphic line bundle. For non—compact
manifolds the Morse inequalities were used by Nadel-Tsuji [24] to prove
the quasi—projectivity of very strongly (n — 2)—concave manifolds of dimen-
sion n which possess a complete Kahler metric with Ricw < 0 and whose
universal covering is Stein. In [23], [28] we considered Morse inequalities
for general 1-concave manifolds with application to the deformation of the
complex structure of compact complex spaces with isolated singularities. In
the sequel we study g—concave manifolds and give an estimate from below of
the dimension of the space of holomorphic sections with values in a positive
line bundle (see the Existence Criterion below). An important feature of our
estimate is the presence of a negative boundary term which expresses the
obstruction to finding holomorphic sections.

We need some preparations and notations in order to state the result.
Let X be a g—concave manifold with exhaustion function ¢. If X is smooth
the Levi form of 0X, has at least n — g — 1 negative eigenvalues (since the
defining function for X, is ¢ — ¢). Therefore the following setting may be
considered.
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Let D € X be a smooth domain in a complex manifold X such that the
Levi form of 9D has at least 2 negative eigenvalues. Then we can choose a
defining function ¢ for D which is smooth on D, D = { < 0} and dJ¢p has
at least 3 negative eigenvalues. We can in fact modify a defining function in
order to get an extra negative eigenvalue in the complex normal direction to
dD. In the following we keep the function ¢ fixed.

We introduce a hermitian metric w = w,, in the neighbourhood of D
such that in a neighbourhood V of 9D the following property holds:

Property 2.2. The first 3 eigenvalues of 100 with respect to w are at most
—2n+ 3 and all others are at most 1.

Finally set dSg for the volume form of dD in the induced metric from
1c(F) and |dp|p for the norm of dy in the metric associated to 1c(FE).

We can state the estimate for the dimension of the space holomorphic
sections on the concave domain D.

Existence Criterion. Let D € X be a smooth domain in a complex
manifold X such that the Levi form of dD possesses at least 2 negative
eigenvalues. Let E be a holomorphic line bundle on X which is assumed to
be positive on a neighbourhood of D. Then

liminf k=" dim H%(D, E*) > / (2.1)
k—o00

n as
[ (em)" —ctem) | L5

ap ldole

The constant C(p, ) depends explicitely on the curvature of F and on the
Levi form 199¢ (cf. B0).

Berman [7] obtained a similar estimate where the boundary integral in-
volves the Levi form. Estimates of type (2.I]) fall under the name holomor-
phic Morse inequalities and were introduced by Demailly [9], see also [21]. In
the case of manifolds with boundary they are related to Morse inequalities
for the Kohn-Rossi cohomology on a CR manifold, see |12, 17, [18, 19]. For
Morse Inequalities on pseudoconvex domains see [§, 22] and [21, §3.5].

3. Proof of the Existence Criterion

A familiar method of producing holomorphic sections in a positive bun-
dle F is the use of L? estimates for d of Andreotti—Vesentini and Hérmander
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(see e.g. [6], [10] and [25]). The L? estimates may be established equally
in the case of pseudoconvex and pseudoconcave manifolds by introducing
‘weights’ (i.e. changing the hermitian metric on the bundle) that reflect
the convexity or concavity of the manifold. The problem is that, for pseu-
doconcave manifolds the positivity is lost by this procedure (in contrast to
the pseudoconvex case). There is however a strategy of finding holomorphic
sections in non—positive hermitian bundles which has been introduced by
Siu [27] for semipositive line bundles and then generalized by Demailly [9]
into his asymptotic Morse inequalities. The main ingredient is a Weyl type
formula describing the semiclassical behaviour of the 9-laplacian on the ten-
sor powers E*. The first applications for non-compact manifolds appear in
Nadel-Tsuji [24] and Bouche [8].

We proceed as follows. In a first instance we find a good L?-estimate for
the (0,1)-forms with values in E¥. Then following Bouche [§] we compare
the spectrum of the Laplace operator on D (for a complete metric) with the
spectrum of the Dirichlet problem over a smaller domain D(e/2) which is a
set of points of D at distance less than /2/2 times a certain constant from
0D (see (BI1) for the precise definition). On D(g/2) we can use Demailly’s
spectral formula and get a lower bound for the dimension of the space of
sections in E* for large k. We shall need the full strength of Demailly’s
result since the curvature of the changed metric has negative eigenvalues. In
the last step we apply the results to metrics which approximate the positive
metric on F in the interior of the manifold. In the process of approximation
the set where the curvature has a negative part concentrates to the boundary
0D and is responsible for the negative boundary term in the final estimate
of the Existence Criterion.

