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Abstract

The Hopf-Cole transformation turning the strongly nonlinear Burgers equation into

the linear heat equation plays an important role in the development of mathematical

sciences. In this article the transformation is viewed from historical perspective. Some

open problems concerning the application of the Hopf-Cole transformation are also raised.

1. Introduction

The Hopf -Cole transformation, named after Eberhard Hopf, [18], and

Julian D. Cole, [6], is to transform the strongly nonlinear Burgers equation

ut +
(u2

2

)

x
= κuxx

to the linear heat equation

φt = κφxx.

It is striking that a nonlinear equation can be transformed exactly into a

linear equation. This realisation has motivated further research in math-

ematical sciences not necessarily directly related to gas dynamics, which

motivated the study of the Burgers equation. Research directly related to

the transformation has also been substantial. We will illustrate these with

concrete examples. We conclude with some historical perspectives on the
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Hopf-Cole transformation and Burgers equation, and raise some open prob-

lems.

The Hopf-Cole transformation is performed in steps. First, form the

Hamilton-Jacobi equation for the antiderivative U,

Ut +
1

2
(Ux)

2 = κUxx, Ux = u.

Then introduce the Hopf-Cole relation

U(x, t) = −2κ log[φ(x, t)]

and the Hamilton-Jacobi equation for U(x, t) becomes the heat equation for

the new function φ(x, t):

φt = κφxx.

The general solution to the initial value problem with initial value φ(x, 0) is

given as convolution of the initial value with the heat kernel H(x, t):















φ(x, t) =

∫ ∞

−∞
H(x− y, t)φ(y, 0)dy,

H(x, t) ≡ 1√
4πκt

e−
x2

4κt .

Normalize the anti-derivative U(x, t) by U(0,t) = 0 and the above formula

for φ(x, t) yields the solution formula for the initial value problem for the

Hamilton-Jacobi equation:

U(x, t) = −2κ log
[

∫ ∞

−∞

1√
4πκt

e
− (x−y)2

4κt
− 1

2κ

∫ y
0−

u(z,0)dz
dy

]

.

Finally, the formula for the solution u = Ux of the Burgers equation is:

u(x, t) =

∫∞
−∞

x−y
t e−

(x−y)2

4κt
− 1

2κ

∫ y
0− u(z,0)dzdy

∫∞
−∞ e−

(x−y)2

4κt
− 1

2κ

∫ y
0− u(z,0)dzdy

.

The Hopf-Cole transformation therefore gives an explicit representation of

the solution to the general initial value problem for the Burgers equation.
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2. Linearized Hopf-Cole Transformation

The Hopf-Cole transformation has a straightforward linearized version.

Consider a solution ū(x, t) of the Burgers equation











ūt +
( ū2

2

)

x
= κūxx

Ūx = ū, Ū(x, t) = −2κ log[φ̄(x, t)]

and the Burgers equation linearized around ū:

vt + (ūv)x = κvxx.

The Hopf-Cole transformation can be applied to solve the linearized Burgers

equation. This is done by following the above steps, with the original Hopf-

Cole relation

V + Ū = −2κ log[φ̄+ ζ].

replaced by the linearized Hopf-Cole relation:

V = −2κ
ζ

φ̄
.

The above steps lead also to the heat equation for the perturbed function ζ:

ζt = κζxx,

which is solved to yield the solution of the initial value problem for the

linearized Burgers equation:



























V (x, t) =

∫∞
−∞[ 1√

4πκt
e−

(x−y)2

4κt φ̄(y,0)V (y,0)]dy

φ̄(x,t)
,

ζ(x, t) = − 1

2κ

∫ ∞

−∞

[ 1√
4πκt

e−
(x−y)2

4κt φ̄(y, 0)V (y, 0)
]

dy,

v(x, t) = Vx(x, t).

3. Hopf Equation

The explicit formula for the solutions of the Burgers equation yields a
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formula for solving the inviscid equation, termed the Hopf equation:

ut +
(u2

2

)

x
= 0

by letting the viscosity to tend to zero κ → 0+. One may attempt to solve

the Hopf equation by the method of characteristics:

d

dt
u(x(t), t) = 0,

d

dt
x(t) = u(x(t), t).

However, as is well-known, the characteristics x = x(t) may coalesce and

shock waves develop, so the initial value problem cannot be solved by the

characteristic method. The Hopf-Cole transformation offers an explicit for-

mula for the solution of the initial value problem for the Hopf equation by

taking the zero dissipation limit κ → 0+ of the explicit expression for the

Burgers solution. For the explicit dependence on the viscosity, write the

solution formula as:



















u(x, t) = u(x, t;κ) =

∫∞
−∞

x−y
t e−

1
2κ

F (x,y,t)dy
∫∞
−∞ e−

1
2κ

F (x,y,t)dy
,

F (x, y, t) =
(x− y)2

2t
+

∫ y

0−
u(z, 0)dz.

