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Abstract

Let G be a reductive connected group over an algebraic closure of finite field. In

this paper we give the classification of character sheaves on G in categorical terms (as

a categorical centre). Previously such a classification was known for unipotent character

sheaves and in the case where the ground field is replaced by the complex numbers.

0. Introduction

0.1. Let k be an algebraically closed field of characteristic p ≥ 0 and let G

be a reductive connected group over k. We fix a prime number l different

from p. The theory of character sheaves developed in [14] and its sequels as-

sociates to G a collection of simple perverse Q̄l-sheaves on G which in many

respects mimic the irreducible representations of the finite Chevalley groups

of the same type as G. The classification of character sheaves was given

in [17]. A few years ago, Bezrukavnikov, Finkelberg and Ostrik [2] gave a

less computational (and more categorical) approach to the classification of

character sheaves assuming that the centre of G is connected and that p = 0.

For applications to the study of finite Chevalley groups it was desirable to

include the case when p > 0, but it was not clear how to do that by the

method of [2] which relied on certain results on Harish-Chandra modules

that are not available when p > 0. In [24], I found a way to obtain the
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classification of unipotent character sheaves in categorical terms assuming

that p > 0, using a functor (truncated restriction) whose definition was dif-

ferent from that in [2]; moreover, in [25], I extended this to a classification of

unipotent representations of a finite Chevalley group in categorical terms. In

this paper I will extend the method of [24] to obtain the classification of not

necessarily unipotent character sheaves of G in categorical terms assuming

that p > 0.

0.2. Notation. In the rest of this paper k is an algebraic closure of the finite

field Fq with q elements. All algebraic varieties are over k. We denote by p

the algebraic variety consisting of a single point. For an algebraic variety X

we write D(X) for the bounded derived category of constructible Q̄l-sheaves

on X. LetM(X) be the subcategory of D(X) consisting of perverse sheaves

on X. For K ∈ D(X) and i ∈ Z let HiK be the i-th cohomology sheaf of K

and let Ki be the i-th perverse cohomology sheaf of K; if x ∈ X, let HixK
be the stalk of HiK at x. Let D(K) be the Verdier dual of K. If X has a

fixed Fq-structure X0, we denote by Dm(X) what in [1, 5.1.5] is denoted by

Dbm(X0, Q̄l).

Note that if K ∈ Dm(X) then K can be viewed as an object of D(X)

denoted again by K. If K ∈ Dm(X) is a perverse sheaf and h ∈ Z, we

denote by grh(K) the subquotient of pure weight h of the weight filtration

of K. If K ∈ Dm(X) and i ∈ Z we write K〈i〉 = K[i](i/2) where [i] is a shift

and (i/2) is a Tate twist; we write K{i} = gri(K
i)(i/2). If K is a perverse

sheaf on X and A is a simple perverse sheaf on X we write (A : K) for the

multiplicity of A in a Jordan-Hölder series of K.

Assume that C ∈ Dm(X) and that {Ci; i ∈ I} is a family of objects

of Dm(X). We shall write C ≎ {Ci; i ∈ I} if the following condition is

satisfied: there exist distinct elements i1, i2, . . . , is in I, objects C
′
j ∈ Dm(X)

(j = 0, 1, . . . , s) and distinguished triangles (C ′
j−1, C

′
j , Cij ) for j = 1, 2, . . . , s

such that C ′
0 = 0, C ′

s = C; moreover, Ci = 0 unless i = ij for some j ∈ [1, s].

(See [20, 32.15].)

Let A = Z[v, v−1] where v is an indeterminate. Let ¯ : A → A be the

ring homomorphism such that vm = v−m for any m ∈ Z. If f ∈ Q[v, v−1]

and j ∈ Z we write (j; f) for the coefficient of vj in f .
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Let B be the variety of Borel subgroups of G. For any B ∈ B let UB be

the unipotent radical of B. In this paper we fixB ∈ B and a maximal torusT

of B; let U = UB. Let ν = dimU = dimB, ρ = dimT, ∆ = dimG = 2ν+ρ.

For any algebraic variety X let L = LX = α!Q̄l ∈ D(X) where α :

X × T → X is the obvious projection. When X is defined over Fq, L is

naturally an object of Dm(X).

Unless otherwise specified, all vector spaces are over Q̄l; in particular all

representations of a finite group Γ are assumed to be in (finite dimensional)

Q̄l-vector spaces. Let ModΓ be the category of representations of Γ.

0.3. We now discuss the content of various sections in some detail. The

main difference between [24] and the present paper is that the study of G-

equivariant sheaves on B×B is replaced by that of monodromic sheaves that

is, certain G-equivariant sheaves on B̃2 = G/U × G/U. The role that the

Hecke algebra played in [24] is now played by a monodromic analogue H of

the Hecke algebra which was introduced (as an endomorphism algebra of the

representation of a Chevalley group over Fq induced by the unit represen-

tation of a Sylow p-subgroup) by Yokonuma [30] in 1967. In Section 1 we

recall from [20] various notions for H that were known earlier for ordinary

Hecke algebras: the canonical basis, the left cells, the two-sided cells, the

a-function, the asymptotic version. (Something close to the canonical basis

of H and its connection to intersection cohomology was already discussed

in [13, Ch.1].) A key role in our discussion is the fact (see [20]) that H is

a matrix ring over an ordinary extended Hecke algebra. In Section 2 we

study the G-equivariant sheaves on B̃2 with monodromy of finite order di-

viding a fixed number n; we define truncated convolution of such sheaves,

see 2.24. This differs from the non-monodromic case since it now involves

direct images with compact support of non-proper maps, which makes the

analysis more complicated. In this section and in the subsequent ones we

refer several times to two technical lemmas [24, 1.12] and [24, 8.2] but we

apply them in various cases which, although not explicitly contained in those

references, are proved just as in the references. In Section 3 we define trun-

cated convolution of G-equivariant sheaves on Z = T\B̃2 with monodromy

of order dividing n. Most of this section is concerned with the study of a

functor b (see 3.13) from sheaves on Z to sheaves on B̃2 and its truncated

version. In Section 4 we discuss the unit object and rigidity of the truncated
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monoidal category CcB̃2 of sheaves on B̃2 associated to a two-sided cell c in

H. In Section 5 we define truncated induction from a certain category of

sheaves CcZ on Z associated to a two-sided cell c of H to a certain category

of sheaves CcG on G associated to c and we define truncated restriction go-

ing in the opposite direction. We also define truncated convolution in CcG.
In Section 6 we show (Theorem 6.13) that truncated restriction provides an

equivalence of monoidal categories between CcG and the categorical centre

of CcB̃2. To do this we first prove a weak form of the adjunction between

truncated induction and truncated restriction. The adjunction is proved in

full only as a consequence of Theorem 6.13. Another consequence of Theo-

rem 6.13 is that the character sheaves of G associated to c are in bijection

with the simple objects of the categorical centre of CcB̃2.

Contents

1. Study of the algebra H.

2. Truncated convolution of sheaves on B̃2.

3. Sheaves on the variety Z.

4. The monoidal category CcB̃2 and its centre.

5. Truncated induction, truncated restriction, truncated convolution on G.

6. The main results.

1. Study of the Algebra H

1.1. Let NT be the normalizer of T in G, let W = NT/T be the Weyl

group and let κ : NT→ W be the obvious homomorphism. For w ∈ W we

set Gw = Bκ−1(w)B so that G = ⊔wGw; let Ow = {(xBx−1, yBy−1);x ∈
G, y ∈ G,x−1y ∈ Gw} so that B × B = ⊔wOw. For w ∈ W let Ḡw be

the closure of Gw in G; we have Ḡw = ∪y≤wGy for a well defined partial

order ≤ on W . Let Ōw be the closure of Ow in B2. Now W is a (finite)

Coxeter group with length function w 7→ |w| = dimOw − ν and with set of

generators S = {s ∈ W ; |s| = 1}. It acts on T by w : t 7→ w(t) = ωtω−1

where ω ∈ κ−1(w).
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1.2. Let s ∈ S. Let Us be the unique root subgroup of U with respect to

T such that U−
s := σUsσ

−1 6⊂ U for some/any σ ∈ κ−1(s). For any ξ ∈
Us−{1} there is a unique η ∈ U−

s −{1} such that ξηξ = ηξη ∈ κ−1(s) ⊂ NT;

we set σξ = ξηξ = ηξη. We have σ4ξ = 1. Note that ξ 7→ η is an isomorphism

of algebraic varieties Us − {1} ∼→U−
s − {1}.

1.3. Following Tits we define a cross-section W → NT, w 7→ ẇ of κ :

NT → W as follows. For each s ∈ S we choose ξs ∈ Us − {1}. Let

w ∈ W . We write w = s1s2 . . . sr where si ∈ S, r = |w| and we set

ẇ = σξs1σξs1σξs2 . . . σξsr ∈ κ
−1(w). It is known that ẇ is independent of the

choice of s1, s2, . . . , sr. Clearly, if w,w
′ ∈W satisfy |ww′| = |w|+ |w′|, then

(ww′)̇ = ẇẇ′.

1.4. In this paper we fix an integer n ≥ 1 such that n 6= 0 in k. Let

Tn = {t ∈ T; tn = 1}, s = Hom(Tn, Q̄
∗
l ). We have ♯(Tn) = ♯(s) = nρ.

Define ι : T→ T by t 7→ tn; clearly, ι!Q̄l is a local system on T, equivariant

for the T-action t1 : t 7→ tn1 t on T, hence Tn acts naturally on each stalk of

ι!Q̄l. We have ι!Q̄l = ⊕λ∈sLλ, where for any λ ∈ s, Lλ (a local system of

rank 1 on T) is such that Tn acts on each stalk of Lλ through the character

λ.

The W -action on T restricts to a W -action on Tn hence induces a W -

action on s. We shall write W s instead of W × s (without group structure);

for w ∈ W,λ ∈ s we shall write w · λ instead of (w, λ). The following result

can be deduced from [19, 28.2(a)].

(a) If w · λ ∈ W s and w(λ) = λ then Lλ is T -equivariant for the T -action

t : t′ 7→ w(t)−1t′t on T .

1.5. Let τ ∈ T. We define gτ : T → T by t 7→ τt. We show that for

λ ∈ s, the local systems g∗τLλ, Lλ are isomorphic. More precisely, we show

that any τ ′ ∈ T such that τ ′n = τ defines an isomorphism of local systems

g∗τLλ
∼→Lλ. The induced map (g∗τLλ)t = (Lλ)τt

cτ ′,t→ (Lλ)t on stalks at any

t ∈ T can be described as follows. We have

(Lλ)t = { f : ι−1(t) → Q̄l; f (t1t
′) = λ(t′)f(t1) ∀t1 ∈ ι−1(t), t′ ∈ Tn},

(Lλ)τt = {f ′ : ι−1(τt)→ Q̄l; f
′(t2t′) = λ(t′)f ′(t2)∀t2 ∈ ι−1(τt), t′ ∈ Tn}.
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We have cτ ′,t(f) = f ′ where for any t2 ∈ ι−1(τt) we have f ′(t2) = f(τ ′−1t2).

1.6. For any root α : T → k∗ we denote by α̌ : k∗ → T the corresponding

coroot and by sα the corresponding reflection in W .

Let λ ∈ s. Let Rλ be the set of roots α : T → k∗ such that λ(α̌(z)) = 1

for all z ∈ k∗, zn = 1. Let Wλ be the subgroup of W generated by {sα;α ∈
Rλ}. We have Wλ = Wλ−1 . Let W ′

λ = {w ∈ W ;w(λ) = λ}. Note that

Wλ ⊂ W ′
λ. There is a unique Coxeter group structure on Wλ with length

function Wλ → N, w 7→ |w|λ such that, if w ∈Wλ and w = s1s2 . . . sr is any

reduced expression of w in W , then

(a) |w|λ = card{i ∈ [1, r]; sr . . . si+1sisi+1 . . . sr ∈Wλ}.

See [14, 5.3].

1.7. As in [19, 31.2], let Hn be the associative A-algebra with with genera-

tors Tw(w ∈W ), 1λ(λ ∈ s) and relations:

1λ1λ′ = δλ,λ′1λ for λ, λ′ ∈ s;

TwTw′ = Tww′ if w,w′ ∈W and |ww′| = |w|+ |w′|;
Tw1λ = 1w(λ)Tw for w ∈W,λ ∈ s;

T 2
s = v2T1 + (v2 − 1)

∑

λ;s∈Wλ

Ts1λ for s ∈W, |s| = 1;

T1 =
∑

λ∈s
1λ.

The algebra Hn is closely related to the algebra introduced by Yokonuma

[30]. (It specializes to it under v =
√
q, n = q− 1.) Since n is fixed, we shall

often write H instead of Hn. Note that T1 is the unit element of H and

that {Tw1λ;w · λ ∈ W s} is an A-basis of H. The A-linear map˜: H → H,

Tw1λ 7→ Tw1λ−1 is an algebra automorphism. The A-linear map H → H,

h 7→ h♭, given by Tw1λ 7→ 1λTw−1 is an algebra antiautomorphism. (See [20,

32.19].)

1.8. For w ∈ W we set T̂w = v−|w|Tw ∈ H. There is a unique ring homo-

morphism¯: H→ H such that fT̂w1λ = f̄ T̂−1
w−11λ for any w ·λ ∈W s, f ∈ A;



✐

“BN11N41” — 2016/12/9 — 22:57 — page 609 — #7
✐

✐

✐

✐

✐

2016] NON-UNIPOTENT CHARACTER SHEAVES 609

it has square 1. As in [20, 34.4], for any w ·λ ∈W s there is a unique element

cw·λ ∈ H such that

cw·λ =
∑

y∈W
py·λ,w·λT̂y1λ

where py·λ,w·λ ∈ v−1Z[v−1] if y 6= w, pw·λ,w·λ = 1 and cw·λ = cw·λ. Since

¯: H→ H,˜: H→ H commute, for any w · λ ∈W s, the element

c̃w·λ−1 =
∑

y∈W
py·λ−1,w·λ−1T̂y1λ

satisfies the definition of cw·λ hence

c̃w·λ−1 = cw·λ.

In particular we have py·λ−1,w·λ−1 = py·λ−1,w·λ−1 for any y · λ ∈W s.

For y′, w′ in Wλ let P λy′,w′ be the polynomial defined in [7] in terms of

the Coxeter group Wλ; let

pλy′,w′ = v−|w′|λ+|y′|λP λy′,w′(v2) ∈ Z[v−1].

Let w ·λ ∈W s. From [13, 1.9(i)] we see that wWλ contains a unique element

z such that |z| is minimum; we write z = min(wWλ); we have w = zw′ with

w′ ∈Wλ. We show:

(a) czw′·λ =
∑

y′∈Wλ

pλy′,w′T̂zy′1λ.

Since pλy′,w′ is 1 if y′ = w′ and is in v−1Z[v−1] if y′ 6= w′, it is enough to show

that

(b)
∑

y′∈Wλ

pλy′,w′T̂zy′1λ is fixed by¯: H→ H.

We can find a sequence s1, s2, . . . , sk in S such that

z(λ) = s1s2 . . . skλ 6= s2 . . . skλ 6= · · · 6= skλ 6= λ.

We argue by induction on k. If k = 0 we have z(λ) = λ and (b) follows from

the proof of [20, 34.7]. Assume now that k ≥ 1. We have z(λ) 6= (s1z)(λ)
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hence z−1s1zλ 6= λ. This implies that s1z = min(s1zWλ). We have s1zλ =

s2 . . . skλ 6= · · · 6= skλ 6= λ; hence by the induction hypothesis applied to s1z

instead of z we see that

(c)
∑

y′∈Wλ

pλy′,w′(v2)T̂s1zy′1λ is fixed by¯: H→ H.

For y′ ∈Wλ we have T̂zy′1λ = T̂s11(s1z)(λ)T̂ s1zy
′1λ (we use again that z(λ) 6=

(s1z)(λ)) and T̂s11(s1z)(λ) is fixed by¯: H→ H (using that z(λ) 6= (s1z)(λ));

we see that (b) follows from (c) by left multiplication with T̂s11(s1z)(λ). This

completes the proof of (a).

From (a) we see that

py·λ,zw′·λ =

{

pλy′,w′(v2) if y = zy′, y′ ∈Wλ,

0 if y /∈ zWλ.

In particular we have py·λ,w·λ ∈ N[v−1]. We show:

(d) 1w(λ)cw·λ = cw·λ.

Using (a) it is enough to show that 1w(λ)T̂zy′1λ = T̂zy′1λ for any y′ ∈Wλ. We

have T̂zy′1λ = 1(zy′)(λ)T̂zy′ and it is enough to show that (zy′)(λ) = (zw′)(λ);
this follows from y′(λ) = λ, w′(λ) = λ.

Let w · λ ∈W s. By (a) we have

cw·λ =
∑

y∈wWλ

py·λ,w·λT̂y1λ.

Similarly, we have

cw−1·w(λ) =
∑

y∈w−1Ww(λ)

py·w(λ),w−1·w(λ)T̂y1w(λ).

It follows that

(cw−1·w(λ))
♭ =

∑

y∈w−1Ww(λ)

py·w(λ),w−1·w(λ)1w(λ)T̂y−1

=
∑

y∈w−1Ww(λ)

py·w(λ),w−1·w(λ)T̂y−11yw(λ).
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For each y in the last sum we have y = w−1u with uw(λ) = w(λ) hence

yw(λ) = w−1uw(λ) = w−1w(λ) = λ. Thus, we have

(cw−1·w(λ))
♭ =

∑

y∈w−1Ww(λ)

py·w(λ),w−1·w(λ)T̂y−11λ

=
∑

y;y−1∈w−1Ww(λ)

py−1·w(λ),w−1·w(λ)T̂y1λ.

The condition that y−1 ∈ w−1Ww(λ) is equivalent to y ∈ Ww(λ)w and also

to y ∈ wWλ. Hence

(cw−1·w(λ))
♭ =

∑

y;y∈wWλ

py−1·w(λ),w−1·w(λ)T̂y1λ.

Note that py−1·w(λ),w−1·w(λ) is 1 if y = w and is in v−1Z[v−1] if y 6= w. Also,

since¯: H → H, ♭ : H → H commute, (cw−1·w−1(λ))
♭ is fixed by¯: H → H.

It follows that (cw−1·w(λ))
♭ satisfies the defining property of cw·λ, hence

(e) (cw−1·w(λ))
♭ = cw·λ.

We see also that

py−1·w(λ),w−1·w(λ) = py·λ,w·λ

for any y ∈W .

1.9. Let A be a based A-algebra that is, an associative A-algebra with 1

with a given finite basis {bi; i ∈ I} as an A-module, a given involution i 7→ i!

of I such that the A-linear map x 7→ x♭ defined by b♭i = bi! for all i ∈ I is

an algebra antiautomorphism (necessarily preserving 1) and a given subset

I0 of {i ∈ I; i! = i}. For i, i′ in I we write bibi′ =
∑

j∈I hi,i′,jbj where

hi,i′,j ∈ A. Let j�
left
i (resp. j � i) be the preorder on I generated by the

relation hi′,i,j 6= 0 for some i′ ∈ I, resp. by the relation

hi,i′,j 6= 0 or hi′,i,j 6= 0 for some i′ ∈ I.

We say that i∼
left
j (resp. i ∼ j) if i�

left
j and j�

left
i (resp. i � j and j � i). This

is an equivalence relation on I; the equivalence classes are called left cells

(resp. two-sided cells). Note that any two-sided cell is a union of left cells.
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If c is a two-sided cell and i ∈ I we write i � c (resp. c � i) if i � i′

(resp. i′ � i) for some i′ ∈ c; we write i ≺ c (resp. c ≺ i) if i � c (resp.

c � i) and i /∈ c. If c, c′ are two-sided cells, we write c � c′ (resp. c ≺ c′) if

i � i′ (resp. i � i′ and i 6∼ i′) for some i ∈ c, i′ ∈ c′.

Let j ∈ I. We can find an integer m ≥ 0 such that hi,i′,j ∈ v−mZ[v] for
all i, i′; let a(j) be the smallest such m. For i, i′, j in I there is a well defined

integer h∗i,i′,j such that

hi,i′,j! = h∗i,i′,jv
−a(j!) + higher powers of v.

We say that the based algebra A is excellent if properties Q1-Q11 below

hold.

Q1. If j ∈ I0 and i, i′ ∈ I satisfy h∗i,i′,j 6= 0 then i′ = i∗.

Q2. If i ∈ I, there exists a unique j ∈ I0 such that h∗
i!,i,j
6= 0.

Q3. If i′ � i then a(i′) ≥ a(i). Hence if i′ ∼ i then a(i′) = a(i).

Q4. If j ∈ I0, i ∈ I and h∗
i!,i,j
6= 0 then h∗

i!,i,j
= 1.

Q5. For any i, j, k in I we have h∗i,j,k = h∗j,k,i.

Q6. Let i, j, k in I be such that h∗i,j,k 6= 0. Then i∼
left
j!, j∼

left
k!, k∼

left
i!.

Q7. If i′�
left
i and a(i′) = a(i) then i′∼

left
i.

Q8. If i′ � i and a(i′) = a(i) then i′ ∼ i.
Q9. Any left cell Γ of I contains a unique element of j ∈ I0. We have

h∗
i!,i,j

= 1 for all i ∈ Γ.

Q10. For any i ∈ I we have i ∼ i!.
Q11. Let v′ be a second indeterminate and let h′i,j,k ∈ Z[v′, v′−1] be obtained

from hi,j,k by the substitution v 7→ v′, If i, i′, j, k ∈ I satisfy a(j) = a(k)

then
∑

j′∈I
h′k,i′,j′hi,j′,j =

∑

j′∈I
hi,k,j′h

′
j′,i′,j.

In the remainder of this subsection we assume that A is excellent. Con-

sider the free abelian group A∞ with basis {ti; i ∈ I}. We define a

Z-bilinear multiplication A∞ × A∞ → A∞ by titi′ =
∑

j∈I h
∗
i,i′,j!tj.

As in [18, 18.3], we see using Q3,Q6 that this defines an associative

ring structure on A∞ and we see using Q1,Q2,Q4,Q5 that
∑

i∈I0 ti is
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a unit element for this ring structure. Also from Q1,Q5 we see that

titi′ = δi,i′ti for i, i
′ ∈ I0.

From the definitions we have hi!,i′!,j! = hi′,i,j for any i, i′, j in I. It

follows that a(j) = a(j!) for any j (this also follows from Q3, Q10) and that

h∗
i!,i′!,j = h∗

i′,i,j! for any i, i′, j in I. Hence the Z-linear map ♭ : A∞ → A∞

defined by t♭i = ti! for all i ∈ I is a ring antiautomorphism.

We define an A-linear map ψ : A→ A⊗ A∞ by

ψ(bi) =
∑

i′∈I,j∈I0;a(i′)=a(j)
hi,j,i′ti′ .

Using Q1,Q2,Q3,Q4,Q6,Q11 we see as in [18, 18.9] that ψ is an A-algebra
homomorphism preserving 1.

We define a group homomorphism τ : A∞ → Z by τ(ti) = 1 if i ∈ I0,
τ(ti) = 0 if i ∈ I − I0. We show:

(a) For i, j ∈ I we have τ(titj) = 1 if j = i! and τ(titj) = 0 if j 6= i!.

An equivalent statement is that
∑

k∈I0 h
∗
i,j,k!

is 1 if j = i! and is 0 if j 6= i!.

This follows immediately from Q1,Q2,Q4.

For any two-sided cell c in I let A∞
c =

∑

i∈c Zti ⊂ A∞. From Q6 we see

that if c, c′ are two-sided cells then A∞
c A∞

c′ is zero if c 6= c′ and is contained

in A∞
c if c = c′. Hence A∞

c is a ring with unit
∑

i∈I0∩c ti and A∞ = ⊕cA
∞
c

as rings.

1.10. Let A be a based A-algebra with basis {bi; i ∈ I} and with i 7→ i!, I0
as in 1.9. We assume that A is excellent. We use the notation in 1.9. We

fix a two-sided cell c of I and we set a = a(i) for any i ∈ c. Let r ≥ 1, let

(i1, i2, . . . , ir) ∈ Ir. We write

bi1bi2 . . . bir =
∑

i∈I,k∈Z
N(i, k)vkbi where N(i, k) ∈ Z.

We show:

(a) Assume that i ∈ c. If N(i, k) 6= 0 then k ≥ −(r−1)a. If N(i,−(r−1)a) 6=
0 then iu ∈ c for all u ∈ [1, r].
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If r = 1 the result is obvious. Now assume that r ≥ 2. We have

(b)
∑

k∈Z
N(i, k)vk =

∑

hj1,i2,j2hj2,i3,j3 . . . hjr−1,ir,jr

where the last sum is taken over all j1, j2, . . . , jr−1, jr in I such that

i = jr � jr−1 � · · · � j3 � j2 � j1 = i1.

Assume that N(i, k) 6= 0. From (b) we see that

k = k2 + k3 + · · · + kr where k2 ≥ −a(j2), . . . , kr−1 ≥ −a(jr−1),

kr ≥ −a(jr) = −a

for some j1, j2, . . . , jr−1, jr as above. Using Q3 we see that

a = a(jr) ≥ a(jr−1) ≥ · · · ≥ a(j3) ≥ a(j2),

hence k2 ≥ −a, . . . , kr ≥ −a and k ≥ −(r − 1)a, as required.

Assume now that N(i,−(r − 1)a) 6= 0. Then for some j1, j2, j3, . . . ,

jr−1, jr as above, the inequalities used above must be equalities

−k2 = · · · = −kr−1 = a = a(jr) = · · · = a(j3) = a(j2)

and

h∗
i1,i2,j!2

6= 0, h∗
j2,i3,j!3

6= 0, . . . , h∗jr−1,ir,j!r
6= 0,

so that, by Q6, Q8 we have

i1 ∼ i2 ∼ j2 ∼ i3 ∼ j3 ∼ . . . ∼ jr−1 ∼ ir ∼ jr.

Thus, i1 ∈ c, . . . , ir ∈ c. This proves (a).

We show:

(c) Assume that i ∈ c and i1 ∈ c, . . . , ir ∈ c. Then

N(i,−(r − 1)a) =
∑

h∗
j1,i2,j!2

h∗
j2,i3,j!3

. . . h∗jr−1,ir,j!r

where the sum is taken over all j1, j2, j3, . . . , jr−1, jr in c such that j1 =

i1, jr = i.
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Note that N(i,−(r − 1)a) is the coefficient of v−(r−1)a in

∑

hj1,i2,j2hj2,i3,j3 . . . hjr−1,ir,jr

where sum is taken over all j1, j2, . . . , jr−1, jr in I such that

i = jr � jr−1 � · · · � j3 � j2 � j1 = i1.

Such ju must satisfy ju ∈ c for all u (since j1 ∈ c, jr ∈ c). Hence the sum is

equal to

∑

(h∗
j1,i2,j!2

v−a + higher powers of v )(h∗
j2,i3,j!3

v−a + higher powers of v ) . . .

(h∗
jr−1,ir,j!r

v−a + higher powers of v )

=
∑

h∗
j1,i2,j!2

h∗
j2,i3,j!3

. . . h∗
jr−1,ir,j!r

v−(r−1)a + higher powers of v

where both sums are taken over all j1, j2, . . . , jr−1, jr in c such that j1 = i1,

jr = i. Now (c) follows.

From (c) we deduce:

(d) Assume that i1 ∈ c, . . . , ir ∈ c. Then

ti1ti2 . . . tir =
∑

i∈c
N(i,−(r − 1)a)ti

(in A∞) where N(i,−(r − 1)a) is as in (c).

We show:

(e) Assume that iu ∈ c for some u ∈ [1, r] and that i ∈ I, k ∈ Z are such

that N(i, k) 6= 0. Then either i ∈ c, k ≥ −(r − 1)a, or i ≺ c.

If r = 1, the result is obvious. We now assume that r ≥ 2. We have

∑

k′∈Z
N(i, k′)vk

′
=

∑

hj1,i2,j2hj2,i3,j3 . . . hjr−1,ir,jr

where the last sum is taken over all j1, j2, . . . , jr in I such that j1 = i1, jr = i.

Since the left hand side is 6= 0, so is the right hand side. Thus there exist
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j1, j2, . . . , jr as above such that

hj1,i2,j2 6= 0, hj2,i3,j3 6= 0, . . . , hjr−1,ir,jr 6= 0

hence jr � jr−1 � · · · � j2 � j1 and ju � iu. In particular we have jr � iu

that is, i � c. If i ≺ c, there is nothing to prove. Thus we may assume that

i ∈ c. In this case we have k ≥ −(r − 1)a by (a). This proves (e).

1.11. We now give some examples of excellent based A-algebras.

(i) Let λ ∈ s. Let Hλ be the Hecke algebra of the Coxeter group Wλ with

its basis {cw;w ∈ I = Wλ} defined as in [18, 5.3] with i 7→ i! given

by w 7→ w−1 and I0 being the set of distinguished involutions of Wλ

(defined as the set D in [18, 14.1] with W replaced by Wλ). Then Hλ

is excellent by results in [18, §14, §15].
(ii) Let λ ∈ s. As in [20, 34.2],W ′

λ is a semidirect productWλΩλ where Ωλ is

an abelian subgroup ofW ′
λ such that any x ∈ Ωλ satisfies xWλx

−1 =Wλ

and |xwx−1|λ = |w|λ for any w ∈ Wλ. Let H′
λ be the A-module

Hλ ⊗A A[Ωλ] with basis {cw ⊗ x;w ∈ Wλ, x ∈ Ωλ}. We regard H′
λ as

an A-algebra with multiplication (cw⊗x)(cw′⊗x′) = (cwcxw′x−1)⊗(xx′)
for w,w′ in Wλ and x, x′ in Ωλ. We take I =Wλ ×Ωλ, i 7→ i! given by

(w, x) 7→ (x−1(w−1), x−1) and I0 to be the set of all (d, 1) where d is

a distinguished involution of Wλ. Then H′
λ is excellent. (This follows

easily from Case (i)).

(iii) Let λ ∈ s. Let A = 1λH1λ viewed as a subalgebra of H with unit

element 1λ and with the basis {cw·λ;w ∈ W ′
λ}. In this case we take

I = W ′
λ. The involution i 7→ i! is given by w 7→ w−1 for w ∈ W ′

λ.

This is induced by the antiautomorphism of A which is the restriction

of the antiautomorphism h 7→ h♭ of H. We take I0 to be the set of

distinguished involutions of the Coxeter group Wλ. In [18, 34.7] it is

shown that A is canonically isomorphic as a based A-algebra to H′
λ in

(ii). It follows that A is excellent.

(iv) Let o be a fixedW -orbit on s and let λ0 ∈ o. Let E be the set of all for-

mal sums x =
∑

λ,λ′∈o xλ,λ′ where xλ,λ′ ∈ 1λ0H1λ0 regarded naturally

as an A-module and as an A-algebra where the product xy of x, y ∈ E
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is given by

(xy)λ,λ′ =
∑

λ̃∈o
xλ,λ̃yλ̃,λ′

(we used the product in 1λ0H1λ0). Let I = {(w, λ, λ′) ∈ W ′
λ0
× o× o}.

We view E as a based A-algebra with basis {bw,λ,λ′ ; (w, λ, λ′) ∈ I}
where bw,λ,λ′ has (λ, λ

′)-coordinate cw·λ0 and all other coordinates zero.

The involution i 7→ i! of I is given by (w, λ, λ′) 7→ (w−1, l′, λ). This is

induced by the antiautomorphism h 7→ h⋄ of the algebra E such that

b⋄w,λ,λ′ = bw−1,λ′,λ. The subset I0 of I is the set of all (w, λ, λ′) ∈ I such

that λ = λ′ and w ∈ D, the set of distinguished involutions of Wλ0 . For

w,w′ in W ′
λ0

we write

cw·λ0cw′·λ0 =
∑

w′′∈W ′
λ0

hw,w′,w′′cw′′·λ0

where hw,w′,w′′ ∈ A. Then the coefficients hi1,i2,i3 for i1, i2, i3 in I are

given by

hw,λ1,λ2,w′,λ′1,λ
′
2,w

′′,λ′′1 ,λ
′′
2
= δλ2,λ′1δλ1,λ′′1 δλ′2,λ′′2hw,w′,w′′ .

We see that the a-function on I is given by a(w, λ, λ′) = a(w) where

a(w) is computed in 1λ0H1λ0 . Moreover,

h∗w,λ1,λ2,w′,λ′1,λ
′
2,w

′′,λ′′1 ,λ
′′
2
= δλ2,λ′1δλ′2,λ′′1 δλ′′2 ,λ1h

∗
w,w′,w′′ .

We show that Q1-Q11 hold for A = E, using that we already know that

they hold for 1λ0H1λ0 .

We prove Q1. Assume that h∗w,λ1,λ2,w′,λ′1,λ
′
2,w

′′,λ′′1 ,λ
′′
2
6= 0 where w′′ ∈ D,

λ′′1 = λ′′2 . We must have λ2 = λ′1, λ1 = λ′′2 = λ′′1 = λ′2, w
′ = w−1 hence

(w, λ1, λ2)
! = (w′, λ′1, λ

′
2). Thus Q1 holds.

We prove Q2. Assume that h∗w,λ1,λ2,w−1,λ2,λ1,w′′,λ′′1 ,λ
′′
1
6= 0 where w′′ ∈ D.

Then l1 = λ′′1 and w′′ is the unique element of D such that h∗w,w−1,w′′ 6= 0;

thus the uniqueness in Q2 holds. The same proof shows the existence in Q2.

We prove Q3. If i = (w, λ1, λ2), i
′ = (w′, λ′1, λ

′
2) then we have i � i′

(resp. i ∼ i′) in E if and only if w � w′ (resp. w ∼ w′) in 1λ0H1λ0 . Hence

Q3 for E follows from Q3 for 1λ0H1λ0 .
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We prove Q4. Assume that h∗w,λ1,λ2,w−1,λ2,λ1,w′′,λ′′1 ,λ
′′
1
6= 0 where w′′ ∈ D.

Then h∗w,w−1,w′′ 6= 0 hence by Q4 for 1λ0H1λ0 we have h∗w,w−1,w′′ = 1. It

follows that h∗w,λ1,λ2,w−1,λ2,λ1,w′′,λ′′1 ,λ
′′
1
= 1 as required.

We prove Q5. We must show that

δλ2,λ′1δλ′2,λ′′1 δλ′′2 ,λ1h
∗
w,w′,w′′ = δλ′2,λ′′1 δλ′′2 ,λ1δλ2,λ′1h

∗
w′,w′′,w.

This clearly follows from Q5 for 1λ0H1λ0 .

We prove Q6. If i = (w, λ1, λ2), i
′ = (w′, λ′1, λ

′
2) then we have i�

left
i′ (resp.

i∼
left
i′) in E if and only if λ2 = λ′2 and w�

left
w′ (resp. w∼

left
w′) in 1λ0H1λ0 . As-

sume that h∗w,λ1,λ2,w′,λ′1,λ
′
2,w

′′,λ′′1 ,λ
′′
2
6= 0. Then δλ2,λ′1δλ′2,λ′′1 δλ′′2 ,λ1h

∗
w,w′,w′′ 6= 0

hence λ2 = λ′1, λ
′
2 = λ′′1, λ

′′
2 = λ1 and (by Q6 for 1λ0H1λ0) we have w∼

left
w′−1,

w′∼
left
w′′−1, w′′∼

left
w−1. Thus Q6 holds for E.

We prove Q8. Assume that i = (w, λ1, λ2), i
′ = (w′, λ′1, λ

′
2) and i � i′,

a(i) = a(i′). Then w � w′ and a(w) = a(w′) in 1λ0H1λ0 so that by Q8 for

1λ0H1λ0 we have w ∼ w′ and i ∼ i′. This proves Q8. The proof of Q7 is

entirely similar to that of Q8.

We prove Q9. Now Γ is the set of all (w, λ1, λ2) where λ2 is fixed, λ1
runs through o and w runs through a left cell Γ0 of W ′

λ0
. Let w be the

unique element in D ∩ Γ0. Then (w, λ2, λ2) is the unique element of I0 ∩ Γ.

If i = (w1, λ1, λ2) ∈ Γ then w1 ∈ Γ0 and

h∗
w−1

1 ,λ2,λ1,w,λ1,λ2,w,λ2,λ2
= h∗

w−1
1 ,w1,w

and this is 1 by Q9 for 1λ0H1λ0 .

We prove Q10. Let (w, λ, λ′) ∈ I. It is enough to show that w ∼ w−1 in

1λ0H1λ0 ; this follows from Q10 for 1λ0H1λ0 .

We prove Q11. We write i = (w, λ1, λ2), i
′ = (w′, λ3, λ4), j = (u, λ5, λ6),

k = (z, λ7, λ8). We have a(z) = a(u). We must show

δλ8,λ3δλ7,λ2δλ1,λ5δλ4,λ6
∑

u′ h
′
z,w′,u′hw,u′,u

= δλ8,λ3δλ7,λ2δλ1,λ5δλ4,λ6
∑

u′ hw,z,u′h
′
u′,w′,u.

This follows from Q11 for 1λ0H1λ0 .

We see that E is excellent.
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(v) Let o be a fixedW -orbit on s. Let Ho be the A-subalgebra of H with A-
basis {cw·λ;w ∈W,λ ∈ o}. We view Ho as a based A-algebra. We take

I = {w ·λ ∈W s;λ ∈ o}. The involution i 7→ i! of I is w ·λ 7→ w−1 ·w(λ).
This is induced by the antiautomorphism of Ho which is the restriction

of the antiautomorphism h 7→ h♭ of H. We take I0 to be the set of all

w · λ where λ ∈ o and w is a distinguished involution of Wλ. We show

that Ho is excellent. We fix λ0 ∈ o and let E be as in (iv) above. For

any λ ∈ o we choose a sequence sλ = (s1, s2, . . . , sr) in S such that

λ0 6= s1λ0 6= s2s1λ0 6= · · · 6= sr . . . s2s1(λ0) = λ

and we set τλ = T̂s1T̂s2 . . . T̂sr ∈ H, [sλ] = s1s2 . . . sr ∈ W . Note that

τ fλ lat = T̂sr . . . T̂s2 T̂s1 ∈ H. We define an A-linear map Ψ : Ho → E by

Ψ(h)λ1,λ2 = τλ11λ1h1λ2τ
♭
λ2 ∈ 1λ0H1λ0

for any λ1, λ2 in o. In [18, 34.10] it is shown that Ψ is an isomorphism

of A-algebras and Ψ−1 carries the basis element bw,λ1,λ2 of E onto the

basis element c[sλ1 ]
−1w[sλ2 ]·λ2 of Ho. We show that Ψ(h♭) = (Ψ(h))⋄ for

all h ∈ Ho. Indeed for λ1, λ2 in o we have

((Ψ(h))⋄)λ1,λ2 = (Ψ(h)λ2,λ1)
♭ = (τλ21λ2h1λ1τ

♭
λ1)

♭

= τλ11λ1h
♭1λ2τ

♭
λ2 = Ψ(h♭)λ1,λ2 .