We begin by setting some notations and defining the constant C'(p, E).

Let n a hermitian metric on X, ® a real (1,1)-form and K a compact
set in X. We set:

P
M,(®,K)=sup  sup (v,v)
zeK veT, X~ {0} 77(’”72})

)

the supremum over K of the highest eigenvalue of ® with respect to n. In
hindsight to our previous situation denote:

ME(QD) = Mzc(E) (Zaggpv b)
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ME( SO): zc(E)( Zag@aﬁ)

M,(E) = M, (1c(E), D)
M (E)=1+ 2(n — 1) M, (1c(E), D)
Mg (0p) = Myo(g)(10¢ A dp,0D)

which represent the relative size of the respective (1, 1)—forms. We also put:

C1 = \/2Mp(—p)M/(E) — 1
Cy = 2Mp(—p)M,,(E) - 1
C3 = 2Mp(p) M, (E) +1

Cy = 2M,(E) M (9)

The definition of C(yp, E) is then
Clp,E) = (2m) " C1 CL CF 20y (3.1)

Let 71 < 72 < --- < 7 be the eigenvalues of 100p with respect to w.
We have chosen w such that (see Property [2.2)) in a neighbourhood V' of D,

7
Tn

NN

Yo <v3< —2n+3, (3.2a)
1

Let x : (—00,0) — R, x(t) = t~2. We consider the complete metric:
wo = w + x () A Oy (3.3)

which grows as ¢~2 in the normal direction to dD. Along the fibers of E we

introduce the metric:
©
he = h exp (—6/ x(t) dt> (3.4)
inf

where h is the given metric on E (for which wc(F) is positive). The curvature
of h. is

1c(E, he) = 1c(E) +1ex(0)00p + 16X ()0 A Op

We evaluate the eigenvalues of ic(E, he) with respect to wy with the goal
to apply the Bochner-Kodaira formula. Denote by 7? < 78 < - <Y the
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eigenvalues of 100¢ and T's < T§ < -+ < I, the eigenvalues of 1ex(¢)09p +

16X’ ()0 A O with respect to wp. The minimum-maximum principle yields

NN << <B<-2m+3 by (3.2a)) , (3.5a)
7 <0 since 3 < 0, (3.5b)
’y;-) <max{y,,0} <1 ford<j<n, by (B3.2D) . (3.5¢)

on V. It is also easy to see that the highest eigenvalue of 1x’()d¢ A Op with

respect to wq satisfies

sup X (9)d¢p A dp(v, v)
VET, X~ {0} wo(v, v)

By (B.6) we have

< x(p), forallzeD. (3.6)

IS <ex(p)(h) +1)

and therefore,

1< IS < (=2n+4)ex(p) by (B.5al),
5 <ex(e) by (B.5D)
[5<2ex(p) ford<j<nm, by (B:5d) .

Summing up we obtain
3+ IL < —ex(e). (3.7)
This sum will appear in the Bochner—Kodaira formula and carries the infor-

mation about the concavity of D.

We also have to estimate the eigenvalues of ic(E) with respect to wy.
We denote by a3 < ag < -+ < «, the eigenvalues of «c(E) with respect to
wand by of < o < -+ < ¥ the eigenvalues of 1c(E) with respect to wy.
It is straightforward that

a® <a, <M,(E)<oo onV. (3.8)

Since the torsion operator of wy with respect to wy are bounded by

a constant A > 0 (depending only on wy), the Bochner-Kodaira formula
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assumes the following form (see e.g. [9], [25]):

3 (ll0u]® + (197 «[*)
>/D[—l<:( 54 +T5) —k(ag+--- +an) — Ax(9)] [ul*dV  (3.9)

for any compactly supported (0, 1)-form in D with values in E*¥. The volume
form is taken with respect to wy and the norms are with respect to wg on D
and h. on E. The inequalities (8.7), (3.8) and (3.9)) entail

F(J0ulf +0"ull?) > [ (~kn = DMLE) + hexte) — X uf? aV
¥ (3.10)
for any compactly supported (0, 1)—form in D with values in E* and support
in V. We use now the term kex(¢) to absorb the negative terms in the left—
hand side of ([B.I0). We introduce the following notation:

D(e) = {x €D : plz) < —\/E/M(L(E)} . (3.11)

We may assume that V contains the set CD(g) (for & small enough). In the
set CD(e) we have ex(p) > M/ (E) and if we choose k > 2Ac~! we get
k

~h(n — DM (E) + kex(¢) = Ax(¢) > 5

so that (B.10) yields
3 <H5UH2+H5*UH2> > k/ lu>dV , suppu € CD(e), k > 241 (3.12)
D

Since the metric wy is complete we deduce that (3.12]) holds true for any
(0,1)form u € Domd N Dom 0* with support in CD(¢) (by the density

lemma of Andreotti-Vesentini [6]).