As κ → 0+, the method of steepest descent yields the limiting solution

lim
κ→0+

u(x, t, κ) =
x− ξ

t
,

here y = ξ is where the location the function F (x, y, t) assumes its minimum

value. As Fy(x, y, t) =
y−x
t + u(y, 0), we also have

lim
κ→0+

u(x, t, κ) = u(ξ, 0), min
y

F (x, y, t) = F (x, ξ, t).

This gives simple geometric construction of the solution. The initial infor-

mation u(ξ, 0) propagates along the characteristic line x = ξ + u(ξ, 0)t to

reach the location (x, t). This is consistent with the characteristics method.

However, which initial information reaches the given location (x, t) requires

global consideration of the minimum of F (x, y, t). When the minimum is at-

tained at more than one location, it represents a discontinuity, a shock wave

in the inviscid solution. In general, a smooth initial data can give rise to
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infinite, even dense set of shock waves. The Hopf’s solutions offer a concrete

example to the notion of weak solutions.

4. Nonlinearity

One measure of the basic importance of the Burgers equation is that the

equation contains the critical nonlinearity. This can be seen by considering

the simplest situation, the dissipation around a constant state. Take the

base state to be zero and consider a compact supported perturbation:

u(x, 0) = 0 for |x| > M

for some positive constant M . Due to dissipation term uxx, the solution

tends to zero time-asymptotically,

u(x, t) → 0, as t → ∞.

With the linear dissipative equation, the heat equation, the dissipation is

governed by a multiple of the heat kernel

u(x, t) → AH(x, t) =
A√
4πκt

e−
x2

4κt , as t → ∞, A =

∫ ∞

−∞
u(x, 0)dx.

In L1(x) norm, we have

∫ ∞

−∞
|u(x, t) −AH(x, t)|dx = O(1)t−

1
2 , as t → ∞.

We expect the Burgers solution to have similar decaying rates as heat kernel:

u(x, t) = O(1)t−
1
2 , ut(x, t) = O(1)t−

3
2 ,

ux(x, t) = O(1)t−1, uxx(x, t) = O(1)t−
3
2 ,

as t → ∞.

From this, we see that the nonlinear term uux has the same dissipation rate

as the other terms in the Burgers equation:

uux(x, t) = O(1)t
1
2 t−1 = O(1)t−

3
2 ∼= ut(x, t) ∼= uxx(x, t), as t → ∞.

In other words, the dissipation phenomenon of Burgers solutions cannot be

governed by the heat equation. Instead, one needs to consider the Burgers
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kernel b(x, t) = b(x, t;A):











bt +
(b2

2

)

x
= κbxx,

b(x, 0) = Aδ(x).

The Hopf-Cole transformation yields the explicit expression of the Burgers

kernel

b(x, t;A) =

√
κ√
t
(e

A
2κ − 1)e−

x2

4κt

√
π +

∫∞
x√
4κt

(e
A
2κ − 1)e−y2dy

.

The heat kernel and the Burgers kernel distribute the mass differently. We

compare b(x, t;A) with Ah(x, t) as they carry the same mass;

∫ ∞

−∞
(b(x, t;A) −Ah(x, t))dx = 0, t ≥ 0.

The Burgers kernel is non-symmetric with respect to x-axis; while the heat

kernel is symmetric with respect to x-axis. For A > 0 (A < 0), the Burgers

kernel has more mass for x > 0 (x < 0). From the explicit expressions we see

that the two distributions of mass does not tend to zero time-asymptotically:

∫ ∞

−∞
|b(x, t;A) −Ah(x, t)|dx = O(1), as t → ∞.

This is to be compared with the difference between the Burgers solution

u(x, t) with the associated Burgers kernel b(x, t;A):

∫ ∞

−∞
|u(x, t)− b(x, t;A)|dx = O(1)t−

1
2 , as t → ∞.

In contrast to the Burgers equation, for nonlinear equation

ut +
(up

p

)

x
= κuxx, p > 2,

the nonlinear term up−1ux decays at the higher rate than the other terms

in the equation. In this case, the dissipation phenomenon can be accurately

governed by the heat equation, ignoring the nonlinear term.
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For general conservation law with convex flux

ut + f(u)x = κuxx, f ′′(u) > 0,

the time-asymptotic state is governed by the Burgers equation. To see this

we first perform a linear transform x → x−f ′(0)t, u → (f ′′(0))−1u and then

use the Taylor expansion to write the equation as

ut +
(u2

2

)

x
= κuxx + (O(1)u3)x.