If w is a distinguished involution of Wλ0 and λ ∈ o, then

Ψ−1(bw,λ,λ) = c[sλ]−1w[sλ]·λ;

note that conjugation by [sλ]
−1 is a Coxeter group isomorphismWλ0

∼→
Wλ hence [sλ]

−1w[sλ] is a distinguished involution of Wλ. This argu-

ment shows that Ψ−1 induces a bijection from I0 defined in terms of E

to I0 defined in terms of Ho. Using the fact that E is excellent we now

deduce that Ho is excellent.

(vi) We consider the A-algebra H with its A-basis {cw·λ;w · λ ∈ W s}. We

view H as a based A-algebra. We take I = W s. The involution i 7→ i!

of I is w · λ 7→ w−1 · w(λ). This is induced by the antiautomorphism

h 7→ h♭ of H. We take I0 to be the set of all w · λ where λ ∈ s and w

is a distinguished involution of Wλ. We have H = ⊕oHo (as algebras)
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where o runs over the set of W -orbits in s and Ho is as in (v). Using

the fact that each Ho is excellent, it follows immediately that H is

excellent.

In this case we shall write D instead of I0.

In particular, in case (vi) the two-sided cells of W s and the a-function

a : W s → N are well defined. Note that each two-sided cell of W s (in case

(vi)) is equal to a two-sided cell of W × o (in case (v)) for a unique W -orbit

o in s. Moreover for any two-sided cell c of W × o (with λ ∈ o), the subset

{w ∈ W ′
λ;w · λ ∈ c} is a two-sided cell of W ′

λ (in case (ii)) and this gives a

bijection between the set of two-sided cells of W ×o and the set of two-sided

cells of W ′
λ in case (ii), which in turn is in bijection with the set of orbits of

the conjugation action of Ωλ on the set of two-sided cells of Wλ in case (i).

The based algebras in (i)−(vi) have the additional properties that

(a) hi,j,k ∈ N[v, v−1], hi,j,k = hi,j,k for any i, j, k ∈ I;
(b) h∗i,j,k ∈ N for any i, j, k ∈ I.

Indeed, (a) is well known in the cases (i), (ii); from this we deduce by the

arguments in (iii)-(vi) that (a) holds in each case (iii)−(vi). Clearly, (b)

follows from (a). From (a) we see that for the based algebras in (iii)-(vi) we

have

hi,i′,j! = h∗i,i′,jv
a(j!) + lower powers of v.

In (i) the ring H∞
λ has Z-basis {tw;w ∈ Wλ} in natural bijection with

the A-basis (cw) of Hλ.

In (ii) the ring (H′
λ)

∞ has Z-basis {tw ⊗ x;w ∈ Wλ, x ∈ Ωλ} in natural

bijection with the A-basis (cw ⊗ x) of H′
λ. The multiplication is given by

(tw ⊗ x)(tw′ ⊗ x′) =
∑

z∈Wλ

cztz ⊗ (xx′)

where twtxw′x−1 =
∑

z∈Wλ
cztz, cz ∈ Z, is the product in H∞

λ .

In (iii) we have an identification (1λH1λ)
∞ = (H′

λ)
∞ (as rings) for which

the basis element t(wx)·λ (with w ∈ Wλ, x ∈ Ωλ) of (1λH1λ)
∞ corresponds

to the basis element tw ⊗ x of (H′
λ)

∞.
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In (iv) the ring E∞ has Z-basis {tw,λ,λ′ ;w ∈ W ′
λ0
, λ ∈ o, λ′ ∈ o} in

natural bijection with the A-basis (bw,λ,λ′) of E. This ring is canonically

isomorphic to a matrix ring with entries in the ring (1λ0H1λ0)
∞ with its

natural basis.

In (v) we have an identification H∞
o = E∞ (as rings) for which the basis

element tw,λ1,λ2 of E∞ corresponds to the basis element t[sλ1 ]
−1w[sλ2 ]·λ2 of

H∞
o .

In (vi) we have an identification H∞ = ⊕oH
∞
o (as rings) for which the

basis elements tw·λ in the two sides correspond to each other.

1.12. For a based A-algebra A as in 1.9 we set Av = Q̄l(v) ⊗A A; we set

A1 = Q̄l⊗A A where Q̄l is viewed as an A-algebra via v 7→ 1. By definition,

H1 is the associative Q̄l-algebra with generators Tw(w ∈W ), 1λ(λ ∈ s) and

relations:

1λ1λ′ = δλ,λ′1λ for λ, λ′ ∈ s;

TwTw′ = Tww′ if w,w′ ∈W ;

Tw1λ = 1w(λ)Tw for w ∈W,λ ∈ s;

T1 =
∑

λ∈s
1λ.

The elements {Tw1λ;w · λ ∈W s} form an Q̄l-basis of H
1 and T1 is the unit

element. Consider the group algebra Q̄l[WTn] whereWTn is the semidirect

product of W and Tn with Tn normal andW acting on Tn by w : t 7→ w(t).

We define a Q̄l-linear map Q̄l[WTn]→ H1 by wt 7→∑

λ∈s λ(t)Tw1λ. From

the definitions we see that this is an isomorphism of Q̄l-algebras; we shall use

it to identify Q̄l[WTn] = H1. For λ ∈ s we set (1λH1λ)
1 = Q̄l ⊗A (1λH1λ);

under the identification above we have (1λH1λ)
1 = Q̄l[W

′
λ].

Recall that we have H∞ = ⊕cH
∞
c as rings. Here, for any two-sided cell

c, H∞
c has basis {tw·λ;w ·λ ∈ c}; it is a ring with unit element

∑

w·λ∈Dc

tw·λ
where Dc = D ∩ c. We set J = Q̄l ⊗H∞. We have J = ⊕cJc (as algebras)

where for any two-sided cell c of W s we set Jc = Q̄l ⊗H∞
c .

Now ψ : H → A ⊗ H∞ and ψ : 1λH1λ → A ⊗ (1λH1λ)
∞ induce by

extension of scalars isomorphisms of split semisimple Q̄l(v)-algebras ψ
v :

Hv ∼→ Q̄l(v) ⊗H∞, ψv : (1λH1λ)
v ∼→ Q̄l(v) ⊗ (1λH1λ)

∞ and isomorphisms
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of semisimple Q̄l-algebras ψ
1 : H1 ∼→J, ψ1 : Q̄l[W

′
λ]

∼→ Q̄l⊗ (1λH1λ)
∞. (See

[20, 34.12(b),(c)].)

Let Irr(WTn) be a set of representatives for the isomorphism classes

of simple Q̄l[WTn] = H1-modules. For any WTn-module E let E∞ be the

corresponding J-module (via ψ1) and let Ev be theHv-module corresponding

to Q̄l(v) ⊗E∞ under ψv.

For any W -orbit o on s let Irro(WTn) be the set of all E ∈ Irr(WTn)

such that 1λ′E = 0 for all λ′ /∈ o. We have Irr(WTn) = ⊔oIrro(WTn).

If E ∈ Irro(WTn), then for any λ ∈ o, 1λE is a simple (1λH1λ)
1-module,

that is, a simple W ′
λ-module. Moreover E 7→ 1λE is a bijection between

Irro(WTn) and a set of representatives Irr(W ′
λ) for the isomorphism classes

of simple Q̄l[W
′
λ]-modules.

For any E ∈ Irro(WTn) and λ ∈ o let (1λE)∞ be the Q̄l ⊗ (1λH1λ)
∞-

module corresponding to 1λE via ψ1 and let (1λE)v be the (1λH1λ)
v-module

corresponding to Q̄l(v)⊗ (1λE)∞ under ψv . Note that (1λE)v = 1λ(E
v).

If E ∈ Irro(WTn), λ ∈ o and w ∈W ′
λ then we have

tr(cw·λ, E
v) = tr(cw·λ, (1λE)v).

For any left cell Λ of W s contained in o we denote by [Λ] the Q̄l[WTn]-

module such that [Λ]∞ is the Q̄l-subspace of J spanned by {tw·λ;w · λ ∈ Λ}
(a left ideal of J). We show:

(a) Let z · λ be the unique element of Λ ∩D. Then for any E ∈ IrroWTn,

tr(tz·λ, E∞) is equal to the multiplicity of E∞ in the J-module [Λ]∞.

An equivalent statement is that

dim(tz·λE
∞) = dimHomJ([Λ]

∞, E∞).

It is enough to show that the Q̄l-linear map HomJ([Λ]
∞, E∞) → tz·λE∞,

ξ 7→ ξ(tz·λ) is an isomorphism. The proof is along the same lines as that of

[18, 21.3].

1.13. Let A be one of the based A-algebra Hλ,H
′
λ (with λ ∈ s) or H. Note

that in these cases I is Wλ,W
′
λ,W s respectively and A1 is the group algebra

Q̄l[W] where W is Wλ,W
′
λ,WTn respectively. Note that ψ : A → A⊗ A∞
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induces an isomorphism Q̄l[W] = A1 ∼→ Q̄l ⊗ A∞. Under this isomorphism

an irreducible W-module E corresponds to a simple Q̄l ⊗ A∞-module E∞.

We have Q̄l ⊗ A∞ = ⊕c(Q̄l ⊗ A∞
c ) where c runs over the two-sided cell of

I. Hence if E is an irreducible W-module then there is a unique two-sided

cell cE of I such that Q̄l⊗A∞
c acts as zero on E∞ for any c 6= cE ; thus E

∞

can be viewed as a simple Q̄l ⊗ A∞
cE

-module. For an irreducible W-module

E let aE ∈ N be the constant value of the restriction of a : I → N to cE .

1.14. Since˜: H → H permutes the elements in the basis {cw·λ} according
to the involution w · λ 7→ w̃ · λ = w · λ−1 of W s, we see that the image of a

two-sided cell c of W s under this involution is again a two-sided cell c̃ of W s

and the value of the a-function on c̃ is equal to the value of the a-function

on c.

1.15. Applying ♭ to the equation

cx·λcy·λ′ =
∑

z·λ′′∈W s

hx·λ,y·λ′,z·λ′′cz·λ′′ ,

we get

cy−1·y(λ′)cx−1·x(λ) =
∑

z·λ′′∈W s

hx·λ,y·λ′,z·λ′′cz−1·z(λ′′)

=
∑

z·λ′′∈W s

hx·λ,y·λ′,z−1·z(λ′′)cz·λ′′

hence

hx·λ,y·λ′,z−1·z(λ′′) = hy−1·y(λ′),x−1·x(λ),z·λ′′ .

This shows that the involution z ·λ 7→ z−1 ·z(λ) ofW s preserves the preorder

� hence it maps any two-sided cell onto a two-sided cell. (In fact, it maps

each two-sided cell c onto itself. Indeed, it is enough to show that some

element z ·λ of c satisfies z ·λ = z−1 ·z(λ); we can take z ·λ to be any element

of the nonempty subset Dc of c.) We also see that the a-function on W s

is constant on the orbits of our involution and that the group isomorphism
♭ : H∞ → H∞ given by tz·λ 7→ tz−1·z(λ) is a ring antiautomorphism. Note

that our involution restricts to the identity permutation of the subset D of

W s and that the algebra homomorphism ψ : H → A ⊗H∞ is compatible

with the antiautomorphisms ♭ of H and of A⊗H∞.
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1.16. Let ()♠ : Q̄l → Q̄l be a field automorphism which maps any root of 1

in Q̄l to its inverse. The field automorphism Q̄l(v) → Q̄l(v) which maps v

to v and x ∈ Q̄l to x
♠ is denoted again by ♠.

1.17. We can view naturally W as a subgroup of GL(V ) where

V := Q̄l ⊗Hom(T,k∗)(−1).

For any i ≥ 0 let SiV be the i-th symmetric power of the vector space

V . Then SV = ⊕i≥0S
iV is naturally a commutative algebra. Now W acts

naturally on SiV for any i.

Let λ ∈ s. If E, Ẽ ∈ ModWλ (resp. E′, Ẽ′ ∈ ModW ′
λ) with E (resp.

E′) irreducible, we set ẼE = HomWλ
(E, Ẽ) (resp. Ẽ′E′

= HomW ′
λ
(E′, Ẽ′)).

For E (resp. E′) as above there exists i ≥ 0 such that (SiV )E 6= 0 (resp.

(SiV )E
′ 6= 0); let bE (resp. bE′) be the smallest such i. If E (resp. E′) are

as above we say that E (resp. E′) is univalent if dim((SbEV )E) = 1 (resp.

dim((SbE′V )E
′
) = 1). We show:

(a) Let E ∈ ModWλ be irreducible and univalent. There exists E′ ∈ ModW ′
λ

irreducible such that E appears in E′|Wλ
and bE′ = bE; moreover, E′ is

uniquely determined up to isomorphism by these properties and is uni-

valent.

Let E be the unique Wλ-submodule of SbEV that is isomorphic to E. Let

E′ =
∑

x∈Ωλ
xE ⊂ SbEV (notation of 1.11(ii)) where we have used the W -

action on SbEV . Then E′ is aW ′
λ-submodule of SbEV ; moreover, for each x ∈

Ωλ, xE is an irreducible Wλ-submodule of SbEV . If E is an irreducible Wλ-

submodule of E′ then E is isomorphic to xE as an irreducibleWλ-submodule

(for some x ∈ Ωλ). But xE is a univalent Wλ-submodule hence we have

necessarily E = xE. Since any irreducible Wλ-submodule of E′ is equal to

xE for some x ∈ Ωλ, we see that any nonzero W ′
λ-submodule of E′ contains

xE for some x ∈ Ωλ; being stable under the action of Ωλ, it is equal to E
′.

Thus E′ is an irreducible W ′
λ-submodule of SbEV . Clearly, E′ appears with

multiplicity 1 (resp. 0) in theW ′
λ-module SbEV (resp. SiV with 0 ≤ i < bE).

Thus bE′ = bE and E′ is univalent. Thus the existence of E′ in (a) is proved.

Now let E′
1 be an irreducible W ′

λ-module such that E appears in E′
1|Wλ

and

bE′
1 = bE. We can find a W ′

λ-submodule E′
1 of SbEV that is isomorphic to

E′
1. By assumption we can find a Wλ-submodule of E′

1 which is isomorphic
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to E; this is necessarily equal to E. For any x ∈ Ωλ we must have xE ⊂ E′
1

so that E′ ⊂ E′
1. Since E′

1 is irreducible as a W ′
λ-module we have E′

1 = E′.
This proves (a).

1.18. If E, Ẽ ∈ ModWTn with E irreducible, we set ẼE = HomWTn(E, Ẽ).

For any i ≥ 0, WTn acts on SiV ⊗ Q̄l[Tn] (V as in 1.17) by wx1 : v ⊗ x 7→
w(v)⊗w(x1x) (with w ∈W,v ∈ V, x1 ∈ Tn, x ∈ Tn). If E ∈ ModWTn is ir-

reducible, there exists i ≥ 0 such that (SiV ⊗Q̄l[Tn])
E 6= 0. Indeed, there ex-

ists λ ∈ s and E1 ∈ModW ′
λ irreducible such that E is induced by the repre-

sentation E1⊗λ of the subgroupW ′
λTn. Then E1 appears in theW ′

λ-module

SbE1V hence E appears in the WTn-module SbE1V ⊗ Q̄l[Tn]. Thus we can

take i = bE1 . Let bE be the smallest i ≥ 0 such that (SiV ⊗ Q̄l[Tn])
E 6= 0.

Note that bE ≤ bE1 . Conversely, assume that (SiV ⊗ Q̄l[Tn])
E 6= 0. Since

theWTn-module SiV ⊗Q̄l[Tn] is induced by theW -module SiV we see (us-

ing Frobenius reciprocity) that dim(SiV ⊗ Q̄l[Tn])
E = dimHomW (E,SiV ).

Since the W -module E is induced by the W ′
λ-module E1, the last dimension

is equal to dim(SiV )E1 . Thus dim(SiV )E1 6= 0 so that bE1 ≤ i. We see that

bE = bE1 . This argument shows also that (SbEV ⊗ Q̄l[Tn])
E = (SbE1V )E1 .

We say that E is univalent if dim(SbEV ⊗ Q̄l[Tn])
E = 1 or equivalently if

E1 is univalent.

1.19. Let A, I, W be as in 1.13. Thus W is Wλ,W
′
λ (with λ ∈ s) or WTn.

Let sgn be the (one dimensional) sign representation ofW . The composition

of sgn with the obvious homomorphism W → W (the inclusion if W is Wλ

or W ′
λ, the projection if W = WTn) is denoted again by sgn. If E is an

irreducible W-module then E ⊗ sgn is again an irreducible W-module. An

irreducible representation E of W is said to be special if aE = bE⊗sgn. We

show:

(a) If E is an irreducible W-module then aE ≤ bE⊗sgn.

(b) For any two-sided cell c of I there exists a unique (up to isomorphism)

irreducible special representation E of W such that cE = c. Moreover,

E ⊗ sgn is univalent.

In the case where A = Hλ, (a), (b) are known from [10].

We prove (a) for A = H′
λ. Let E be an irreducible W ′

λ-module and

let c = cE (a two-sided cell of W ′
λ). Let E0 be an irreducible Wλ-module
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appearing in E|Wλ
and let c0 = cE0 (a two-sided cell of Wλ). We have

c0 ⊂ c and the a-function of Wλ takes the same value on c0 as the a-

function ofW ′
λ on c. Hence aE = aE0 . Now E0⊗sgn appears in (E⊗sgn)|Wλ

hence bE0⊗sgn ≤ bE⊗sgn. Since aE0 ≤ bE0⊗sgn is already known we see that

aE ≤ bE⊗sgn. Thus (a) holds for A = H′
λ.

We prove (b) for A = H′
λ. Let c be a two-sided cell of W ′

λ. We can find

a two-sided cell c0 of Wλ such that c0 ⊂ c. We can find an irreducible Wλ-

module E0 such that cE0 = c0 and aE0 = bE0⊗sgn. By 1.17(a) we can find

an irreducible W ′
λ-module E′ such that E0 ⊗ sgn appears in (E′ ⊗ sgn)|Wλ

and bE′⊗sgn = bE0⊗sgn Then E0 appears in E′|Wλ
hence cE0 ⊂ cE′ . Thus

c0 ⊂ cE′ so that cE′ , c have nonempty intersection and cE′ = c; we see

also that aE0 = aE′ so that aE′ = bE′⊗sgn. Thus the existence part of (b) is

proved. Assume now that E′′ is an irreducibleW ′
λ-module such that cE′′ = c

and aE′′ = bE′′⊗sgn. Let E1 be an irreducible Wλ-module which appears in

E′′|Wλ
and let c1 = cE1 so that c1 ⊂ c and aE1 = aE′′ . Replacing c1 by

xc1x
−1 for some x ∈ Ωλ, we can assume that c1 = c0. Now E1 ⊗ sgn

appears in (E′′ ⊗ sgn)|Wλ
. Hence bE1⊗sgn ≤ bE′′⊗sgn = aE′′ = aE1 . Since

aE1 ≤ bE1⊗sgn by (a), it follows that aE1 = bE1⊗sgn = bE′′⊗sgn. Similarly we

have aE0 = bE0⊗sgn. By the uniqueness in (b) for Wλ we see that E1
∼= E0

as Wλ-modules; moreover E0 ⊗ sgn is univalent. Now E0 ⊗ sgn appears

in (E′ ⊗ sgn)|Wλ
and bE′⊗sgn = bE0⊗sgn; moreover, E0 ⊗ sgn appears in

(E′′ ⊗ sgn)|Wλ
and bE′′⊗sgn = bE0⊗sgn. By the uniqueness in 1.17(a) we see

that E′′ ⊗ sgn ∼= E′ ⊗ sgn so that E′′ ∼= E′; from 1.13(a) we see also that

E′′ ⊗ sgn is univalent. Thus (b) holds for A = H′
λ.

We prove (a) for A = H. Let E be an irreducible WTn-module and let

c = cE (a two-sided cell ofW s). We can find λ ∈ s such that 1λE 6= 0. Then

1λE is an irreducible (1λH1λ)
1-module hence an irreducibleW ′

λ-module. Let

c1 = c1λE , a two-sided cell of W ′
λ. Then {w · λ;w ∈ c1} ⊂ c and ac1 = ac

hence a1λE = aE . Now 1λ(E ⊗ sgn) = (1λE)⊗ sgn hence by an argument in

1.18 we have bE⊗sgn = b(1λE)⊗sgn. Since a1λE ≤ b(1λE)⊗sgn is already known

we see that aE ≤ bE⊗sgn. Thus (a) holds for A = H.

We prove (b) for A = H. Let c be a two-sided cell of W s. Note that

c is also a two-sided cell of W × o for some W -orbit o in W s. We can find

λ ∈ o and a two-sided cell c0 of W ′
λ such that {w · λ;w ∈ c0} ⊂ c and

ac0 = ac. We can find an irreducible W ′
λ-module E0 such that cE0 = c0 and

aE0 = bE0⊗sgn. Let E′ be the WTn-module induced by the W ′
λTn-module
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E0 ⊗ λ; note that E′ is irreducible. We have aE′ = aE0 . Moreover, E′ ⊗ sgn

is the WTn-module induced by the W ′
λTn-module (E0⊗ sgn)⊗ λ; hence by

an argument in 1.18 we have bE′⊗sgn = bE0⊗sgn. Thus we have aE′ = bE′⊗sgn.

Thus, the existence part of (b) is proved.

Assume now that E′′ is an irreducible WTn-module such that cE′′ = c

and aE′′ = bE′′⊗sgn. We can find λ′ ∈ s such that 1λ′E
′′ 6= 0. Since cE′′ = c

we must have λ′ ∈ o. Replacing λ′ by w(λ′) for some w ∈W , we can assume

that λ′ = λ so that 1λE
′′ 6= 0. Then {w ∈ W ;w · λ ∈ c} is a two-sided cell

of W ′
λ, necessarily equal to c0; moreover, c1λE′′ = c0 hence a1λE′′ = aE′′ .

Now E′′ is theWTn-module induced by theW ′
λTn-module (1λE

′′)⊗λ hence

E′′⊗sgn is theWTn-module induced by theW ′
λTn-module ((1λE

′′)⊗sgn)⊗λ
hence by the argument in 1.18 we have bE′′⊗sgn = b(1λE′′)⊗sgn. It follows that

a1lE′′ = b(1λE′′)⊗sgn. Using this and aE0 = bE0⊗sgn and also the uniqueness

part in (b) for W ′
λ we see that E0

∼= 1λE
′′ as W ′

λ-modules. Since E′ (resp.
E′′) is induced by the W ′

λTn-module E0 ⊗ λ (resp. (1λE
′′) ⊗ λ) we deduce

that E′ ∼= E′′ as WTn-modules. From 1.18 we see also that E′′ is univalent.
Thus (b) holds for A = H. This completes the proof of (a), (b) in all cases.

The special representation ofW associated to c in (b) is denoted by Ec.

It is well defined up to isomorphism. By (b), the special representations of

W (up to isomorphism) are in natural bijection with the two-sided cells of

I.

1.20. Let V, SV = ⊕i≥0S
iV be as in 1.17. For any i ≥ 0 we set

I i =
∑

i′>0,i′′≥0;i′+i′′=i

(Si
′
V )WSi

′′
V ⊂ SiV,

S̄iV = SiV/I i, where (Si′V )W is the space ofW -invariants in Si
′
V (we have

used the algebra structure of SV ). Let I = ⊕i≥0I i, S̄V = ⊕i≥0S̄V
i = SV/I.

Note that I is an ideal in SV hence S̄V is a (graded) algebra. Note also

that the W -action on SV preserves I hence it induces a W -action on S̄V

which is compatible with the grading and with the algebra structure.

The following property is well known:

(a) S̄iV = 0 for i > ν; S̄ν is isomorphic to sgn as a W -module (in particular

it is 1-dimensional). For i ∈ [0, ν], the bilinear pairing S̄iV × S̄ν−i → S̄ν

given by multiplication in S̄V is perfect.
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From (a) we deduce that for i ∈ [0, ν] we have S̄iV ∼= S̄ν−i ⊗ sgn as W -

modules. (We use that any W -module is isomorphic to its dual.) Hence if

λ ∈ s we have

(b) S̄iV ∼= S̄ν−i ⊗ sgn as W ′
λ-modules. (W ′

λ acts by restriction of the W -

action.) In particular. for any irreducible representation E of W ′
λ we

have (S̄iV )E ∼= (S̄ν−i)E⊗sgn.

Clearly, if E is an irreducible W ′
λ-module and 0 ≤ i ≤ bE then (I i)E = 0

hence (S̄iV )E = (SiV )E . In particular we have

(c) (S̄iV )E = 0 for 0 ≤ i < bE and (S̄bEV )E = (SbEV )E 6= 0.

Using (b), (c) we see that:

(c’) If E is an irreducible W ′
λ-module then (S̄iV )E = 0 for i > ν − bE⊗sgn.

Moreover, dim(S̄ν−bE⊗sgnV )E is 1 if E is special and ≥ 1 if E is not

special.

Since aE ≤ bE⊗sgn (see 1.19(a)) with equality if and only if E is special, we

deduce:

(d) If E is an irreducible W ′
λ-module then (S̄iV )E = 0 for i > ν − aE.

Moreover, dim(S̄ν−aEV )E is 1 if E is special and 0 if E is not special.

1.21. TheWTn-action on SiV ⊗Q̄l[Tn] (see 1.18) leaves I i⊗Q̄l[Tn] stable

hence it induces a WTn-action on S̄iV ⊗ Q̄l[Tn]. We show:

(a) Let E be an irreducible WTn-module. We have (S̄iV ⊗ Q̄l[Tn])
E = 0

for i > ν − aE. Moreover, dim(S̄ν−aEV ⊗ Q̄l[Tn])
E is 1 if E is special

and 0 if E is not special.

We can find λ ∈ s such that 1λE 6= 0. Then 1λE is an irreducible W ′
λ-

module and E is induced by the representation (1λE) ⊗ λ of the subgroup

W ′
λTn. Since for i ≥ 0 theWTn-module S̄iV ⊗Q̄l[Tn] is induced by theW -

module S̄iV we see (using Frobenius reciprocity) that dim(S̄iV ⊗Q̄l[Tn])
E =

dimHomW (E, S̄iV ). Since the W -module E is induced by the W ′
λ-module

1λE, the last dimension is equal to dim(S̄iV )1λE . Now (a) follows from
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1.20(d) applied to 1λE instead of E, using the equality aE = a1λE and the

fact that E is special if and only if 1λE is special.

2. Truncated Convolution of Sheaves on B̃2

2.1. For w ∈ W and ω ∈ κ−1(w) we define Gw → T, g 7→ gω, by g ∈
UωgωU, gω ∈ T. Let B̃ = G/U. Now G×T2 acts on B̃2 by

(g, t1, t2) : (xU, yU) 7→ (gxtn1U, gyt
n
2U).

The orbits of this action are indexed by W : to w ∈ W corresponds the

orbit Õw = {(xU, yU) ∈ B̃2;x−1y ∈ Gw}. The closure of Õw in B̃2 is

Õw = ∪y≤wÕw.

Let w ∈ W , ω ∈ κ−1(w). We define jω : Õw → T by jω(xU, yU) =

(x−1y)ω Let λ ∈ s. We set Lωλ = j∗ωLλ. Now Lλ is equivariant for the G×T2-

action (g, t1, t2) : t 7→ w−1(t1)
−nttn2 on T and this action is compatible under

jω with the G×T2-action on Õw (as above); hence Lωλ is a G×T2-equivariant

local system of rank 1 on Õw such that the induced action of T2
n on any stalk

is via the character (t1, t2) 7→ w(λ)−1(t1)λ(t2). (Note that T2
n acts trivially

on B̃2.) Now let

Γw = {(g, t0, t1) ∈ G×T2; gtn0U = U, gωtn1U = ωU}

be the stabilizer in G ×T2 of (U, ωU) ∈ Õw. Setting g = tu where t ∈ T,

u ∈ U1 := U ∩ ωUω−1, we can identify

Γw = {(u, t, t0, t1) ∈ U1 ×T3; ttn0 = 1, w−1(t)tn1 = 1}.

The subgroup

{(u, t, t0, t1) ∈ U1 ×T3; t0 = w(t1), tt
n
0 = 1}

of Γw is clearly connected and has the same dimension as Γw (namely ρ +

dimU1) hence it is the identity component Γ0
w of Γw. We can view T2

n as the

kernel of the surjective homomorphism Γw → U1 ×T, (u, t, t0, t1) 7→ (u, tn0 ),

whose restriction to Γ0
w must also be surjective. It follows that Γw = T 2

nΓ
0
w
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hence

Γw/Γ
0
w = T2/(T2 ∩ Γ0

w) = T2/{(t0, t1) ∈ T2; t0 = w(t1)}.

Now the G × T2-equivariant local systems on Õw correspond to repre-

sentations of Γw/Γ
0
w hence to representations of T2

n which are trivial on

{(t1, t2) ∈ T2
n; t1 = w(t2)}. We see that the local systems Lẇλ , λ ∈ s form

a set of representatives for the isomorphism classes of irreducible G × T2-

equivariant local systems on Õw.

We define h̃ : B̃2 → B̃2 by (xU, yU) 7→ (yU, xU). Let w ∈ W , ω ∈
κ−1(w), λ ∈ s. Define ξ : T → T by ξ(t) = w(t−1). From the definitions

we have jω h̃ = ξjω−1 : Õw−1 → T. Hence h̃∗Lωλ = Lω
−1

w(λ−1). (We use that

ξ∗Lλ = Lw(λ−1).)

2.2. Let w ∈ W , ω ∈ κ−1(w). For l ∈ s we shall view Lωλ as a constructible

sheaf on B̃2 which is 0 on B̃2−Õw. Let Lω♯λ be its extension to an intersection

cohomology complex on Õw viewed as a complex on B̃2, equal to 0 on B̃2 −
Õw. Let Lωλ = Lω♯λ 〈|w| + ν + 2ρ〉, a simple perverse sheaf on B̃2. Note that

Lωλ (resp. Lωλ) is (noncanonically) isomorphic to Lẇλ (resp. Lẇλ ). (We use

1.5). We have

(a) h̃∗Lωλ = Lω
−1

w(λ−1).

2.3. For i < j in [0, 2] we define pij : B̃3 → B̃2 by (x0U, x1U, x2U) 7→
(xiU, xjU). For L,L′ in D(B̃2) we set L ◦ L′ = p02!(p

∗
01L⊠ p∗12L

′) ∈ D(B̃2).
This operation is associative. Hence for 1L, 2L, . . . ,mL in D(B̃2), 1L ◦ 2L ◦
. . . ◦ mL ∈ D(B̃2) is defined.

We have p02 = p̄02f where f : B̃3 → B̃ × B × B̃ is (x0U, x1U, x2U) 7→
(x0U, x1Bx

−1
1 , x2U) and p̄02 : B̃ × B × B̃ → B̃2 is (x0U, B, x2U) 7→ (x0U,

x2U). We show:

(a) Let w,w′ ∈ W , ω ∈ κ−1(w), ω′ ∈ κ−1(w′), λ, λ′ ∈ s. If w′(λ′) 6= λ then

Lωλ ◦ Lω
′
λ′ = 0.
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It is enough to show that f!(p
∗
01L

ω
λ⊠p

∗
12L

ω′
λ′ ) = 0. Hence it is enough to show

that for any (x0, x1, x2) ∈ G3 and any i we have

H i
c(f

−1(x0U, x1Bx
−1
1 , x2U), p∗01L

ω
λ ⊠ p∗12L

ω′
λ′ ) = 0.

We have

f−1(x0U, x1Bx
−1
1 , x2U) = {(x0U, x1τU, x2U); τ ∈ T}

hence this fibre of f is empty unless ξ−1
0 x1 ∈ Uωt0U, x−1

1 x2 ∈ Uω′t′0U for

some t0, t
′
0 in T (which we now assume) so that the fibre can be identified

with T. The restriction of p01 (resp. p12 to this fibre can be identified

with τ 7→ t0τ (resp. τ 7→ w′−1(τ−1)t′0). Then p∗01L
ω
λ ⊠ p∗12L

ω′
λ′ becomes

the local system Lλ ⊗ Lw′(λ′)−1 = Lλw′(λ′)−1 on T. It remains to use that

H i
c(T, Lλ1) = 0 if λ1 ∈ s− {1}.

2.4. Let w,w′ ∈ W be such that |ww′| = |w| + |w′|, let ω ∈ κ−1(w), ω′ ∈
κ−1(w′) and let λ, λ′ ∈ s. We show:

(a) If w′(λ′) = λ, then we have canonically Lωλ ◦ Lω
′
λ′ = Lωω

′
λ′ ⊗ L.

Let

Y = {(xU, yU, t, t′) ∈ B̃ × B̃ ×T×T;x−1y ∈ Uωω′w′−1(t)t′U}.

Define h : T2 → T by h(t, t′) = w′−1(t)t′. Define j : Y → Õww′ by

j(xU, yU, t, t′) = (xU, yU).

Define j1 : Y → T by j1(xU, yU, t, t
′) = (t, t′). Let j′ = jωω′ : Õww′ → T be

as in 2.1. From the definitions we have

Lωλ ◦ Lω
′
λ′ = j!(j

∗
1(Lλ ⊠ Lλ′)) = j′∗(h!(Lλ ⊠ Lλ′)).

To prove (a) it remains to show that h!(Lλ ⊠ Lλ′) = Lλ′ ⊗ L. Replacing λ

by w′−1(λ) and h by h′ : T2 → T, h′(t, t′) = tt′ we see that it is enough to

show that h′!(Lλ ⊠ Lλ) = Lλ ⊗ L. We have h!(Lλ ⊠ Lλ) = h′!h
′∗Lλ and it

remains to use the equality h′!Q̄l = L.
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2.5. Let s ∈ S, λ′ ∈ s. Let L′ be the local system of rank 1 on B̃2×(Us−{1})
whose restriction to B̃2 × {ξ} is L

σξ
λ′ for any ξ ∈ Us − {1} (see 1.2). Let

L̂sλ′ = c!L
′ ∈ D(B̃2) where c : B̃2×(Us−{1})→ B̃2 is the obvious projection.

Clearly, we have

L̂sλ′ ≎ {H2L̂sλ′ [−2],H1L̂sλ′ [−1]).

Moreover, if s /∈ Wλ′ then H2L̂sλ′ [−2] = 0, H1L̂sλ′ [−1] = 0 hence L̂sλ′ = 0. If

s ∈Wλ′ then H2L̂sλ′ [−2] = Lṡλ′ [−2](−1), H1L̂sλ′ [−2] = Lṡλ′ [−1].

2.6. Let s ∈ S and let λ, λ′ ∈ s be such that s(λ′) = λ. From the definitions

we see that:

Lṡλ ◦ Lṡ
−1

λ′ ≎ {L1
λ′ [−2](−1) ⊗ L, L̂sλ′}.

Using the results in 2.5 we deduce:

(a) If s /∈Wλ, then L
ṡ
λ ◦ Lṡ

−1

λ′ = L1
λ′ [−2](−1) ⊗ L.

(b) If s ∈Wλ, then

Lṡλ ◦ Lṡ
−1

λ′ ≎ {L1
λ′ [−2](−1) ⊗ L, Lṡλ′ [−2](−1) ⊗ L, Lṡλ′ [−1]⊗ L}.

(Note that the conditions s ∈Wλ and s ∈Wλ′ are equivalent.)

2.7. Let s ∈ S,w ∈W be such that |sw| < |w| and let ω ∈ κ−1(w), λ, λ′ ∈ s

be such that w(λ′) = λ. We show:

(a) If s /∈Wλ then Lṡλ ◦ Lωλ′ ⊗ L = Lṡωλ′ [−2](−1) ⊗ L⊗ L.

(b) If s ∈Wλ, then

Lṡλ ◦Lωλ′ ⊗L ≎ {Lṡωλ′ [−2](−1)⊗L⊗2, Lωλ′ [−2](−1)⊗L⊗2, Lωλ′ [−1]⊗L⊗2}.

Using 2.4(a) we have Lωλ′ ⊗ L = Lṡ
−1

λ′′ ◦ Lṡωλ′ where λ′′ = (sw)(λ′). Hence

Lṡλ ◦ Lωλ′ ⊗ L = Lṡλ ◦ Lṡ
−1

λ′′ ◦ Lṡωλ′ .

We now apply the results in 2.6 to describe Lṡλ ◦ Lṡ
−1

λ′′ . In case (a), we

obtain

Lṡλ ◦ Lωλ′ ⊗ L = L1
λ′′ ◦ Lṡωλ′ ⊗ L[−2](−1).
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By 2.4(a) this equals Lṡωλ′ ⊗ L⊗2[−2](−1), proving (a). In case (b) we

obtain

Lṡλ ◦ Lωλ′ ⊗ L ≎

{L1
λ′′ ◦ Lṡωλ′ [−2](−1)⊗ L, Lṡ

−1

λ′′ ◦ Lṡωλ′ [−2](−1) ⊗ L, Lṡ
−1

λ′′ ◦ Lṡωλ′ [−1]⊗ L}.

Here we substitute L1
λ′′ ◦Lṡωλ′ = Lṡωλ′ ⊗L, Lṡ

−1

λ′′ ◦Lṡωλ′ = Lωλ′⊗L (see 2.4(a))

and (b) follows.

2.8. We choose an Fq-rational structure on G. We shall assume that B

(hence U) is defined over Fq, that T is defined and split over Fq and that

the integer n in 1.4 divides q − 1. Then for each s ∈ S, the subgroup Us is

defined over Fq; we shall also assume that in 1.3 we have ξs ∈ Us(Fq)−{1}.
We have induced Fq-structures on B, B̃. For any w ∈ W , Ow, Ōw, Õw, Õw
inherit natural Fq-structures. For any w ∈ W we write κ−1

q (w) instead of

κ−1(w) ∩ G(Fq); note that ẇ ∈ κ−1
q (w), (ẇ)−1 ∈ κ−1

q (w−1). Now the local

system ι!Q̄l in 1.4 is naturally pure of weight zero (since Q̄l is so) and each

of its direct summands Lλ is itself naturally pure of weight zero (since n

divides q − 1). If ω ∈ κ−1
q (w), it follows that the local system Lωλ on Õw is

naturally pure of weight zero. Hence Lω♯λ , Lωλ are naturally pure of weight

zero. In particular, Lẇλ , L
ẇ♯
λ , Lẇλ are naturally pure of weight zero.