Estimate (3.12]) is crucial for our purpose. In Nadel-Tsuji [24] and [23]
the spectral formula of Demailly was used to obtain a lower bound for the
dimension of the space of holomorphic sections of bundles over pseudocon-
cave manifolds. After having established ([B.12]) we should just follow the
same lines. We give the details since we need the precise output to be able
to make ¢ — 0.
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By following Demailly [9] we reduce the problem to estimating the size
of certain spectral spaces of the 0-laplacian. Let us consider the operator
%A;; . Where A;; e = 00* + 0*0 is the Laplace Beltrami operator acting on
(0, j)-forms with values in E¥ over D. The metrics used to construct the
adjoint 0* are wgp and h.. Let Q. be the quadratic form associated to

%Agﬁ, that is, Qrc(u) = £ (|0 u|® + ||0* ul|?). We denote by EJ ()\, %A’,€/75>
the spectral projectors and by

L7 (), #AY.) =Ran ET (), TALL)
N7 (X, zAL.) =dim L7 (A, A7)

the spectral space and the counting function for the spectrum of %A’k”e on
(0, j)—forms.

Lemma 3.1. For any A > 0 and k > 0,

dim HO(D,Ek ® Kx) + N! ()\7 %A/k,,s) > N° ()‘7 %A/k,,s) :

Proof. Since %A’k”e commutes with 9 it follows that the spectral projections
of ¢ k. commute with 0 too, showing thus OL°(), %A/Ié,a) c L), %A%@)
and therefore we have the bounded operator dy : LO(), %A/Ié,a) — L1\,
%A;; _) where 9, denotes the restriction of d (by the definition of L(, %AZ o)
0y is bounded by k). The assertion is a consequence of the following obvious
relations:

N (X, £A],) = dimker 0 + dim Ran 0y,
dimRandy < N' (X, 1A7.)
dimker 9y < dim H*(D, E* @ Kx),

where the last line follows from the fact that the kernel of Jy consits of
holomorphic sections. O

By the previous lemma we have to estimate N1(), %A’,;a) from above

and then N° ()\, %A’,;a) from below.

In the next Lemma we show that the essential spectrum of %Agﬁ on
(0,1)-forms does not contain the open interval (0,1/24) and we can com-
pare the counting function on this interval with the counting function of
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the same operator considered with Dirichlet boundary conditions on the do-
main D(e/2) (introduced in (BI1))) and denoted %AZ@ [D(e/2)- In particular
N, %Agﬁ) is finite dimensional for A < 1/24. If Ej(,u,%A’k”E ID(e/2))
denote the spectral projectors of %A’k/’e ID(e/2) on (0, j)—forms we let

L7 (1, 8% ¢ Tpey2)) = Ran B (u, £ A7 [pe/2)
N7 (py £AY - [p(e/2)) = dim L7 (1, £AY . Tp(e/2)

be the spectral spaces and the spectrum distribution function. For the fol-
lowing lemma compare [16, Lemma 2.1] and |8, Théoréme 2.1].

Lemma 3.2. For k sufficiently large the operator %A’k”e on (0,1)—forms has
discrete spectrum in (0,1/24) and

NY (X A7) S N (24X +16Ck™, 1AL Thie/2)
for X € (0,e/2), where C; is a constant independent of k.

Proof. Let p. € C>*(D) such that p. = 0 on a closed neighbourhood of
D(g) and p. = 1 on CD(g/2). Let u € Dom (Qg ) = Dom d N Dom 0* be a
(0,1)—form with values in E¥. Then p.u has support in CD(¢) and for p.u
we can apply ([BI2]). We also need the following simple estimate. Denote
|2

C. = 6sup |dpe|~ < co. The constant depends on ¢ (which is fixed) but not

on k. Then
Qre(pet) < 3 Qpe(u) + Ck™ JJul® (3.13)

Using [Jul* < 2 <||p5u||2 + [](1 — ps)u||2) and then applying [B.12]) to peu in
conjunction with (BI3]) we obtain:

lull? < 12 Qr. () +8/ (1= p)uf’, k>max{24c7,4C.) (3.14)
D(e/2)

for any v € Dom (Qf ). From relation ([B.I4]) we infer that the spectral

spaces corresponding to the lower part of the spectrum of %A’k”e on (0,1)-

forms can be injected into the spectral spaces of %A/Ié,a I D(e/2) which cor-

respond to the Dirichlet problem on D(e/2). Namely, for A < 1/24, the

morphism

LY (AfAL) — L' (24X + 160k LAY 1(e/2))



590 GEORGE MARINESCU [September

ur— E' (24X +16C-k™", 1AL . Ip(ej2)) (1= po)u

is injective. In order to prove the injectivity we choose u € L! ()\, %AZ 6),

A < 1/24 to the effect that Qc(u) < AMul|? < (1/24)||ul>. Plugging this
relation in (3.14]) we get

Jul® < 16/ (1 p)u
D(g/2)

Let us denote by Qg p(/2) the quadratic form of %A’k”e ID(e/2)- Then by
(BI3) and @I5),
Qr.nie2) (1= p)u) < 3 Qre(u) + Ck™ |ul?