This equation can be accurately approximated, in time-asymptotic sense, by

the Burgers equation as the truncation term (O(1)u3)x decays at higher rate

of t−2 than other terms in the equation. For instance, it can easily proved

that the difference between the Burgers kernel and the solution decay at the

rate of t−1/2 in L1(x) norm.

There is another way of relating the general conservation law to the

Burgers equation through the characteristic speed λ:

λt +
(λ2

2

)

x
= κλxx − κf ′′′(u)(ux)

2, λ = f ′(u).

The error term −κf ′′′(u)(ux)2 decays at faster rates than the terms in the

Burgers equation. For the hyperbolic conservation law

ut + f(u)x = 0, f ′′(u) > 0

this relation is exact:

λt +
(λ2

2

)

x
= 0, λ = f ′(u).

However, this works only for smooth solutions. For weak solutions, the

Rankine-Hugoniot conditions for the two equations are close only for shocks

with small strength.

5. Metastable States

For the Burgers equation, we have seen that the large-time behavior of

solutions of finite mass A is the Burgers kernel b(x, t;A), the self-similar solu-
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tions. However, the solution goes through ameta-stable state, which depends

on the initial data and the strength of the viscosity κ, before it approaches the

time-asymptotic state b(x, t;A). Consider the scaling v(x, t) = u(Aαx,αt)/A

so that the Burgers equation with initial data of the magnitude A turns into

the Burgers equation with different viscosity and with initial data of magni-

tude one:










ut + uux = κuxx → vt + vvx = µvxx,

v(x, t) =
1

A
u(Aαx,αt), µ =

κ

A2α
, u(x, 0) ∼= A, v(x, 0) ∼= 1.

When the effective Reynolds number R = A/κ is large, that is, the nonlin-

earity, measured by A, is large compared to the viscosity κ, the solution is

accurately approximated by the solution of the inviscid Burgers equation,

namely the Hopf equation for a long period of time. We see this by taking

the parameter α to be large so that µ = 1/(RAα) is small and v(x, t) is close

to the Hopf solution for finite time t, or equivalently, the original solution

u(·, αt) is close to a Hopf solution for the time period of finite multiple of

the large constant α, or for a period of the order of R.

This leads us to the consideration of the large time behavior of the

solution h(x, t) of the Hopf equation. Consider the scaling











ht +
(h2

2

)

x
= 0,

h(x, 0) = h0(x);

⇒











kt +
(k2

2

)

x
= 0, k(x, t) = βh(βx, β2t),

k(x, 0) = βh0(βx);

By taking β → ∞, for initial data of finite mass A, the large time behavior

of h(x, t) is therefore dictated by the solution of











wt +
(w2

2

)

x
= 0,

w(x, 0) = Aδ(x).

.

For nonlinear equation to have a distribution Aδ(x) as initial data, an un-

derstanding is required. By w(x, 0) = Aδ(x), we mean that w(x, t), t > 0,

is a measurable function and is a weak solution in the sense of distribution
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and that

lim
t→0+

w(x, t) = 0, for x 6= 0,

∫ ∞

−∞
w(x, t)dx = A, for t > 0.

Strikingly, there are infinitemany N-wave solutions N(x, t; p, q) to this initial

value problem:

w(x, t) = N(x, t; p, q) =







x

t
, for −√−2pt < x <

√
2qt,

0, otherwise.

The initial condition is satisfied in the above sense here:

lim
t→0+

N(x, t; p, q) = 0, for x 6= 0;

∫ ∞

−∞
N(x, t; p, q)dx = p+ q = A.

The solution depend on the constants p and q. The constants p and q have

only the constraints

p ≤ 0 ≤ q, p+ q = A;

otherwise are arbitrary.

TheN -waves represent accurate approximation of the long time, but not

time-asymptotic state of the viscous solutions. Thus, for the Burgers solu-

tions, the N -waves represent meta-stable states. We therefore conclude that

the two limits, time-asymptotic and zero dissipation limits, do not commute:

lim
κ→0

lim
t→∞

u(x, t;κ) 6= lim
t→∞

lim
κ→0

u(x, t;κ).

The first limit is limκ→0 b(x, t;A) with one time invariant A; while the second

limit is the N -wave with two time invariants p and q.