Let D♠B̃2 be the subcategory of D(B̃2) consisting of objects which are

restrictions of objects in the G×T2-equivariant derived category. Let D♠
mB̃2

be the subcategory of Dm(B̃2) consisting of objects which are restrictions of

objects in the mixed G×T2-equivariant derived category. LetM♠B̃2 (resp.

M♠
mB̃2) be the subcategory of D♠B̃2 (resp. D♠

mB̃2) consisting of objects

which are perverse sheaves.

If w ∈ W , ω ∈ κ−1
q (w) then Lωλ (resp. Lω♯λ , Lωλ) is (noncanonically)

isomorphic to Lẇλ (resp. Lẇ♯λ , Lẇλ ) as objects of Dm(B̃2).

2.9. Let L ∈ D♠
m(B̃2). For any w ∈W , i ∈ Z,HiL|Õw

is aG×T2-equivariant

local system with an induced mixed structure. We can write it as

HiL|Õw
= ⊕λ∈sVL,i,w,λ ⊗ Lẇλ
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where VL,i,w,λ are mixed Q̄l-vector spaces. For j ∈ Z let VL,i,w,λ,j be the

subquotient of VL,i,w,λ,j of pure weight j. We set

γ(L) =
∑

w∈W,λ∈s

∑

i,j∈Z
(−1)i(−v)j dimVL,i,w,λ,jTw1λ ∈ H.

For example, if w ∈W and ω ∈ κ−1
q (w), λ ∈ s then

γ(Lωλ) = γ(Lẇλ ) = Tw1λ.

Note that

(a) if (L,L′, L′′) is a distinguished triangle in D♠
m(B̃2), then γ(L′) = γ(L) +

γ(L′′).

2.10. Let w,w′ ∈W , ω ∈ κ−1
q (w), ω′ ∈ κ−1

q (w′), λ, λ′ ∈ s. We show:

(a) γ(Lωλ ◦ Lω
′
λ′ ) = (v2 − 1)ργ(Lωλ)γ(L

ω′
λ′ ).

The right hand side of (a) is (v2−1)ρTw1λTw′1λ′ . We prove (a) by induction

on |w|. If |w| = 0 then by 2.4(a), 2.3(a), the left hand side of (a) is (v2 −
1)ρTw′1λ′ (if w

′(λ′) = λ) and 0 otherwise; this is clearly equal to the right

hand side of (a). Now assume that |w| ≥ 1. We can find s ∈ S such that

|w| = |ws|+ 1. The right hand side of (a) is

(b) (v2 − 1)ρTw1λTw′1λ′ = (v2 − 1)ρTwsTs1λTw′1λ′ .

If w′(λ′) 6= λ then (b) is 0. If w′(λ′) = λ and |sw′| = |w′| + 1 then (b) is

(v2 − 1)ρTwsTsw′1λ′ . If w′(λ′) = λ and |sw′| = |w′| − 1, s /∈ Wλ then (b) is

v2(v2 − 1)ρTwsTsw′1λ′ . If w
′(λ′) = λ and |sw′| = |w′| − 1, s ∈Wλ then (b) is

(v2 − 1)ρTws(v
2Tsw′ + (v2 − 1)Tw′)1λ′ .

Let λ′′ = s(λ). By 2.4(a) we have Lωλ ⊗ L = Lωṡ
−1

λ′′ ◦ Lṡλ, hence

(c) K := Lωλ ◦ Lω
′
λ′ ⊗ L⊗ L = Lωṡ

−1

λ′′ ◦ Lṡλ ◦ Lω
′
λ′ ⊗ L.

If w′(λ′) 6= λ, then K = 0 by 2.3(a); hence in this case (a) holds. Thus we
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can assume that w′(λ′) = λ. If |sw′| = |w′|+ 1 we have (using 2.4(a))

K = Lωṡ
−1

λ′′ ◦ Lṡω′
λ′ ⊗ L⊗ L

hence by the induction hypothesis

(v2 − 1)2ργ(Lωλ) ◦ Lω
′
λ′ ) = (v2 − 1)3ρTws1λ′′Tsw′1λ′ ;

hence in this case (a) holds. We now assume that w′(λ′) = λ, |sw′| = |w′|−1.
Using 2.7(a), (b) to describe Lṡλ ◦ Lω

′
λ′ ⊗ L we deduce that

K = Lωṡ
−1

λ′′ ◦ Lṡω′
λ′ ⊗ L⊗2[−2](−1) if s /∈Wλ,

K ≎ {Lωṡ−1

λ′′ ◦ Lṡω′
λ′ ⊗ L⊗2[−2](−1), Lωṡ−1

λ′′ ◦ Lω′
λ′ ⊗ L⊗2[−2](−1),

Lωṡ
−1

λ′′ ◦ Lṡω′
λ′ ⊗ L⊗2[−1]} if s ∈Wλ.

It follows that

γ(K) = v2(v2 − 1)2ργ(Lωṡ
−1

λ′′ ◦ Lṡω′
λ′ ) if s /∈Wλ,

γ(K) = (v2 − 1)2ρ(v2γ(Lωṡ
−1

λ′′ ◦ Lṡω′
λ′ ) + (v2 − 1)γ(Lωṡ

−1

λ′′ ◦ Lω′
λ′ )) if s ∈Wλ.

Using the induction hypothesis we see that

γ(K) = v2(v2 − 1)3ρTws1λ′′Tsw′1λ′ if s /∈Wλ,

γ(K) = (v2 − 1)3ρ(v2Tws1λ′′Tsw′1λ′ + (v2 − 1)Tws1λ′′Tw′1λ′) if s ∈Wλ.

Thus, (a) holds.

2.11. Let r ≥ 1 and let 1L, 2L, . . . , rL be objects of D♠
mB̃2. We show:

(a) γ(1L ◦ 2L ◦ . . . ◦ rL) = (v2 − 1)(r−1)ργ(1L)γ(2L) . . . γ(rL).

When r = 1, (a) is obvious. For r ≥ 2, (a) follows easily by induction from

the case when r = 2. Thus we may assume that r = 2. For j = 1, 2 we have

jL ≎ {Hi(jL)[−i]; i ∈ Z}

hence (using 2.9(a)), γ(jL) =
∑

i(−1)iγ(Hi(jL)). Moreover,

1L ◦ 2L ≎ {Hi(1L) ◦ Hi′(2L)[−i− i′]; i, i′ ∈ Z}
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hence (using 2.9(a)),

γ(1L ◦ 2L) =
∑

i,i′∈Z
(−1)i+i′γ(Hi(1L) ◦ Hi′(2L)).

Thus we can assume that 1L = Lẇλ ,
2L = Lẇ

′
λ′ where w,w′ ∈ W , λ, λ′ ∈ s.

In this case, (a) follows from 2.10(a).

2.12. Let λ ∈ s. We choose for each η ∈ Wλ an element η̈ ∈ κ−1(η) as

follows. Assume first that |η|λ = 1. We write η = s1s2 . . . srsr+1sr . . . s1

with s1, s2 . . . , sr+1 in S; we set

η̈ = ṡ1ṡ2 . . . ṡrṡr+1ṡ
−1
r . . . ṡ−1

1 .

Assume next that |η|λ = m. We write η = η1η2 . . . ηm with ηi ∈ Wλ such

that |η1|λ = · · · = |ηm|λ = 1, |η|λ = m and we set η̈ = η̈1η̈2 . . . η̈m. (In

particular, 1̈ = 1.)

We now define for each w ∈W an element ẅ ∈ κ−1
q (w) as follows. There

is a unique z ∈ W such that z = min(wWλ). We have w = zη for a unique

η ∈Wλ. We set ẅ = żη̈.

Let w, y ∈ W . Let z = min(wWλ). We write w = zη with η ∈ Wλ. Let

i ∈ Z. The statements (a), (b) below can be deduced from [13, 1.24] in the

same way as [16, 12.4] was deduced from [13, 1.24].

(a) We have HiLẅ♯λ |Õy
= 0 unless i is even and y ∈ wWλ.

(b) Assume that i is even and y ∈ wWλ. We write y = zη′ with η′ ∈ Wλ.

We have

HiLẅ♯λ |Õy
≎ {(Lÿλ)h(−i/2);h ∈ [1, nλ,η′,η,i]}

where (Lÿλ)h are copies of Lÿλ and nλ,η′,η,i is the coefficient of Xi/2 in

X(1/2)(|w|−|y|−|η|λ|+|η′|λ)P λη′,η(X),

see 1.8.

From (a), (b) we deduce:

(c) Lẅ♯λ ≎ {(L(zη′ )̈
λ )h〈−i〉; η′ ∈Wλ, h ∈ [1, nλ,η′,η,i]}.
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This is compatible with the natural mixed structures. Using 2.9(a), we

deduce

γ(Lẅ♯λ ) =
∑

η′∈Wλ;i∈2Z
nλ,η′,η,iγ(L

(zη′ )̈
λ )vi,

that is

γ(Lẅ♯λ ) =
∑

η′∈Wλ

v|w|−|zη′|−|η|λ+|η′|λP λη′,η(v
2)Tzη′1λ

hence, using 1.8(a),

(d) γ(Lω♯λ ) = v|w|cw,λ,

for any ω ∈ κ−1
q (w).

2.13. Let w,w′ ∈W , ω ∈ κ−1(w), ω′ ∈ κ−1(w′) and λ, λ′ ∈ s. We show:

(a) If w′(λ′) 6= λ then Lω♯λ ◦ L
ω′♯
λ′ = 0.

(b) If w′(λ′) 6= λ then Lωλ ◦ L
ω′♯
λ′ = 0, Lω♯λ ◦ Lω

′
λ′ = 0.

We prove (a). We write w = zw1 (resp. w′ = z′w′
1) where z = min(zWλ)

(resp. z′ = min(z′Wλ′)) and w1 ∈ Wλ (resp. w′
1 ∈ Wλ′). Using 2.12(c) it

is enough to show that Lẏ1λ ◦ L
ẏ′1
λ′ = 0 for any y1 ∈ Wλ, y

′
1 ∈ Wλ′ . Using

2.3(a) it is enough to show that for y′1 ∈ Wλ′ we have z′y′1(λ
′) 6= λ. We

have y′1(λ
′) = λ′, w′

1(λ
′) = λ hence z′y′1(λ

′) = z′(λ′) = z′w′
1(λ

′) = w′(λ′). It

remains to use our assumption that w′(λ′) 6= λ.

We prove (b). For the first (resp. second) equality in (b) we repeat the

proof of (a) but take y1 = w1 (resp. y′1 = w′
1).

It is not difficult to prove the following strengthening of (a).

(c) Assume that for some j ∈ Z, Lżη is a composition factor of (Lẇλ ◦ Lẇ
′

λ′ )
j .

Then η = λ′ = w′−1(λ).

2.14. In the remainder of this paper we fix a two-sided cell c of W s and we

set a = a(w · λ) for some/any w · λ ∈ c. Let o be the unique W -orbit on s

such that w · λ ∈ c =⇒ λ ∈ o.

Let Y = B̃2. Let M�Y (resp. M≺Y ) be the subcategory of D♠Y whose

objects are perverse sheaves L such that any composition factor of L is of
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the form Lẇλ for some w · λ � c (resp. w · λ ≺ c). LetM�
mY (resp. M≺

mY )

be the subcategory of D♠
mY whose objects are inM�Y (resp. M≺Y ). Let

D�Y (resp. D≺Y ) be the subcategory of D♠Y whose objects are complexes

L such that Lj is inM�Y (resp. M≺Y ) for any j. Let D�
mY (resp. D≺

mY )

be the subcategory of D♠
mY whose objects are also in D�Y (resp. D≺Y ).

Let C♠Y be the subcategory ofM♠Y consisting of semisimple objects. Let

C♠0 Y be the subcategory ofM♠
mY consisting of those L such that L is pure

of weight zero. Let CcY be the subcategory of M♠Y consisting of objects

which are direct sums of objects of the form Lẇλ with w · λ ∈ c. Let Cc0Y be

the subcategory of C♠0 Y consisting of those L ∈ C♠0 Y such that, as an object

of C♠Y , L belongs to CcY . For L ∈ C♠0 Y let L be the largest subobject of L

such that as an object of C♠Y , we have L ∈ CcY .

2.15. Let r ≥ 1. We define an action of G = G ×Ur × T2r+1 ×Ur+1 on

Gr+1 by

(g, u1, u2, . . . , ur, t1, . . . , tr, t
′
0, t

′
1, . . . , t

′
r, u

′
0, u

′
1, . . . , u

′
r) :

(g0, g1, . . . , gr) 7→ (gg0t
′
0
nu′0

−1, u1t
−n
1 g1t

′
1
nu′1

−1, . . . , urt
−n
r grt

′
r
nu′r

−1).

The orbits of this action are indexed by W r; to w = (w1, . . . , wr) ∈ W r

corresponds the orbit Gr+1
w = G ×Gw1 ×Gw2 × . . . ×Gwr . The restriction

of the G-action to the subgroup

G′ := {(g, u1, u2, . . . , ur, t1, . . . , tr, t′0, t′1, . . . , t′r, u′0, u′1, . . . , u′r) ∈ G;
g=1, t1= . . .= tr= t

′
0= . . .= t

′
r=1, u′0=u1, u

′
1=u2, . . . , u

′
r−1=ur}

(isomorphic to Ur+1) is free and the map θ : Gr+1 → B̃r+1 given by

(g0, g1, . . . , gr) 7→ (g0U, g0g1U, . . . , g0g1 . . . grU)

identifies B̃r+1 with G′\Gr+1. For w = (w1, . . . , wr) ∈W r and J ⊂ [1, r] we

define

Gr+1,J
w = {(g0, g1, . . . , gr) ∈ Gr+1; gi ∈ Ḡwi

∀i ∈ J, gi ∈ Gwi
∀i ∈ [1, r]− J},

ÕJw = {(x0U, x1U, . . . , xrU) ∈ B̃r+1;x−1
i−1xiU ∈ Ḡwi

∀i ∈ J,
x−1
i−1xi ∈ Gwi

∀i ∈ [1, r]− J}.
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Now θ identifies ÕJw with G′\Gr+1,J
w and

ÕJw = ⊔y=(y1,y2,...,yr)∈W r;yi≤wi∀i∈J,yi=wi∀i∈[1,r]−JÕ∅
y.

Note that Õ∅
w is irreducible of dimension ν + (r + 1)ρ+ |w| where

|w| = |w1|+ |w2|+ · · ·+ |wr|.

Until the end of 2.22 we fix w = (w1, . . . , wr) ∈ W r, ωωω = (ω1, ω2, . . . , ωr)

such that ωi ∈ κ−1
q (wi) for i = 1, . . . , r and λλλ = (λ1, λ2, . . . , λr) ∈ sr.

Define c : Õ∅
w → Tr and c̃ : Gr+1

w → Tr by

c(x0U, x1U, . . . , xrU) = ((x−1
0 x1)ω1 , (x

−1
1 x2)ω2 , . . . , (x

−1
r−1xr)ωr),

c̃(g0, g1, . . . , gr) = ((g1)ω1 , (g2)ω2 , . . . , (gr)ωr),

so that c̃ = cθ. Let Mωωω
λλλ ∈ Dm(B̃r+1) be the local system c∗(Lλ1 ⊠ . . .⊠Lλr)

on Õ∅
w extended by 0 on B̃r+1 − Õ∅

w. Let M̃ωωω
λλλ ∈ Dm(Gr+1) be the local

system c̃∗(Lλ1 ⊠ . . . ⊠ Lλr) on Gr+1
w extended by 0 on Gr+1 − Gr+1

w . Note

that

M̃ωωω
λλλ = θ∗Mωωω

λλλ .

From the definitions we have

Mωωω
λλλ = p∗01L

ω1
λ1
⊗ p∗12Lω2

λ2
⊗ . . . ⊗ p∗r−1,rL

ωr

λr
.

(Here pij : B̃r+1 → B̃2 are the obvious projections.) Note that M̃ωωω
λλλ ∈

Dm(Gr+1) is G-equivariant. Indeed, G acts on Tr by

(g, u1, u2, . . . , ur, t1, . . . , tr, t
′
0, t

′
1, . . . , t

′
r, u

′
0, u

′
1, . . . , u

′
r) :

(t′′1 , t
′′
2, . . . , t

′′
r ) 7→ (w−1

1 (t−n1 )t′′1t
′
1
n, w−1

2 (t−n2 )t′′2t
′
2
n, . . . , w−1

r (t−nr )t′′r t
′
r
n),

θ is compatible with the G-actions and Lλ1 ⊠ . . . ⊠ Lλr is a G-equivariant
local system. Let J ⊂ [1, r]. We set

Mωωω,J
λλλ = p∗01

1L⊗ p∗122L⊗ . . .⊗ p∗r−1,r
rL ∈ Dm(B̃r+1),

Lω
ωω,J
λλλ = p0r!M

ωωω,J
λλλ 〈|w|〉 = 1L ◦ 2L ◦ . . . ◦ rL〈|w|〉 ∈ Dm(B̃2),
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where iL is Lωi♯
λi

for i ∈ J and Lωi

λi
for i /∈ J . Note that Mωωω,∅

λλλ = Mωωω
λλλ . More-

over, Mωωω,J
λλλ is the intersection cohomology complex of ÕJw with coefficients

in Mωωω
λλλ .

To prove this, it is enough to show that θ∗Mωωω,J
λλλ is the intersection cohomol-

ogy complex of Gr+1,J
w with coefficients in M̃ωωω

λλλ ; this is immediate.

Consider the free Tr−1-action on B̃r+1 given by

(τ1, τ2, . . . , τr−1) : (x0U, x1U, . . . , xr−1U, xrU) 7→
(x0U, x1τ1U, . . . , xr−1τr−1U, xrU).

Note that ÕJw is stable under this Tr−1-action. We also have a free Tr−1-

action on Tr given by

(τ1, τ2, . . . , τr−1) : (t1, t2, . . . , tr) 7→
(t1τ1, w

−1
2 (τ−1

1 )t2τ2, w
−1
3 (τ−1

2 )t3τ3, . . . , w
−1
r−1(τ

−1
r−2)tr−1τr−1, w

−1
r (τ−1

r−1)tr).

Let ′B̃r+1 = Tr−1\B̃r+1. Let ′ÕJw = Tr−1\ÕJw (a locally closed subvariety

of ′B̃r+1). Let ′Tr = Tr−1\Tr. Note that ′Õ∅
w = Tr−1\Õ∅

w is an open dense

smooth irreducible subvariety of ′ÕJw. Now c : Õ∅
w → Tr is compatible with

the Tr−1-actions on Õ∅
w,T

r hence it induces a map ′c : ′Õ∅
w → ′Tr. The

homomorphism c′ : Tr → T given by

(t1, t2, . . . , tr) 7→ t1w2(t2)w2w3(t3) . . . w2w3 . . . wr(tr)

is constant on each orbit of the Tr−1-action on Tr hence it induces a mor-

phism ′Tr → T whose composition with ′c is denoted by c̄ : ′Õ∅
w → T. Let

′Mωωω,∅
λλλ be the local system c̄∗Lλ1 on ′Õ∅

w extended by 0 on ′B̃r+1− ′Õ∅
w. Let

′Mωωω,J
λλλ ∈ Dm(′B̃r+1) be the intersection cohomology complex of ′ÕJw with

coefficients in ′Mωωω,∅
λλλ extended by 0 on ′B̃r+1 − ′ÕJw. Let p̄0r :

′ÕJw → B̃2 be

the map induced by p0r : ÕJw → B̃2. We define ′Lωωω,Jλλλ ∈ D♠
mB̃2 as follows: if

λk = wk+1(λk+1) for k = 1, 2, . . . , r − 1

(in which case we say that λλλ is w-adapted) we set

′Lωωω,Jλλλ = p̄0r!
′Mωωω,J

λλλ 〈|w|〉;

if λλλ is not w-adapted, we set ′Lωωω,Jλλλ = 0. Let ĉJ : ÕJw → ′ÕJw be the obvious

(orbit) map. We show:
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(a) If λλλ is w-adapted then Mωωω,J
λλλ = (ĉJ )∗′Mωωω,J

λλλ .

Since ĉJ is a Tr−1-bundle, it is enough to show that

Mωωω,∅
λλλ = (ĉ∅)∗′Mωωω,∅

λλλ

or that

c∗(Lλ1 ⊠ . . . ⊠ Lλr) = (ĉ∅)∗c̄∗Lλ1 .

We have a commutative diagram

hence (ĉ∅)∗c̄∗ = c∗c′∗ and it is enough to show that

Lλ1 ⊠ . . . ⊠ Lλr = c′∗Lλ1 .

This follows from the equality

λ1(c
′(t1, t2, . . . , tr)) = λ1(t1)λ2(t2) . . . λr(tr) for all (t1, t2, . . . , tr) ∈ Tr

n

which is a consequence of λλλ being w-adapted.

We now show:

(b) We have Lω
ωω,J
λλλ = L⊗(r−1) ⊗ ′Lωωω,Jλλλ .

If λλλ is not w-adapted then from 2.3(a), 2.13(a), (b), we see that Lω
ωω,J
λλλ = 0

hence (b) holds. We now assume that λλλ is w-adapted. Using (a) we have

Lω
ωω,J
λλλ = p0r!M

ωωω,J
λλλ 〈|w|〉 = p0r!(ĉ

J )∗′Mωωω,J
λλλ 〈|w|〉

= p̄0r!(ĉ
J )!(ĉ

J)∗′Mωωω,J
λλλ 〈|w|〉 = p̄0r!((ĉ

J )!Q̄l)⊗ (ĉJ )∗′Mωωω,J
λλλ 〈|w|〉)

and it remains to use that (ĉJ )!Q̄l = L⊗(r−1).

We prove the following result.

(c) There is a natural bijection between sr and the set of isomorphism classes

of irreducible G-equivariant local systems on the G-orbit Gr+1
w : to λλλ′ =
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(λ′1, λ
′
2, . . . , λ

′
r) ∈ sr corresponds the local system

M̃ωωω′
λλλ′ |Gw

′ = (θ∗Mωωω′
λλλ′ )Gw

′ where ωωω′ = (ẇ1, ẇ2, . . . , ẇr).

Let Γ be the stabilizer of (1, ẇ1, . . . , ẇr) ∈ Gr+1
w in G. We have

Γ = {(g, u1, u2, . . . , ur, t1, . . . , tr, t′0, t′1, . . . , t′r, u′0, u′1, . . . , u′r) ∈ G;
g = u′0t

′
0
−n, ẇ−1

1 u1ẇ1 = u′1, ẇ
−1
2 u2ẇ2 = u′2, . . . , ẇ

−1
r urẇr = u′r,

tn1 = w1(t
′
1
n), . . . , tnr = wr(t

′
r
n).}

The closed subgroup

{(g, u1, u2, . . . , ur, t1, . . . , tr, t′0, t′1, . . . , t′r, u′0, u′1, . . . , u′r) ∈ G;
g = u′0t

′
0
−n, ẇ−1

1 u1ẇ1 = u′1, ẇ
−1
2 u2ẇ2 = u′2, . . . , ẇ

−1
r urẇr = u′r,

t1 = w1(t
′
1), . . . , tr = wr(t

′
r)}

of Γ is clearly connected of the same dimension as Γ (namely (r+1)ν+(r+

1)ρ) hence it is equal to the identity component Γ0 of Γ. We can view T2r
n

as the kernel of the surjective homomorphism Γ→ G×Ur ×Tr+1 ×Ur+1,

(g, u1, u2, . . . , ur, t1, . . . , tr, t
′
0, t

′
1, . . . , t

′
r, u

′
0, u

′
1, . . . , u

′
r)

7→ (u1, u2, . . . , ur, t
n
1 , . . . , t

n
r , t

′
0, u

′
0, u

′
1, . . . , u

′
r)

whose restriction to Γ0 must also be surjective. It follows that Γ = T2r
n Γ0

hence

Γ/Γ0 = T2r
n /(T

2r
n ∩ Γ0)

= T2r
n /{(t1, . . . , tr, t′1, . . . , t′r) ∈ T2r

n ; t1 = w1(t
′
1), . . . , tr = wr(t

′
r)}.

Note that the irreducible G-equivariant local systems on Gr+1
w correspond

to irreducible representations of Γ/Γ0 hence to representations of T2r
n which

are trivial on

{(t1, . . . , tr, t′1, . . . , t′r) ∈ T 2r
n ; t1 = w1(t

′
1), . . . , tr = wr(t

′
r)}.

Such representations are uniquely determined by their restriction to

{(t1, . . . , tr, t′1, . . . , t′r) ∈ T2r
n ; t1 = t2 = · · · = tr = 1}
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hence they are in natural bijection with sr. This proves (c).

Using (c) and the fact that the G-orbits on Gr+1 are indexed by W r, we

deduce:

(d) There is a natural bijection between W r × sr and the set of isomor-

phism classes of simple G-equivariant perverse sheaves on Gr+1: to w′ =

(w′
1, w

′
2, . . . , w

′
r) ∈W r and λλλ′=(λ′1, λ

′
2, . . . , λ

′
r) ∈ sr corresponds the sim-

ple perverse sheaf θ∗Mωωω′,[1,r]
λλλ′ 〈dimGr+1

w′ 〉 where ωωω′ = (ẇ′
1, ẇ

′
2, . . . , ẇ

′
r).

2.16. We preserve the setup of 2.15. We assume that J = [1, r]. In this

case, p̄0r : ′Õ[1,r]
w → B̃2 is clearly a proper morphism. Hence, by Deligne’s

theorem,

(a) ′Lωωω,[1,r]λλλ is pure of weight zero.

We set L = L
ωωω,[1,r]
λλλ , ′L = ′Lωωω,[1,r]λλλ . From (a) it follows that for j ∈ Z, ′Lj is

pure of weight j hence

(b) ′Lj = ⊕w·λ∈W sV̄w·λ,jL
ẇ
λ

where V̄w·λ,j are mixed Q̄l-vector spaces of pure weight j. For any (w, λ) ∈
W s and any j ∈ Z we show:

(c) We have

dim V̄w·λ,j = N(w · λ,−j + ν + 2ρ)

where N(w, λ, k) = N(w, λ,−k) ∈ N are given by the equality (in H):

cw1·λ1cw2·λ2 . . . cwr·λr =
∑

w·λ∈W s,k∈Z
N(w · λ, k)vkcw·λ.

From 2.11(a) and 2.12(d) we have (setting δ = (r − 1)ρ):

γ(L) = (v2 − 1)δγ(Lω1♯
λ1

)γ(Lω2♯
λ2

) . . . γ(Lωr♯
λr

)v−|w|

= (v2 − 1)δv|w1|cw1·λ1v
|w2|cw2·λ2 . . . v

|wr |cwr ·λrv
−|w|

= (v2 − 1)δcw1·λ1cw2·λ2 . . . cwr·λr

= (v2 − 1)δ
∑

w·λ∈W s,k∈Z
N(w · λ, k)vkcw·λ.



✐

“BN11N41” — 2016/12/9 — 22:57 — page 644 — #42
✐

✐

✐

✐

✐

644 G. LUSZTIG [December

From the definitions we have (using (b)):

γ(′L) =
∑

j

(−1)jγ(′Lj)

=
∑

j

(−1)j
∑

w·λ∈W s

dim V̄w·λ,j(−v)jγ(Lẇ♯λ 〈|w| + ν + 2ρ〉)

=
∑

j

∑

w·λ∈W s

dim V̄w·λ,jv
|w|cw·λv

j−|w|−ν−ρ.

From 2.15(b) we have γ(L) = (v2 − 1)δγ(′L) hence

γ(L) = (v2 − 1)δ
∑

j

∑

(w,λ)∈W s dim V̄w·λ,jcw·λvj−ν−2ρ

= (v2 − 1)δ
∑

w·λ∈W s,k∈ZN(w · λ, k)vkcw·λ.

Since cw·λ are linearly independent in H, it follows that for any w ·λ we have

∑

j

dim V̄w·λ,jv
j−ν−2ρ =

∑

k∈Z
N(w · λ, k)vk =

∑

k∈Z
N(w · λ,−k)vk

hence for any j we have dim V̄w·λ,j = N(w · λ,−j + ν + 2ρ), as required.

2.17. We preserve the setup of 2.15; let J ⊂ [1, r]. We set LJ = Lω
ωω,J
λλλ ,

′LJ = ′Lωωω,Jλλλ . As in 2.16, we set δ = (r − 1)ρ.

We now analyze the complex L⊗(r−1) ∈ Dm(point). We can find free

abelian groups X2δ−i of rank
(

δ
i

)

, (i ∈ Z) such that X2δ = Z, complexes

R≤2δ−i ∈ Dm(point) (i ∈ [0, δ + 1]) and distinguished triangles

(R≤2δ−i−1, R≤2δ−i,X2δ−i ⊗ Q̄l(i− δ)[i − 2δ]), (i ∈ [0, δ])

in Dm(point) such that R≤2δ = L⊗(r−1), R≤δ−1 = 0. It follows that for

i ∈ [0, δ] we have distinguished triangles in Dm(B̃2):

(R≤2δ−i−1 ⊗ ′LJ , R≤2δ−i ⊗ ′LJ ,X2δ−i(i− δ) ⊗ ′LJ [i− 2δ])

hence we have exact sequences

. . . → X2δ−i(i− δ)⊗ (′LJ)−2δ+i+j−1 → (R≤2δ−i−1 ⊗ ′LJ)j

→ (R≤2δ−i ⊗ ′LJ)j → X2δ−i(i− δ)⊗ (′LJ)−2δ+i+j → . . . .
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Thus, setting

Ri,j = (R≤2δ−i ⊗ ′LJ)j for i ∈ [0, δ + 1],

Pi,j = X2δ−i(i− δ) ⊗ (′LJ)−2δ+i+j for i ∈ [0, δ],

we have Rδ+1,j = 0 for all j and, for any i ∈ [0, δ], we have an exact sequence

inMm(B̃2):

(a) · · · → Pi,j−1 → Ri+1,j →Ri,j → Pi,j →Ri+1,j+1 →Ri,j+1 → . . . .

Note that for any j we have

(b) R0,j = (LJ)j ,

(c) P0,j = (′LJ)j−2δ(−δ).

Indeed, (c) is obvious; (b) follows from 2.15(b):

R0,j = (R≤2δ ⊗ ′LJ)j = (L⊗(r−1) ⊗ ′LJ)j = (LJ)j .

2.18. We preserve the setup of 2.15; there is no assumption on J . The

restriction ofM :=M
ωωω,[1,r]
λλλ to ÕJw (an open dense subset of Õ[1,r]

w ) is the same

as the restriction of MJ :=Mωωω,J
λλλ to ÕJw; the restriction of M to Õ[1,r]

w −ÕJw
(a closed subset of Õ[1,r]

w ), extended by 0 on B̃r+1− (Õ[1,r]
w −ÕJw), is denoted

by ṀJ . We have a distinguished triangle

(a) (MJ ,M, ṀJ )

in Dm(B̃r+1). We have the following result.

(b) Let h ∈ Z. Let K be either ṀJ or MJ . Any composition factor of

Kh ∈ M(B̃r+1) is of the form M
ωωω′,[1,r]
λλλ′ 〈|w′| + ν + (r + 1)ρ〉 for some

w′ = (w′
1, w

′
2, . . . , w

′
r) ∈ W r, λλλ′ = (λ′1, λ

′
2, . . . , λ

′
r) ∈ sr such that wi =

w′
i, λi = λ′i for all i ∈ J ; here ωωω′ = (ẇ′

1, ẇ
′
2, . . . , ẇ

′
r).

It is enough to show that for any h, any composition factor of (θ∗K)h (θ as

in 2.15) is of the form θ∗Mωωω′,[1,r]
λλλ′ 〈|w′| + ν + (r + 1)ρ〉 for some w′,λλλ′,ωωω′ as

in (b). To see this we use the fact that (θ∗K)h is a G-equivariant perverse
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sheaf on Gr+1 (it is obtained from the G-equivariant object M̃ωωω
λλλ by opera-

tions which preserve G-equivariance: passage to an intersection cohomology

complex, restriction to a G-invariant subvariety, taking a perverse cohomol-

ogy sheaf) and that all simple G-equivariant perverse sheaves on Gr+1 are

of the form θ∗Mωωω′,[1,r]
λλλ′ 〈|w′| + ν + (r + 1)ρ〉 with w′, λλλ′, ωωω′ as in (b) (but

with w′ unrestricted), see 2.15(d). The fact that the w′,λλλ′ which appear are

restricted as in (b) is immediate.

We show:

(c) (ṀJ〈|w| + ν + (r + 1)ρ− 1〉)j = 0 for any j > 0.

It is enough to show that dim suppHh(ṀJ [|w| + ν + (r + 1)ρ − 1]) ≤ −h
for any h ∈ Z. Assume first that h ≤ −|w| − ν − (r + 1)ρ. Since M is an

intersection cohomology complex with support of dimension |w|+ν+(r+1)ρ,

we have dim suppHh−1(M [|w|+ ν + (r + 1)ρ]) < −h+ 1 hence

dim suppHh−1(ṀJ [|w|+ ν + (r + 1)ρ]) < −h+ 1

hence dim suppHh−1(ṀJ [|w|+ ν + (r + 1)ρ]) ≤ −h, hence

dim suppHh(ṀJ [|w|+ ν + (r + 1)ρ− 1]) ≤ −h.

Next we assume that h = −|w| − ν − (r + 1)ρ+ 1. Then

dim suppHh−1(ṀJ [|w|+ ν + (r + 1)ρ]) ≤ dim(Õ[1,r]
w − ÕJw) ≤

|w|+ ν + (r + 1)ρ− 1 = −h,

hence

dim suppHh(ṀJ [|w|+ ν + (r + 1)ρ− 1]) ≤ −h.

Finally, assume that h ≥ −|w| − ν − (r + 1)ρ+ 2. Then Hh−1(M [|w|+ ν +

(r+1)ρ]) = 0, hence Hh−1(ṀJ [|w|+ν+(r+1)ρ]) = 0, hence Hh(ṀJ [|w|+
ν + (r + 1)ρ− 1]) = 0. This proves (c).

2.19. We preserve the setup of 2.15; there is no assumption on J . We

shall need a variant of the results in 2.18. The restriction of ′M := ′Mωωω,[1,r]
λλλ

to ′ÕJw (an open dense subset of ′Õ[1,r]
w ) is the same as the restriction of

′MJ := ′Mωωω,J
λλλ to ′ÕJw; the restriction of ′M to ′Õ[1,r]

w − ′ÕJw (a closed subset
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of ′Õ[1,r]
w ), extended by 0 on ′B̃r+1 − (′Õ[1,r]

w − ′ÕJw), is denoted by ′ṀJ . We

have a distinguished triangle

(a) (′MJ , ′M, ′ṀJ)

in D(′B̃r+1). The following result can be deduced from 2.18(b).

(b) Let h ∈ Z. Let ′K be either ′ṀJ or ′MJ . Any composition factor of

(′K)h ∈ M(′B̃r+1) is of the form ′Mωωω′,[1,r]
λλλ′ 〈|w′|+ ν + 2ρ〉 for some w′ =

(w′
1, w

′
2, . . . , w

′
r) ∈ W r, λλλ′ = (λ′1, λ

′
2, . . . , λ

′
r) ∈ sr such that wi = w′

i,

λi = λ′i for all i ∈ J , and λλλ′ is w-adapted; here ωωω′ = (ẇ′
1, dw

′
2, . . . , ẇ

′
r).

We note:

(c) (′ṀJ〈|w|+ ν + 2ρ− 1〉)j = 0 for any j > 0.

The proof is entirely similar to that of 2.18(c); alternatively it can be deduced

from 2.18(c).

2.20. We preserve the setup of 2.15. Assume that wu · λu ∈ c for some

u ∈ J . We set LJ = Lω
ωω,J
λλλ , ′LJ = ′Lωωω,Jλλλ . Let ṀJ be as in 2.18; let ′ṀJ be as

in 2.19. Let L̇J = p0r!Ṁ
J〈|w|〉 ∈ D(B̃2), ′L̇J = p̄0r!

′ṀJ〈|w|〉 ∈ D(B̃2). Let

j ∈ Z. We have the following results, in which Ri,j , Pi,j are as in 2.17 with

J = [1, r] and δ = (r − 1)ρ.

(a) We have (LJ)j ∈ M�B̃2. If j > 2δ+ν+2ρ+(r−1)a then (LJ )j ∈ M≺B̃2.
(b) We have (L̇J)j ∈ M�B̃2. If j ≥ 2δ+ν+2ρ+(r−1)a then (L̇J )j ∈ M≺B̃2.
(c) We have (′LJ)j ∈ M�B̃2. If j > ν+2ρ+(r− 1)a then (′LJ)j ∈ M≺B̃2.
(d) We have (′L̇J)j ∈ M�B̃2. If j ≥ ν+2ρ+(r− 1)a then (′L̇J)j ∈ M≺B̃2.
(e) If i ∈ [0, δ + 1], J = [1, r], then Ri,j ∈ M�B̃2.
(f) If i ∈ [0, δ+1], j > 2δ−i+ν+2ρ+(r−1)a, J = [1, r], then Ri,j ∈ M≺B̃2.
(g) If i ∈ [0, δ], J = [1, r], then Pi,j ∈ M�B̃2. If i ∈ [0, δ], j > 2δ − i+ ν +

2ρ+ (r − 1)a, J = [1, r], then Pi,j ∈ M≺B̃2.

We prove (e) by descending induction on i. If i = δ+1 then, sinceRδ+1,j = 0,

there is nothing to prove. Now assume that i ∈ [0, δ]. Assume that Lẇλ is

a composition factor of Ri,j (without the mixed structure). We must show

that w · λ � c. By the induction hypothesis we can assume that Lẇλ is not
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a composition factor of Ri+1,j; hence by 2.17(a) it is a composition factor

of Pi,j. Hence Lẇλ is a composition factor of (′L[1,r])−2δ+i+j . Hence V̄w·λ,k
in 2.16 is 6= 0 for some k. Using 2.16(c) we see that N(w · λ, k) 6= 0 for

some k. Using the definition of N(w · λ, k) we see that w · λ � c (recall that

wu · λu ∈ c for some u) and (e) is proved.