< 24)\+16Cgk_1)/ (1= p)ul”.
D(¢/2)

2o weL'(\IAL) . A<1/24. (3.15)

Thus E! (24)\ +16C.k1, %A/k,,s [D(a/g)) (1 —p)u = 0 entails (1 — p)u =0
so that w = 0 by (B3.13). O

We obtain now a lower estimate for N° (A, %Agﬁ).

Lemma 3.3. For A < 1/24 and sufficiently large k the following relation
holds :

NO(Av %AZ@) 2 NO()H % /Ié,a rD(a/2)) .

Proof. 1t is straightforward to show that the L? estimate (3.12) holds
also for (0,0)-forms. Therefore by repeating the proof of Lemma 2.2 we
see that the spectrum of %A/Ié,a on (0,0)-forms is discrete in the interval
(0,1/24). We may now apply the min-max principle to the operators %A% .
and %A’kf’g [D(e/2) on this interval. Since Dom (Qxc) D Dom (Qy, p(c/2)) the
desired result follows immediatly. O

The asymptotic behaviour of the spectrum distribution function for the
Dirichlet problem has been determined explicitely by Demailly [9]. Since for

e small enough 0D (e/2) has measure zero we can state the result as follows.

Proposition 3.4 (Demailly). There exists a function Vg(,u, x) depending on

the eigenvalues of the curvature of (E, he) which is bounded on compact sets
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of D and right continuous in p such that for any p € R

k—o0

lim sup k" N/ (,u, %A%ﬁ [D(E/g)) < % /D( " v(p,x)dV(x). (3.16)
15

Moreover there exists an at most countable set D, C R such that for u outside
D. the limit of the left-hand side expression exists and we have equality in

B19).
For A < (1/24) and sufficiently large k& we have
dim H(D, E*) > N° (X, +AL ) = N' (A, £A7,) (3.17)
For A < (1/24) and \ outside D, we apply Proposition 3.4] and Lemma 2.3:
Jim BN AL > 4 [ Ly hOD V).

On the other hand given § > 0 we learn from Lemma 2.2 that for large k

N' (A FAL) < N (24N 4160k FALL De/m)

<
SN' (24X + 6,347 Tpie/2)

hence

!
n:
k—o00

limsup k™ "N' (X, AY ) < = / v (24N + 6, 2) dV (z) .
D(g/2)

and after letting k go to infinity we can also let  go to zero. Using these
remarks we see that for all but a countable set of A we have

k—>o00 '

liminfk~" dim H°(D, E*) > 4, /D . [P\, z) — v2 (24N, 2)] dV ()
€

In the latter estimate we may let A — 0 (through values outside the exep-
tional countable set) and this yields, by the formulas in [9] for the right-hand
side
liminf k™" dim H°(D, E¥F) > L
k—00

/ (ee(B )" (319)
D(e/2)(<1,he)

The set D(e/2)(< 1, he) is the set of points in D(g/2) where ic(F) is non—
degenerate and has at most one negative eigenvalue. Thus D(e/2)(< 1, h.)
splits in two sets: the set D(e/2)(0,h.) where 1c(FE) is positive definite
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and the set D(e/2)(1, h.) where ic(E) is non—degenerate and has exactly
one negative eigenvalue. The integral in ([B.18)) splits accordingly into one
positive and one negative term:

lim inf &~ dim H°(D, E¥)
k— o0
> %/ (ﬁc(E,hs))n—i—%/ (c(E, ko))", (3.19)
D(£/2)(0,he) D(e/2)(1,he)

Our next task is to make ¢ — 0 in ([3.19). For ¢ — 0 the metrics h,
converges uniformly to the metric h of positive curvature on every compact
set of D. So on any compact of D we recover the integral of :c(F). On the
other hand D(g/2) exhausts D and the sets D(¢/2)(1, h.) concentrate to the
boundary 0D.