We have seen that the Burgers equation has a strong nonliinearity that

is critical. There is another aspect that separates the Burgers and Hopf

equation from the equations

ut + (
u3

3
)x = κuxx,

ut + (
u3

3
)x = 0.
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It turns out that the solution operator of this inviscid equation has only one

time invariant. This can also be understood by studying











ut +
(u3

3

)

x
= 0,

u(x, 0) = Aδ(x),

which, unlike the Burgers’ case with two time invariants, has only one solu-

tion, expressed in terms of the characteristic speed u2, [25]: For A > 0,

u2(x, t) =











x

t
, for 0 < x <

(3A

2

)
2
3
t
1
3 ,

0, otherwise;

for A < 0,

u2(x, t) =











x

t
, for −

(−3A

2

)
2
3
t
1
3 < x < 0,

0, otherwise.

6. Nonlinear Waves

In the study of gas dynamics, there are nonlinear waves, such as the

shock and rarefaction waves. The Hopf-Cole transformation is crucial for

the understanding of the interaction of these waves with the initial layer.

This is so because these waves can be approximated by the corresponding

Burgers waves, see next two sections.

To study the interaction of the initial layer with the nonlinear waves,

we consider the Burgers rarefaction wave bR(x, t) and the Burgers formation

of shock wave uS(x, t). These are solutions of the Burgers equation with

Riemann initial data consisting of two constant states. Without loss of

generality, take these waves to be symmetric with respect to x by choosing

a positive constant λ0 > 0 and considering ±λ0 as the initial values:



















(bR)t + bR(bR)x = κ(bR)xx,

bR(x, 0) =







−λ0, for x < 0,

λ0, for x > 0;
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

















(uS)t + uS(uS)x = κ(bS)xx,

uS(x, 0) =







λ0, for x < 0,

−λ0, for x > 0.

For the shock wave, it is interesting to study the process of the forming

of the permanent shock profile bS(x), resulting from the interaction of the

shock and initial layers:

bS(x) = lim
t→∞

uS(x, t).

The Hopf-Cole transformation yields



















us(x, t) = −λ0
Erfc(

−x−λ0t√
4κt

)−e−
λ0x
κ Erfc(

x−λ0t√
4κt

)

Erfc(
−x−λ0t√

4κt
)+e−

λ0x
κ Erfc(

x−λ0t√
4κt

)
,

bS(x) = lim
t→∞

uS(x, t) = −λ0 tanh
(λ0x

2κ

)

.

It follows from the above identities that the thickness of the initial layer is

attained when the error functions Erfc approach
√
π for a fixed location x.

This is so if λ0t/
√
4κt is larger than a given constant, or equivalently, the

thickness T0 of initial layer is given by

λ0T0√
4κT0

= O(1), or T0 = O(1)
κ

(λ0)2
.

The thickness of the initial layer T0 is large if the strength of the viscosity κ

is large, an understandable fact as the viscosity delays the formation of the

shock. T0 is small when the shock strength λ0 is large. This is because, for

larger λ0, the effect of nonlinearity is also larger and thereby accelerates the

formation of the shock profile.
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Next we study the rarefaction waves bR(x, t) for the Burgers equation.

The rarefaction wave hR(x, t) for the Hopf equation:























(hR)t +
((hR)

2

2

)

x
= 0,

hR(x, 0) =







−λ0, for x < 0,

λ0, for x > 0;

is a centered rarefaction wave, found easily by characteristic method:

hR(x, t) =



















x

t
, for − λ0t < x < λ0t,

−λ0, for x < −λ0t,

λ0, for x > λ0t.

The rate of expansion in the wave region −λ0t < x < λ0t is linear in time:

∂

∂x
hR(x, t) =

1

t

The viscous rarefaction wave bR(x, t), found by Hopf-Cole transformation,

is

bR(x, t) = λ0

e
λ0x
2κ Erfc(−x+λ0t√

4κt
)− e−

λ0x
2κ Erfc(x+λ0t√

4κt
)

e
λ0x

2κ Erfc(−x+λ0t√
4κt

) + e−
λ0x

2κ Erfc(x+λ0t√
4κt

)
.

This expression indicates a rich wave structure. We only point out that in

the region well within the inviscid rarefaction wave, the Burgers rarefaction

wave is close to the inviscid wave x/t:

bR(x, t)−
x

t
= O(1)

[ 1

|x− λ0t|
+

1

|x+ λ0t|
]

for x ∈ (−λ0t+M
√
4κt, λ0t−M

√
4κt), t > O(1)

κ

(λ0)2
.

Near the boundary of the inviscid rarefaction wave, the rate of expansion

degenerates from (bR)x = O(1)t−1 to the usual dissipation rate of t−1/2.