We prove (f) by descending induction on i. If i = δ + 1 then, since

Rδ+1,j = 0, there is nothing to prove. Now assume that i ∈ [0, δ]. Assume

that Lẇλ is a composition factor of Ri,j (without the mixed structure). We

must show that w · λ ≺ c. By the induction hypothesis we can assume that

Lẇλ is not a composition factor of Ri+1,j (we have j > 2δ − i − 1 + ν +

2ρ + (r − 1)a); hence by 2.17(a), Lẇλ is a composition factor of Pi,j. Hence

Lẇλ is a composition factor of (′L[1,r])−2δ+i+j . Hence V̄w·λ,−2δ+i+j in 2.16 is

6= 0. Using 2.16(c) we see that N(w · λ, 2δ − i − j + ν + 2ρ) 6= 0. We have

2δ− i− j + ν +2ρ < −(r− 1)a. Using 1.10(a) we deduce that w · λ ≺ c and

(f) is proved.

We prove (g). This follows from the exact sequence 2.17(a) (with J =

[1, r]) using (e), (f).

We prove (a) assuming that J = [1, r]. From (e), (f) we have R0,j ∈
M�B̃2 and R0,j ∈ M≺B̃2 if j > 2δ + ν + 2ρ + (r − 1)a. Using 2.17(b) we

deduce that (a) holds (when J = [1, r]).

We prove (c) assuming that J = [1, r]. From (g) we have P0,j ∈ M�B̃2
and P0,j ∈ M≺B̃2 if j > 2δ + ν + 2ρ + (r − 1)a. Using 2.17(c) we deduce

that (′LJ)j−2δ(−δ) is inM�B̃2 and is inM≺B̃2 if j−2δ > ν+2ρ+(r−1)a.

We deduce that (c) holds (when J = [1, r]).

We prove (b). Assume that j ∈ Z and w · λ ∈ s is such that Lẇλ is a

composition factor of (L̇J)j (without mixed structure). Then there exists

h such that Lẇλ is a composition factor of (p0r!(Ṁ
J [|w|])h[−h])j . We have

(ṀJ [|w|)h 6= 0 hence (ṀJ [|w| + ν + (r + 1)ρ − 1])h−ν−(r+1)ρ+1 6= 0, hence

by 2.18(c), h − ν − (r + 1)ρ + 1 ≤ 0. From 2.18(b) we see that there

exist w′ = (w′
1, w

′
2, . . . , w

′
r) ∈ W r, λλλ′ = (λ′1, λ

′
2, . . . , λ

′
r) ∈ sr such that

wi = w′
i, λi = λ′i for all i ∈ J and Lẇλ is a composition factor of

(p0r!(M
ωωω′,[1,r]
λλλ [|w′|+ ν + (r + 1)ρ][−h])j = L

ωωω′,[1,r]
λλλ′ [|w′|])j+ν+(r+1)ρ−h;

here ωωω′ = (ẇ′
1, . . . , ẇ

′
r). From the part of (a) that is already proved (for

w′,λλλ′ instead of w,λλλ) we see that w ·λ � c and that if j+ν+(r+1)ρ−h >



✐

“BN11N41” — 2016/12/9 — 22:57 — page 649 — #47
✐

✐

✐

✐

✐

2016] NON-UNIPOTENT CHARACTER SHEAVES 649

2δ+ν+2ρ+(r−1)a that is, if j > 2δ+(r−1)ρ+(r−1)a+h, then w ·λ ≺ c.

If j ≥ 2δ + ν + 2ρ + (r − 1)a then, using that 0 > h − ν − (r + 1)ρ, we see

that we have indeed j > 2δ + (r − 1)ρ+ (r − 1)a+ h. This proves (b).

The proof of (d) is entirely similar to that of (b); it uses the already

proved part of (c) and it uses the results of 2.19 instead of those in 2.18.

We prove (a) without assumption on J . Applying p0r! to 2.18(a) we get

a distinguished triangle (LJ , L[1,r], L̇J). This gives rise to an exact sequence

(L̇J)j−1 → (LJ)j → (L[1,r])j → (L̇J)j .

Using this together with (b) and the already proved part of (a) we see that

(a) holds in general.

We prove (c) without assumption on J . Applying p̄0r! to 2.19(a) we get a

distinguished triangle (′LJ , ′L[1,r], ′L̇J). This gives rise to an exact sequence

(′L̇J)j−1 → (′LJ)j → (′L[1,r])j → (′L̇J)j .

Using this together with (d) and the already proved part of (c) we see that

(c) holds in general.

2.21. Let j ∈ Z. In (a), (b) below, Ri,j is as in 2.17 with arbitrary J .

(a) If i ∈ [0, δ + 1] then Ri,j ∈ M�B̃2.
(b) If i ∈ [0, δ + 1], j > 2δ − i+ ν + 2ρ+ (r − 1)a then Ri,j ∈ M≺B̃2.

Note that (a), (b) are generalizations of 2.20(e), 2.20(f) (which correspond

to the case J = [1, r]).

We prove (a), (b) by descending induction on i. If i = δ + 1 then, since

Rδ+1,j = 0, there is nothing to prove. Now assume that i ∈ [0, δ]. Assume

that Lẇλ is a composition factor of Ri,j (without the mixed structure). We

must show that w·λ � c and that, if j > 2δ−i+ν+2ρ+(r−1)a, then w·λ ≺ c.

Using 2.17(a), we see that Lẇλ is a composition factor of Ri+1,j or of Pi,j. In
the first case, using the induction hypothesis we see that w ·λ � c and that,

if j > 2δ−i+ν+2ρ+(r−1)a (so that j > 2δ−i−1+ν+2ρ+(r−1)a), then

w · λ ≺ c. In the second case, Lẇλ is a composition factor of (′LJ)−2δ+i+j .

Using 2.20(c) we see that w ·λ � c and that, if j > 2δ− i+ ν +2ρ+(r− 1)a
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(so that −2δ + i + j > ν + 2ρ + (r − 1)a), then w · λ ≺ c. This proves (a),

(b).

2.22. We preserve the setup of 2.20. In (a), (b) below we take j = 2δ + ν +

2ρ+ (r − 1)a. We have the following results.

(a) We have canonically grj((L
J )j)

∼→ grj(
′LJ)j−2δ(−δ)).

(b) We have canonically grj((L
J )j)

∼→ grj((L
[1,r])j).

(c) If (w1, λ1) ∈ c, . . . , (wr, λr) ∈ c, (w, λ) ∈ c and j = 2δ+ ν + ρ+ (r− 1)a

then the multiplicity of Lẇλ in grj((L
J )j) is

∑

h∗z1·λ′1,w2·λ2,z2·λ′2h
∗
z2·λ′2,w3·λ3,z3·λ′3 . . . h

∗
zr−1·λ′r−1,wr·λr ,zr·λ′r

where the sum is taken over all z1 · λ′1, z2 · λ′2, . . . , zr · λ′r in c such that

z1 · λ′1 = w1 · λ1, zr · λ′r = w · λ.
(d) Assume that i ∈ [0, δ + 1]. Then Ri,j (notation of 2.17) is mixed of

weight ≤ j − i.

We prove (d) by descending induction on i. If i = δ + 1 there is nothing

to prove. Assume now that i ≤ δ. By Deligne’s theorem, ′LJ is mixed

of weight ≤ 0; hence (′LJ)−2δ+i+j is mixed of weight ≤ −2δ + i + j and

X2δ−i(i−δ)⊗(′LJ)−2δ+i+j is mixed of weight ≤ −2δ+ i+j−2(i−δ) = j− i.
In other words, Pi,j (notation of 2.17) is mixed of weight ≤ j−i. Thus in the

exact sequence Ri+1,j →Ri,j → Pi,j coming from 2.17(a) in which Ri+1,j is

mixed of weight ≤ j− i− 1 < j− i (by the induction hypothesis) and Pi,j is
mixed of weight ≤ j − i we must have that Ri,j is mixed of weight ≤ j − i.
This proves (d).

We prove (a). From 2.17(a) we deduce an exact sequence

grj(R1,j)→ grj(R0,j)→ grj(P0,j)→ grj(R1,j+1).

By (d) we have grj(R1,j) = 0. We have grj(R0,j) = grj((L
J)j), grj(P0,j) =

grj((
′LJ)−2δ+j(−δ)). Moreover, by 2.21(b) we have R1,j+1 ∈ D≺B̃2 since

j+1 > 2δ− 1+ ν+2ρ+(r− 1)a. It follows that grj(R1,j+1) ∈ D≺B̃2. Thus
the exact sequence above induces an isomorphism as in (a).
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We prove (b). As in 2.20 we have an exact sequence

(L̇J)j−1 → (LJ)j → (L[1,r])j → (L̇J)j .

This gives rise to an exact sequence

grj((L̇
J)j−1)→ grj((L

J)j)→ grj((L
[1,r])j)→ grj((L̇

J)j).

From 2.20(b) we have grj((L̇
J )j) ∈ M≺(B̃2). It is then enough to show

that grj((L̇
J)j−1) = 0. Since ṀJ〈|w|〉 is the restriction of a pure complex

of weight 0 to a subspace, it is mixed of weight ≤ 0 (see [1, 5.1.14]). Hence

L̇J = (p0r!Ṁ
J〈|w|〉 is mixed of weight ≤ 0 and (L̇J )j−1 is mixed of weight

lej − 1 (see [1, 5.4.1]). Thus, grj((L̇
J)j−1) = 0 as required. This proves (b).

We prove (c). By (a) and (b), the multiplicity in (c) is equal to the

multiplicity of Lẇλ in

grj(
′L[1,r])j−2δ(−δ)) = (′L[1,r])j−2δ(−δ)

(we use the fact that ′L[1,r] is pure of weight zero); thus it is equal to

V̄w·λ,j−2δ = V̄w·λ,ν+2ρ+(r−1)a hence also to N(w · λ,−(r − 1)a) (see 2.16(c)).

It remains to use the equality 1.10(c).

2.23. Let L,L′ ∈ D♠B̃2. We show:

(a) Assume that L,L′ ∈ M♠B̃2 and that either L or L′ is in D�B̃2. If

j > a− ν then (L ◦ L′)j ∈ M≺B̃2.

We can assume that L = Lẇλ , L
′ = Lẇ

′
λ′ and that either w ·λ ∈ c or w′ ·λ′ ∈ c.

According to 2.20(b) we have

(Lẇ♯λ 〈|w|〉 ◦ L
ẇ′♯
λ′ 〈|w′|〉)j′ ∈ M≺B̃2

if j′ > 4ρ+ ν + a. Hence

(Lẇ♯λ 〈|w|+ ν + 2ρ〉 ◦ Lẇ′♯
λ′ 〈|w′|+ ν + 2ρ〉)j ∈M≺B̃2

if j + 2ν + 4ρ > 4ρ+ ν + a that is, if j > a− ν. This proves (a).

(b) If L ∈ D�B̃2 or L′ ∈ D�B̃2 then L ◦ L′ ∈ D�B̃2. If L ∈ D≺B̃2 or

L′ ∈ D≺B̃2 then L ◦ L′ ∈ D≺B̃2.
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The first assertion of (b) is shown in the same way as (a). The second

assertion of (b) can be reduced to the first assertion.

2.24. For L,L′ ∈ Cc0 B̃2 we set

L◦L′ = (L ◦ L′){a−ν} ∈ Cc0 B̃2.

(For the notation {i} see 0.2.) Now let L,L′, L′′ ∈ Cc0 B̃2. By 2.23(b), we have

L′ ◦ L′′ ∈ D�
mB̃2 and the functor Φ : D�

mB̃2 → D�
mB̃2, Φ(K) = L ◦K, is well

defined. We note that, by 2.23(a), (i), (ii) below hold.

(i) If X0 ∈ M�
mB̃2 then (Φ(X0))

h ∈ M≺
mB̃2 for any h > a− ν.

(ii) L′◦L′′ is mixed of weight ≤ 0 and (L′◦L′′)h ∈M≺
mB̃2 for any h > a−ν.

Similarly we have L ◦ L′ ∈ D�
mB̃2 and the functor Φ′ : D�

mB̃2 → D�
mB̃2,

Φ′(K) = K ◦ L′, is well defined. Moreover, (iii), (iv) below hold.

(iii) If X0 ∈ M�
mB̃2 then (Φ′(X0))

h ∈ M≺
mB̃2 for any h > a− ν.

(iv) L ◦L′ is mixed of weight ≤ 0 and (L ◦L′)h ∈M≺
mB̃2 for any h > a− ν.

We now apply [24, 1.12] with Y1, Y2 replaced by B̃2 we see that

Φ((L′ ◦ L′′){a+ρ−ν}){a+ρ−ν} = (Φ(L′ ◦ L′′)){2a−2ν},

Φ′((L ◦ L′){a+ρ−ν}){a+ρ−ν} = (Φ′(L ◦ L′)){2a−2ν}.

Thus, we have

L◦(L′◦L′′) = (L ◦ L′ ◦ L′′){2a−2ν},

(L◦L′)◦L′′ = (L ◦ L′ ◦ L′′){2a−2ν}.

Hence

L◦(L′◦L′′) = (L◦L′)◦L′′.

We see that L,L′ 7→ L◦L′ defines a monoidal structure on Cc0 B̃2. Hence if
1L, 2, . . . , rL are in Cc0 B̃2 then 1L◦2L◦ . . . ◦rL ∈ Cc0 B̃2 is well defined; using

[24, 1.12] repeatedly, we have

(a) 1L◦2L◦ . . . ◦rL = (1L ◦ 2L ◦ . . . ◦ rL){(r−1)(a−ν)} .
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2.25. Let L0, L1 ∈ Cc0 B̃2. We show that we have canonically

(a) D(L0◦L1) = D(L0)◦D(L1).

(Note that in the right hand side, ◦ is relative to c̃ instead of c, see below.)

We can assume that Li = L
ẇi

λi
(i = 0, 1) where wi · λi ∈ c (i = 0, 1).

Let L̃i = D(Li) = L
ẇi

λ−1
i

, i = 0, 1. Note that wi · λ−1
i ∈ c̃ (see 1.14) and

L̃0, L̃1 ∈ Cc̃0 B̃2. It is enough to show that

D(L0◦L1) = L̃0◦L̃1.

If w1(λ1) 6= λ0 (that is, w1(λ
−1
1 ) 6= λ−1

0 ), we have L0 ◦ L1 = 0, L̃0 ◦ L̃1 = 0

hence both sides of (a) are zero. Now assume that w1(λ1) = λ0. Let L =

Lω
ωω,J
λλλ , ′L = ′Lωωω,Jλλλ , ′M = ′Mωωω,J

λλλ where ωωω = (ẇ0, ẇ1), λλλ = (λ0, λ1), J = {1}.
Let L̃ = Lω

ωω,J
λλλ′ , ′L̃ = ′Lωωω,Jλλλ′

′M̃ = ′M̃ωωω,J
λλλ′ where λλλ′ = (λ−1

0 , λ−1
1 ). By definition

we have

L = (L0〈−|w0| − ν − 2ρ〉 ◦ L1〈−|w1| − ν − 2ρ〉)〈|w0 + |w1|〉

hence L = (L0 ◦ L1)〈−2ν − 4ρ〉. Thus,

L4ρ+ν+a = (L0 ◦ L1)
a−ν(−ν − 2ρ)

and

gr4ρ+ν+a(L
4ρ+nu+a) = gra−ν(L0 ◦ L1)

a−ν(−ν − 2ρ).

By 2.22(a) we have

gr4ρ+ν+a(L
4ρ+nu+a) = ′Lν+2ρ+a(−ρ)

hence

gra−ν(L0 ◦ L1)
a−ν((a− ν)/2) = ′Lν+2ρ+a((a+ 2ρ+ ν)/2).

Similarly,

gra−ν(L̃0 ◦ L̃1)
a−ν((a− ν)/2) = ′L̃ν+2ρ+a((a+ 2ρ+ ν)/2).
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It is then enough to show that

D(′Lν+2ρ+a((a+ 2ρ+ ν)/2)) = ′L̃ν+2ρ+a((a+ 2ρ+ ν)/2).

This would follow from the stronger result that

D(′Lν+2ρ+a) = ′L̃ν+2ρ+a(a+ 2ρ+ ν).

Recall that ′L = p̄0r!(
′M)〈|w0|+|w1|〉 and similarly ′L̃ = p̄0r!(

′M̃)〈|w0|+|w1|〉
where ′M〈|w0|+ |w1|+ν+2ρ〉, ′M̃〈|w0|+ |w1|+ν+2ρ〉 are perverse sheaves,
each being D of the other. Since p̄01 is proper, p̄01! commutes with D. It

follows that

D(′L〈ν + 2ρ〉) = ′L̃〈ν + 2ρ〉,
hence

D((′L〈ν + 2ρ〉)j) = (′L̃〈ν + 2ρ〉)−j ,
that is

D(′Lν+2ρ+j) = ′L̃ν+2ρ−j(ν + 2ρ)

for any j; in particular,

D(′La+2ν+ρ) = ′L̃−a+ν+2ρ(ν + 2ρ).

Thus it is enough to prove

′L̃−a+ν+2ρ(ν + 2ρ) = ′L̃ν+2ρ+a(a+ 2ρ+ ν),

that is
′L̃−a+ν+2ρ = ′L̃ν+2ρ+a(a).

From the hard Lefschetz theorem applied to the projective morphism p̄01

and to ′M̃〈|w0|+ |w1|+ ν + 2ρ〉 (a perverse sheaf of pure weight 0) we have

canonically for any i:

′L̃ν+2ρ−i = ′L̃ν+2ρ+i(i).

Taking i = a we obtain the desired result. This proves (a).

2.26. Let r ≥ 1 and let w = (w1, w2, . . . , wr) ∈W r, λλλ = (λ1, λ2, . . . , λr) ∈ sr

and let ωωω = (ω1, ω2, . . . , ωr) be such that ωi ∈ κ−1
q (wi) for i = 1, . . . , r.
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(a) Assume that wi · λi ∈ c for some i ∈ [1, r] and that

(Lω1
λ1
◦ Lω2

λ2
◦ . . . ◦ Lωr

λr
){(r−1)(a−ν)} 6= 0.

Then wi · λi ∈ c for all i ∈ [1, r].

Let j = ν + 2rρ + (r − 1)a. By assumption we have grj((L
ωωω,[1,r]
λλλ )j) 6= 0.

Hence by 2.22(a) we have

grj((
′Lωωω,[1,r]λλλ )j−2(r−1)ρ(−(r − 1)ρ)) 6= 0.

Thus there exists w · λ ∈ c such that Lẇλ has nonzero multiplicity in

(′Lωωω,[1,r]λλλ )j−2(r−1)ρ,

that is, V̄w·λ,j−2(r−1)ρ 6= 0 (notation of 2.16). Using 2.16(c) we see that

N(w ·λ,−j+2ρ+ ν) 6= 0 that is N(w ·λ,−(r− 1)a) 6= 0. Using now 1.10(a)

we see that wi · λi ∈ c for all i ∈ [1, r].

3. Sheaves on the Variety Z

3.1. Let

Z = {(B,B′, gUB); (B,B′) ∈ B2, g ∈ G, gBg−1 = B′}.

We define ǫ : B̃2 → Z by (xU, yU) 7→ (xBx−1, yBy−1, yUx−1). Now ǫ

identifies Z with T\B̃2 where T acts on B̃2 by t : (xU, yU) 7→ (xtU, ytU).

Note that Z inherits an Fq-structure from B × B ×G.

3.2. The G × T2-action on B̃2 (see 2.1) induces a G × T2-action on T\B̃2
(see 3.1) hence a G × T2-action on Z in which the subgroup {(1, t1, t2) ∈
G×T2; t1 = t2} acts trivially. For w ∈W let Zw = {(B,B′, gUB); (B,B′) ∈
Ow, g ∈ G, gBg−1 = B′}; this is a single G×T2-orbit on Z with closure

Z̄w = {(B,B′, gUB); (B,B
′) ∈ Ōw, g ∈ G, gBg−1 = B′}

and we have Z = ⊔w∈WZw. Note that Zw = ǫ(Õw), Õw = ǫ−1(Zw), Z̄w =

ǫ(Õw), Õw = ǫ−1(Z̄w).
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Let ω ∈ κ−1
q (w). We have a diagram T

jω→Õw ǫw←Zw where ǫw is the

restriction of ǫ and jω is as in 2.1. Let λ ∈ s be such that w(λ) = λ. The

T-action on B̃2 in 3.1 is compatible under jω with the T-action t : t′ 7→
w−1(t−1)t′t on T and Lλ is equivariant for this action (by 1.4(a) with w

replaced by w−1) hence j∗ωLλ is T-equivariant so that there is a well defined

local system Lωλ of rank 1 on Zw such that ǫ∗wLωλ = j∗ωLλ. Note that the

induced action of T2
n (which acts trivially on Zw) on any stalk of Lωλ is via

the character (t1, t2) 7→ λ−1(t1)λ(t2). Moreover, Lωλ is naturally pure of

weight zero. We have ǫ∗wLωλ = Lωλ .

We show the converse:

(a) Let L be an irreducible G×T2-equivariant local system on Zw. Then L
is isomorphic to Lωλ for a unique λ ∈ s such that w(λ) = λ.

The local system ǫ∗wL on B̃2 is irreducible and G×T2-equivariant hence, by

2.1, is isomorphic to Lωλ for a well defined λ ∈ s. Now the restriction of ǫ∗wL
to any fibre of ǫw is the constant sheaf. On the other hand the restriction of

Lωλ to any fibre of ǫw is (under an identification with T) of the form Lw(λ−1)λ

which is trivial if and only if w(l) = λ. We see that we must have w(λ) = λ.

We have ǫ∗wL ∼= ǫ∗wLωλ (both are Lωλ) hence L ∼= Lωλ . This proves (a).

We define h : Z → Z by (B,B′, gUB) 7→ (B′, B, g−1UB′). Note that

hǫ = ǫh̃ : B̃2 → Z. For L ∈ DmZ we set L† = h∗L.

3.3. Let
⌣
W s = {w · λ ∈ W s;w(λ) = λ}, ⌣c =

⌣
W s ∩ c. For w · λ ∈

⌣
W s and

ω ∈ κ−1
q (w) we shall view Lωλ as a constructible sheaf on Z which is 0 on

Z − Zw. Let Lω♯λ be its extension to an intersection cohomology complex of

Z̄w, viewed as a complex on Z, equal to 0 on Z − Z̄w. Let

Lωλ = Lω♯λ 〈|w| + ν + ρ〉,

a simple perverse sheaf on Z. Note that Lωλ (resp. Lωλ) is noncanonically

isomorphic to Lẇλ (resp. Lẇλ .)

We define ǫ̃ : D(Z)→ D(B̃2) and ǫ̃ : Dm(Z)→ Dm(B̃2) by

ǫ̃(L) = ǫ∗(L)〈ρ〉.
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From the definition we have

ǫ∗Lω♯λ = Lω♯λ , ǫ̃Lωλ = Lωλ .

Note that Lω♯λ ,Lωλ are naturally pure of weight zero.

Let D♠Z be the subcategory of D(Z) consisting of objects which are

restrictions of objects in the G×T2-equivariant derived category. Let D♠
mZ

be the subcategory of Dm(Z) consisting of objects which are restrictions of

objects in the mixed G×T2-equivariant derived category. LetM♠Z (resp.

M♠
mZ) be the subcategory of D♠Z (resp. D♠

mZ) consisting of objects which

are perverse sheaves. We define D�Z,D≺Z, M�Z, M≺Z, D�
mZ,D≺

mZ,

M�
mZ, M≺

mZ, C♠Z, Cc0Z as in 2.14, by replacing (in 2.14) Y by Z and

Lẇλ by Lẇλ (with w · λ required to be in
⌣
W s). For M ∈ C♠0 Z let M be the

largest subobject of M such that as an object of C♠Z, we have M ∈ CcZ.

From 3.2(a) we see that, if M ∈ M♠Z, then any composition factor of

M is of the form Lẇλ for some w · λ ∈
⌣
W s. From the definitions we see that

M 7→ ǫ̃M is a functor D♠Z → D♠B̃2 and also D♠
mZ → D♠

mB̃2; moreover, it

is a functorM♠Z →M♠B̃2 and alsoM♠
mZ →M♠

mB̃2. From the definitions

we see that for M ∈ M♠Z we have

(a) M ∈ M�Z if and only if ǫ̃M ∈ M�B̃2; we have M ∈M≺Z if and only

if ǫ̃M ∈M≺B̃2.

Note that if X ∈ D(Z) and j ∈ Z then

(b) (ǫ∗X)j+ρ = ǫ∗(Xj)[ρ].

Moreover, if Y ∈ Mm(Z) and j
′ ∈ Z then

(c) grj′(ǫ̃Y ) = ǫ̃(grj′Y ).

Let λ ∈ s, w ∈W ′
λ, ω ∈ κ−1(w). From 2.2(a) we deduce

(d) (Lωλ)
† = Lω

−1

λ−1 .
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3.4. Let r, f be integers such that 0 ≤ f ≤ r − 3. Let

Y = {((x0U, x1U, . . . , xrU), g) ∈ B̃r+1×G; g ∈ xf+3Ux
−1
f , g ∈ xf+2Bx

−1
f+1}.

Define ϑ : Y → B̃r+1 by

((x0U, x1U, . . . , xrU), g) 7→ (x0U, x1U, . . . , xrU).

For y, y′ ∈W let

B̃r+1
[y,y′] = {(x0U, x1U, . . . , xrU) ∈ B̃r+1;x−1

f xf+1 ∈ Gy, x−1
f+2xf+3 ∈ Gy′}.

We show:

(a) Let ξ ∈ B̃r+1
[y,y′]. If yy′ 6= 1 then ϑ−1(ξ) = ∅. If yy′ = 1 then ϑ−1(ξ) ∼=

kν−|y|.

We set ξ = (x0U, x1U, . . . , xrU). If ϑ−1(ξ) 6= ∅ then x−1
f xf+1 ∈ Gy,

x−1
f+2xf+3 ∈ Gy′ and (xf+3Ux

−1
f ) ∩ (xf+2Bx

−1
f+1) 6= ∅. Hence for some

u ∈ U, b ∈ B we have

ux−1
f xf+1 = x−1

f+3xf+2b ∈ Gy ∩Gy′−1

so that yy′ = 1. If we assume that yy′ = 1, then ϑ−1(ξ) can be identified

with

{g ∈ G; g ∈ xf+3Ux
−1
f , g ∈ xf+2Bx

−1
f+1}

hence with

{(u, b) ∈ U×B;ux−1
f xf+1 = x−1

f+3xf+2b}.

We substitute x−1
f+3xf+2 = u0ẏt0u

′
0, x

−1
f xf+1 = u1ẏt1u

′
1 where u0, u

′
0, u1, u

′
1

∈ U, t0 ∈ T. Then ϑ−1(ξ) is identified with {(u, b) ∈ U × B;uu1ẏt1u
′
1 =

u0ẏt0u
′
0b}. The map (u, b) 7→ u−1

0 uu1 identifies this variety with U ∩
ẏBẏ−1 ∼= kν−|y|. This proves (a).

Now T2 acts freely on Y by

(t1, t2) : ((x0U, x1U, . . . , xrU), g) 7→
((x0U, x1U, . . . , xfU, xf+1t1U, xf+2t2U, xf+3U, . . . , xrU), g).



✐

“BN11N41” — 2016/12/9 — 22:57 — page 659 — #57
✐

✐

✐

✐

✐

2016] NON-UNIPOTENT CHARACTER SHEAVES 659

Let

!Y=T\{((x0U, x1U, . . . , xrU), g)∈B̃r+1×G; g∈xf+3Ux
−1
f , g∈xf+2Ux

−1
f+1}

where T acts freely by

t : ((x0U, x1U, . . . , xrU), g) 7→
((x0U, x1U, . . . , xfU, xf+1tU, xf+2tU, xf+3U, . . . , xrU), g).

Clearly, the obvious map β : !Y → T2\Y is an isomorphism. We define
!η : !Y → Z by

((x0U, x1U, . . . , xrU), g) 7→ ǫ(xf+1U, xf+2U).

We define τ : Y → !Y as the composition of the obvious map Y → T2\Y
with β−1. Let η = !ητ : Y → Z. We have

η((x0U, x1U, . . . , xrU), g) = ǫ(xf+1t
−1U, xf+2t

′−1U)

where t, t′ in T are such that g ∈ xf+2t
′−1Utx−1

f+1.

3.5. Let z · λ ∈
⌣
W s. Let P = η∗Lż♯λ . Let pij : B̃r+1 → B̃2 be the projection

to the ij coordinates. We have the following result:

(a) ϑ!P ≎ {p∗f,f+1L
ẏ
λ ⊗ p∗f+1,f+2L

ż♯
λ ⊗ p∗f+2,f+3L

ẏ−1

y(λ)〈2|y| − 2ν〉; y ∈W}.

Define e : B̃r+1 → B̃4 by

(x0U, x1U, . . . , xrU) 7→ (xfU, xf+1U, xf+2U, xf+3U).

Then (a) is obtained by applying e∗ to the statement similar to (a) in which

{0, 1, . . . , r} is replaced by {f, f +1, f +2, f +3}. Thus it is enough to prove

(a) in the special case where r = 3, f = 0. In the remainder of the proof we

assume that r = 3, f = 0.

For any y, y′ in W let ϑy,y′ : ϑ
−1(B̃4[y,y′]) → B̃4 be the restriction of ϑ.

Let P y,y
′
be the restriction of P to ϑ−1(B̃4)[y,y′]. Clearly, we have

ϑ!P ≎ {ϑy,y′!P y,y
′
; (y, y′) ∈W 2}.
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Since ϑ−1(B̃r+1
[y,y′]) = ∅ when yy′ 6= 1, see 3.4(a), we deduce that

ϑ!P ≎ {ϑy,y−1!P
y,y−1

; y ∈W}.

Hence to prove (a) it is enough to show for any y ∈W that

(b) ϑy!Py = p∗01L
ẏ
λ ⊗ p∗12L

ż♯
λ ⊗ p∗23L

ẏ−1

y(λ)〈2|y| − 2ν〉

where we write ϑy, Py instead of ϑy,y−1 , P y,y
−1
. We have a cartesian diagram

where

Vy = {(x0U, x1U, x2U, x3U)∈B̃4;x−1
0 x1∈Gy, x−1

1 x2 ∈ Gz , x−1
2 x3∈Gy−1},

Vy = T\{(x0U, x1U, x2U, x3U) ∈ B̃4;x−1
0 x1 ∈ Gy, x−1

1 x2 ∈ Gz,
x−1
2 x3 ∈ Gy−1 , (x−1

0 x1)ẏ = (x−1
3 x2)ẏ}

with T acting freely by simultaneous right multiplication on x1 and x2,

Ṽy = ϑ−1(Vy) and

Ṽy = T\{((x0U, x1U, x2U, x3U), g) ∈ B̃4 ×G;x−1
0 x1 ∈ Gy, x−1

1 x2 ∈ Gz,
x−1
2 x3 ∈ Gy−1 , g ∈ x3Ux−1

0 , g ∈ x2Ux−1
1 };

we have

b(x0U, x1U, x2U, x3U) = T− orbit of (x0U, x1tU, x2t
′U, x3U)

where t, t′ in T are such that (x−1
0 x1t)ẏ = (x−1

3 x2t
′)ẏ,

b̃((x0U, x1U, x2U, x3U), g) = T− orbit of ((x0U, x1tU, x2t
′U, x3U), g)

where t, t′ in T are such that g ∈ x2t
′Ut−1x−1

1 ; the vertical maps are the

obvious ones. We also have a cartesian diagram
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where Ṽ ′
y , Ṽ ′y, V ′

y ,V ′y are defined in the same way as Ṽy, Ṽy, Vy,Vy but the

condition x−1
1 x2 ∈ Gz is replaced by the condition x−1

1 x2 ∈ Ḡz ; the maps

b̃′, b′ are given by the same formulas as b̃, b; the vertical maps are the obvious

ones.

Let j : V ′
y → B̃4 be the inclusion. It is enough to show that

j∗ϑy!Py = j∗(p∗01L
ẏ
λ ⊗ p∗12L

ż♯
λ ⊗ p∗23L

ẏ−1

y(λ))〈2|y| − 2ν〉.

By definition, P |Ṽ ′
y
is the inverse image of Lż♯λ under the composition of b̃′

with Ṽ ′y → V ′y
!ηy−→Z where the first map is the obvious one and

!ηy(x0U, x1U, x2U, x3U) = ǫ(x1U, x2U).

Hence P |Ṽ ′
y
is the inverse image of Lż♯λ under the composition of ηy :=

!ηyb
′

with the obvious map ϑ′y : Ṽ
′
y → V ′

y . Since ϑy is an affine space bundle with

fibres of dimension ν − |y|, it follows that j∗ϑy!Py = η∗yLż♯λ 〈2|y| − 2ν〉. Thus
it is enough to show that

η∗yLż♯λ = j∗(p∗01L
ẏ
λ ⊗ p∗12L

ż♯
λ ⊗ p∗23L

ẏ−1

y(λ)).

Since ηy is smooth as a map to Z̄z, we see that η∗yLż♯λ is the intersection

cohomology complex of V ′
y with coefficients in the local system η∗yLżλ on Vy.

Now,

j∗(p∗01L
ẏ
λ ⊗ p∗12L

ż♯
λ ⊗ p∗23L

ẏ−1

y(λ))

is the intersection cohomology complex of V ′
y with coefficients in the local

system

j∗(p∗01L
ẏ
λ ⊗ p∗12Lżλ ⊗ p∗23L

ẏ−1

y(λ))

on Vy. It is then enough to show that these two local systems on Vy are the
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same. One local system is h∗Lλ with h : Vy → T given by

(x0U, x1U, x2U, x3U) 7→ (t1x
−1
1 x2t

−1
2 )ż

where

t1 = (x−1
0 x1)ẏ ∈ T, t2 = (x−1

3 x2)ẏ ∈ T.

The other local system is h′∗Lλ with h′ : Vy → T given by

(x0U, x1U, x2U, x3U) 7→ t′1z(t
′
2)(zy

−1)(t′3)

where

t′1 = (x−1
0 x1)ẏ ∈ T, t′2 = (x−1

1 x2)ż ∈ T, t′3 = (x−1
2 x3)ẏ−1 ∈ T.

It is enough to show that h∗Lλ = h′∗Lλ. Since the map u : T → T,

t 7→ z−1(t) satisfies u∗Lλ = Lλ (recall that z(λ) = λ), we have h′∗Lλ =

h′∗u∗Lλ hence it is enough to show that h(ξ) = ζ−1(h′(ξ)) for any ξ =

(x0U, x1U, x2U, x3U) ∈ V , or that, if t1, t2, t
′
1, t

′
2, t

′
3 are associated to ξ as

above, then

(t1x
−1
1 x2t

−1
2 )ż = z−1(t′1z(t

′
2)(zy

−1)(t′3)).

We have t1 = t′1 and x−1
3 x2 ∈ Uẏt2U hence

x−1
2 x3 ∈ Ut−1

2 ẏ−1U = Uẏ−1y(t−1
2 )U

so that t′3 = y(t−1
2 ) and t−1

2 = y−1(t′3). We have

t1x
−1
1 x2t

−1
2 ∈ t1Użt

′
2Ut

−1
2 = Użz−1(t1)t

′
2t

−1
2 U,

so that

(t1x
−1
1 x2t

−1
2 )ż = z−1(t1)t

′
2t

−1
2 = z−1(t′1)t

′
2y

−1(t′3),

as required. This completes the proof of (b) hence that of (a).

3.6. Let

(w1, w2, . . . , wf , wf+2, wf+4, . . . , wr) ∈ W r−2,

(λ1, λ2, . . . , λf , λf+2, λf+4, . . . , λr) ∈ sr−2.

We set z = wf+2, λ = λf+2. We assume that z(λ) = λ. Let P be as in

3.5. Let P ′ = ⊗i∈[1,r]−{f+1,f+2,f+3}p
∗
i−1,iL

ẇi♯
λi
∈ Dm(B̃r+1), P̃ = P ⊗ ϑ∗P ′ ∈
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Dm(Y). For any y ∈W we set

wy = (w1, w2, . . . , wf , y, wf+2, y
−1, wf+4, . . . , wr) ∈W r,

ωωωy = (ẇ1, ẇ2, . . . , ẇf , ẏ, ẇf+2, ẏ
−1, ẇf+4, . . . , ẇr),

λλλy = (λ1, λ2, . . . , λf , λf+2, λf+2, y(λf+2), λf+4, . . . , λr) ∈ sr.

We set Ξ = ϑ!P̃ . We have the following result.

(a) Ξ ≎ {Mωωωy ,[1,r]−{f+1,f+3}
λλλy

〈2|y| − 2ν〉; y ∈W}

in Dm(B̃r+1). This follows immediately from 3.5(a) since Ξ = P ′ ⊗ ϑ!(P ).

3.7. We preserve the setup of 3.6. Let S = ⊔w′Õ∅
w′ where the union is over

all w′ = (w′
1, . . . , w

′
r) ∈W r such that w′

i = wi for i /∈ {f + 1, f + 3}. This is
a locally closed subvariety of B̃r+1. For y ∈ W let Ry be the restriction of

M
ωωωy,∅
λλλy

to Õ∅
wy

extended by 0 on S −Õ∅
wy

(a constructible sheaf on S). From
the definitions we have

M
ωωωy ,[1,r]−{f+1,f+3}
λλλy

|S = Ry.

From 3.6(a) we deduce

Ξ|S ≎ {Ry〈2|y| − 2ν〉; y ∈W}.

We now restrict further to Õ∅
wy

(for y ∈W ); we obtain

Ξ|Õ∅
wy

≎ {Ry′〈2|y′| − 2ν〉|Õ∅
wy

; y′ ∈W}.

In the right hand side we have Ry′〈2|y′| − 2ν〉|Õ∅
wy

= 0 if y′ 6= y. It follows

that Ξ|Õ∅
wλ

= Ry〈2|y| − 2ν〉|Õ∅
wy

. Since Ry|Õ∅
wy

is a local system we deduce

for y ∈W the following result.

(a) Let h ∈ Z. If h = 2ν − 2|y| then HhΞ|Õ∅
wy

= Ry|Õ∅
wy

(|y| − ν). If

h 6= 2ν − 2|y| then HhΞ|Õ∅
wy

= 0.

3.8. We preserve the setup of 3.6. We set

(a) k = (
∑

i∈[1,r]−{f+1,f+3}
|wi|) + 3ν + (r + 1)ρ.
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For y ∈W we set

Ky = M
ωωωy ,[1,r]−{f+1,f+3}
λλλy

〈|wy|+ ν + (r + 1)ρ〉,

K̃y = M
ωωωy ,[1,r]
λλλy

〈|wy|+ ν + (r + 1)ρ〉.