Let us fix a compact set L C D. For sufficiently small € we have L C
D(e/2) and

2 olB ">/ (B, h.))"
/D(E/z)(%) (Gre(B:he))" > | (Gre(Bhe))

We have h, — h on L in the C*—topology. Since L(0,h) = L letting
€ — 0 in the previous inequality yields

liminf/ (c(E, he))" >/ (c(E,h))" (3.20)
D(e/2)(0,h)

e—0 L

Let us study the more delicate case of the second integral in (8.19). For
this goal we fix on D the ground metric wg = 1c(E) in order to simplify our
computations. We denote by A\ < A§ < --- < A, the eigenvalues of ic(E, h.)
with respect to wg. Then the integral we study is

18:%/ (ﬁc(E,hg))":W/ XS XS Wb !
"/ D(e/2)(L;he) 5(e)
where the integration set is

S(e) :==D(g/2)(1,he) ={z € D(g/2) : A\{(z) <0< A5(z)}

We find an upper bound for |I.| so we determine upper bounds for [A]], |5/,
...y |A5 on S(g). Since Aj is negative on S(e) we have to obtain a lower
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bound for this eigenvalue. By the min-max principle

() = mi [zc(E, h) + 1ex(p)00p + 16X () D A 5g0] (v)
= ehb we(E)(v) '

We use now X’ ()9 A dp(v) > 0. Moreover, since A\j(z) < 0 we have

min 1000(v) 0. min Wp(v) - —100(v)
veloD 1e(E)(v) 7 weliD wc(E)(v) | velid 1c(E)(v)
Hence
X 31— ex(@)Mu(—p) on S(e). (3.21)

The inequality (B.21]) gives information about the size of S(¢). Indeed, A\j < 0

and ([B.2])) entail ¢ > —\/eMg(—¢). Thus the integration set is contained
in a ‘corona’ of size /e :

S(e) c D(e/2)( {x €D : z) > —\/EME(—QO)} . (3.22)

Since ex(p) < 2M/(E) on D(g/2) (see (BI1])) we deduce the final estimate
for the first eigenvalue:

IN§| < 2Mp(—p)M/.(E) —1=:Cy on S(e). (3.23)
We examine now the eigenvalues )\j for j = 2,...,n — 1. The min—-max
principle yields:
, _
: X' (p)0¢p A Op(v)
AZ <1 M
j +ex(e)MEe(p) + flél:’l};i'lD, Iglealgc (B)(0)
im F'=j

The minimum in the last expression is 0 and is attained on some space
F C ker 0p. Therefore we get:

A5 <1+ 2M(E)Mg(p) =:C3 on S(e) for j=2,...,n—1. (3.24)

The highest eigenvalue satisfies the estimate:

Xo S 1 ex(@)Mile) +ex' (o) max, = o o

The inequalities: ex(¢) < 2M! (E) and ex’(¢) < (2M!(E))3/2¢=1/2 hold on
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D(g/2) (the last one since x'(p) = —p~3). We introduce the short notation:
ME(asO) = MZC(E) (1890 A 5@7 Ks) >

where K. := D\ {x €D : p(x)> —\/EME(—QO)}. It is clear that M, (0y)
converges to Mg(9p) for e — 0. With this notation,

XL < 1+ 2M] (B)Mp(p) + V2 (2M,(E)*2 M5 (9p) on S(e). (3.25)
At this point we may return to |I.| and use the obvious inequality

[Ie| < (2m) 7" Vole(g) (S(€)) Z?I;\Ail REIRERIR
£

where Vol () represents the volume with respect to the metric 1c(E). We
need to find a bound only for the volume. Taking into account (3.22]),

Vole()(S(2)) < V2 (VMp(—) - vRML(E) ")
xsup{ | 'ce[—ﬁME(—so),—¢s<2M:,<E>>—1]}' (3.26)

p=c} do| e '
Relations (3:25]) and (B.20]) yield:
lim sup Volg(z (S(€)) sup [y,
e—0 S(a)
- , dSg
< (V2ML(E)Mp(=¢) - 1) 2ML(E)Mp(0p) | 2%
op ldele
— 04/ ﬁ
op |de|e
Using (3:23)) and (3:24]) we conclude
: -n n—2 dSg
limsup |I.| < (2m) " C1Co CF = Cy —_. (3.27)
e—0 op ldele

We are ready to let ¢ — 0 in (3.19) and we use (3.20) and (3:27). In (3:20))

we can further let the compact L exhaust D. This proves (2.1) and with it
the Existence Criterion.
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4. Perturbation of Line Bundles