From 3.6(a) we deduce:

(b) Ξ〈k〉 ≎ {Ky; y ∈W}.

We show:

(c) For any j > 0 we have (Ξ〈k〉)j = 0. Equivalently, Ξj = 0 for any j > k.

Using (b) we see that it is enough to show that for any y ∈ W we have

(Ky)
j = 0 for any j > 0. Now K̃y is a (simple) perverse sheaf hence for any

i we have dim suppHiK̃y ≤ −i. Moreover Ky is obtained by restricting K̃y

to an open subset of its support and then extending the result (by zero) on

the complement of this subset in B̃r+1. Hence suppHiKy ⊂ suppHiK̃y so

that dim suppHiKy ≤ −i. Since this holds for any i we see that (Ky)
j = 0

for any j > 0.

3.9. We preserve the notation of 3.6. We show:

(a) Let j ∈ Z and let X be a composition factor of Ξj. Then

X ∼=M
ωωω′,[1,r]
λλλ′ 〈|w′|+ ν + (r + 1)ρ〉 for some

w′ = (w′
1, w

′
2, . . . , w

′
r) ∈W r,λλλ′ = (λ′1, λ

′
2, . . . , λ

′
r) ∈ sr

such that w′
i = wi, λ

′
i = λi for i ∈ [1, r]− {f + 1, f + 3} and such that

λ′f+1 = w′
f+2(λ

′
f+2), λ

′
f+2 = w′

f+3(λ
′
f+3).

Here ωωω′ = (ẇ′
1, ẇ

′
2, . . . , ẇ

′
r).

From 3.6(a) we see that, for some y ∈W , X is a composition factor of

(M
ωωωy,[1,r]−{f+1,f+3}
λλλy

〈2|y| − 2ν〉)j .

Using this and 2.18(b) we see that X is as required except that the equalities

above for λ′f+1, λ
′
f+2 may not be satisfied. To see that they are in fact
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satisfied we note that

(M
ωωωy ,[1,r]−{f+1,f+3}
λλλy

〈2|y| − 2ν〉)j

is equivariant for the T2-action

(t1, t2) : (x0U, x1U, . . . , xrU) 7→
(x0U, x1U, . . . , xfU, xf+1t1U, xf+2t2U, xf+3U, . . . , xrU)

hence so are its composition factors and this implies that the equalities above

for λ′f+1, λ
′
f+2 do hold.

3.10. From 3.8(c) we see that we have a distinguished triangle (Ξ′,Ξ,Ξk[−k])
where Ξ′ ∈ Dm(B̃r+1) satisfies (Ξ′)j = 0 for all j ≥ k. We show:

(a) Let j ∈ Z and let K be one of Ξ,Ξj,Ξ′. For any w′ ∈ W r and any

h ∈ Z, HhK|Õ∅
w

′
is a local system.

We prove (a) for K = Ξ. Using 3.6(a), we see that it is enough to show that

Hh(Mωωωy,[1,r]−{f+1,f+3}
λλλy

)|Õ∅
w

′
is a local system for any h. This follows from

the fact that θ∗Mωωωy ,[1,r]−{f+1,f+3}
λλλy

(see 2.15) is G-equivariant.

We prove (a) for K = Ξj . Using 3.6(a), we see that it is enough to

show that Hh((Mωωωy ,[1,r]−{f+1,f+3}
λλλy

)j)|Õ∅
w

′
is a local system for any h and

any j. This again follows from the G-equivariance statement in the previous

paragraph.

Now (a) for K = Ξ′ follows from (a) for Ξ and Ξk[−k] using the long

exact sequence for cohomology sheaves of (Ξ′,Ξ,Ξk[−k]) restricted to Õ∅
w′ .

(b) Let (y, y′) ∈W 2, i = 2ν − |y| − |y′|. Let

wy,y′ = (w1, w2, . . . , wf , y, wf+2, y
′, wf+3, . . . , wr) ∈W r.

The induced homomorphism HiΞ|Õ∅
w
y,y′
→ Hi−k(Ξk)|Õ∅

w
y,y′

is an iso-

morphism.

We have an exact sequence of constructible sheaves

HiΞ′|Õ∅
w
y,y′
→HiΞ|Õ∅

w
y,y′
→Hi−k(Ξk)|Õ∅

w
y,y′
→Hi+1Ξ′|Õ∅

w
y,y′

.
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Hence it is enough to show that Hi′Ξ′|Õ∅
w
y,y′

= 0 if i′ ≥ i. Assume that

Hi′Ξ′|Õ∅
w
y,y′
6= 0

for some i′ ≥ i. Since Hi′Ξ′|Õ∅
w
y,y′

is a local system (see (a)), we deduce that

Õ∅
wy,y′

is contained in supp(Hi′Ξ′). We have (Ξ′[k − 1])j = 0 for any j > 0

hence dim supp(Hi′′Ξ′[k − 1]) ≤ −i′′ for any i′′. Taking i′′ = i′ − k + 1 we

deduce that

dim Õ∅
wy,y′

≤ dim supp(Hi′Ξ′) ≤ −i′ + k − 1 ≤ −i+ k − 1

hence

|wy,y′ |+ ν + (r + 1)ρ ≤ −i+ k − 1.

We have |wy,y′ |+ν+(r+1)ρ = −i+k hence −i+k ≤ −i+k−1, contradiction.
This proves (b).

3.11. For (y, y′) ∈W 2 we set

ωωωy,y′ = (ẇ1, ẇ2, . . . , ẇf , ẏ, ẇf+2, ((y
′−1)̇)−1, ẇf+3, . . . , ẇr) ∈W r,

λλλy,y′ = (λ1, λ2, . . . , λf , λf+2, λf+2, y
′−1(λf+2), λf+4, . . . , λr) ∈ sr,

Ky,y′ = M
ωωωy,y′ ,∅
λλλy,y′

〈|wy,y′ |+ ν + (r + 1)ρ〉 ∈ Mm(B̃r+1),

K̃y,y′ = M
ωωωy,y′ ,[1,r]
λλλy,y′

〈|wy,y′ |+ ν + (r + 1)ρ〉 ∈ Mm(B̃r+1).

Note that when y = y′, wy,y′ ,ωωωy,y′ ,λλλy,y′ ,Ky,y′ , K̃y,y′ become wy,ωωωy,λλλy (see

3.6) and Ky, K̃y (see 3.8). We show that we have canonically

(a) gr0(Ξ
k(k/2)) = ⊕y∈W K̃y.

Since gr0(Ξ
k(k/2)) is a semisimple perverse sheaf of pure weight zero, it is

a direct sum of simple perverse sheaves, necessarily of the form described in

3.9(a). Thus we have canonically

gr0(Ξ
k(k/2)) = ⊕(y,y′)∈W 2Vy,y′ ⊗ K̃y,y′

where Vy,y′ are mixed Q̄l-vector spaces of pure weight 0. By [1, 5.1.14], Ξ is



✐

“BN11N41” — 2016/12/9 — 22:57 — page 667 — #65
✐

✐

✐

✐

✐

2016] NON-UNIPOTENT CHARACTER SHEAVES 667

mixed of weight ≤ 0 hence Ξk(k/2) is mixed of weight ≤ 0. Hence we have

an exact sequence inMm(B̃r+1):

(a) 0→W−1(Ξk(k/2))→ Ξk(k/2)→ gr0(Ξ
k(k/2)) → 0

that is,

0→W−1(Ξk(k/2))→ Ξk(k/2)→ ⊕(y,y′)∈W 2Vy,y′ ⊗ K̃y,y′ → 0.

(Here W−1(?) denotes the part of weight ≤ −1 of a mixed perverse sheaf.)

Hence for any (ỹ, ỹ′) ∈W 2 we have an exact sequence of (mixed) cohomology

sheaves restricted to Õ∅
wỹ,ỹ′

(where h = 2ν − |ỹ| − |ỹ′| − k):

(b) Hh(W−1(Ξk(k/2)))
α→ Hh(Ξk(k/2))→ ⊕(y,y′)∈W 2Vy,y′ ⊗Hh(K̃y,y′)

→ Hh+1(W−1(Ξk(k/2))).

Moreover, by 3.10(b), we have an equality of local systems on Õ∅
wỹ,ỹ′

:

Hh(Ξk(k/2)) = Hh+k(Ξ(k/2)) = H2ν−|y|−|y′|(Ξ(k/2))

and this is Rỹ(k/2 + |ỹ| − ν) if ỹỹ′ = 1 (see 3.7(a)) and is 0 if ỹỹ′ 6= 1 (see

3.4(a)) hence is pure of weight −k − |ỹ| − |ỹ′| + ν = h. On the other hand,

Hh(W−1(Ξk(k/2))) is mixed of weight ≤ h− 1; it follows that α in (b) must

be zero.

Assume that Hh(K̃y,y′) is nonzero on Õ∅
wỹ,ỹ′

. Then, by 3.10(a), Õ∅
wỹ,ỹ′

is contained in suppHh(K̃y,y′) which has dimension ≤ −h (resp. < −h if

(y, y′) 6= (ỹ, ỹ′)); hence −h = dim Õ∅
wỹ,ỹ′

is ≤ −h (resp. < −h); we see that

we must have (y, y′) = (ỹ, ỹ′) and we have Hh(K̃y,y′) = Hh(Ky,y′) on Õ∅
wỹ,ỹ′

.

Assume that Hh+1(W−1(Ξk(k/2))) is not identically 0 on Õ∅
wỹ,ỹ′

. Then,

by 3.10(a), Õ∅
wỹ,ỹ′

is contained in suppHh+1(W−1(Ξk(k/2))) which has di-

mension ≤ −h − 1; hence −h = dim Õ∅
wỹ,ỹ′

≤ −h − 1, a contradiction. We

see that (b) becomes an isomorphism of local systems on Õ∅
wỹ,ỹ′

:

0 = Vỹ,ỹ′ ⊗Kỹ,ỹ′ if ỹỹ
′ 6= 1,

Rỹ(−h/2) ∼→ Vỹ,ỹ′ ⊗Hh(Kỹ,ỹ′) if ỹỹ
′ = 1.
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When ỹỹ′ = 1 we have Hh(Kỹ,ỹ′) = Rỹ(−h/2) as local systems on Õ∅
wỹ,ỹ′

.

It follows that Vỹ,ỹ′ is Q̄l if ỹỹ
′ = 1 and is 0 if ỹỹ′ 6= 1. This proves (a).

3.12. Let h ∈ [1, r]. Let hD�B̃r+1 (resp. hD≺B̃r+1) be the subcategory

of DB̃r+1 consisting of objects K such that for any j ∈ Z, any compo-

sition factor of Kj is of the form M
ωωω,[1,r]
λλλ 〈|w| + ν + (r + 1)ρ〉 for some

w = (w1, . . . , wr) ∈ W r, λλλ = (λ1, λ2, . . . , λr) ∈ sr such that wh · λh � c

(resp. wh · λh ≺ c). (Here ωωω = (ẇ1, ẇ2, . . . , ẇr).) Let hM�B̃r+1 (resp.

hM≺B̃r+1) be the subcategory of hD�B̃r+1 (resp. hD≺B̃r+1) consisting of

perverse sheaves.

If K ∈ Mm(B̃r+1) is pure of weight 0 and is also in hD�B̃r+1 we denote

by K the sum of all simple subobjects of K (without mixed structure) which

are not in hD≺B̃r+1.

3.13. Let Z
η←Y ϑ→B̃4 be as in 3.4 with r = 3, f = 0. We define b : D(Z)→

D(B̃2) and b : Dm(Z)→ Dm(B̃2) by

b(L) = p03!ϑ!η
∗L.

We show:

(a) If L ∈ D�(Z) then b(L) ∈ D�B̃2.
(b) If L ∈ D≺(Z) then b(L) ∈ D≺B̃2.
(c) If L ∈ M�(Z) and h > 5ρ+ 2ν + 2a then (b(L))h ∈ M≺B̃2.

We can assume that L = Lżλ where z · λ ∈
⌣
W s, z · λ � c. Applying 3.5(a)

with P = η∗Lż♯λ we see that

b(Lż♯λ ) ≎ {Lẏ,ż,ẏ
−1,{2}

λ,λ,y(λ) 〈−|z| − 2ν〉; y ∈W},
hence

b(Lż♯λ ) ≎ {Lẏ,ż,ẏ
−1,{2}

λ,λ,y(λ) 〈−ν + ρ〉; y ∈W}.

To prove (a) it is enough to show that for any y ∈W we have

L
ẏ,ż,ẏ−1,{2}
λ,λ,y(λ) ∈ D�B̃2.
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When z · λ ∈ c this follows from 2.10(a). When z · λ ≺ c this again follows

from 2.10(a), applied to the two-sided cell containing z · λ instead of c. The

same argument proves (b). To prove (c) we can assume that z · λ ∈ c; it is

enough to prove that for any y ∈W we have

(L
ẏ,ż,ẏ−1,{2}
λ,λ,y(λ) 〈−ν + ρ〉)h ∈ M≺B̃2

if h > 5ρ+ 2ν + 2a or that (L
ẏ,ż,ẏ−1,{2}
λ,λ,y(λ) )j ∈ M≺B̃2 if j > 6ρ+ ν + 2a. This

follows from 2.20(a). This completes the proof of (a), (b), (c).

We define b : Cc0 (Z)→ Cc0(B̃2) by

b(L) = gr5ρ+2ν+2a((b(L))
5ρ+2ν+2a)((5ρ + 2ν + 2a)/2).

We show:

(d) Let z · λ ∈ ⌣
c . We have b(Lżλ) = ⊕y∈W ;y·λ∈cL

ẏ
λ◦Lżλ◦L

ẏ−1

y(λ).

We shall apply [24, 1.12] with Φ : Dm(Y1) → Dm(Y2) replaced by p03! :

Dm(B̃4)→Dm(B̃2) and with D�(Y1), D�(Y2) replaced by 2D�(B̃2), 2D�(B̃4),
see 3.12. We shall take X in loc.cit. equal to ϑ!η

∗Lżλ. The conditions of

loc.cit. are satisfied: those concerning X are satisfied with c′ = 2ν + 3ρ.

(For h > |z| + 3ν + 4ρ we have Ξh = 0 that is (X[−|z| − ν − ρ])h = 0, with

Ξ as in 3.8(c). Hence if j > 2ν + 3ρ we have Xj = 0.) The conditions

concerning p03! are satisfied with c = 2ρ + 2a. (This follows from 2.20(a).)

Since b(Lżλ) = p03!X and c+ c′ = 5ρ+ 2ν + 2a, we see that

b(Lżλ) = gr2ρ+2a(p03!((gr2ν+3ρ((ϑ!η
∗Lżλ)

2ν+3ρ)((2ν + 3ρ)/2)))2ρ+2a)(ρ+ a).

Using 3.11(a) we see that (with Ξ as in 3.11(a) and k = |z| + 3ν + 4ρ) we

have

gr2ν+3ρ((ϑ!η
∗Lżλ)

2ν+3ρ)((2ν + 3ρ)/2)

= gr2ν+3ρ((Ξ〈|z| + ν + ρ〉)2ν+3ρ)((2ν + 3ρ)/2)

= gr0(Ξ
k(k/2) = ⊕y∈WM ẏ,ż,ẏ−1,[1,3]

λ,λ,y(λ) 〈2|y|+ |z|+ ν + 4ρ〉.

Hence

b(Lżλ) = gr2ρ+2a(⊕y∈W (p03!M
ẏ,ż,ẏ−1,[1,3]
λ,λ,y(λ) 〈2|y| + |z|+ ν + 4ρ〉)2ρ+2a)(ρ+ a)
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= gr2ρ+2a(⊕y∈W (L
ẏ,ż,ẏ−1,[1,3]
λ,λ,y(λ) )6ρ+ν+2a((ν + 4ρ)/2))(ρ+ a).

Using 2.26(a) we see that in the last direct sum the contribution of y ∈ W
is 0 unless y · λ ∈ c. For the terms corresponding to y such that y · λ ∈ c,

we may apply 2.24(a). Now (d) follows.

3.14. Let Z
!η←− !Y be as in 3.4 with r = 3, f = 0. Let !B̃4 be the space of

orbits of the free T2-action on B̃4 given by

(t1, t2) : (x0U, x1U, x2U, x3U) 7→ (x0U, x1t1U, x2t2U, x3U);

let !ϑ : !Y → !B̃4 be the map induced by ϑ. We define b′ : D(Z) → D(B̃2)
and b′ : Dm(Z)→ Dm(B̃2) by

b′(L) = p03!
!ϑ!

!η∗L.

(The map !B̃4 → B̃2 induced by p03 : B̃4 → B̃2 is denoted again by p03.) Let

τ : Y → !Y be as in 3.4 (it is a principal T 2-bundle). We have the following

results.

(a) If L ∈ D�(Z) then b′(L) ∈ D�B̃2.
(b) If L ∈ D≺(Z) then b′(L) ∈ D≺B̃2.
(c) If L ∈ M�(Z) and h > ρ+ 2ν + 2a then (b′(L))h ∈M≺B̃2.

We can assume that L = Lżλ where z · λ ∈
⌣
W s, z · λ � c. A variant of the

proof of 3.5(a) gives:

b′(Lż♯λ ) ≎ {′Lẏ,ż,ẏ
−1,{2}

λ,λ,y(λ) 〈−|z| − 2ν〉; y ∈W},
hence

b′(Lż♯λ ) ≎ {′Lẏ,ż,ẏ
−1,{2}

λ,λ,y(λ) 〈−ν + ρ〉; y ∈W}.

To prove (a) it is enough to show that for any y ∈W we have

′Lẏ,ż,ẏ
−1,{2}

λ,λ,y(λ) ∈ D�B̃2.

When z · λ ∈ c this follows from 2.10(c). When z · λ ≺ c this again follows

from 2.10(c), applied to the two-sided cell containing z · λ instead of c. The
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same argument proves (b). To prove (c) we can assume that z · λ ∈ c; it is

enough to prove that for any y ∈W we have

(′Lẏ,ż,ẏ
−1,{2}

λ,λ,y(λ) 〈−ν + ρ〉)h ∈ M≺B̃2

if h > ρ+ 2ν + 2a or that (′Lẏ,ż,ẏ
−1,{2}

λ,λ,y(λ) )j ∈ M≺B̃2 if j > 2ρ + ν + 2a. This

follows from 2.20(c). This completes the proof of (a), (b), (c).

We define b′ : Cc0(Z)→ Cc0(B̃2) by

b′(L) = grρ+2ν+2a((b
′(L))ρ+2ν+2a)((ρ+ 2ν + 2a)/2).

In the remainder of this subsection we fix z · λ ∈ ⌣
c and we set L = Lżλ. We

show:

(d) We have canonically b′(L) = b(L).

The method of proof is similar to that of 2.22(a). It is based on the fact that

b(L) = b′(L)⊗ L⊗2

which follows from the definitions. We define Ri,j for i ∈ [0, 2ρ+1] and Pi,j
for i ∈ [0, 2ρ] as in 2.17, but replacing LJ , ′LJ , r, δ by b(L), b′(L), 3, 2ρ. In

particular, we have

Pi,j = X4ρ−i(i− 2ρ)⊗ (b′(L))−4ρ+i+j for i ∈ [0, 2ρ]

where X4ρ−i is a free abelian group of rank
(2ρ
i

)

and X4ρ = Z. We have for

any j an exact sequence analogous to 2.17(a):

(e) · · · → Pi,j−1 →Ri+1,j →Ri,j → Pi,j →Ri+1,j+1 →Ri,j+1 → . . . ,

and we have

R0,j = (b(L))j , P0,j = (b′(L))j−4ρ(−2ρ).

We show:

(f) If i ∈ [0, 2ρ + 1] then Ri,j ∈ M�B̃2.
(g) If i ∈ [0, 2ρ + 1], j > 6ρ− i+ ν + 2a then Ri,j ∈ M≺B̃2.
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We prove (f), (g) by descending induction on i as in 2.21. If i = 2ρ + 1

then, since R2ρ+1,j = 0, there is nothing to prove. Now assume that i ∈
[0, 2ρ]. Assume that Lẇλ is a composition factor of Ri,j (without the mixed

structure). We must show that w ·λ � c and that, if j > 6ρ− i+ν+2a then

w · λ ≺ c. Using (e), we see that Lẇλ is a composition factor of Ri+1,j or of

Pi,j. In the first case, using the induction hypothesis we see that w · λ � c

and that, if j > 6ρ − i + ν + 2a (so that j > 6ρ − i − 1 + ν + 2a), then

w · λ ≺ c. In the second case, Lẇλ is a composition factor of (b′(L))−4ρ+i+j .

Using (a), (c), we see that w · λ � c and that, if j > 6ρ− i+ ν +2a (so that

−4ρ+ i+ j > ν + 2ρ+ 2a), then w · λ ≺ c. This proves (f), (g).

We show:

(h) Assume that i ∈ [0, 2ρ + 1]. Then Ri,j is mixed of weight ≤ j − i.

We argue as in 2.22 by descending induction on i. If i = 2ρ + 1 there is

nothing to prove. Assume now that i ≤ 2ρ. By Deligne’s theorem, b′(L) is

mixed of weight ≤ 0; hence (b′(L))−4ρ+i+j is mixed of weight ≤ −4ρ+ i+ j

and X4ρ−i(i−2ρ)⊗(b′(L))−4ρ+i+j is mixed of weight ≤ −4ρ+i+j−2(i−2ρ) =
j − i. In other words, Pi,j is mixed of weight ≤ j − i. Thus in the exact

sequence Ri+1,j → Ri,j → Pi,j coming from (e) in which Ri+1,j is mixed of

weight ≤ j − i − 1 < j − i (by the induction hypothesis) and Pi,j is mixed

of weight ≤ j − i we must have that Ri,j is mixed of weight ≤ j − i. This

proves (h).

We now prove (d). From (e) we deduce an exact sequence

grj(R1,j)→ grj(R0,j)→ grj(P0,j)→ grj(R1,j+1).

By (h) we have grj(R1,j) = 0. We have grj(R0,j) = grj(b(L)
j), grj(P0,j) =

grj((b
′(L))−4ρ+j(−2ρ)). Moreover, by (g) we have R1,j+1 ∈ D≺B̃2 since

j+1 > 6ρ− 1+ ν+2a. It follows that grj(R1,j+1) ∈ D≺B̃2. Thus the exact
sequence above induces an isomorphism as in (d).

We show:

(i) Let L ∈ D(Z). Let L′ ∈M(B̃2) be G-equivariant. We have canonically

b′(L) ◦ L′ = L′ ◦ b′(L).
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Let R = T\{((x0U, x1U, x2U, x3U), g) ∈ B̃4 × G; g ∈ x2Ux
−1
1 } where T

acts freely by

t : ((x0U, x1U, x2U, x3U), g) 7→ ((x0U, x1tU, x2tU, x3U), g).

Define c0 : R→ Z by ((x0U, x1U, x2U, x3U), g) 7→ ǫ(x1U, x2U).

Define c1 : R→ B̃2 by ((x0U, x1U, x2U, x3U), g) 7→ (x0U, gx3U).

Define c2 : R→ B̃2 by ((x0U, x1U, x2U, x3U), g) 7→ (g−1x0U, x3U).

Define c3 : R→ B̃2 by ((x0U, x1U, x2U, x3U), g) 7→ (x0U, x3U). We have

L′ ◦ b′(L) = c3!(c
∗
1L

′ ⊗ c∗0L), b′(L) ◦ L′ = c3!(c
∗
2L

′ ⊗ c∗0L).

It is enough to show that c∗1L
′ = c∗2L

′. This follows from the G-equivariance

of L′.

(j) If L ∈ Cc0Z, L′ ∈ CcB̃2, then we have canonically b(L)◦L′ = L′◦b(L).

By (d), it is enough to prove that b′(L)◦L′ = L′◦b′(L). Using (i) together

with (a), (b), (c) and results in 2.23, we see that both sides are equal to

grρ+ν+3a(c3!(c
∗
1L

′ ⊗ c∗0L))ρ+ν+3a((ρ+ ν + 3a)/2)

= grρ+ν+3a(c3!(c
∗
2L

′ ⊗ c∗0L))ρ+ν+3a((ρ+ ν + 3a)/2).

3.15. Let

Z = {(z0U, z1U, z2U, z3U), g) ∈ B̃4 ×G; g ∈ z2Bz−1
1 }.

Define ϑ̃ : Z → B̃4 by ((z0U, z1U, z2U, z3U), g) 7→ (z0U, z1U, z2U, z3U).

Let

′Y = {((x0U, x1U, x2U, x3U, x4U), g) ∈ B̃5 ×G; g ∈ x3Ux−1
0 , g ∈ x2Bx−1

1 },
′′Y = {((x0U, x1U, x2U, x3U, x4U), g) ∈ B̃5 ×G; g ∈ x4Ux−1

1 , g ∈ x3Bx−1
2 },

Define ′ϑ : ′Y → B̃5, ′′ϑ : ′′Y → B̃5 by

((x0U, x1U, x2U, x3U, x4U), g) 7→ (x0U, x1U, x2U, x3U, x4U).
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We have isomorphisms ′c : ′Y ∼→Z, ′′c : ′′Y ∼→Z given by

′c : ((x0U, x1U, x2U, x3U, x4U), g) 7→ ((x0U, x1U, x2U, x4U), g),

′′c : ((x0U, x1U, x2U, x3U, x4U), g) 7→ ((x0U, x2U, x3U, x4U), g).

Define ′d : B̃5 → B̃4, ′′d : B̃5 → B̃4 by

′d : (x0U, x1U, x2U, x3U, x4U) 7→ (x0U, x1U, x2U, x4U),

′′d : (x0U, x1U, x2U, x3U, x4U) 7→ (x0U, x2U, x3U, x4U).

We fix w, u inW and λ, λ′ in s such that w(λ) = λ′. The smooth subvarieties

′U = {((x0U, x1U, x2U, x3U, x4U), g) ∈ ′Y;x−1
1 x2 ∈ Gw, x−1

3 x4 ∈ Gu},
U = {((x0U, x1U, x2U, x3U), g) ∈ Z;x−1

1 x2 ∈ Gw, x−1
0 g−1x3 ∈ Gu},

′′U = {((x0U, x1U, x2U, x3U, x4U), g) ∈ ′′Y;x−1
2 x3 ∈ Gw, x−1

0 x1 ∈ Gu},

of ′Y,Z, ′′Y correspond to each other under the isomorphisms ′Y
′c→Z

′′c← ′′Y.
Moreover, the maps ′σ : ′U → Z, σ : U → Z, ′′σ : ′′U → Z given by

((x0U, x1U, x2U, x3U, x4U), g) 7→ ǫ(x1U, x2U),

((x0U, x1U, x2U, x3U), g) 7→ ǫ(x1U, x2U),

((x0U, x1U, x2U, x3U, x4U), g) 7→ ǫ(x2U, x3U),

correspond to each other under the isomorphisms ′Y
′c→Z

′′c← ′′Y.
Also the maps ′σ̃ : ′U → B̃2, σ̃ : U → B̃2, given by

((x0U, x1U, x2U, x3U, x4U), g) 7→ (x3U, x4U),

((x0U, x1U, x2U, x3U), g) 7→ (gx0U, x3U)

correspond to each other under the isomorphism ′Y
′c→Z and the maps σ̃1 :

U → B̃2, ′′σ̃ : ′′U → B̃2 given by

((x0U, x1U, x2U, x3U), g) 7→ (x0U, g
−1x3U),

((x0U, x1U, x2U, x3U, x4U), g) 7→ (x0U, x1U),

correspond to each other under the isomorphism Z
′′c← ′′Y. It follows that

the local systems ′σ∗Lẇλ , σ∗Lẇλ , ′′σ∗Lẇλ correspond to each other under the
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isomorphisms ′Y
′c→Z

′′c← ′′Y; the local systems ′σ̃∗Lu̇λ′ , σ̃
∗Lu̇λ′ correspond to

each other under the isomorphism ′Y
′c→Z; the local systems σ̃∗1L

u̇
λ′ ,

′′σ̃∗Lu̇λ′

correspond to each other under the isomorphism Z
′′c← ′′Y. Moreover, we

have σ̃∗Lu̇λ′ = σ̃∗1L
u̇
λ′ by the G-equivariance of Lu̇λ′ . Let ′K,K, ′′K be the

intersection cohomology complex of the closure of ′U ,U , ′′U respectively with

coefficients in the local system

′σ∗Lẇλ ⊗ ′σ̃∗Lu̇λ′ , σ
∗Lẇλ ⊗ σ̃∗Lu̇λ′ , ′′σ∗Lẇλ ⊗ ′′σ̃∗Lu̇λ′ ,

on ′U ,U , ′′U (respectively) extended by 0 on the complement of this closure

in ′Y,Z, ′′Y. We see that ′K,K, ′′K correspond to each other under the

isomorphisms ′Y
′c→Z

′′c← ′′Y. Hence we have ′c!(′K) = K = ′′c!(′′K). Using

this and the commutative diagram

we see that

(a) ′d!
′ϑ!(

′K) = ′′d!
′′ϑ!(

′′K).

(Both sides are equal to ϑ̃!K.)

3.16. In this subsection we study the functor ′d! : Dm(B̃5) → Dm(B̃4).
Let w = (w1, w2, w3, w4), λλλ = (λ1, λ2, λ3, λ4), ωωω = (ω1, ω2, ω3, ω4) (with ωi ∈
κ−1
q (wi)). Assume that w4 ·λ4 � c. LetK =M

ωωω,[1,4]
λλλ 〈|w|+5ρ+ν〉 ∈ Dm(B̃5).

We show:

(a) If h > a+ ρ then (′d!K)h ∈ ′M≺(B̃4). Moreover,

gra+ρ((
′dK)a+ρ)((a+ ρ)/2) = ⊕y′∈W ;y′−1·λ4∈cHomCcB̃2(L

ẏ′−1

λ4
,Lω3

λ3
◦Lω4

λ4
)

⊗Mω1,ω2,ẏ′−1,[1,3]
λ1,λ2,λ4

〈|w1|+ |w2|+ |y′|+ 4ρ+ ν〉.

We shall apply [24, 1.12] with Φ : Dm(Y1) → Dm(Y2) replaced by Φ0 :

Dm(B̃2) → Dm(B̃4), M 7→ p∗01L
ω1♯
λ1
〈|w1|〉 ⊗ p∗12Lω2♯

λ2
〈|w2|〉 ⊗ p∗23M〈ρ− ν〉 and

with D�(Y1), D�(Y2) replaced by 4D�(B̃2), 4D�(B̃4), see 3.15. We shall take

X in loc.cit. equal to Ξ := Lω3♯
λ3
◦Lω4♯

λ4
〈|w3|+ |w4|+4ρ+2ν〉. The conditions
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of loc.cit. are satisfied: those concerning X are satisfied with c′ = a− ν (see

2.23); those concerning Φ0 are satisfied with c = ρ+ν (using the definitions).

Since ′d!K = Φ0(Ξ) and c + c′ = a+ ρ we see that the first sentence in (a)

holds; moreover, we see that, setting K1 = gra+ρ((
′d!K)a+ρ)((a + ρ)/2), we

have

K1 = grρ+ν((p
∗
01L

ω1♯
λ1
〈|w1|〉 ⊗ p∗12Lω2♯

λ2
〈|w2|〉 ⊗ p∗23M〈ρ− ν〉)ρ+ν)((ρ+ ν)/2)

where

M = Lω3
λ3
◦Lω4

λ4
= ⊕y′−1·η∈cHomCcB̃2(L

ẏ′−1

η ,Lω3
λ3
◦Lω4

λ4
)Lẏ

′−1

η .

From 2.13(c) we see that η above must satisfy η = λ4. Thus we have

K1 = ⊕y′∈W ;y′−1·λ4∈cHomCcB̃2(L
ẏ′−1

λ4
,Lω3

λ3
◦Lω4

λ4
)

⊗grρ+ν(Mω1,ω2,ẏ′−1,[1,3]
λ1,λ2,λ4

〈|w1|+ |w2|+ |y′|+ 3ρ〉)ρ+ν)((ρ+ ν)/2).

It remains to use that

grρ+ν(M
ω1,ω2,ẏ′−1,[1,3]
λ1,λ2,λ4

〈|w1|+ |w2|+ |y′|+ 3ρ〉)ρ+ν)((ρ+ ν)/2)

= grρ+ν(M
ω1,ω2,ẏ′−1,[1,3]
λ1,λ2,λ4

〈|w1|+|w2|+|y′|+4ρ+ν〉)0(−(r+ν)/2))((ρ+ν)/2)

= M
ω1,ω2,ẏ′−1,[1,3]
λ1,λ2,λ4

〈|w1|+ |w2|+ |y′|+ 4ρ+ ν〉.

We state the following properties of the functor ′d! : Dm(B̃5)→ Dm(B̃4).

(b) If K ∈ 4D�(B̃5) then ′d!(K) ∈ 4D�(B̃4).
(c) If K ∈ 4D≺(B̃5) then ′d!(K) ∈ 4D≺(B̃4).
(d) If K ∈ 4M�(B̃5) and h > a+ ρ then (′d!(K))h ∈ 4M≺(B̃4).

We prove (b). We can assume that K is as in the first paragraph of this

subsection. It is enough to show that for j ∈ Z we have (Φ0(Ξ))
j ∈ 4M�(B̃4)

(with Φ0,Ξ as above). It is enough to show that Φ0(Ξ
j′) ∈ 4M�(B̃4) for any

j′ ∈ Z. This follows from the fact that Ξj
′ ∈ 4M�(B̃2) (see 2.23(b)) and the

fact that Φ0 carries 4D�(B̃2) to 4D�(B̃4). Thus (b) holds. A similar proof

gives (c). We prove (d). We can assume that K is as in (a). Then the result

follows from (a).
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3.17. In this subsection we study the functor ′′d! : Dm(B̃5) → Dm(B̃4).
Let w = (w1, w2, w3, w4), λλλ = (λ1, λ2, λ3, λ4), ωωω = (ω1, ω2, ω3, ω4) (with ωi ∈
κ−1
q (wi)). Assume that w1 ·λ1 � c. LetK =M

ωωω,[1,4]
λλλ 〈|w|+5ρ+ν〉 ∈ Dm(B̃5).

We show:

(a) If h > a+ ρ then (′′d!K)h ∈ ′M≺(B̃4). Moreover,

gra+ρ((
′′d!K)a+ρ)((a+ ρ)/2) = ⊕y′∈W ;y′·λ2∈cHomCcB̃2(L

ẏ′

λ2
,Lω1

λ1
◦Lω2

λ2
)

⊗M ẏ′,ω3,ω4,[1,3]
λ2,λ3,λ4

〈|w3|+ |w4|+ |y′|+ 4ρ+ ν〉.

We shall apply [24, 1.12] with Φ : Dm(Y1) → Dm(Y2) replaced by Φ0 :

Dm(B̃2) → Dm(B̃4), M 7→ p∗01M ⊗ p∗12Lω3♯
λ3
〈|w3|〉 ⊗ p∗23Lω4♯

λ4
〈|w4|〉〈ρ− ν〉 and

with D�(Y1), D�(Y2) replaced by 1D�(B̃2), 1D�(B̃4), see 3.15. We shall take

X in loc.cit. equal to Ξ := Lω1♯
λ1
◦Lω2♯

λ2
〈|w1|+ |w2|+4ρ+2ν〉. The conditions

of loc.cit. are satisfied: those concerning X are satisfied with c′ = a− ν (see

2.23); those concerning Φ0 are satisfied with c = ρ+ν (using the definitions).

Since ′′d!K = Φ0(Ξ) and c + c′ = a+ ρ we see that the first sentence in (a)

holds; moreover we see that, setting K1 = gra+ρ((
′d!K)a+ρ)((a + ρ)/2), we

have

K1 = grρ+ν((p
∗
01M ⊗ p∗12Lω3♯

λ3
〈|w3|〉 ⊗ p∗23Lω4♯

λ4
〈|w4|+ ρ− ν〉)ρ+ν)((ρ+ ν)/2)

where

M = Lω1
λ1
◦Lω2

λ2
= ⊕y′·η∈cHomCcB̃2(L

ẏ′
η ,L

ω1
λ1
◦Lω2

λ2
)Lẏ

′
η .

From 2.13(c) we see that η must satisfy η = λ2. Thus we have

K1 = ⊕y′∈W ;y′·λ2∈cHomCcB̃2(L
ẏ′

λ2
,Lω1

λ1
◦Lω2

λ2
)

⊗grρ+ν(M ẏ′,ω3,ω4,[1,3]
λ2,λ3,λ4

〈|w3|+ |w4|+ |y′|+ 3ρ〉)ρ+ν)((ρ+ ν)/2).

It remains to use that

grρ+ν(M
ẏ′,ω3,ω4,[1,3]
λ2,λ3,λ4

〈|w3|+ |w4|+ |y′|+ 3ρ〉)ρ+ν)((ρ+ ν)/2)

= grρ+ν(M
ẏ′,ω3,ω4,[1,3]
λ2,λ3,λ4

〈|w3|+|w4|+|y′|+4ρ+ν〉)0(−(r+ν)/2))((ρ+ν)/2)

= M
ẏ′,ω3,ω4,[1,3]
λ2,λ3,λ4

〈|w3|+ |w4|+ |y′|+ 4ρ+ ν〉.

We state the following properties of the functor ′′d! : Dm(B̃5)→ Dm(B̃4).
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(b) If K ∈ 1D�(B̃5) then ′′d!(K) ∈ 1D�(B̃4).
(c) If K ∈ 1D≺(B̃5) then ′′d!(K) ∈ 1D≺(B̃4).
(d) If K ∈ 1M�(B̃5) and h > a+ ρ then (′′d!(K))h ∈ 1M≺(B̃4).

The proof of (b), (c), (d) is completely similar to that of 3.16(b), (c), (d).

3.18. Let w · λ ∈
⌣
W s, u · λ′ ∈ c. We shall apply [24, 1.12] with Φ :

Dm(Y1) → Dm(Y2) replaced by ′d! : Dm(B̃5) → Dm(B̃4) and with D�(Y1),

D�(Y2) replaced by 4D�(B̃5), 4D�(B̃4), see 3.15. We shall take X in loc.cit.

equal to Ξ = ′ϑ!(′K) as in 3.15, (w2, w4) = (w, u), (λ2, λ4) = (λ, λ′). The

conditions of loc.cit. are satisfied: those concerning X are satisfied with

c′ = k = |w| + |u| + 3ν + 5ρ (see 3.8(c)); those concerning Φ are satisfied

with c = a+ ρ (see 3.16). We see that

gra+ρ+k((
′d!

′ϑ!(
′K))a+ρ+k)((a+ ρ+ k)/2)

= gra+ρ((
′d!grk((

′ϑ!(
′K))k)(k/2))a+ρ)((a+ ρ)/2).

Using 3.11(a) we have:

grk(
′ϑ!(

′K))k)(k/2) = ⊕y∈WM ẏ,ẇ,ẏ−1,u̇,[1,4]
λ,λ,y(λ),λ′ 〈2|y| + |w| + |u|+ 5ρ+ ν〉

= grk(
′ϑ!(

′K))k(k/2).

Hence using 3.16(a) we have

gra+ρ((
′d!grk((

′ϑ!(
′K))k)(k/2))a+ρ)((a+ ρ)/2)

= ⊕y∈W ⊕y′∈W ;y′−1·λ′∈c HomCcB̃2(L
ẏ′−1

λ′ ,Lẏ
−1

y(λ)◦Lu̇λ′)

⊗M ẏ,ẇ,ẏ′−1,[1,3]
λ,λ,λ′ 〈|y|+ |w| + |y′|+ 4ρ+ ν〉.

Since y′−1 · λ′ ∈ c, u · λ′ ∈ c, for y ∈W we have

HomCcB̃2(L
ẏ′−1

λ′ ,Lẏ
−1

y(λ)
◦Lu̇λ′) = 0

unless y−1 · y(λ) ∈ c (see 2.26) or equivalently (see 1.9(Q10), 1.11), y ·λ ∈ c.

Thus we have

gra+ρ+k((
′d!

′ϑ!(
′K))a+ρ+k)((a+ ρ+ k)/2)
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= ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′−1·λ′∈c HomCcB̃2(L
ẏ′−1

λ′ ,Lẏ
−1

y(λ)◦L
u̇
λ′)

⊗M ẏ,ẇ,ẏ′−1,[1,3]
λ,λ,λ′ 〈|y|+ |w|+ |y′|+ 4ρ+ ν〉.

The last Hom-space is zero unless y′−1(λ′) = λ hence

(a) gra+ρ+k((
′d!

′ϑ!(
′K))a+ρ+k)((a+ ρ+ k)/2)

= ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′−1·y′(λ)∈c HomCcB̃2(L
ẏ′−1

y′(λ),L
ẏ−1

y(λ)◦L
u̇
λ′)

⊗M ẏ,ẇ,ẏ′−1,[1,3]
λ,λ,λ′ 〈|y|+ |w|+ |y′|+ 4ρ+ ν〉.

3.19. In the setup of 3.18 we shall apply [24, 1.12] with Φ : Dm(Y1) →
Dm(Y2) replaced by ′′d! : Dm(B̃5) → Dm(B̃4) and with D�(Y1), D�(Y2)

replaced by 1D�(B̃5), 1D�(B̃4), see 3.15. We shall take X in loc.cit. equal to

Ξ = ′′ϑ!(′′K) as in 3.15, (w1, w3) = (u,w), (λ1, λ3) = (λ′, λ). The conditions

of loc.cit. are satisfied: those concerning X are satisfied with c′ = k =

|w|+ |u|+3ν+5ρ (see 3.8(c)); those concerning Φ are satisfied with c = a+ρ

(see 3.17). We see that

gra+ρ+k((
′′d!

′′ϑ!(
′′K))a+ρ+k)((a+ ρ+ k)/2)

= gra+ρ((
′′d!grk((

′′ϑ!(
′′K))k)(k/2))a+ρ)((a+ ρ)/2).

Using 3.11(a) we have:

grk(
′′ϑ!(

′′K))k)(k/2) = ⊕y∈WM u̇,ẏ,ẇ,ẏ−1,[1,4]
λ′,λ,λ,y(λ) 〈2|y| + |w| + |u|+ 5ρ+ ν〉

= grk(
′′ϑ!(

′′K))k(k/2).

Hence using 3.17(a) we have

gra+ρ((
′′d!grk((

′′ϑ!(
′′K))k)(k/2))a+ρ)((a+ ρ)/2)

= ⊕y∈W ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ′

λ ,L
u̇
λ′◦Lẏλ)

⊗M ẏ′,ẇ,ẏ−1,[1,3]
λ,λ,y(λ)

〈|y|+ |w|+ |y′|+ 4ρ+ ν〉.

Since y′ · λ ∈ c, u · λ′ ∈ c, for y ∈ W we have HomCcB̃2(L
ẏ′

λ ,L
u̇
λ′◦L

ẏ
λ) = 0
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unless y · λ ∈ c (see 2.26). Thus we have

gra+ρ+k((
′′d!

′′ϑ!(
′′K))a+ρ+k)((a+ ρ+ k)/2)

= ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ′

λ ,L
u̇
λ′◦Lẏλ)

⊗M ẏ′,ẇ,ẏ−1,[1,3]
λ,λ,y(λ) 〈|y|+ |w|+ |y′|+ 4ρ+ ν〉.

The last Hom-space is zero unless y(λ) = λ′ hence (with the change of

notation (y, y′) 7→ (y′, y)):

(a) gra+ρ+k((
′′d!

′′ϑ!(
′′K))a+ρ+k)((a+ ρ+ k)/2)

= ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ
λ,L

u̇
λ′◦Lẏ

′

λ )

⊗M ẏ,ẇ,ẏ′−1,[1,3]
λ,λ,λ′ 〈|y|+ |w| + |y′|+ 4ρ+ ν〉.

3.20. Let y1 · λ1 ∈ c, y2 · λ2 ∈ c, y3 · λ3 ∈ c. We show:

(a) We have canonically

HomCcB̃2(L
ẏ−1
2

y2(λ2)
,L

ẏ−1
1

y1(λ1)
◦Lẏ3λ3) = HomCcB̃2(L

ẏ1
λ1
,Lẏ3λ3◦L

ẏ2
λ2
).

When λ1 6= λ2, both sides of the last equality (to be proved) are zero and

the result is clear. In the rest of the proof we assume λ1 = λ2 = λ. We set

u · λ′ = y3 · λ3. Choose w ∈W such that w · λ ∈
⌣
W s.

Applying 3.18(a), 3.19(a) to our w · λ, u · λ′ and using the equality

gra+ρ+k((
′d!

′ϑ!(
′K))a+ρ+k)((a+ ρ+ k)/2)

= gra+ρ+k((
′′d!

′′ϑ!(
′′K))a+ρ+k)((a+ ρ+ k)/2)

which comes from ′d!′ϑ!(′K) = ′′d!′′ϑ!(′′K), see 3.15(a), we deduce

(b) ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ′−1

y′(λ),L
ẏ−1

y(λ)◦L
u̇
λ′)

⊗M ẏ,ẇ,ẏ′−1,[1,3]
λ,λ,λ′ 〈|y|+ |w| + |y′|+ 4ρ+ ν〉

= ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ
λ,L

u̇
λ′◦Lẏ

′

λ )

⊗M ẏ,ẇ,ẏ′−1,[1,3]
λ,λ,λ′ 〈|y|+ |w| + |y′|+ 4ρ+ ν〉.
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Considering the coefficient of

M
ẏ1,ẇ,ẏ

−1
2 ,[1,3]

λ,λ,λ′ 〈|y1|+ |w|+ |y2|+ 4ρ+ ν〉

in the two sides of (b) we obtain (a). From the proof one can see that the

identification in (a) does not depend on the choice of w.

3.21. We assume that w · λ ∈ ⌣
c , u · λ′ ∈ c. We apply p03! and 〈N〉 for some

N to the two sides of 3.20(b). (Recall that p03 : B̃4 → B̃2.) We obtain

⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ′−1

y′(λ),L
ẏ−1

y(λ)◦L
u̇
λ′)⊗ L

ẏ
λ ◦ Lẇλ ◦ L

ẏ′−1

y′(λ)

= ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ
λ,L

u̇
λ′◦Lẏ

′

λ )⊗ L
ẏ
λ ◦ Lẇλ ◦ L

ẏ′−1

y′(λ).

(We have replaced L
ẏ′−1

λ′ by L
ẏ′−1

y′(λ); in the last equality the terms with λ′ 6=
y′(λ) contribute 0.) Applying (){2(a−ν)} to both sides and using 2.24(a) we

obtain

⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ′−1

y′(λ),L
ẏ−1

y(λ)◦L
u̇
λ′)⊗ L

ẏ
λ◦Lẇλ ◦L

ẏ′−1

y′(λ)

= ⊕y∈W ;y·λ∈c ⊕y′∈W ;y′·λ∈c HomCcB̃2(L
ẏ
λ,L

u̇
λ′◦Lẏ

′

λ )⊗ L
ẏ
λ◦Lẇλ ◦L

ẏ′−1

y′(λ)

or equivalently

⊕y∈W ;y·λ∈cL
ẏ
λ◦Lẇλ ◦L

ẏ−1

y(λ)◦Lu̇λ′ = ⊕y′∈W ;y′·λ∈cL
u̇
λ′◦Lẏ

′

λ ◦Lẇλ ◦L
ẏ′−1

y′(λ).

Using 3.13(d), this can be rewritten as follows:

(a) b(Lẇλ )◦Lu̇λ′ = Lu̇λ′◦b(Lẇλ ).

Another identification of the two sides in (a) is given by 3.14(j) with L = Lẇλ ,

L′ = Lu̇λ′ (note that b(L) = b′(L) by 3.14(d)). In fact, the arguments in 3.13-

3.21 show that

(b) these two identifications of the two sides of (a) coincide.

3.22. Let

V = {(B0, B1, B2, gUB0 , g
′UB1);

(B0, B1, B2) ∈ B3, g ∈ G, g′ ∈ G, gB0g
−1 = B1, g

′B1g
′−1 = B2}.
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Define p01 : V → Z, p12 : V → Z, p02 : V → Z by

p01 : (B0, B1, B2, gUB0 , g
′UB1) 7→ (B0, B1, gUB0),

p12 : (B0, B1, B2, gUB0 , g
′UB1) 7→ (B1, B2, g

′UB1),

p02 : (B0, B1, B2, gUB0 , g
′UB1) 7→ (B0, B2, g

′gUB0).

For L,L′ in D(Z) we set

L • L′ = p02!(p
∗
01L⊗ p∗12L′) ∈ D(Z).

This operation is associative. Hence if 1L, 2L, . . . , rL are in D(Z) then 1L •
2L • . . . • rL ∈ D(Z) is well defined. We show:

(a) For L,L′ in D(Z) we have canonically ǫ∗(L • L′) = ǫ∗(L) ◦ ǫ∗(L′).

Let

Y = {(xU, yU, gUxBx−1);xU ∈ B̃, yU ∈ B̃; g ∈ G}.

Define j : Y → B̃2, j1 : Y → Z, j2 : Y → Z by

j(xU, yU, gUxBx−1) = (xU, yU),

j1(xU, yU, gUxBx−1) = (xBx−1, gxBx−1g−1, gUxBx−1),

j2(xU, yU, gUxBx−1) = (gxBx−1g−1, yBy−1, yUx−1g−1).

From the definitions we have

ǫ∗(L • L′) = j!(j
∗
1(L)⊗ j∗2(L′)) = ǫ∗(L) ◦ ǫ∗(L′)

and (a) follows.

3.23. Let L,L′ ∈ D♠Z. We show:

(a) If L ∈ D�Z or L′ ∈ D�Z then L •L′ ∈ D�Z. If L ∈ D≺Z or L′ ∈ D≺Z

then L • L′ ∈ D≺Z.

For the first assertion of (a) we can assume that L = Lẇλ , L
′ = Lẇ

′
λ′ with

w · λ,w′ · λ′ in
⌣
W s and either w · λ � c or w′ · λ′ � c. Assume that
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w1 ·λ1 ∈
⌣
W s and L

ẇ1
λ1

is a composition factor of (L •L′)j. Then L
ẇ1
λ1

= ǫ̃Lẇ1
λ1

is a composition factor of

ǫ∗(L • L′)j〈ρ〉 = (ǫ∗(L • L′))j+ρ(ρ/2) = (ǫ∗L ◦ ǫ∗L′)j+ρ(ρ/2)

= (ǫ∗L〈ρ〉 ◦ ǫ∗L′〈ρ〉)j−ρ(−ρ/2) = (Lẇλ ◦ Lẇ
′

λ′ )
j−ρ(ρ/2).

From 2.23(b) we see that w1 · λ1 � c. This proves the first assertion of (a).

The second assertion of (a) can be reduced to the first assertion.

(b) Assume that L,L′ ∈ M♠Z and that either L or L′ is in D�Z. If j >

a+ ρ− ν then (L • L′)j ∈ M≺Z.

We can assume that L = Lẇλ , L
′ = Lẇ

′
λ′ with w · λ,w′ · λ′ in

⌣
W s and either

w · λ ∈ c or w′ · λ′ ∈ c. Assume that w1 · λ1 ∈
⌣
W s and Lẇ1

λ1
is a composition

factor of (L • L′)j . Then as in the proof of (a), Lẇ1
λ1

is a composition factor

of

ẽ(L • L′)j = (Lẇλ ◦ Lẇ
′

λ′ )
j−ρ(−ρ/2).

Since j − ρ > a− ν we see from 2.23(a) that w1 · λ1 ≺ c. This proves (b).

3.24. For L,L′ ∈ Cc0Z we set

L•L′ = (L • L′){a+ρ−ν} ∈ Cc0Z.

Using 3.23(a), (b) we see as in 2.24 that for L,L′, L′′ ∈ Cc0Z we have

L•(L′•L′′) = (L•L′)•L′′ = (L • L′ • L′′){2a+2ρ−2ν}.

We see that L,L′ 7→ L•L′ defines a monoidal structure on Cc0Z. Hence if

1L, 2L, . . . , rL

are in Cc0Z, then 1L•2L• . . . •rL ∈ Cc0Z is well defined; we have

(a) 1L•2L• . . . •rL = (1L • 2L • . . . • rL){(r−1)(a+ρ−ν)}.

For L,L′ ∈ Cc0Z we have ǫ̃L, ǫ̃L′ ∈ Cc0 B̃2. We show:

(b) ǫ̃(L•L′) = (ǫ̃L)◦(ǫ̃L′).
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It is enough to show that

ǫ∗(gr0((L • L′)a+ρ−ν)((a+ ρ− ν)/2))[ρ](ρ/2)
= gr0((ǫ

∗L[ρ](ρ/2) ◦ ǫ∗L′[ρ](ρ/2))a−ν )((a − ν)/2))).

The left hand side is equal to

gr0(ǫ
∗((L • L′)a+ρ−ν)((a+ ρ− ν)/2))[ρ](ρ/2))

hence it is enough to show:

ǫ∗((L • L′)a+ρ−ν)((a+ ρ− ν)/2))[ρ](ρ/2)
= (ǫ∗L[ρ](ρ/2) ◦ ǫ∗L′[ρ](ρ/2))a−ν ((a− ν)/2))

that is,

ǫ∗((L • L′)a+ρ−ν)[ρ] = (ǫ∗L[ρ] ◦ ǫ∗L′[ρ])a−ν ,

or, after using 3.3(b):

(ǫ∗(L • L′))a+2ρ−ν = (ǫ∗L ◦ ǫ∗L′)a+2ρ−ν .

It remains to use that ǫ∗(L • L′) = ǫ∗L ◦ ǫ∗L′, see 3.22(a).

3.25. In the setup of 3.14 let

⋄Y = T2\{((x0U, x1U, x2U, x3U), g) ∈ B̃4 ×G; g ∈ x3Ux−1
0 , g ∈ x2Ux−1

1 }

where T2 acts freely by

(t1, t2) : ((x0U, x1U, x2U, x3U), g) 7→ ((x0t1U, x1t2U, x2t2U, x3t1U), g).

We define ⋄η : ⋄Y → Z by

((x0U, x1U, x2U, x3U), g) 7→ ǫ(x1U, x2U).

We define d : ⋄Y → Z by

((x0U, x1U, x2U, x3U), g) 7→ ǫ(x0U, x3U).
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We define b′′ : D(Z)→ D(Z) and b′′ : Dm(Z)→ Dm(Z) by

b′′(L) = d!(
⋄η)∗L.

From the definitions it is clear that

(a) b′(L) = ǫ∗b′′(L).

Using (a) we see that 3.14(a), (b), (c) imply the following statements.

(b) If L ∈ D�(Z) then b′′(L) ∈ D�Z. If L ∈ D≺(Z) then b′′(L) ∈ D≺Z.

(c) If L ∈M�(Z) and h > 2ν + 2a then (b′′(L))h ∈ M≺B̃2.

We define b′′ : Cc0(Z)→ Cc0(Z) by

b′′(L) = gr2ν+2a((b
′′(L))2ν+2a)(ν + a).

Using results in 3.3 we see that, if L ∈ Cc0Z, then

(d) b′(L) = ǫ̃(b′′(L)).

4. The Monoidal Category CcB̃2 and Its Centre

4.1. We consider the inclusion Õ1 → B̃2 where Õ1 = {(xU, yU) ∈ B̃2, x−1y ∈
B}. Let w · λ ∈ W s be such that w · λ � c; let i ∈ Z. From 2.12(a), (b) we

deduce:

(a)
∑

i∈Z
rk(HiLẇ♯λ |Õ1

)vi is v|w|pλ1,w if w ∈Wλ and is 0 if w /∈Wλ;

where pλ1,w ∈ Z[v−1] (as in 1.8) belongs to v−a(w)Z[v−1] (see [18, §14]) and

a(w) is the value at w of the a-function of the Coxeter group Wλ (so that

a(w) ≥ a); moreover,

(b) HiLẇ♯λ |Õ1
is a local system of pure weight i.

From (a) it follows that

∑

i∈Z
rk(Hi(Lẇ♯λ [|w|])|Õ1

)vi is in v−a(w)Z[v−1] if w ∈Wλ and is 0 if w /∈Wλ
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so that

Hi(Lẇ♯λ [|w|])|Õ1
) is 0 if i > −a.

Define δ : B̃ → B̃2 by xU 7→ (xU, xU). Then the image of d is contained in

B̃1 and we deduce

(c) Hi(δ∗Lẇ♯λ [|w|]) = 0 if i > −a.

We show:

(d) If L ∈ M�B̃2 and j > −a− ρ then (δ∗L)j = 0.

We can assume that L = Lẇλ with w · λ as above. It is enough to show that

for any k we have (Hk(δ∗L)[−k])j = 0 that is

(Hk(δ∗(Lẇ♯λ [|w| + ν + 2ρ]))[ν + ρ])j−k−ν−ρ = 0.

Now Hk(δ∗(Lẇ♯λ [|w|+ ν + 2ρ])) is a local system on B̃ hence

Hk(δ∗(Lẇ♯λ [|w|+ ν + 2ρ]))[ν + ρ]

is a perverse sheaf on B̃ so that we can assume that j − k− ν − ρ = 0. Thus

it is enough to show that

Hj−ν−ρ(δ∗(Lẇ♯λ [|w|+ ν + 2ρ])) = 0

or that Hj+ρ(δ∗(Lẇ♯λ [|w|)) = 0. This is indeed true by (c).

We show:

(e) If L ∈ M�
mB̃2 is pure of weight 0 and j ∈ Z then (δ∗L)j is pure of weight

j.

We can assume that L = Lẇλ with λ,w as in (c). It is enough to prove that

for any k, (Hk(δ∗L)[−k])j is pure of weight j that is,

(Hk(δ∗(Lẇ♯λ [|w| + ν + 2ρ]))[ν + ρ])j−k−ν−ρ((|w| + ν + 2ρ)/2)

is pure of weight j. As in the proof of (d) we can assume that j−k−ν−ρ = 0.

Thus it is enough to show that

Hj−ν−ρ(δ∗(Lẇ♯λ [|w| + ν + 2ρ]))[ν + ρ]((|w| + ν + 2ρ)/2)
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is pure of weight j or that Hj+|w|+ρ(δ∗(Lẇ♯λ ))〈ν + ρ〉((|w| + ρ)/2) is pure of

weight j. This follows from (b).

For w · λ ∈ c we have as in the proof of (e):

(δ∗Lẇλ )
−a−ρ = H−a+|w|(δ∗(Lẇ♯λ ))〈ν + ρ〉((|w| + ρ)/2).

We set

βw·λ = H−a+|w|(δ∗(Lẇ♯λ ))((−a + |w|)/2)

This is a G-equivariant local system on B̃ hence can be identified with a

Q̄l-vector space which by (b) is pure of weight 0; we have

We show:

(f) dimβw·λ is 1 if w · λ ∈ Dc and is 0 if w · λ /∈ Dc. We have

(δ∗Lẇλ )
−a−ρ = βw·λ〈ν + ρ〉((a + ρ)/2).

By (a), dimβw·λ is 0 if w /∈Wλ while if w ∈Wλ it is equal to the coefficient

of v−a in pλ1,w, which by [18, 14.2, P5] is 1 if w is a distinguished involution

of Wλ and is 0 otherwise. This proves (f).

4.2. Let π′ : B̃ → p be the obvious map. We show:

(a) Assume that L ∈ Mm(B̃) is G-equivariant so that L = V ⊗ Q̄l〈ν + ρ〉
where V is a mixed vector space. If j > ν + ρ then (π′!L)

j = 0.

We have Hj(p′!L) = V ⊗Hj+ν+ρ
c (B̃, Q̄l)((ν+ρ)/2). This is zero if j+ν+ρ >

2ν + 2ρ since B̃ is irreducible of dimension ν + ρ.

We show:

(b) If L ∈ M�
mB̃2 and j > ν − a then (π′!δ

∗L)j = 0 (with δ as in 4.1).

Moreover we have canonically (π′!δ
∗L)ν−a = (π′!((δ

∗L)−a−ρ))ν+ρ.

The proof has much in common with that of [24, 8.2].

Let X = δ∗L. For any i we have a distinguished triangle (τ<iX, τ≤iX,

Xi[−i]) where we write τ<i, τ≤i for what in [1] is denoted by pτ<i,
pτ≤i.
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We deduce a distinguished triangle (π′!(τ<iX), π′!(τ≤iX), π′!(X
i)[−i]) hence

an exact sequence

(c) (π′!(X
i))h−1 → (π′!(τ<iX))i+h → (π′!(τ≤iX))i+h → (π′!(X

i))h

→ (π′!(τ<iX))i+h+1.

We show by induction on i that

(d) (π′!(τ≤iX))j = 0 for j > ν − a.

For sufficiently negative i, (d) is obvious. Thus we can assume that (d) is

known when i is replaced by i− 1. From (c) with h = j − i we see using the

induction hypothesis that we have an exact sequence 0 → (π′!(τ≤iX))j →
(π′!(X

i))j−i. It is then enough to show that (π′!(X
i))j−i = 0. If i > −a− ρ

then Xi = 0 by 4.1(d). Thus we can assume that i ≤ −a − ρ so that

j− i > ν+ ρ and the equality (π′!(X
i))j−i = 0 follows from (a) with L = Xi.

This proves (d).

In particular the first assertion of (b) holds. We now take h = ν − a− i
in (c). Assuming that i > −a− ρ we obtain (using 4.1(d))

(π′!(τ<iX))ν−a
∼→ (π′!(τ≤iX))ν−a.

Hence

(π′!(τ≤−a−ρX))ν−a
∼→ (π′!X)ν−a.

We show by induction on i:

(e) (π′!(τ≤iX))j = 0 if i < −a− ρ, j = ν − a.

For sufficiently negative i, (e) is obvious. Thus we can assume that (e) is

known when i is replaced by i− 1. From (c) with h = j − i we see using the

induction hypothesis that we have an exact sequence 0 → (π′!(τ≤iX))j →
(π′!(X

i))j−i. It is then enough to show that (π′!(X
i))j−i = 0. We have

j− i > ν+ ρ and the equality (π′!(X
i))j−i = 0 follows from (a) with L = Xi.

This proves (e).

From (e) we see that (π!(τ≤−a−ρ−1X))ν−a = 0. From (c) with i = −a−ρ,
h = ν + ρ we deduce an exact sequence

0→ (π′!X)ν−a → (π′!(X
−a−ρ))ν+ρ → 0.
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This completes the proof of (b).

We show:

(f) If L ∈ Cc0 B̃2 then (π′!((δ
∗L)−a−ρ))ν+ρ and (π′!δ

∗L)ν−a are pure of weight

ν − a.

We can assume that L = Lẇλ where w · λ ∈ c. Using 4.1(f) we have

(π′!((δ
∗L)−a−ρ))ν+ρ((−a+ ν)/2)

= (π′!(βw·λ〈ν + ρ〉)((a + ρ)/2))ν+ρ((−a+ ν)/2)

= βw·λ ⊗ (π′!Q̄l〈ν + ρ〉)ν+ρ((ν+ρ)/2)
= βw·λ ⊗ (π′!Q̄l)

2ν+2ρ(ν+ρ)=βw·λ.

Since bw·λ is pure of weight 0, we see that (π′!((δ
∗L)−a−ρ))ν+ρ is pure of

weight ν − a. Using (b) we deduce that (π′!δ
∗L)ν−a is pure of weight ν − a.

4.3. We set

1′ = ⊕d·λ∈Dc
β∗d·λ ⊗ Lḋλ ∈ Cc0 B̃2.

Here β∗d·λ is the vector space dual to βd·λ, see 4.1(f). For L ∈ CcB̃2 we show

(a) HomCcB̃2(1
′, L) = (π′!((δ

∗L)−a−ρ))ν+ρ((−a+ ν)/2).

We can assume that L = Lẇλ where w · λ ∈ c. Assume first that w · λ ∈ Dc.

Then HomCcB̃2(1′, L) = βw·λ and (as in the proof of 4.2(f)):

(π′!((δ
∗L)−a−ρ))ν+ρ((−a+ ν)/2) = βw·λ.

Thus (a) holds in this case. Next assume that w · λ /∈ Dc. Then both sides

of (a) are zero (we use 4.1(f)).

4.4. For L ∈ Dm(B̃2) we set L† = h̃∗L where h̃ : B̃2 → B̃2 is as in 2.1. Let

π′′ : B̃2 → p be the obvious map. For L,L′ in Dm(B̃2) we have from the

definitions

(a) π′!δ
∗(L ◦ L′) = π′′! (L⊗ L′†).

We show:
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(b) If L ∈ Cc0 B̃2 then D(L†) ∈ Cc0 B̃2.

We can assume that L = Lẇλ where w ·λ ∈ c. Using 2.2(a) and the definitions

we have

(c) D(L†) = D(Lẇ
−1

w(λ−1)) = Lẇ
−1

w(λ).

It remains to use that w−1 · w(λ) ∈ c, by property Q10 in 1.9 for H.

4.5. We show:

(a) For L,L′ in CcB̃2 we have canonically

HomCcB̃2(1
′, L◦L′) = HomCcB̃2(D(L′†), L).

We can assume that L = Lẇλ , L
′ = Lẇ

′
λ′ where w · λ ∈ c, w′ · λ′ ∈ c. Using

4.3(a) and 4.2(b), 4.2(f), we have

(b) HomCcB̃2(1
′, L◦L′) = (π′!((δ

∗(L◦L′))−a−ρ))ν+ρ((−a+ ν)/2)

= (π′!δ
∗(L◦L′))ν−a((−a+ ν)/2) = (π′!δ

∗(L◦L′)){ν−a}.

Applying [24, 8.2] with Φ : D�
mZ → Dp, L̃ 7→ π′!δ

∗L̃, c = ν − a, c′ = −ν + a

(see 4.2(b)) we see that we have canonically

(c) (π′!δ
∗(L◦L′)){ν−a} ⊂ (π′!δ

∗(L • L′)){0}.

From [15, 7.4] we see that we have canonically

(d) (π′′! (L⊗ L′†))0 = (π′′! (L⊗ L′†)){0} = HomD(B̃2)(D(L′†), L).

By 4.4(a) we have π′!δ
∗(L • L′) = π′′! (L⊗ L′†). Hence by combining (b), (c),

(d) we have

(e) HomCcB̃2(1
′, L◦L′) ⊂ HomCcB̃2(D(L′†), L).

The dimension of the left hand side of (e) is the sum over z · λ1 ∈ Dc of

the coefficient of tz·λ1 in tw·λtw′·λ′ ∈ H∞ and by the properties Q1,Q2,Q4

(in 1.9) of H, this sum is equal to 1 if w′ · λ′ = w−1 · w(λ) and is 0 if

w′ ·λ′ 6= w−1 ·w(λ); hence it is equal to the dimension of the right hand side

of (e). It follows that (e) is an equality and (a) follows.
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4.6. The bifunctor Cc0 B̃2 × Cc0 B̃2 → Cc0 B̃2, L,L′ 7→ L◦L′ in 2.24 gives rise to

a bifunctor CcB̃2 × CcB̃2 → CcB̃2 denoted again by L,L′ 7→ L◦L′ as follows.
Let L ∈ CcB̃2, L′ ∈ CcB̃2; we choose mixed structures of pure weight 0 on

L,L′, we define L◦L′ as in 2.24 in terms of these mixed structures and we

then disregard the mixed structure on L◦L′. The resulting object of CcB̃2 is

denoted again by L◦L′; it is independent of the choices made.

Similarly the bifunctor Cc0Z × Cc0Z → Cc0Z, L,L′ 7→ L•L′ in 3.24 gives

rise to a bifunctor CcZ × CcZ → CcZ denoted again by L,L′ 7→ L•L′.

The operation L•L′ (resp. L◦L′) makes CcZ (resp. CcB̃2) into a monoidal

abelian category (see 2.24, 3.24).

The following result can be deduced from 2.22(c).

(a) Let wi · λi ∈ c, i = 1, 2. In CcB̃2 we have

L
ẇ1
λ1
◦Lẇ2

λ2
∼= ⊕w·λ∈c(Lẇλ )⊕f(w·λ)

where f(w · λ) ∈ N are given by

tw1·λ1tw2·λ2 =
∑

w·λ∈c
f(w · λ)tw·λ ∈ H∞

c .

It follows that:

(b) in (a) we have f(w · λ) = 0 unless λ = λ2, w(λ) = w1(λ1), λ1 = w2(λ2).

To see this, we use that, setting for any λ ∈ o:

1cλ =
∑

d td·λ ∈ H∞
c (sum over all distinguished involutions d of Wλ),

we have 1cλ1
c
λ′ = δλ,λ′1

c
λ for λ, λ′ in o and

tw·λ = tw·λ1cλ = 1cw(l)tw·λ for any w · λ ∈ c.

For any λ1, λ2 in o let Ccλ1,λ2B̃2 be the subcategory of CcB̃2 consisting of

objects which are direct sums of objects of the form Lẇλ2 for various w ∈W
such that w(λ2) = λ1 and w · λ2 ∈ c. Clearly, any object L ∈ CcB̃2 is

canonically of the form

(c) ⊕λ1,λ2∈oLλ1,λ2 where Lλ1,λ2 ∈ Ccλ1,λ2.

From (b) we see that
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(d) if λ1, λ2, λ3, λ4 are elements of o and L ∈ Ccλ1,λ2, L′ ∈ Ccλ3,λ4 then L◦L′ ∈
Ccλ1,λ4; moreover, L◦L′ = 0 unless λ2 = λ3.

4.7. We set

(a) 1 = ⊕d·λ∈Dc
βd·λ ⊗ L

(ḋ)−1

λ ∈ Cc0 B̃2.

Here βd·λ is as in 4.1(f).

Let y2 · λ2 ∈ c, y3 · λ3 ∈ c. From 3.20(a) we have for any d · λ ∈ Dc:

HomCcB̃2(L
ẏ−1
2

y2(λ2)
,L

(ḋ)−1

λ ◦Lẏ3λ3) = HomCcB̃2(L
ḋ
λ,L

ẏ3
λ3
◦Lẏ2λ2).

It follows that

(b) HomCcB̃2(L
ẏ−1
2

y2(λ2)
,1◦Lẏ3λ3) = HomCcB̃2(1

′,Lẏ3λ3◦L
ẏ2
λ2
).

From 4.5(a) we have:

HomCcB̃2(1
′,Lẏ3λ3◦L

ẏ2
λ2
) = HomCcB̃2(L

ẏ−1
2

y2(λ2)
,Lẏ3λ3).

(We have used 2.2(a) and the equality

(c) D(Lωλ) = Lωλ−1

for any w · λ ∈W s and ω ∈ κ−1
q (w).) Using this, (b) becomes

HomCcB̃2(L
ẏ−1
2

y2(λ2)
,1◦Lẏ3λ3) = HomCcB̃2(L

ẏ−1
2

y2(λ2)
,Lẏ3λ3).

Since this holds for any y2 · λ2 ∈ c, we see that we have canonically

1◦Lẏ3λ3 = L
ẏ3
λ3
.

Since this holds for any y3 · λ3 ∈ c, we see that we have canonically

(d) 1◦L = L for any L ∈ Cc0 B̃2

for any L in CcB̃2. Now CcB̃2 → Cc̃B̃2, L 7→ L†, satisfies

(e) (L◦L′)† = L′†◦L†
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for any L,L′ in CcB̃2. Applying L 7→ D(L†) to (d) and using (e) and 2.25(a)

we get

(f) L◦D(1†) = L for any L ∈ Cc0 B̃2.

From (d), (f) we deduce that we have canonically 1 = 1◦D(1†) = D(1†).

Using 4.4(c) we see that D(1′†) = 1 hence D(1†) = 1′. We see that

(g) 1 = 1′ = D(1†) is a unit object of the monoidal category CcB̃2.

4.8. For L ∈ CcB̃2 let L∗ = D(L†). We say that L∗ is the dual of L. Note

that L 7→ L∗ is a contravariant functor CcB̃2 → CcB̃2 and that L∗∗ = L. We

show how L 7→ L∗ gives a rigid structure on CcB̃2.

We have the following special case of 4.5(a) (we use that 1 = 1′, see

4.7(g)):

(a) HomCcB̃2(1, L◦D(L†)) = HomCcB̃2(L,L)

for any L in Cc0 B̃2. Let ξL ∈ HomCcB̃2(1, L◦D(L†)) be the element corre-

sponding under (a) to the identity homomorphism in HomCcB̃2(L,L). Using

(e) and 2.25(a) we have

(b) HomCcB̃2(L◦D(L†),1) = HomCcB̃2(D(1†),D((L◦D(L†))†))

= HomCcB̃2(1,D(L†)◦L).

Let ξ′L ∈ HomCcB̃2(L◦D(L†)1) be the element corresponding under (b) to

the element ξD(L†) ∈ HomCcB̃2(1,D(L†)◦L). The elements ξL, ξ
′
L define the

rigid structure on CcB̃2.

4.9. Let Zc be the centre (in the sense of Joyal and Street [6], Majid [26]

and Drinfeld) of the monoidal abelian category CcB̃2. By a general result on

semisimple rigid monoidal categories in [4, Proposition 5.4], for any L ∈ CcB̃2
one can define directly a central structure on the object

I(L) := ⊕y·λ∈cLẏλ◦L◦L
ẏ−1

y(λ)
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of CcB̃2 such that, denoting by I(L) the corresponding object of Zc, we have

canonically

(a) HomCcB̃2(L,L
′) = HomZc(I(L), L′)

for any L′ ∈ Zc. (We use that for y ·λ ∈ c, the dual of the simple object Lẏλ
is Lẏ

−1

y(λ).) The central structure on I(L) can be described as follows: for any

X ∈ CcB̃2 we have canonically

X◦I(L) = ⊕y·λ∈cX◦Lẏλ◦L◦L
ẏ−1

y(λ)

= ⊕y·λ∈c,z·λ′∈cHomCcB̃2(L
ż
λ′ ,X◦Lẏλ)⊗ Lżλ′◦L◦Lẏ

−1

y(λ)

= ⊕y·λ∈c,z·λ′∈cHomCcB̃2(L
ẏ−1

y(λ),L
ż−1

z(λ′) ⊗X)⊗ Lżλ′◦L◦Lẏ
−1

y(λ)

= ⊕z·λ′∈cLżλ′◦L◦Lż
−1

z(λ′) ⊗X = I(L)◦X.

(The third equality uses 3.20(a).)

We show:

(b) If z · λ ∈ c and I(Lżλ) 6= 0 then z · λ ∈
⌣
W s.

For some y · λ′ ∈ c we have L
ẏ
λ′◦Lżλ 6= 0 (hence λ′ = z(l)) and Lżλ◦L

ẏ−1

y(λ′) 6= 0

(hence λ = λ′). It follows that z(λ) = λ and (b) is proved.

4.10. By 3.13(d), for z · λ ∈ ⌣
c we have canonically

(a) b(Lżλ) = I(Lżλ)

as objects of CcB̃2. Here b : Cc0Z → Cc0 B̃2 in 3.13 is viewed as a functor

b : CcZ → CcB̃2 as in 4.6. Now I(Lżλ) has a natural central structure (by

4.9) and b(Lżλ) has a natural central structure (by 3.14(j)). By 3.21(b),

(b) these two central structures are compatible with the identification (a).

In view of (a), (b) we can reformulate 4.9(a) as follows.

Theorem 4.11. For any z · λ ∈ ⌣
c , L′ ∈ Zc we have canonically

(a) HomCcB̃2(L
ż
λ, L

′) = HomZc(b(Lżλ), L
′)
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where b(Lżλ) is b(Lżλ) viewed as an object of Zc with the central structure

given by 3.14(j).

4.12. We will state some variants (a)-(j) of results in 4.1-4.5 which will

be needed in Section 6. Let δ0 : B → Z be map B 7→ (B,B,UB). Let

π′0 : B → p be the obvious map.

(a) Let λ ∈ s and let w ∈ W ′
λ be such that w · λ � c; let i ∈ Z. If i > a we

have Hi(δ∗0Lẇ♯λ [|w|]) = 0.

This can be deduced from 4.1(c) using that e∗Hi(δ∗0Lẇ♯λ [|w|])=Hi(δ∗Lẇ♯λ [|w|])
where e : B̃ → B is the map xU 7→ xBx−1.

(b) If L ∈M�Z and j > −a− ρ then (δ∗0L)
j = 0.

We argue as in the proof of 4.1(d). We can assume that L = Lẇλ with w · λ
as in (a). It is enough to show that for any k we have (Hk(δ∗0L)[−k])j = 0

that is (Hk(δ∗0(Lẇ♯λ [|w|+ν+ρ]))[ν])j−k−ν = 0. Now Hk(δ∗0(Lẇ♯λ [|w|+ν+ρ]))
is a local system on B hence Hk(δ∗0(Lẇ♯λ [|w| + ν + ρ]))[ν] is a perverse sheaf

on B so that we can assume that j − k − ν = 0. Thus it is enough to show

that Hj−ν(δ∗0(Lẇ♯λ [|w| + ν + ρ])) = 0 or that Hj+ρ(δ∗(Lẇ♯λ [|w|)) = 0. This is

indeed true by (a).