In this section we discuss the relation between the perturbation of the
complex structure of a line bundle and the perturbation of the complex
structure on the base manifold. This requires a glance to the corresponding
section of Lempert’s article [20]. Let us consider a compact complex manifold
Y = (Y,Z) with boundary endowed with a complex structure Z. Let Z be a
smooth divisor in Y. Denote as usual by [Z] the associated line bundle. We
are interested in the effect of a small perturbation of Z on Y on the complex
structure of [Z] or of the canonical bundle Ky over a compact set D € Y.
This will suffice for the proof of the Stability Theorem. Indeed, denote by
FE a positive line bundle on a concave manifold Y and assume that for a
small perturbation Z’ of Z there exists a perturbation E’ of E such that the
curvature forms of E and E’ are close on a sublevel set D. Then the right
hand-side terms in (2I)) calculated for Z and Z' are also close. If one is
positive so is the other and both manifolds D and D’ (and therefore Y and
Y’) are Moishezon.

Let us remark that not every perturbation of the complex structure on Y’
lifts to a perturbation of [Z]. We need the hypothesis that the tangent space
T(Z) is T/ invariant. Then Z is a divisor in the new manifold Y = (Y,Z’)
and we consider the associated bundle [Z]’. Of course any perturbation of Z
lifts to a perturbation of the canonical line bundle.

The next Lemma is a “small perturbation” of Lemma 4.1 of Lempert
[20]. In the latter a compact divisor Z C IntY is considered whereas in our
case we deal with a divisor which may cut the boundary. However, since
we are interested in the effect of the perturbation just on a compact set the
proof is the same. We use the C* topology on the spaces of tensors defined
on Y and also on spaces of restrictions of tensors to compact subsets of Y.
We say that two tensors are close when they are close in the C* topology.

Lemma 4.1. Let (Y,Z) be a compact complex manifold, Z a smooth divisor
inY and D € Y. There exists a finite covering U = {Uy}aca of D and a
multiplicative cocycle {gas € Oz(UaNUpg) : a, B € A} defining the bundle
E = [Z] in the vicinity of D, with the following property. If ' is another
complex structure on'Y close to T such that T(Z) rests T' invariant, the
bundle E' determined by Z in the structure ' can be defined in the vicinity
of D by the cocycle {g,,5 € Oz (UaNUg) : o, B € A} such that o will be
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as close as we please to gog on Uq ﬂUg assuming ' and I are sufficiently
close.

Proof. We remind for the sake of completeness the construction of the
cocycles. For every point of Y N D there exists an open neighbourhood U
in Y and a Z-biholomorphism 1y of some neighbourhood of U into C7,
n = dimY, such that ¢y (U) is the unit polydisc and ¢y (Z) C {z € C" :
z1 = 0}. Let {Uqs}1<a<m be a finite covering consisting of sets U as above
and for each a denote by v, the corresponding biholomorphism. We select
further an open set Uy € Y ~\ Z such that U = {U, }o<a<m is a covering of
D. For every 1 < o < m we select a smooth strictly pseudoconvex Stein
domain U} D U, such that 1), is biholomorphic in the neighbourhood of U;.
Set moreover Uj = Uy. We construct a cocycle defining F = [Z] in the open
set UgU; as follows. First define functions g, such that go is identically 1
on Uy and g4 = 21 © ¢, for a > 1. The bundle F is defined in the vicinity
of D by the 7 holomorphic multiplicative cocycle {g.} where gos = ga/gp.
Note that g.s is holomorphic on a neighbourhood of UZ N U; SUL,NU,.

Let 7’ be a complex structure as in the statement. Then Z is a complex
hypersurface in the new structure and defines a line bundle E’. We describe
next the cocycle of E'. The hypothesis on the sets U} allows the use of
a theorem of Hamilton [14] for UZ. The theorem asserts that for a small
perturbation Z’ of the complex structure on a neighbourhood of UZ there is
a Z' biholomorphism 1/, of a neighbourhood of UZ into C" close to 1,. As
shown in [20] we can even assume ¢, (Z) C {z € C" : z; = 0}. Set g{, to be
identically 1 on Up and g;, = z1 09y, for a > 1. Then put g},5 = go/g- Since
Yo and ¢, are close, ¢/, is Z' holomorphic on a neighbourhood of U, and
ggéﬁ is 7' holomorphic on a neighbourhood of U, N U;. The cocycle {ggéﬁ}
defines E’ in the open set U,U.

The functions g, and ¢/, are close on U,. We can now repeat the
arguments from [20] to show that g,3 and g;/B are also close on U, ﬂﬁg. O

Lemma 4.2. Let (Y,Z), Z and D € Y be as in the preceding Lemma.
Assume that [Z] is endowed with a hermitian metric h. If ' is another
complex structure on Y close to I, leaving T'(Z) invariant, there ezists a

" near D such that the curvature

hermitian metric h' on the line bundle [Z]
form 1c([Z]") will be as close as we please to 1c([Z]) on D assuming ' and

I are sufficiently close.