(c) If L∈M�
mZ is pure of weight 0 and j∈Z then (δ∗0L)

j is pure of weight

j.

We argue as in the proof of 4.1(e). We can assume that L = Lẇλ with λ,w

as in (a). It is enough to prove that for any k, (Hk(δ∗0L)[−k])j is pure of

weight j that is, (Hk(δ∗0(Lẇ♯λ [|w|+ ν + ρ]))[ν])j−k−ν((|w|+ ν + ρ)/2) is pure

of weight j. As in the proof of (b) we can assume that j − k − ν = 0. Thus

it is enough to show that Hj−ν(δ∗0(Lẇ♯λ [|w| + ν + ρ]))[ν]((|w| + ν + ρ)/2) is

pure of weight j or that Hj+|w|+ρ(δ∗0(Lẇ♯λ ))〈ν〉((|w|+ ρ)/2) is pure of weight

j. This follows from 4.1(b).

(d) Let λ ∈ s, w ∈ W ′
λ be such that w · λ ∈ c. If w · λ ∈ Dc (see 1.12) then

(δ∗0L
ẇ
λ )

−a−ρ = βw·λ〈ν〉((a+ρ)/2) where βw·λ is as in 4.1(f). If w ·λ /∈ Dc

then (δ∗0L
ẇ
λ )

−a−ρ = 0.
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As in the proof of (c) we have

(δ∗0L
ẇ
λ )

−a−ρ = H−a+|w|(δ∗0(Lẇ♯λ ))〈ν + ρ〉((|w| + ρ)/2).

Setting βw·λ;0 = H−a+|w|(δ∗0(Lẇ♯λ ))〈ν+ρ〉((−a+ |w|)/2) we have (δ∗0Lẇλ )−a−ρ
= βw·λ;0〈ν〉((a + ρ)/2) where βw·λ;0 is a mixed vector space. If e : B̃ → B is

the obvious map, we have

βw·λ;0 = e∗(H−a+|w|(δ∗0(Lẇ♯λ ))〈ν + ρ〉((−a+ |w|)/2)
= H−a+|w|(δ∗(Lẇ♯λ ))〈ν + ρ〉((−a+ |w|)/2) = βw·λ

where βw·λ is as in 4.1(f). Hence the result follows from 4.1(f).

(e) Assume that L ∈ Mm(B) is G-equivariant so that L = V ⊗ Q̄l〈ν〉 where
V is a mixed vector space. If j > ν then (π′0!L)

j = 0.

We argue as in the proof of 4.2(a). We have Hj(p′0!L)=V⊗H
j+ν
c (B̃, Q̄l)(ν/2).

This is zero if j + ν > 2ν since B is irreducible of dimension ν + ρ.

(f) If L ∈ M�
mZ and j > ν − a − ρ then (π′0!δ

∗
0L)

! = 0. Moreover we have

canonically (π′0!δ
∗
0L)

ν−a−ρ = (π′0!((δ
∗
0L)

−a−ρ))ν .

The proof is almost identical to that of 4.2(b), using (b), (e) instead of 4.1(d),

4.2(a).

(g) Let L ∈ Cc0Z. Then (π′0!δ
∗
0L)

ν−a−ρ and (π′0!((δ
∗
0L)

−a−ρ))ν are pure of

weight ν − a− ρ.

We argue as in the proof of 4.2(f). We can assume that L = Lẇλ where

w · λ ∈ ⌣
c . Using (d) we have

(π′0!((δ
∗
0L)

−a−ρ))ν((−a− ρ+ ν)/2)

= (π′0!(βw·λ〈ν〉)((a+ ρ)/2))ν((−a− ρ+ ν)/2)

= βw·λ ⊗ (π′0!Q̄l〈ν〉)ν(ν/2) = βw·λ ⊗ (π′0!Q̄l)
2ν(ν) = βw·λ.

Since βw·λ is pure of weight 0, we see that (π′0!((δ
∗
0L)

−a−ρ))ν is pure of weight
ν−a−ρ. Using (f) we deduce that (π′0!δ

∗
0L)

ν−a−ρ is pure of weight ν−a−ρ.
We set

1′0 = ⊕d·λ∈Dc
β∗d·λ ⊗ Lḋλ ∈ Cc0Z.
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(h) For L ∈ CcZ we have canonically

HomCcZ(1
′
0, L) = (π′0!((δ

∗
0L)

−a−ρ))ν((−a− ρ+ ν)/2).

The proof is similar to that of 4.3(a); it uses (d) (instead of 4.1(f)) and the

proof of (g).

For L ∈ Dm(Z) we set L† = h∗L where h : Z → Z is as in 3.2.

(i) If L ∈ Cc0Z then D(L†) ∈ Cc0Z.

This can be deduced from 4.4(b).

(j) For L,L′ in CcZ we have canonically

HomCcZ(1
′
0, L•L′) = HomCcZ(D(L′†), L).

This can be proved by the same method as 4.5(b) or it can be deduced from

4.5(b) using the fully faithfulness of ǫ̃ : Cc0Z → Cc0 B̃2, the equality ǫ̃1′0 = 1

and 3.22(a).

4.13. Let λ ∈ o. Using the decomposition 4.6(c) of any object of CcB̃2
we see that CcB̃2 can be viewed as the category of “matrices” with entries

in the abelian category Ccλ,λB̃2 (see 4.6). (This is a category version of the

isomorphism Ψ : Ho → E in 1.11(v).) Using this and a result of Müger

[27] it follows that Zc
λ is equivalent to the categorical centre of the abelian

category Ccλ,λB̃2 with the monoidal structure induced by ◦ (see 4.6(d)).

5. Truncated Induction, Truncated Restriction,

Truncated Convolution on G

5.1. Let Ż = {(B,B′, g) ∈ B × B ×G; gBg−1 = B′}. We have a diagram

(a) Z
f← Ż

π→G

where f(B,B′, g) = (B,B′, gUB), π(B,B′, g) = g. We define χ : D(Z) →
D(G) and χ : Dm(Z)→ Dm(G) by

χ(L) = π!f
∗L.
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For any w · λ ∈W s we define Rẇ
λ ∈ Dm(G), Rẇλ ∈ Dm(G) by

Rẇ
λ = χ(Lẇλ ), Rẇλ = χ(Lẇ♯λ ) if w · λ ∈

⌣
W s,

Rẇ
λ = 0, Rẇλ = 0 if w · λ /∈

⌣
W s.

Here
⌣
W s is as in 3.3.

We say that a simple perverse sheaf A on G is a character sheaf if the

following equivalent conditions are satisfied:

- there exists w · λ ∈W s and j ∈ Z such that (A : (Rẇ
λ )
j) 6= 0;

- there exists w · λ ∈W s and j ∈ Z such that (A : (Rẇλ )
j) 6= 0.

(For the equivalence of these two conditions see [16, 12.7].) A character sheaf

A determines a W -orbit on s: the set of λ ∈ s such that (A : (Rẇ
λ )
j) 6= 0 for

some w ∈ W and some j (or equivalently (A : (Rẇλ )
j) 6= 0 for some w ∈ W

and some j), see [16, 11.2(a), 12.7]. We say that A is an o-character sheaf

if the W -orbit on s determined by A is o (as in 2.14). Let CSo be a set of

representatives for the isomorphism classes of o-character sheaves on G.

By [16, 14.11], for any λ ∈ o there exists a pairing CSo × IrrW ′
λ → Q̄l,

(A, e) 7→ bA,e such that for any A ∈ CSo, any z ∈W ′
λ and any j ∈ Z we have

(A : (Rżλ)
j) = (j −∆− |z|; (−1)j+∆

∑

e∈Irr(W ′
λ
)

bA,etr(cz·λ, e
v)).

Here ev is as in 1.12. (When z ·λ /∈
⌣
W s, both sides are zero.) By the results

in 1.12 this can be reformulated as follows.

There exists a pairing CSo× Irro(WTn)→ Q̄l, (A,E) 7→ bA,E such that

for any A ∈ CSo, any λ ∈ o, any z ∈W and any j ∈ Z we have

(a) (A : (Rżλ)
j) = (−1)j+∆(j −∆− |z|;

∑

E∈Irro(WTn)

bA,Etr(cz·λ, E
v))

where Ev is as in 1.12; if E′ is an Q̄l[WTn]-module isomorphic to

⊕E∈Irr(WTn)E
⊕mE (with mE ∈N) we set

bA,E′ =
∑

E∈Irro(WTn)

mEbA,E .
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In particular if E′ ∈ Irr(WTn) − Irro(WTn), we have bA,E′ = 0. Moreover,

given A ∈ CSo, there is a unique two-sided cell cA of W s such that bA,E = 0

whenever E ∈ Irro(WTn) satisfies cE 6= cA. (This follows from [16, 16.7].)

We have necessarily cA ⊂ {w · λ ∈ W s;λ ∈ o}. As in [21, 41.8], [22, 44.18],

we see that:

(b) (A : (Rżλ)
j) 6= 0 for some z ·λ ∈ cA, j ∈ Z; conversely, if (A : (Rżλ)

j) 6= 0

for z · λ ∈W s, j ∈ Z, then cA � z · λ.

Let aA be the value of the a-function on cA. If z · λ ∈ W s, E ∈ Irro(WTn)

satisfy tr(cz·λ, Ev) 6= 0 then cE � z ·λ; if in addition we have z ·λ ∈ cE then

from the definitions we have

tr(cz·λ, E
v) =

∑

h≥0

γz·λ,E,hv
aE−h

where γz·λ,E,h ∈ Q̄l is zero for large h, γz·λ,E,0 = tr(tz,λ, E
∞) and aE is as in

1.13. Hence from (a) we see that for A ∈ CSo and λ ∈ o, z ∈W , j ∈ Z, the

following holds:

(c) (A : (Rżλ)
j) = 0 unless cA � z · λ; if z · λ ∈ cA then

(A : (Rżλ)
j)=(−1)j+∆(j−∆−|z|;

∑

E∈Irro(WTn);cE=cA;h≥0

bA,Eγz·λ,E,hv
aA−h)

which is 0 unless j −∆− |z| ≤ aA.

Recall that c, a are as in 2.14.

LetM�G (resp. M≺G) be the category of perverse sheaves on G whose

composition factors are all of the form A ∈ CSo with cA � c (resp. cA ≺
c). Let D�G (resp. D≺G) be the subcategory of D(G) whose objects are

complexes K such that Kj is in M�G (resp. M≺G) for any j. Let D�
mG

(resp. D≺
mG) be the subcategory of Dm(G) whose objects are also in D�G

(resp. D≺G).

Let λ ∈ o, z ∈W . From (c) we deduce:

(d) If z · λ � c then (Rżλ)
j ∈M�G for all j ∈ Z.

(e) If z · λ ∈ c and j > a+∆+ |z| then (Rżλ)
j ∈ M≺G.

(f) If z · λ ≺ c then (Rżλ)
j ∈M≺G for all j ∈ Z.



✐

“BN11N41” — 2016/12/9 — 22:57 — page 700 — #98
✐

✐

✐

✐

✐

700 G. LUSZTIG [December

5.2. Let CSc = {A ∈ CSo; cA = c}. For any z · λ ∈W s we set

nz = a(z) + ∆ + |z|.

Let A ∈ CSc and let z · λ ∈ c. We have

(a) (A : (Rżλ)
nz) = (−1)a+|z| ∑

E∈Irr(WTn);cE=c

bA,Etr(tz·λ, E
∞).

Indeed, from 5.1(a) we have

(A : (Rżλ)
nz) = (−1)a+|z| ∑

E∈Irr(WTn);cE=c

bA,E(a; tr(cz·λ, E
v))

and it remains to use that (a; tr(cz·λ, Ev)) = tr(tz·λ, E∞). We show:

(b) For any A ∈ CSc there exists E ∈ Irr(WTn) such that cE = c, bA,E 6= 0.

Assume that this is not so. Then, using 5.1(a), for any λ ∈ o, any z ∈ W
and any j ∈ Z we have (A : (Rżλ)

j) = 0. This contradicts the assumption

that A ∈ CSo.

(c) For any A ∈ CSc there exists z · λ ∈ c such that (A : (Rżλ)
nz) 6= 0.

Assume that this is not so. Then, using (a), we see that

∑

E∈Irr(WTn);cE=c

bA,Etr(tz·λ, E
∞) = 0

for any z · λ ∈ c. Using this and (b) we see that the linear functions tz·λ 7→
tr(tz·λ, E∞) on Jc (for various E ∈ Irr(WTn) such that cE = c) are linearly

dependent. This is a contradiction since the E∞ form a complete set of

simple modules for the semisimple algebra Jc.

We show:

(d) Let z ·λ ∈ c be such that (Rżλ)
nz 6= 0. Then z ·λ∼

left
z−1 ·z(λ). In particular

we have z ∈W ′
λ and z, z−1 are in the same left cell of W ′

λ.

Using (a) we see that there exists E ∈ Irr(WTn) such that tr(tz·λ, E∞) 6= 0.

We have E∞ = ⊕d·λ1∈Dtd·λ1E∞ and tz·λ : E∞ → E∞ maps the summand

td·λ1E
∞ where z·λ∼

left
d·λ1 into td′·λ′1E

∞ where d·λ′1 ∈ D, d′·λ′1∼
left
z−1·z(λ) and
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all other summands to 0. Since tr(tz·λ, E∞) 6= 0, we must have td·λ1E
∞ =

td′·λ′1E
∞ 6= 0 hence d · λ1 = d′ · λ′1 and z · λ∼

left
z−1 · z(λ). This proves (d).

5.3. We show:

(a) If L ∈ D�Z then χ(L) ∈ D�G. If L ∈ D≺Z then χ(L) ∈ D≺G.

(b) If L ∈M�Z and j > a+ ν then (χ(L))j ∈M≺G.

It is enough to prove (a), (b) assuming in addition that L = Lżλ where

z · λ ∈
⌣
W s, z · λ � c. Then (a) follows from 5.1(d), (f). In the setup of (b)

we have

(χ(Lżλ))
j = (Rżλ)

j+|z|+ν+ρ((|z| + ν + ρ)/2)

and this is inM≺G since j + |z|+ ν + ρ > a+∆+ |z|, see 5.1(e).

5.4. Let C♠G be the subcategory ofM(G) consisting of semisimple objects.

Let C♠0 G be the subcategory ofMm(G) consisting of those K such that K

is pure of weight zero. Let CcG be the subcategory of M(G) consisting of

objects which are direct sums of objects of the form A ∈ CSc. Let Cc0G
be the subcategory of C♠0 G consisting of those K such that, as an object of

C♠G, K belongs to CcG. For K ∈ C♠0 G let K be the largest subobject of K

such that as an object of C♠G, we have K ∈ CcG.

5.5. For L ∈ Cc0Z we set

χ(L) = (χ(L))a+ν((a+ ν)/2) = (χ(L)){a+ν} ∈ Cc0G.

(The last equality uses that π in 5.1 is proper hence it preserves purity.) The

functor χ : Cc0Z → Cc0G is called truncated induction. For z · λ ∈ ⌣
c we have

(a) χ(Lżλ) = (Rżλ)
nz(nz/2).

Indeed,

χ(Lżλ) = (χ(Lżλ))
a+ν((a+ ν)/2) = (χ(Lż♯λ 〈|z| + ν + ρ〉))a+ν((a+ ν)/2)

= (χ(Lż♯λ ))|z|+a+∆((|z| + a+∆)/2) = (χ(Lż♯λ ))nz (nz/2) = (Rżλ)
nz(nz/2).

Using (a) and 5.2(d) we see that:



✐

“BN11N41” — 2016/12/9 — 22:57 — page 702 — #100
✐

✐

✐

✐

✐

702 G. LUSZTIG [December

(d) If z · λ ∈ ⌣
c is such that χ(Lżλ) 6= 0 then z · λ∼

left
z−1 · z(λ). In particular

we have z ∈W ′
λ and z, z−1 are in the same left cell of W ′

λ.

5.6. As in 1.9 we shall denote by τ : H∞ → Z the group homomorphism

such that τ(tz·λ) = 1 if z · λ ∈ D and τ(tz·λ) = 0 if z · λ ∈ W s − D. For

z · λ, z′ · λ′ in ⌣
c we show:

(a) dimHomCcG(χ(L
ż
λ), χ(L

ż′
λ′)) =

∑

y∈W ;y·λ′∈c
τ(ty−1·y(λ′)tz·λty·λ′tz′−1·λ′).

Using 5.5(a) and the definitions we see that the left hand side of (a) equals

∑

A∈CSc

(A : (Rżλ)
nz)(A : (Rż

′
λ′)

nz′ ).

Using 5.2(a) and the analogous identity for (A : (Rż
′
λ′)

nz′ ) in which the field

automorphism ()♠ : Q̄l → Q̄l (see 1.16) is applied to both sides (the left

hand side is fixed by ()♠), we see that the left hand side of (a) equals

(−1)|z|+|z′|∑
E,E′∈Irr(WTn);cE=cE′=c

∑

A∈CSc

bA,Eb
♠
A,E′tr(tz·λ, E∞)(tr(tz′·λ′ , E′∞))♠.

Replacing in the last sum
∑

A∈CSc

bA,Eb
♠
A,E′ by 1 if E′ = E and by 0 if

E′ 6= E (see [20, 35.18(g)]) we see that the left hand side of (a) equals

(−1)|z|+|z′| ∑

E∈Irr(WTn);cE=c

tr(tz·λ, E
∞)(tr(tz′·λ′ , E

∞))♠.

By [20, 34.17], for E ∈ Irr(WTn) and h ∈ H we have tr(h♭, Ev) = tr(h,Ev)♠

where ()♠ : Q̄l(v) → Q̄l(v) is as in 1.16; in particular, for w · λ ∈ W s we

have tr(cw·λ, Ev) = tr(cw−1·w(λ), E
v)♠. Taking the coefficient of va in the

two sides of the last equality we deduce tr(tw·λ, E∞) = tr(tw−1·w(λ), E
∞)♠.

Thus the left hand side of (a) equals

(−1)|z|+|z′| ∑

E∈Irr(WTn),cE=c

tr(tz·λ, E
∞)tr(tz′−1·λ′ , E

∞).

(Recall that z′(λ′) = z′.) This is equal to (−1)|z|+|z′| times the trace of the

linear map ξ 7→ tz·λξtz′−1·λ′ on Jc; hence it is equal to the sum over y ·λ1 ∈ c
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of the coefficient of ty·λ1 in tz·λty·λ1tz′−1·λ′ ; this coefficient is 0 if λ1 6= λ′

while if λ1 = λ′ it is equal to

τ(ty−1·y(λ′)tz·λty·λ′tz′−1·λ′).

(We use 1.9(a) for H∞.) Thus we have

dimHomCcG(χ(L
ż
λ), χ(L

ż′
λ′))=(−1)|z|+|z′| ∑

y∈W ;y·λ′∈c
τ(ty−1·y(λ′)tz·λty·λ′tz′−1·λ′).

Since dimHomCcG(χ(L
ż
λ), χ(L

ż′
λ′)) ∈ N and the last sum is in N, it follows

that (a) holds.

The proof above shows also that dimHomCcG(χ(L
ż
λ), χ(L

ż′
λ′)) = 0 when-

ever (−1)|z|+|z′| = −1.

5.7. Let L ∈ Cc0Z. We show that D(L) ∈ Cc̃0Z. It is enough to note that for

w · λ ∈ ⌣
c and ω ∈ κ−1

q (w) we have

(a) D(Lωλ) = Lωλ−1 .

We show:

(b) We have canonically χ(D(L)) = D(χ(L)) where the first χ is relative to

c̃ instead of c.

By the relative hard Lefschetz theorem [1, 5.4.10] applied to the projective

morphism π (see 5.1) and to f∗L〈ν〉 (a perverse sheaf of pure weight 0 on

Ż, see 5.1) we have canonically for any i:

(c) (π!f
∗L〈ν〉)−i = (π!f

∗L〈ν〉)i(i).

We have used the fact that f is smooth with fibres of dimension ν. This also

shows that

(d) D(χ(D(L))) = χ(L)〈2ν〉.

Using (d) we have

D(χ(D(L))) = D((χ(D(L)))a+ν((a+ ν)/2)))
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= (D(χ(D(L))))−a−ν((−a− ν)/2)
= (χ(L)〈2ν〉)−a−ν ((−a− ν)/2) = (χ(L)〈ν〉)−a(−a/2).

Hence using (c) we have

D(χ(D(L))) = (χ(L)〈ν〉)a(a/2) = (χ(L))a+ν((a+ ν)/2) = χ(L).

This proves (b).

5.8. Let z · λ ∈ Dc and let Λz·λ be the left cell of W s containing z · λ. We

show:

(a) (A : χ(Lżλ)) = bA,[Λz,λ] for any A ∈ CSc.

Using 1.12(a) we see that for any E ∈ Irr(WTn), tr(tz·λ, E∞) is equal to the

multiplicity of E in the Q̄l[WTn]-module [Λz·λ]. Hence, using 5.5(a) and

5.2(a), we have

(A : χ(Lżλ)) = (−1)a+|z| ∑

E∈Irr(WTn);cE=c

bA,E( multiplicity of E in [Λδ])

= (−1)a+|z|bA,[Λz,λ].

It is enough to show that a + |z| = 0mod 2. Since z is a distinguished

involution of Wλ, the coefficient of v−a in pλ1,z (see 1.8) is nonzero (see [18,

14.1]). Using now [18, 5.4(b)] we deduce that |z|λ = amod 2. It remains to

note that |z|λ = |z|mod 2. (Indeed, Wλ is generated by elements u ∈ Wλ

such that |u|λ = 1 and such u are reflections in W so that |u| is odd.)

5.9. We define ζ : D(G)→ D(Z) and ζ : Dm(G)→ Dm(Z) by ζ(K) = f!π
∗K

where Z
f← Ż

π→G is as in 5.1(a). We show:

(a) For any L ∈ D(Z) or L ∈ Dm(Z) we have b′′(L) = ζ(χ(L)).

We have ζ(χ(L)) = f!π
∗π!f∗(L). We have

Ż ×G Ż = {((B0, B1, B2, B3), g) ∈ B4 ×G; gB0g
−1 = B3, gB1g

−1 = B2}.

We have a cartesian diagram
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where π̃1((B0, B1, B2, B3), g) = (B0, B3, g), π̃2((B0, B1, B2, B3), g) = (B1,

B2, g). It follows that π
∗π! = π̃1!π̃

∗
2 . Thus

ζ(χ(L)) = f!π̃1!π̃
∗
2f

∗(L) = (fπ̃1)!(fπ̃2)
∗(L).

Define π′1 : Ż ×G Ż → Z, π′2 : Ż ×G Ż → Z by

π′1((B0, B1, B2, B3), g) = (B0, B3, gUB0),

π′2((B0, B1, B2, B3), g) = (B1, B2, gUB1).

Then π′1 = fπ̃1, π
′
2 = fπ̃2 and ζ(χ(L)) = π′1!π

′
2
∗(L). We have an isomor-

phism ⋄Y → Ż ×G Ż induced by

((x0U, x1U, x2U, x3U), g) 7→ ((x0Bx
−1
0 , x1Bx

−1
1 , x2Bx

−1
2 , x3Bx

−1
3 ), g).

We use this to identify ⋄Y = Ż ×G Ż. Then π′1, π′2 become d, ⋄η of 3.25. We

see that (a) holds.

5.10. Let z ·λ ∈ o. We set Σ = ǫ∗ζ(Rżλ)〈2ν + |z|〉 ∈ Dm(B̃2). Let j ∈ Z. We

show:

(a) If z · λ � c then Σj ∈ M�B̃2.
(b) If z · λ ≺ c then Σj ∈ M≺B̃2.
(c) If z · λ ∈ c and j > ν + 2ρ+ 2a then Σj ∈ M≺B̃2.

If z · λ /∈
⌣
W s then Σ = 0 and there is nothing to prove. Now assume that

z · λ ∈
⌣
W s. Then, using 5.9(a), we have

Σ = ǫ∗ζ(χ(Lż♯λ ))〈2ν + |z|〉 = b′(Lż♯λ )〈2ν + |z|〉 = b′(Lżλ)〈ν − ρ〉.

Now (a), (b) follow from 3.14(a), (b) and (c) follows from 3.14(c). (If j >

ν + 2ρ+ 2a then j + ν − r > 2ν + ρ+ 2a.)
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5.11. We show:

(a) If K ∈ D�G then ζ(K) ∈ D�Z.

(b) If K ∈ D≺G then ζ(K) ∈ D≺Z.

(c) If K ∈ D�G and j > ν + a then (ζ(K))j ∈ M≺Z.

We can assume in addition that K = A ∈ CSo where A ∈ CSc′ for a two-

sided cell c′ such that c′ � c. Assume first that c′ = c. By 5.2(c) we

can find z · λ ∈ c such that (A : (Rżλ)
nz) 6= 0. Then A[−nz] (without mixed

structure) is a direct summand of Rżλ (which is a semisimple complex). Hence

ǫ∗ζ(A)[−nz] is a direct summand of ǫ∗ζ(Rżλ) and ǫ
∗ζ(A)[−nz +2ν + |z|] is a

direct summand of Σ (in 5.10), that is, ǫ∗ζ(A)[−a− ρ] is a direct summand

of Σ. By 5.10, if j ∈ Z (resp. j > ν + 2ρ + 2a) then Σj ∈ M�B̃2 (resp.

Σj ∈ M≺B̃2) hence (ǫ∗ζ(A)[−a − ρ])j ∈ M�B̃2 (resp. (ǫ∗ζ(A)[−a − ρ])j ∈
M≺B̃2), that is (ǫ∗ζ(A))j−a−ρ ∈ M�B̃2 (resp. (ǫ∗ζ(A))j−a−ρ ∈ M≺B̃2).
We see that if j′ ∈ Z (resp. j′ > ν + ρ+ a) then (ǫ∗ζ(A))j

′ ∈ M�B̃2 (resp.

(ǫ∗ζ(A))j
′ ∈ M≺B̃2) so that (ζ(A))j

′−ρ ∈M�Z (resp. (ζ(A))j
′−ρ ∈ M≺Z);

here we use 3.3(a). We see that if j ∈ Z (resp. j > ν + a, so that j + ρ >

ν + ρ+ a) then (ζ(A))j ∈ M�Z (resp. (ζ(A))j ∈ M≺Z). Thus the desired

results hold when c′ = c.

Assume now that c′ ≺ c. Applying the above argument with c replaced

by c′ we see that (a), (b) hold.

5.12. For K ∈ Cc0G we set

ζ(K) = (ζ(K)){ν+a} ∈ Cc0Z.

We say that ζ(K) is the truncated restriction of K.

5.13. Let L ∈ Cc0Z. We show:

(a) We have canonically ζ(χ(L)) = b′′(L).

We shall apply [24, 1.12] with Φ : Dm(Y1) → Dm(Y2) replaced by ζ :

Dm(G) → Dm(Z) and with D�(Y1), D�(Y2) replaced by D�G, D�Z. We

shall take X in loc.cit. equal to χ(L). The conditions of loc.cit. are satisfied:

those concerning X are satisfied with c′ = a + ν, see 5.3. The conditions

concerning ζ are satisfied with c = a+ ν, see 5.11. We see that
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(b) (ζ(χ(L)))j = 0 if j > 2a+ 2ν

and

(c) gr2a+2ν((ζ(χ(L)))
2a+2ν )(a+ ν) = ζ(χ(L)).

Since ζ(χ(L)) = b′′(L), we see that the left hand side of (c) equals b′′(L).

Thus (a) is proved.

Combining (a) with 3.25(d) and 3.14(d) we obtain the following result.

(b) We have canonically ǫ̃ζ(χ(L)) = b(L).

5.14. Let K ∈ Dm(G) and let L ∈ D♠
mB̃2. We show that

(a) there is a canonical isomorphism L ◦ ǫ∗ζ(K)
∼→ ǫ∗ζ(K) ◦ L.

Let Y = B̃2 × G. Define j : Y → G by j(x0U, x1U, g) = g. Define j1 :

Y → B̃2 by j1(x0U, x1U, g) = (x0U, g
−1x1U). Define j2 : Y → B̃2 by

j2(x0U, x1U, g) = (gx0U, x1U). From the definitions we have L ◦ ǫ∗ζ(K) =

j2!(j
∗
1(L)⊗ j∗(K)), ǫ∗ζ(K) ◦L = j2!(j

∗
2(L)⊗ j∗(K)). By the G-equivariance

of L we have j∗1L = j∗2L; (a) follows.

Now let K ∈ Cc0G and let L ∈ Cc0 B̃2. We show that

(b) there is a canonical isomorphism L◦ǫ̃ζ(K)
∼→ (ǫ̃ζ(K))◦L.

We apply [24, 1.12] with Φ : D�
mB̃2 → D�

mB̃2, L′ 7→ L′ ◦ L, X = ǫ̃ζ(K) and

with (c, c′) = (a − ν, ν + a), see 2.23(a), 5.11(c). We deduce that we have

canonically

(c) ((ǫ̃ζ(K)){a+ν} ◦ L){a−ν} = (ǫ̃ζ(K) ◦ L){2a}.

We apply [24, 1.12] with Φ : D�
mB̃2 → D�

mB̃2, L′ 7→ L ◦ L′, X = ǫ̃ζ(K) and

with (c, c′) = (a − ν, ν + a), see 2.23(a), 5.11(c). We deduce that we have

canonically

(d) ((L ◦ (ǫ̃ζ(K)){a+ν}){a−ν} = (L ◦ ǫ̃ζ(K)){2a}.

We now combine (c), (d) with (a); we obtain (b).
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5.15. Let µ : G × G → G be the multiplication map. For K,K ′ in D(G)
(resp. in Dm(G)) we set K ∗ K ′ = µ!(K ⊠ K ′); this is in D(G) (resp. in

Dm(G)). For K,K ′,K ′′ in Dm(G) we have canonically (K ∗ K ′) ∗ K ′′ =

K ∗ (K ′ ∗K ′′) (and we denote this by K ∗K ′ ∗K ′′). Note that if K ∈ Dm(G)
and K ′ ∈ Mm(G) is G-equivariant for the conjugation action of G then as

in [24, 4.1] we have a canonical isomorphism

(a) K ∗K ′ ∼→K ′ ∗K.

5.16. We show:

(a) For K ∈ Dm(G), L ∈ Dm(Z) we have canonically K∗χ(L) = χ(L•ζ(K)).

Let Y = G×G×B. Define c : Y → G×Z by c(g1, g2, B) = (g1, (B, g2Bg
−1
2 ,

g2UB)); define d : Y → G by d(g1, g2, B) = g1g2. From the definitions we see

that both K ∗ χ(L), χ(L • ζ(K)) can be identified with d!c
∗(K ⊠ L). This

proves (a).

Now let L,L′ ∈ Dm(Z). Replacing in (a) K,L by χ(L), L′ and using

5.9(a), we obtain

(b) χ(L) ∗ χ(L′) = χ(L′ • b′′(L)).

5.17. Let L,L′ ∈ D♠
m(Z), j ∈ Z. We show:

(a) If L ∈ D�Z or L′ ∈ D�Z then L′ • b′′(L) ∈ D�Z.

(b) If L ∈ D≺Z or L′ ∈ D≺Z then L′ • b′′(L) ∈ D≺Z.

(c) If L ∈ M�Z, L′ ∈ M♠Z and j > 3a+ ρ+ ν then (L′ • b′′(L))j ∈ D≺Z.

Now (a), (b) follow from 3.25(b) and 3.23(a). To prove (c) we may assume

that L = Lẇλ , L
′ = Lẇ

′
λ′ with w · λ,w′ · λ′ in

⌣
W s and w · λ � c. We apply

[24, 1.12] with Φ : D�
mZ → D�

mZ, L1 7→ L′ • L1 and X = b′′(L) and with

c′ = 2ν+2a (see 3.25(c)), c = a+ρ−ν (see 3.23(b)). We have c+c′ = ν+ρ+3a

hence (c) holds.

5.18. Let L,L′ ∈ D♠
m(Z), j ∈ Z. We show:

(a) If L ∈ D�Z or L′ ∈ D�Z then χ(L′ • b′′(L)) ∈ D�G.

(b) If L ∈ D≺Z or L′ ∈ D≺Z then χ(L′ • b′′(L)) ∈ D≺G.
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(c) If L′ ∈ M♠Z, L ∈ M�Z and j > 4a + 2ν + ρ then (χ(L′ • b′′(L)))j ∈
M≺G.

(a), (b) follow from 5.3(a) using 5.17(a), (b). To prove (c) we can assume

that L = Lẇλ , L
′ = Lẇ

′
λ′ with w · λ,w′ · λ′ in

⌣
W s and w · λ � c. We apply

[24, 1.12] with Φ : D�
mZ → D�

mG, L1 7→ χ(L1), X = L′ • b′′(L) and with

c′ = ν+ρ+3a (see 5.17(c)), c = a+ν (see 5.3(b)). We have c+c′ = 2ν+ρ+4a

hence (c) holds.

5.19. Let K,K ′ ∈ D♠
m(G). We show:

(a) If K ∈ D�G or K ′ ∈ D�G then K ∗K ′ ∈ D�G.

(b) If K ∈ D≺G or K ′ ∈ D≺G then K ∗K ′ ∈ D≺G.

(c) If K ∈ D�G or K ′ ∈ D�G and j > 2a+ ρ then (K ∗K ′)j ∈ D≺G.

We can assume that K = A ∈ CSo, K
′ = A′ ∈ CSo. Let A′′ ∈ M(G)

be a composition factor of (A ∗ A′)j . By 5.2(c) we can find w · λ ∈ cA,

w′ · λ′ ∈ cA′ such that (A : (Rẇλ )
nw) 6= 0, (A′ : (Rẇ

′
λ′ )

nw′ ) 6= 0. Then A is a

direct summand of Rẇλ [nw] and A
′ is a direct summand of Rẇ

′
λ′ [nw′ ] (without

mixed structures). Hence A ∗A′ is a direct summand of

Rẇλ ∗Rẇ
′

λ′ [a(w · λ) + a(w′ · λ′) + |w|+ |w′|+ 2∆]

and (A ∗ A′)j is a direct summand of

(Rẇλ ∗Rẇ
′

λ′ [|w|+ |w′|+ 2ν + 2ρ])j+a(w·λ)+a(w
′·λ′)+2ν

= (χ(Lẇλ ) ∗ χ(Lẇ
′

λ′ ))
j+a(w·λ)+a(w′·λ′)+2ν .

Using 5.16(b) we see that (A ∗A′)j is a direct summand of

(d) (χ(Lẇ
′

λ′ • b′′(Lẇλ ))j+a(w·λ)+a(w
′·λ′)+2ν .

Hence A′′ is a composition factor of (d). Using 5.18(a) we see that A′′ ∈ CSo
and that cA′′ � w ·λ and cA′′ � w′ ·λ′. In the setup of (a) we have w ·λ � c or

w′ · λ′ � c hence cA′′ ≤ c. Thus (a) holds. Similarly, (b) holds. In the setup

of (c) we have w · λ � c and w′ · λ′ � c. Hence a(w · λ) ≥ a, a(w′ · λ′) ≥ a.
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Assume that cA′′ = c. Since A′′ is a composition factor of (d), we see from

5.18(c) that

j + a(w · λ) + a(w′ · λ′) + 2ν ≤ 4a+ 2ν + ρ

hence j + 2a+ 2ν ≤ 4a+ 2ν + ρ and j ≤ 2a+ ρ. This proves (c).

5.20. For K,K ′ ∈ Cc0G we set

K∗K ′ = (K ∗K ′){2a+ρ} ∈ Cc0G.

We say that K∗K ′ is the truncated convolution of K,K ′. Note that 5.15(a)

induces for K,K ′ ∈ Cc0G a canonical isomorphism

(a) K∗K ′ ∼→K ′∗K.

Let L ∈ Cc0Z, K ∈ Cc0G. Using [24, 1.12] several times, we see that

K∗χ(L) = grk((K ∗ χ(L))k)(k/2)

where k = (a+ ν) + (2a+ ρ) = 3a+ ν + ρ and

χ(L•ζ(K)) = grk′((χ(L • ζ(K))k
′
)(k′/2)

where k′ = (a+ ν) + (a+ ν) + (a+ ρ− ν) = 3a+ ν + ρ. Using now 5.16(a)

and the equality k = k′ we obtain

(b) K∗χ(L) = χ(L•ζ(K)).

Let L,L′ ∈ Cc0Z. Using [24, 1.12] several times, we see that

χ(L)∗χ(L′) = grk((χ(L) ∗ χ(L′))k)(k/2)

where k = (a+ ν) + (a+ ν) + (2a+ ρ) = 4a+ 2ν + ρ and

χ(L′•b′′(L) = grk′((χ(L
′ • b′′(L)))k′)(k′/2)

where k′ = (2a+2ν)+(a+ρ−ν)+(a+ν) = 4a+2ν+ρ. Using now 5.16(b)



✐

“BN11N41” — 2016/12/9 — 22:57 — page 711 — #109
✐

✐

✐

✐

✐

2016] NON-UNIPOTENT CHARACTER SHEAVES 711

and the equality k = k′ we obtain

(c) χ(L)∗χ(L′) = χ(L′•(b′′(L))).

We show

(d) For K,K ′,K ′′ in Cc0G there is a canonical isomorphism

(K∗K ′)∗K ′′ ∼→K∗(K ′∗K ′′).

Indeed, just as in [24, 4.7] we can identify, using [24, 1.12], both (K∗K ′)∗K ′′

and K∗(K ′∗K ′′) with (K ∗K ′ ∗K ′′){4a+2ρ}.

A similar argument shows that the associativity isomorphism provided

by (d) satisfies the pentagon property.

5.21. For K,K ′ in Dm(G) we show:

(a) We have canonically ζ(K ∗K ′) = ζ(K ′) • ζ(K).

Let Y = {(B, gUB , h1, h2);B ∈ B, g ∈ G,h1 ∈ G,h2 ∈ G;h1h2 ∈ gUB}.
Define je : Y → G by je(B, gUB , h1, h2) = he (e = 1, 2). Define j : Y →
Z by j(B, gUB , h1, h2) = (B, gBg−1, gUB). From the definitions we have

ζ(K ∗K ′) = j!(j
∗
1(K)⊗ j∗2(K ′)) = ζ(K ′) • ζ(K); (a) follows.

For K,K ′ in Dc
0(G) we show:

(b) We have canonically ζ(K∗K ′) = ζ(K ′)•ζ(K).