2016] EXISTENCE OF HOLOMORPHIC SECTIONS AND PERTURBATION 597

Proof. We can define a smooth bundle isomorphism [Z] — [Z]" in the
vicinity of D by resolving the smooth additive cocycle log(ggéﬁ /9ap) in order
to find smooth functions f,, close to 1 on a neighbourhood of U, such that
g’aﬁ = fa9ap f5 . Then the isomorphism between [Z] and [Z] is defined by
f ={fa}- The metric h is given in terms of the covering U by a collection
h = {hq} of smooth strictly positive functions satisfying the relation hg =
ha |gas|. We define a hermitian metric b’ = {hl} on [Z]' by hl, = ha |f3];
h., is close to hg on D. The curvature form of [Z]" has the form

Lc([Z]’) = idoI’od(logh’ ).

27 AT @
Therefore, when 7' is sufficiently close to Z, 5=c([Z]') is close to 5-c([Z]) on
D. O

In the same vein we study the perturbation of the canonical bundle.

Lemma 4.3. Let (Y,Z) and D € Y be as above. Assume Ky is endowed
with a hermitian metric h. If T' is another complex structure on'Y close to
T, there exists a hermitian metric h' on Ky near D such that the curvature
form wc(Ky+) will be as close as we please to 1c(Ky) on D assuming T' and
T are sufficiently close.

Proof. We find as before a finite covering U = {Uy}aca of D and biholo-
morphisms 7, defined in a neighbourhood of U,, which map U, onto the unit
polydisc in C™. For every a € A we select a smooth strictly pseudoconvex
Stein domain U} D U, such that 1), is biholomorphic in the neighbour-
hood of U}. The canonical bundle Ky is defined in the vicinity of D by
gap = det (0o /0g) = det (8 (1[)(1 o 1[)5_1) / aw) which is Z-holomorphic
on a neighbourhood of UZ N U; > U, NU,. Here w are the canonical
coordinates on C". We apply as before Hamilton’s theorem and obtain Z’
biholomorphisms ¢/, in a neighbourhood of UZ into C™ close to 1.

The cononical bundle Ky is defined in the vicinity of D by g;/B =
det (81/1&/81%). Since ¢y, is close to ¢, we see that g5 is close to gag

on U, NU,. By repeating the arguments in the proof of Lemma we
conclude. O
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5. The Stability Theorem

In this section we prove the Stability Theorem. Let us consider a com-
pact manifold M, dim M = n, and a complex submanifold A of dimension q.
Then X = M~ Ais (g+1)-concave. Let us remind the construction of an ex-
haustion function. Select a finite covering U = {Ug }a>1 of A with coordinate

domains such that if the coordinates in U, are z, = (21,22, ,27) we have
ANUy={2€U, : 24T = ... = 27 = 0}. Set @q(z) = >t |z%|%. Choose

a relatively compact open set Uy € M~ A such that U = {U}UU = {Us }a>0
is a covering of M and set g = 1 on Uy. Let {pq }az0 be a partition of unity
subordinated to Y. Define ¢ = p4 = Za>0 Pa®a- The function ¢ enjoys
the following properties:

1. peC®(M), A={p =0} and ¢ > 0.
2. For any ¢ > 0 we have {¢p > ¢} € M \ A.

3. 009 = 3, (Pa0dpa + 0adpa + Dpa N o + o A dps) where
0o =2 0,1 dza N dZo.

For z € A, 00¢(2) = Y, pa(2)00p4(2) has n—q positive eigenvalues. Hence
00y has n — q positive eigenvalues in a neighbourhood of A. Moreover
00y is positive semidefinite on A. Let us construct a hermitian metric
on M which is “small” in the normal direction to A (near A) and “large”
in the tangential direction to A. We can consider on each U, the metric
sy dzl NdZ, + 6 ZZH dzl A dzé, (6 > 0), and then patch these metrics
together with the partition of unity to obtain a metric ws on M. Let ’yf <
’yg < --- <72 be the eigenvalues of 1909y with respect to ws. For § sufficiently
small there exists a neighbourhood Us of A such that on Us, ’yg > —0(0)
for j =1,...,q and ’yg > O(57 1) for j = ¢+ 1,...,n. Therefore we can
choose ¢ such that on Uy, ’y;-s > —1forj=1,...,q and ’y;-s > 2n — 3 for
j=q+1,...,n.

Let us consider now the domains X, = {¢ > ¢} for ¢ > 0 sufficiently
small. If codim A > 3 the domains X, admit as definition function ¢ — ¢
whose complex hessian has 3 negative eigenvalues in the vicinity of 9.X.. If
M possesses a positive line bundle we are in the conditions of the Existence
Criterion. Note that the metric ws satisfies Property for all X, with ¢
sufficiently small. For technical reasons we construct a metric w as follows.
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Consider the real part gs of the hermitian metric wgs . Thus gs is a riemannian
metric on M. Take a hermitian metric w whose real part g satisfies g(u, v) =
95(u,v) + gs(Zu, Zv) (u,v € C® T(M)) where Z is the complex structure of
M. If ¢ is sufficiently small w still satisfies Property From now on we
fix such a metric w on M. The constants M/ (E) are calculated with respect

to this metric.

Lemma 5.1. Assume that M is a projective manifold and E is a positive
line bundle over M. Let A be a submanifold with codim A > 3. Then for

sufficiently small regular values ¢ > 0 we have

/c (£c(B)" > Clc— o, E)/ S

—_— 5.1
ax. ldole (5.1)

where C(c — ¢, E) has been introduced in (3.1]).

Proof. Remark first that the constant C'(c— ¢, E) converges to 0 for ¢ — 0.
Indeed, 90(c — ¢) = —0dyp so the constants Mg(c — ¢), Mg(p — c) and
M!,(E) are bounded for ¢ running in a compact interval since 99y and E
are defined over all M. We observe further that dp(z) — 0 when z — A
(in fact do [4= 0). Hence Mg(d(c— ) AO(c— @), 0X.) converges to 0 (and

with it C(c — ¢)) when ¢ goes to 0. Examine now the term

/ dSE
ax, ldele

Although |dpgp| — 0 for 2z — A this integral goes to 0 too for ¢ — 0.

Indeed, since A has codimension > 3 we have

/ dSE:/ dSg =0(c°), ¢—0.
9Xe {p=c}

On the other hand for a regular value ¢ of @,
|dy Tox.| = O(c), ¢—0.

We infer

=0(c"), ¢—0.
/axc |do| B (<)
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for regular values ¢ of ¢. In conclusion the boundary integral in (5.]) goes
to 0 as ¢ — 0. The domain integral in (5.1I) being bounded from below by

a positive constant the Lemma follows. O

At this stage we can prove the Stability Theorem. Let us consider a
smooth domain Y := X, for ¢ small enough such that condition (5.1 holds.
Let Z’ be a new complex structure on Y which leaves T'(Z) invariant, for an
ample smooth divisor Z on M. We apply Lemma 4.2 for the manifold Y and
a smooth relatively compact set D where D := Xy, d > ¢, such that (51))
still holds on X4. By hypothesis the bundle F carries a hermitian metric
with positive curvature. Lemma shows that there exists a hermitian
metric A’ on the bundle E' near D such that 1c(E) and 1c(E’) are as close
as we please in the C* topology on D if Z and 7’ are sufficiently close. In
particular 1c(E’) is positive near D. Note that a defining function for D’ is
still d — ¢ and its complex hessian will have 3 negative eigenvalues in the

vicinity of 9D’ for a small perturbation of the complex structure.

Thus we can apply the Existence Criterion for D’ and E’. In order to
calculate the constant C'(d— ¢, E') we construct first a metric w’ on Y in the
following way. The metric w determines a riemannian metric g on Y which
was chosen such that g(u,v) = gs(u,v)+gs(Zu, Zv) for u,v € CRT(M). We
consider then a hermitian metric w’ on Y’ with real part ¢’ where ¢'(u,v) =
g5(u,v) + g5(Z'u,I'v) for u,v € C ® T(M). The metric w' satisfies the
Property with respect to the defining function d — ¢ of D’, provided Z
and Z' are sufficiently close. Therefore the constants Mg/ (d—¢), Mg/ (¢—d),
M (E") and Mp/(9(d — ¢),0D’) are close to the corresponding constants
Mg(d — ¢), Mp(p —d), M,(E) and Mg(9(d — ¢),0D) respectively. This
entails that C(d — ¢, E') is close to C(d — ¢, E).

It is also clear that [, (s=2c(E’))" and [, dSg/|dg|g, are close to the
corresponding integrals on D and 0D of g-uc(E) and dSg:/|de|gr. Therefore

/, (gre(E)" > C(d_%E/)/ dSp

op ldeler

E.I)

By the Existence Criterion

dim HO(D', E'*) > k" (5.2)
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for large k and thus D’ and so Y’ are Moishezon, provided Z and I’ are
sufficiently close. An entirely analogous argument takes care of the case of
perturbation of the canonical bundle Ky. This proves the Stability Theorem.
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