Using [24, 1.12] we see that

ζ(K∗K ′) = grk((ζ(K ∗K ′))k)(k/2)

where k = (a+ ν) + (2a + ρ) = 3a+ ν + ρ and that

ζ(K ′)•ζ(K) = grk′((ζ(K) • ζ(K ′))k
′
)(k′/2)

where k′ = (a + ρ− ν) + (a + ν) + (a + ν) = 3a + ν + ρ. It remains to use

(a) and the equality k = k′.

5.22. Define h : G → G g 7→ g−1. For K ∈ Dm(G) we set K† = h∗K. We

show:
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(a) For L ∈ Dm(Z) we have (χ(L))† = χ(L†) with L† as in 3.2.

This follows from the definition of χ using the commutative diagram

where f, π are as in 5.1, h is as in 3.2 and ḣ : Ż → Ż is (B,B′, g) 7→
(B′, B, g−1).

From (a) and 3.2(a) we see that if λ ∈ s, w ∈W ′
λ, then

(b) (χ(Lẇλ ))
† = χ(Lẇ

−1

λ−1 ).

We deduce that

(c) if A is a o-character sheaf with associated two-sided cell c then A† is a

o−1-character sheaf with associated two-sided cell c̃.

From (a), (c) we deduce:

(d) For L ∈ Cc0Z we have (χ(L))† = χ(L†) where the second χ is relative to

c̃ instead of c.

6. The Main Results

6.1. Let Y = {(B, g);B ∈ B, g ∈ B}. We define k : Y → T by (B, g) 7→ t

where t ∈ T is given by the conditions x−1gx ∈ tU, x ∈ G, B = xBx−1;

note that t is independent of the choice of x. Let

Ỹ = {((B, g), t) ∈ Y ×T; k(B, g) = tn}.

Let Grs be the variety of regular semisimple elements in G. Let

Yrs = {(B, g) ∈ Y; g ∈ Grs}, Ỹrs = {((B, g), t) ∈ Ỹ; g ∈ Grs}.

For any w ∈W we define τw : Yrs → Yrs by (B, g) 7→ (B′, g) where B′ ∈ B
is uniquely defined by the condition that g ∈ B′, (B′, B) ∈ Ow; one verifies

that τ̃w : Ỹrs → Ỹrs, ((B, g), t) 7→ (τw(B, g), w(t)), is well defined. Now
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w 7→ τw (resp. w 7→ τ̃w) is an action of W on Yrs (resp. on Ỹrs). For

any t1 ∈ Tn we define τ̃ t1 : Ỹrs → Ỹrs by ((B, g), t) 7→ (τw(B, g), tt1). The

operators τ̃w, τ̃
t1 define an action of the semidirect product WTn (see 1.12)

on Ỹrs. This action leaves stable each fibre of the map ˜̟ rs : Ỹrs → Grs,

((B, g), t) 7→ g, hence it induces an action of WTn on ˜̟ rs!Q̄l, a local system

of rank ♯(W )nρ on Grs such that the induced WTn-action on any of its

stalks is isomorphic to the regular representation of WTn. We show:

(a) The algebra homomorphism h : Q̄l[WTn]→ End( ˜̟ rs!Q̄l) defined by the

action above is an isomorphism.

Note that h is injective since the induced algebra homomorphism from

Q̄l[WTn] to the space of linear endomorphisms of any stalk of ˜̟ rs!Q̄l is

clearly injective. Since

End( ˜̟ rs!Q̄l) ∼= HomD(Ỹrs)
(Q̄l, ˜̟

∗
rs ˜̟ rs!Q̄l),

it is enough to show that

dimHomD(Ỹrs)
(Q̄l, ˜̟

∗
rs ˜̟ rs!Q̄l) ≤ ♯(W )nρ.

Since ˜̟ ∗
rs ˜̟ rs!Q̄l is a local system of rank ♯(W )nρ on Ỹrs, it is enough to show

that Ỹrs is connected. Since Ỹrs → B, ((B, g), t) 7→ B is a G-equivariant

fibration with G acting transitively on B, it is enough to show that its fibre

over B is connected or that {(g, t) ∈ Grs×T; g ∈ tnU} is connected, or that

{(t, u) ∈ T×U; tnu ∈ Grs} = {t ∈ T; tn ∈ Grs} ×U

is connected. It is enough to observe that {t ∈ T; tn ∈ Grs} is connected (it

is a nonempty open subset of T). This proves (a).

We define ˜̟ : Ỹ → G by ((B, g), t) 7→ g. We have ˜̟ = ̟π1 where

π1 : Ỹ → Y is ((B, g), t) 7→ (B, g) and ̟ : Y → G is (B, g) 7→ g. From the

cartesian diagram
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with ι : T→ T as in 1.4, we see that k∗ι!Q̄l = π1!Q̄l, hence

Ξ := ˜̟ !Q̄l = ̟!(π1!Q̄l) = ̟!(k
∗ι!Q̄l) = ⊕λ∈s̟!(k

∗Lλ) = ⊕l∈sΞλ

where Ξλ = ̟!(k
∗Lλ). Since Ξ|Grs = ˜̟ rs!Q̄l, we have ˜̟ rs!Q̄l = ⊕λ∈sΞλ|Grs .

As observed in [12], ̟ : Y → G is small and Ξλ is the intersection coho-

mology complex of G with coefficients in Ξλ|Grs ; hence Ξ is the intersec-

tion cohomology complex of G with coefficients in ˜̟ rs!Q̄l. It follows that

EndD(G)Ξ = EndD(Grs)( ˜̟ rs!Q̄l) hence, using (a),

(b) EndD(G)Ξ = Q̄l[WTn].

For any E ∈ Irr(WTn) we set

(c) AE = HomQ̄l[WTn](E,Ξ〈∆〉).

We see that AE is a simple perverse sheaf on G and that for E 6= E′ in
Irr(WTn) we have AE 6∼= AE′ . Moreover we have

(d) Ξ〈∆〉 = ⊕E∈Irr(WTn)E ⊗AE .

From the definitions, for λ ∈ s we have Ξλ = R1̇
λ (notation of 5.1). Using

this and (d) we see that for any E ∈ Irr(WTn), AE is a character sheaf on

G.

We state the following result.

Proposition 6.2. For any E′ ∈ Irr(WTn) we have cAE′ = cE′. In particu-

lar, we have aAE′ = aE′. (Notation of 5.1, 1.13).

The proof is given in 6.3, 6.4, assuming, to simplify the exposition, that

n = 1. It consists in a reduction to an analogous (known) statement in

the representation theory of the finite group GF in [13]. (We denote by

F : G → G, F : B → B the Frobenius maps corresponding to the Fq-

structures on G,B.)

6.3. Until the end of 6.5 we assume that n = 1. Then WTn = W , s = {1}
hence we can identify W s = W ; H has a basis {Tw;w ∈ W}. As in [3], for

each w ∈ W we consider the variety Xw = {B ∈ B; (B,F (B)) ∈ Ow} on

which GF acts by conjugation and the resulting GF -module H i
c(Xw, Q̄l) for
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each i ∈ Z. Let Irru(G
F ) be a set of representatives for the isomorphism

classes of irreducible representations r of GF such that r appears in the GF -

module H i
c(Xw, Q̄l) for some w ∈ W and some i ∈ Z, or equivalently (see

[3]), such that
∑

i(−1)i(r : H i
c(Xw, Q̄l)) 6= 0 for some w ∈ W . (Here (r :?)

denotes the multiplicity of r in ?.) In the terminology of [3], Irru(G
F ) is

the set of unipotent representations of GF . For any r ∈ Irru(G
F ) and any

E ∈ Irr(W ) we set

(a) br,E = ♯(W )−1
∑

w∈W
tr(w,E)

∑

i

(−1)i(r : H i
c(Xw, Q̄l)) ∈ Q.

By [13, 4.23], given r ∈ Irru(G
F ), there is a unique two-sided cell cr of W

such that br,E = 0 whenever E ∈ Irr(W ) satisfies cE 6= cr; let ar be the

value of the a-function a : W → N on cr.

For w = 1, we have X1 = BF and F := H0
c (X1, Q̄l) is the vector space

of functions BF → Q̄l. This vector space is naturally an GF -module and its

space of GF -equivariants endomorphism can be naturally identified with the

semisimple algebra H
√
q := Q̄l ⊗A H where Q̄l is viewed as an A-algebra

via v 7→ √q. Hence for any simple H
√
q-module M , the vector space rM =

HomH
√

q (M,F) is either 0 or an object of Irru(G
F ); in fact, it is known that it

is 6= 0. For any E ∈ Irr(W ) let E
√
q be the simpleH

√
q-module corresponding

to E under the algebra isomorphisms H
√
q ψ

√
q

→ Q̄l ⊗H∞ (ψ1)−1

→ H1 = Q̄l[W ]

obtained by extension of scalars from ψ : H → A ⊗ H∞ (see 1.12); we

write rE instead of rE
√
q . Thus we have an imbedding Irr(E) → Irru(G

F ),

E 7→ rE .

6.4. We write Rż instead of Rż
λ (see 5.1) where λ = 1, z ∈W . The following

result can be deduced from [9, 2.1].

(a) Let y ∈W , E′ ∈ Irr(W ), i ∈ Z. Then HiRẏ|Grs is a local system and

∑

i

(−1)i(AE′ [−∆]|Grs : HiRẏ|Grs) =
∑

i

(−1)i(rE′ : H i
c(Xy, Q̄l)).

(In the left hand side, (:) denotes the multiplicity of an irreducible local

system on Grs in another local system on Grs.)
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Using 6.3(a) we deduce for any E,E′ in Irr(W ):

(b) brE′ ,E = ♯(W )−1
∑

y∈W
tr(y,E)

∑

i

(−1)i(AE′ [−∆]|Grs : HiRẏ|Grs).

From [16, (14.10.1)], for any E ∈ Irr(W ), A ∈ CSo we have

bA,E = ♯(W )−1
∑

y∈W
tr(y,E)

∑

i

(−1)i+∆(A : (Rẏ)i).

(bA,E is as in 5.1(a).) In particular for E′ ∈ Irr(W ) we have

bAE′ ,E = ♯(W )−1
∑

y∈W tr(y,E)
∑

i(−1)i+∆(AE′ : (Rẏ)i)

= ♯(W )−1
∑

y∈W tr(y−1, E)
∑

i(−1)i+∆(AE′ |Grs : (R
ẏ)i|Grs).

Since HiRẏ
Grs

are local systems, we see that

∑

i

(−1)i+∆(AE′ |Grs : (R
ẏ)i|Grs) =

∑

i

(−1)i(AE′ [∆]|Grs : HiRẏ|Grs)

(in the last sum (:) refers to multiplicities of an irreducible local system in

another local system). Thus,

bAE′ ,E = ♯(W )−1
∑

y∈W
tr(y,E)

∑

i

(−1)i(AE′ [∆]|Grs : HiRẏ|Grs)

so that, using (b), we have

bAE′ ,E = brE′ ,E.

Using the definitions we now see that

cAE′ = crE′ , hence aAE′ = arE′

for any E′ ∈ Irr(W ). Thus we can restate 6.2 as follows:

(c) For any E′ ∈ Irr(W ) we have crE′ = cE′.

We shall deduce (c) from the following result which is equivalent to [13,

12.2(i)]:
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(d) Let Λ be a left cell of W . Write [Λ] = ⊕E∈Irr(W )E
⊕fE where fE ∈ N. In

the Grothendieck module of GF -modules tensored by Q we have

∑

E∈Irr(W )

fErE =
∑

E∈Irr(W )

∑

r∈IrruGF

br,Er.

Let E′ ∈ Irr(W ). We can find a left cell Λ of W as in (d) such that Λ ⊂ cE′

and E′ appears in Λ], that is, fE′ > 0. Then rE′ appears with nonzero

coefficient in the left hand side of the identity in (d) hence it appears with

nonzero coefficient in the right hand side of the identity in (d). Thus there

exists E ∈ Irr(W ) such that brE′ ,E 6= 0. By definition this means that

crE′ = cE′ , proving (c), hence also Proposition 6.2 (assuming n = 1). The

proof for general n goes along similar lines.

Note that the proof of 6.4(d) given in [13, 12.2(i)] is case by case. It

is likely that a more efficient proof can be obtained using the inductive

description of W -modules carried by left cells in terms of constructible rep-

resentations given in [11].

6.5. The following inequality is a special case of Proposition 6.2.

(a) For any E′ ∈ Irr(W ) we have aAE′ ≤ aE′.

We give an alternative proof of (a) which avoids the use of 6.4(d) hence of

[13, 12.2(i)]. We again assume for simplicity that n = 1. As in 6.4 it is

enough to prove:

(b) arE′ ≤ aE′ .

It is known [5, 8.1.8] that

dim(rE′) = dim(E′)
∑

w∈W
q|w|(

∑

w∈W
q−|w|tr(Tw, E′√q)2)−1.

From [8, 3.14, 3.16, 3.17, 3.19] we have

dim rE′ = ♯(W )−1
∑

E∈Irr(W )

brE′ ,E

∑

i≥0

dimHomW (E, S̄iV )qi.
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Since brE′ ,E = 0 unless cE = crE′ , it follows that

(c) dim(E′)
∑

w∈W
q|w|(

∑

w∈W
q−|w|tr(Tw, E′√q)2)−1

= ♯(W )−1
∑

E∈Irr(W );cE=cr
E′

brE′ ,E

∑

i≥0

dimHomW (E, S̄iV )qi.

Since brE′ ,E = bAE′ ,E is independent of q, we may regard (c) as an equality

of polynomials with rational coefficients in an indeterminate q1/2. From

1.20(c′) we see that the right hand side of (c) is in qcQ[q−1/2] where

c = max
E;cE=cr

E′
(ν − bE⊗sgn) = ν − arE′

(the last equality uses 1.19(a), (b)). From [18, 20.11] we see that the left

hand side of (c) is in qν−aE′ (c0 + q−1/2Q[q−1/2]) where c0 ∈ Q−{0}. Hence
from (c) we deduce that ν − aE′ ≤ ν − arE′ so that aE′ ≥ arE′ , as required.

6.6. We now return to our general n. Let A be a character sheaf of G.

By [19, 30.12], there exists a parabolic subgroup P of G, a Levi subgroup

L of P and a subset S1 of L which is a single conjugacy class of L times

the connected centre of L such that the support of A is the union of G-

conjugates of elements in the closure of S1 times the unipotent radical of P ;

moreover, if P ∈ B then A = AE for some E ∈ Irr(WTn) while if P /∈ B
then A|{1} = 0. (Here we use the cleanness of cuspidal character sheaves, see

[23] and its references. Actually we only use a weak form of the cleanness

property which is more elementary than what appears in [23].)

6.7. Let φ : p→ G be the map with image 1. For any K ∈ Dm(G) we have

(φ∗K)j = Hj1K.

The identification 6.1(b) induces for any i an algebra homomorphism

Q̄l[WTn]→ End(Hi1Ξ);

thus,

Hi1Ξ = H i
c( ˜̟

−1(1), Q̄l) = H i
c(B ×Tn, Q̄l) = H i

c(B, Q̄l)⊗ Q̄l[Tn]
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becomes naturally a WTn-module; one verifies that the action of wt (with

w ∈W , t ∈ Tn) is given by wt : e⊗ t1 7→ w(e)⊗w(tt1) (here e ∈ H i(B, Q̄l),

t1 ∈ Tn and e 7→ w(e) is the W -action on H i(B, Q̄l) = H i(G/B, Q̄l) =

H i(G/T, Q̄l) induced by the conjugation action of NT. (In the case where

n = 1 this is proved as in [29, §2]; the proof in the general case is along

similar lines.) Note also that Hi1Ξ = 0 if i is odd. We show:

(a) Let E be an irreducible WTn-module. We have (H2i
1 Ξ)

E = 0 for i >

ν−aE. Moreover, dim(H2ν−2aE
1 Ξ)E is 1 if E is special and 0 if E is not

special.

Let S̄V = ⊕i≥0S̄
iV be as in 1.20. It is well known that for i ≥ 0 we have

canonically S̄iV = H2i
c (B, Q̄l) compatibly with theW -actions. This extends

to an identification

S̄iV ⊗ Q̄l[WTn] = H2i
c (B, Q̄l)⊗ Q̄l[WTn] = H2i

1 Ξ

which is compatible with the WTn-actions. Hence (a) follows from 1.21(a).

6.8. We show:

(a) Let A ∈ CSc. If j > −2a− ρ then (φ∗A)j = Hj1A = 0.

We can assume that A ∼= AE for some E ∈ Irr(WTn). (If A is not of

this form, the result holds by 6.6.) Since a ≤ aE (see 6.5(a)) we have j >

−2aE − ρ. By definition we have Hj1AE = (Hj1(Ξ〈∆〉))E = (Hj+∆
1 Ξ)E(∆/2)

hence by 6.7(a), Hj1AE = 0 if j +∆ > 2ν − 2aE that is if j > −2aE − ρ.

We show:

(b) Let E=Ec, see 1.19. Then (φ∗AE)−2a−ρ=H−2a−ρ
1 AE is a 1-dimensional

mixed vector space of pure weight −2a− ρ.

As in the proof of (a) we have

H−2a−ρ
1 AE = (H−2a−ρ

1 (Ξ〈∆〉))E = (H−2a+2ν
1 Ξ)E(∆/2).

By 6.7(a) we have dim(H2ν−2a
1 Ξ)E=1. It remains to note that (H2ν−2a1qΞ)E

is pure of weight 2ν−2a (indeed, H2ν−2a
1 Ξ = H2ν−2a

c (B, Q̄l)⊗Q̄l[Tn] is pure

of weight 2ν − 2a).
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We show:

(c) Let A ∈ CSc be such that A 6∼= AEc
. Then (φ∗A)−2a−ρ = H−2a−ρ

1 A = 0.

As in the proof of (a) we can assume that A ∼= AE for some E ∈ Irr(WTn).

By 6.2 we have cE = c and by assumption we have E 6∼= Ec. Hence E is not

special. By 6.7(a) we have (H2ν−2aE
1 Ξ)E = 0 hence H−2aE−ρ

1 AE = 0. We

have aE = ac = a hence H−2a−ρ
1 AE = 0. This proves (c).

From (b), (c) we see that if K ∈ CcG then

(d) dimHomCcG(AEc
,K) = dim(φ∗K)−2a−ρ = dimH−2a−ρ

1 K.

6.9. Let δ0 : B → Z, π′0 : B → p be as in 4.12. We show that for L ∈ Dm(Z)
we have

(a) φ∗χ(L) = π′0!δ
∗
0L.

Define φ′ : B → Ż (see 4.1) by B 7→ (B,B, 1). We have a commutative

diagram in which the right square is cartesian:

(Here f, π are as in 4.1.) It follows that for L ∈ Dm(Z) we have φ∗χ(L) =

φ∗π!f∗L = π′0!φ
′∗f∗L = π′0!δ

∗
0L. This proves (a).

Let L ∈ Cc0Z. Applying [24, 8.2] with Φ : D�
mG → Dmp, K1 7→ φ∗K1,

c = −2a− ρ (see 6.8(a)), K replaced by χ(L) and c′ = a+ ν, we see that we

have canonically

(b) (φ∗(χ(L))){−2a−ρ} ⊂ (φ∗χ(L)){−a−ρ+ν} = (π′0!δ
∗
0(L))

{−a−ρ+ν}.

(The last equality follows from (a).) By 4.12(c), δ∗0L is pure of weight 0 hence

π′0!δ
∗
0L is pure of weight 0 hence (π′0!δ

∗
0L)

ν−a−ρ is pure of weight ν − a − ρ
so that

(π′0!δ
∗
0L)

{−a−ρ+ν} = (π′0!δ
∗
0L)

−a−ρ+ν((−a− ρ+ ν)/2).
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From 4.12(f) we have (π′0!δ
∗
0L)

ν−a−ρ = (π′0!((δ
∗
0L)

−a−ρ))ν . Hence

(π′0!δ
∗
0L)

{−a−ρ+ν} = (π′0!((δ
∗
0L)

−a−ρ))ν((−a− ρ+ ν)/2).

Thus (b) becomes

(φ∗(χ(L))){−2a−ρ} ⊂ (π′0!((δ
∗
0L)

−a−ρ))ν((−a− ρ+ ν)/2)

and using 4.12(h):

(c) (φ∗(χ(L))){−2a−ρ} ⊂ HomCcZ(1
′
0, L).

We show that (c) is an equality:

(d) (φ∗(χ(L))){−2a−ρ} = HomCcZ(1
′
0, L).

To prove this we can assume that L = Lẇλ for some w · λ ∈ ⌣
c . If w · λ /∈ Dc

then the right hand side of (d) is zero, hence by (c), the left hand side of (d)

is zero and (d) holds. Assume now that w · λ ∈ Dc. Then the right hand

side of (c) has dimension 1. Hence the left hand side of (c) has dimension 0

or 1; it is enough to prove that it has dimension 1. By 6.8(d) with K = χ(L)

we see that the left hand side of (c) has dimension equal to (AEc
: χ(L)).

(We have also used 6.8(b).) In particular we have

(e) (AEc
: χ(Lẇλ )) is 0 or 1

and we must prove that

(f) (AEc
: χ(Lẇλ )) = 1.

In the rest of the proof we set A = AEc
. Using 5.8(a) we can reformulate

(e) as bA,[Λw,λ] ∈ {0, 1} for any w · λ ∈ Dc; we must prove that bA,[Λw,λ] = 1

for any w · λ ∈ Dc. Since cA = c we have bA,[Λ] = 0 for any left cell Λ

not contained in c. Hence it is enough to show that
∑

Λ bA,[Λ] = ♯(Dc)

where Λ runs over the left cells in W s. We have
∑

Λ bA,[Λ] = bA,Reg where

Reg is the regular representation of WTn. Hence it is enough to show that

bA,Reg = ♯(Dc). From 5.1(a) with z = 1, j = ∆ we have

∑

λ∈s
(A : (R1

λ)
∆) =

(

0;
∑

E∈Irr(WTn)

bA,E
∑

λ∈s
tr(1λ, E

v)
)
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=
(

0;
∑

E∈Irr(WTn)

bA,E dim(E)
)

= bA,Reg.

Hence it is enough to show that
∑

λ∈s(A : (R1
λ)

∆) = ♯(Dc) or equiva-

lently (see 6.1) that (A : Ξ∆) = ♯(Dc). By 6.1(d) we have (A : Ξ∆) =

dim(Ec). It remains to show that dim(Ec) = ♯(Dc). The left hand side is
∑

λ∈o dim(1λEc) where 1λEc is the special representation of W ′
λ attached to

the two-sided cell cλ of W ′
λ determined by c; the right hand side is

∑

λ∈o nλ

where nλ is the number of distinguished involutions of W ′
λ contained in cλ.

It is then enough to show that dim(1λEc) = nλ for any λ ∈ Lo. This

can be deduced from the following known property of a two-sided cell c0 of

Wλ: the dimension of the special representation of Wλ corresponding to c0

is equal to the number of distinguished involutions of Wλ contained in c0.

This completes the proof of (f) hence that of (d).

We now state the following complement to (f).

(g) If w · λ ∈ ⌣
c and w · λ /∈ Dc then (AEc

: χ(Lẇλ )) = 0.

Let L = Lẇλ . By 6.8(d) it is enough to show that (φ∗(χL))−2a−ρ = 0. By

6.8(b), (c), (φ∗(χL))−2a−ρ is pure of weight −2a − ρ hence it is enough to

show that (φ∗(χ(L))){−2a−ρ} = 0. Using (c) it is enough to note that, by

our assumption we have HomCcZ(1
′
0, L) = 0.

6.10. Let u : G → p be the obvious map. From [15, 7.4] we see that for

K,K ′ inMmG we have canonically

(u!(K ⊗K ′))0 = HomM(G)(D(K),K ′), (u!(K ⊗K ′))j = 0 if j > 0.

We deduce that if K,K ′ are also pure of weight 0 then (u!(K⊗K ′))0 is pure

of weight 0 that is (u!(K ⊗K ′))0 = gr0(u!(K ⊗K ′))0. From the definitions

we see that we have u!(K ⊗K ′) = φ∗(K† ∗K ′) where K† as in 5.22. Hence

for K ′ in Cc0G and K in Cc̃0G (so that K† ∈ Cc0G, see 5.22(c)) we have

(a) HomM(G)(D(K),K ′) = (φ∗(K† ∗K ′))0 = (φ∗(K† ∗K ′)){0}.
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Applying [24, 8.2] with Φ : D�
mG → Dmp, K1 7→ φ∗K1, c = −2a − ρ (see

6.8(a)), K replaced byK†∗K ′ and c′ = 2a+ρ we see that we have canonically

(φ∗(K†∗K ′)){−2a−ρ} ⊂ (φ∗(K† ∗K ′)){0}.

In particular, if L,L′ are in Cc0Z then we have canonically

(φ∗(χ(L′)∗χ(L))){−2a−ρ} ⊂ (φ∗(χ(L′) ∗ χ(L))){0}.

Using the equality

(φ∗(χ(L′)∗χ(L))){−2a−ρ} = φ∗(χ(L•ζ(χ(L′)))))−2a−ρ

which comes from 5.20(b), we deduce that we have canonically

φ∗(χ(L•ζ(χ(L′)))))−2a−ρ ⊂ (φ∗(χ(L′) ∗ χ(L))){0},

or equivalently, using (a) with K,K ′ replaced by χ(L′)†, χ(L),

φ∗(χ(L•ζ(χ(L′)))))−2a−ρ ⊂ HomCcG(D(χ(L′)†), χ(L))

= HomCcG(D(χ(L)†), χ(L′)).

Using now 6.9(d) with L replaced by L•ζ(χ(L′)) we deduce that we have

canonically

HomCcZ(1
′, L•ζ(χ(L′)))) ⊂ HomCcG(D(χ(L)†), χ(L′))

or equivalently (using 4.12(j)):

HomCcZ(D(ζ(χ(L′))†), L) ⊂ HomCcG(D(χ(L)†), χ(L′)).

Now we have

HomCcZ(D(ζ(χ(L′))†), L) = HomCc̃Z(D(L), ζ(χ(L′))†)

= HomCcZ((D(L))†, ζ(χ(L′)))

hence

HomCcZ((D(L))†, ζ(χ(L′))) ⊂ HomCcG(D(χ(L)†), χ(L′)).
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We set 1L = D(L†) = (D(L))† and note that

D(χ(L)†) = D(χ(L†)) = χ(D(L†)) = χ(1L),

see 5.22(d), 5.7(b). We obtain

(b) HomCcZ(
1L, ζ(χ(L′))) ⊂ HomCcG(χ(

1L), χ(L′))

for any 1L,L′ in Cc0Z.

We show that (b) is an equality:

(c) HomCcZ(
1L, ζ(χ(L′))) = HomCcG(χ(

1L), χ(L′)).

Let N ′ (resp. N ′′) be the dimension of the left (resp. right) hand side of

(b). It is enough to show that N ′ = N ′′. We can assume that 1L = Lẇλ ,

L′ = Lẇ
′

λ′ where w · λ ∈ ⌣
c , w′ · λ′ ∈ ⌣

c . By 5.13(a), N ′ is the multiplicity of

1L in b′′(L′); by the fully faithfulness of ǫ̃ this is the same as the multiplicity

of ǫ̃1L in ǫ̃b′′(L′) = b′(L′) = b(L′) (the last two equalities use 3.25(d) and

3.14(d)). By 3.13(d) this is the same as the multiplicity of Lẇλ in

⊕y∈W ;y·λ′∈cL
ẏ
λ′◦Lẇ

′
λ′ ◦Lẏ

−1

y(λ′).

Using now 2.22(c) we see that N ′ is the coefficient of tw·λ in

∑

y∈W ;y·λ′∈c
ty·λ′tw′·λ′ty−1·y(λ′) ∈ H∞.

Hence if τ : H∞ → Z is as in 4.6 (see also 1.9) then

N ′ =
∑

y∈W ;y·λ′∈c
τ(ty·λ′tw′·λ′ty−1·y(λ′)tw−1·λ).

This can be rewritten as

N ′ =
∑

y·λ1∈c
τ(ty·λ1tw′·λ′ty−1·y(λ1)tw−1·λ).

(In the last sum, the terms corresponding to y ·λ1 with λ1 6= λ′ are equal to
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zero.) By 5.6(a) we have

N ′′ =
∑

y·λ1∈c
τ(ty−1·y(λ1)tw·λty·λ1tw′−1·λ′).

Since τ(ξ♭) = τ(ξ) for all ξ ∈ H∞ and ξ 7→ ξ♭ is the ring antiautomorphism

in 1.9 we have also

N ′′ =
∑

y·λ1∈c
τ(tw′·λ′ty−1·y(λ1)tw−1·λty·λ1).

To show that N ′ = N ′′ it is enough to show that for any y · λ1 ∈ c we have

τ(ty·λ1tw′·λ′ty−1·y(λ1)tw−1·λ) = τ(tw′·λ′ty−1·y(λ1)tw−1·λty·λ1).

This follows by taking ξ = tw′·λ′ty−1·y(λ1)tw−1·λ, ξ
′ = ty·λ1 in the identity

τ(ξξ′) = τ(ξ′ξ) which (as we see from 1.9(a)) holds for any ξ, ξ′ in H∞. This

completes the proof of the equality N ′ = N ′′ and hence that of (c).

6.11. In the reminder of this section we assume that the Fq-rational struc-

ture on G in 2.8 is such that

(a) any A ∈ CSc admits a mixed structure of pure weight 0.

(This can be achieved by replacing if necessary q by a power of q.)

The bifunctor Cc0G × Cc0G → Cc0G, K,K ′ 7→ K∗K ′ in 5.20 defines a

bifunctor CcG × CcG → CcG denoted again by K,K ′ 7→ K∗K ′ as follows.

Let K ∈ CcG, K ′ ∈ CcG; we choose mixed structures of pure weight 0 on

K,K ′ (this is possible by (a)), we define K∗K ′ as in 5.20 in terms of these

mixed structures and we then disregard the mixed structure on K∗K ′. The

resulting object of CcG is denoted again by K∗K ′; it is independent of the

choices made.

In the same way the functor χ : Cc0Z → Cc0G gives rise to a functor

CcZ → CcG denoted again by χ; the functor ζ : Cc0G → Cc0Z gives rise to a

functor CcG→ CcZ denoted again by ζ.

The operation K∗K ′ is again called truncated convolution. It has a

canonical associativity isomorphism (deduced from that in 5.20(d)) which
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again satisfies the pentagon property. Thus CcG becomes a monoidal cate-

gory; it has a braiding coming from 5.20(a).

6.12. If K ∈ CcG then the isomorphisms 5.14(b) provide a central structure

on ǫ̃ζ(K) ∈ CcB̃2 so that ǫ̃ζ(K) can be naturally viewed as an object of Zc

denoted by ǫ̃ζ(K). (Here ǫ̃ is as in 3.3, ζ is as in 5.9, Zc is as in 4.9.) Then

K 7→ ǫ̃ζ(K) is a functor CcG→ Zc. We shall prove the following result.

Theorem 6.13. The functor CcG → Zc, K 7→ ǫ̃ζ(K) is an equivalence of

categories.

From 5.13(a), 3.14(d), 3.25(d) we have canonically for any z · λ ∈ ⌣
c :

(a) ǫ̃ζ(χ(Lżλ)) = b(Lżλ)

as objects of CcB̃2. From the definitions we see that the central structure on

the left hand side of (a) provided by 6.12 is the same as the central structure

on the right hand side of (a) provided by 3.14(j). Hence we have

(b) ǫ̃ζ(χ(Lżλ)) = b(Lżλ)

as objects of Zc. Using this and 4.11(a) with L′ = ǫ̃ζ(χ(Lẇλ′)) (where z ·
λ,w · λ′ are in

⌣
c ), we have

HomCcB̃2(L
ż
λ, ǫ̃ζ(χ(L

ẇ
λ′))) = HomZc(ǫ̃ζ(χ(Lżλ)), ǫ̃ζ(χ(L

ẇ
λ′))).

Combining this with the equalities

HomCcG(χ(L
ż
λ), χ(L

ẇ
λ′)) = HomCcZ(L

ż
l , ζ(χ(L

ẇ
λ′)))

= HomCcB̃2(L
ż
l , ǫ̃ζ(χ(L

ẇ
λ′))),

of which the first comes from 6.10(c) and the second comes from the fully

faithfulness of ǫ̃, we obtain

HomCcG(χ(L
ż
λ), χ(L

ẇ
λ′)) = HomZc(ǫ̃ζ(χ(Lżλ)), ǫ̃ζ(χ(L

ẇ
λ′))).

In other words, setting

Az·λ,w·λ′ = HomCcG(χ(L
ż
λ), χ(L

ẇ
λ′)),
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A′
z·λ,w·λ′ = HomZc(ǫ̃ζ(χ(Lżλ)), ǫ̃ζ(χ(L

ẇ
λ′))),

we have

(c) Az·λ,w·λ′ = A′
z·λ,w·λ′.

Note that the identification (c) is induced by the functor K 7→ ǫ̃ζ(K). Let

A = ⊕Az·λ,w·λ′, A′ = ⊕Az·λ,w·λ′ (both direct sums are taken over all z ·
λ,w · λ′ in ⌣

c ). Then from (c) we have A = A′. Note that this identification

is compatible with the obvious algebra structures of A,A′.

For any A ∈ CSc we denote by AA the set of all f ∈ A such that for

any z ·λ,w ·λ′, the (z ·λ,w ·λ′)-component of f maps the A-isotypic compo-

nent of χ(Lżλ) to the A-isotypic component of χ(Lẇλ′) and any other isotypic

component of χ(Lżλ) to 0. Thus, A = ⊕A∈CSc
AA is the decomposition of

A into a sum of simple algebras. (Each AA is nonzero since, by 5.2(c) and

5.5(a), any A is a summand of some χ(Lżλ).)

From [28], [4] we see that Zc is a semisimple abelian category with

finitely many simple objects up to isomorphism. Let S be a set of represen-

tatives for the isomorphism classes of simple objects of Zc. For any σ ∈ S

we denote by A′
σ the set of all f ′ ∈ A′ such that for any z · λ,w · λ′, the

(z ·λ,w ·λ′)-component of f ′ maps the σ-isotypic component of ǫ̃ζ(χ(Lżλ)) to

the σ-isotypic component of ǫ̃ζ(χ(Lẇλ′))) and all other isotypic components

of ǫ̃ζ(χ(Lżλ)) to zero. Then A′ = ⊕σA′
σ is the decomposition of A′ into a

sum of simple algebras. (Each A′
σ is nonzero since any σ is a summand of

some ǫ̃ζ(χ(Lẋλ)). Indeed, we can find x · λ ∈ c such that Lẋλ is a summand

of σ, viewed as an object of CcB̃2, by 4.9(a), σ is a summand of I(Lẋλ). If in

addition, x ·λ ∈
⌣
W s then, by (a), σ is a summand of ǫ̃ζ(χ(Lẋλ)), as required.

If x · λ /∈
⌣
W s then, by 4.9(b) we have I(Lẋλ) 6= 0 which is a contradiction.)

Since A = A′, from the uniqueness of decomposition of a semisimple

algebra as a direct sum of simple algebras, we see that there is a unique

bijection CSc ↔ S, A ↔ σA such that AA = A′
σA for any A ∈ CSc. From

the definitions we now see that for any A ∈ CSc we have ǫ̃ζ(K) ∼= σA.

Therefore, Theorem 6.13 holds.
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Theorem 6.14. Let L ∈ CcZ, K ∈ CcG. We have canonically

(a) HomCcZ(L, ζ(K)) = HomCcG(χ(L),K).

We can assume that L = Lżλ where z · λ ∈ ⌣
c . From 6.13 and its proof

we see that

HomCcG(χ(L),K) = HomZc(ǫ̃ζ(χ(L)), ǫ̃ζ(K)) = HomZc(I(Lżλ), ǫ̃ζ(K)).

Using 4.9(a) we see that

HomZc(I(Lżλ), ǫ̃ζ(K)) = HomCcB̃2(L
ż
λ, ǫ̃ζ(K)) = HomCcZ(L, ζ(K)).

This proves the theorem.

6.15. We show that for K ∈ CcG we have canonically

(a) D(ζ(D(K))) = ζ(K).

Here the first ζ is relative to c̃. It is enough to show that for any L ∈ CcZ
we have canonically

HomCcZ(L,D(ζ(D(K)))) = HomCcZ(L, ζ(K)).

Here the left side equals

HomCc̃Z(ζ(D(K)),D(L)) = HomCcG(D(K), χ(D(L)))

= HomCcG(D(K),D(χ(L))).

(We have used 6.14(a) for c̃ and 5.7(b).) The right hand side equals

HomCcG(χ(L),K) = HomCcG(D(K),D(χ(L))).

(We have again used 6.14(a).) This proves (a).

6.16. The monoidal structure on CcB̃2 induces a monoidal structure on Zc.

Using 5.21(b) and 3.24(b) we see that the equivalence of categories in 6.13

is compatible with the monoidal structures. Since Zc has a unit object, it
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follows that the monoidal category CcG also has a unit object, say A. We

show:

(a) A ∼= AEc

with AEc
as in 6.8(c). From 6.9(f), (g) we see that for w·λ ∈ ⌣

c , (AEc
: χ(Lẇλ ))

is 1 if w · λ ∈ Dc and is 0 if w · λ /∈ Dc. Using 6.13 we deduce that

dimHomCcB̃2(L
ẇ
λ , ǫ̃ζ(AEc

))

is 1 if w · λ ∈ Dc and is 0 if w · λ /∈ Dc. Thus ǫ̃ζ(AEc
) is isomorphic in CcB̃2

to the unit object 1 of the monoidal category CcB̃2. Then ǫ̃ζ(AEc
) viewed

as an object of Zc is also the unit object of Zc hence is isomorphic in Zc to

ǫ̃ζ(A). Using 6.13 we deduce that (a) holds.
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28. M. Müger, From subfactors to categories and topology II. The quantum double of
tensor categories and subfactors, J. Pure Appl. Alg., 180 (2003), 159-219.

29. N. Spaltenstein, On the generalized Springer correspondence for exceptional groups,
Algebraic Groups and Related Topics (R. Hotta, Ed.), Advanced Studies in Pure
Math., 6 (1985), North Holland, Kinokunia.

30. T. Yokonuma, Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini,
C. R. Acad. Sci. Paris Ser. A, 264 (1967), A334-A347.


	0. Introduction
	1. Study of the Algebra
	2. Truncated Convolution of Sheaves
	3. Sheaves on the Variety Z
	4. The Monoidal Category
	5. Truncated Induction, Truncated Restriction, Truncated Convolution on G
	6. The Main Results