Dissipation dominates around the edges x = ±λ0t of the inviscid wave region

as well as during the initial time period, t < O(1)
κ

(λ0)2
.
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7. Green’s Functions

To study the behavior of a Burgers solution around a nonlinear wave,

the basic information is provided by the Green’s function for the Burgers

equation linearized around the nonlinear wave. For this, we use the linearized

Hopf-Cole transformation mentioned before.

Consider the Green’s function GS(x, t;x0, t0) = GS(x, t;x0, t − t0) for

the Burgers equation linearized around the shock profile bS(x):







(GS)t + bS(GS)x = κ(GS)xx,

GS(x, 0) = δ(x− x0);

Note that we have written above the Green’s function for the anti-derivative

of the Burgers equation linearized around the shock profile bS(x). This is

done in order to eliminate the freedom of the phase shift of the shock profile.

The linearized Hopf-Cole transformation yields

GS(x, t;x0) =
1√
4πκt

e−
(x−x0)

2

4κt
e

λ0x0
2κ + e−

λ0x0
2κ

e−
λ0x
2κ + e−

λ0x
2κ

e
(λ0)

2t
4κ .

The Green’s function can be rewritten as weighted combination of the heat

kernel with speeds ±λ0:

GS(x, t;x0) =
1 + e−

λ0|x0|
κ

1 + e−
λ0|x|

κ































H(x+ λ0t, t), for x > 0, x0 > 0;

e−
λ0|x|

κ H(x+ λ0t, t), for x < 0, x0 > 0;

H(x− λ0t, t), for x < 0, x0 < 0;

e−
λ0|x|

κ H(x− λ0t, t), for x > 0, x0 < 0.

When both the source x0 and the target x are positive,

GS(x, t;x0) ∼= H(x+ λ0t, t), x > 0, x0 > 0,

and so the propagation of the source is basically according to the heat kernel

with negative speed −λ0. Similarly, when both the source x0 and the target

x are negative,

GS(x, t;x0) ∼= H(x− λ0t, t), x < 0, , x0 < 0,
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The above are consistent with propagation of information around the inviscid

shock, along the characteristic lines with speed −λ0 for x > 0 and λ0 for

x < 0:

hS(x, t) =







−λ0, for x > 0,

λ0, for x < 0,

and so when the source and target are of the same sign, the propagation is

governed by the dissipative version of the transport equation ut ± λ0ux = 0.

On the other hand, when the source x0 and the target x are of different signs,

the propagation speed is determined by the source, but, as the inviscid speed

at the target is different, there is an exponentially decaying term in x:

GS(x, t;x0) ∼= e−
λ0|x|

κ H(x± λ0t), for ± x0 > 0, xx0 < 0.

The above exact analysis of the Green’s function is the consequence of

the application of the linearized Hopf-Cole transformation. The Hopf-Cole

transformation is more crucially needed for the more subtle analysis of the

wave propagation over a rarefaction wave. Consider the Green’s function

GR(x, t;x0, t0) for wave propagation over the rarefaction wave bR(x, t):







(GR)t + bR(GR)x = κ(GR)xx,

GR(x, t0;x0, t0) = δ(x− x0).

The linear Hopf-Cole transformation gives

GR(x, t;x0, t0) = e
− (x−x0)

2

4κ(t−t0) e−
(λ0)

2(t−t0)
4κ

×
e−

λ0x0
2κ Erfc(−x0+λ0t0√

4κt0
) + e−

λ0x0
2κ Erfc(x0+λ0t0√

4κt0
)

e−
λ0x
2κ Erfc(−x+λ0t√

4κt
) + e

λ0x
2κ Erfc(x+λ0t√

4κt
)

.

Unlike the shock profile bS(x), which has a permanent shape and is invariant

in time, the rarefaction wave bR(x, t) evolves in time and so there is no time

invariant, GR(x, t;x0, t0) and not GR(x, t− t0;x0). As we have seen, bR(x, t)

incorporates both the linear hyperbolic expansion rate and the sub-linear

dissipation rate. It is therefore interesting to understand the propagation

over such a wave. The above exact form gives several scales for the behavior

of the propagation. Take the case of propagation when both the target (x, t)
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and the source (x0, t0) are both well inside the inviscid rarefaction wave and

after the initial layer time O(1)κ/(λ0)
2:

x ∈ (−λ0t+M
√
4κt, λ0t−M

√
4κt),

x0 ∈ (−λ0t0 +M
√
4κt0, λ0t−M

√
4κt0),

t > t0 > O(1)
κ

(λ0)2
.

By direct calculations using the above exact form, we have the quantitative

estimate of the Green’s function GR(x, t;x0, t0) :

GR(x, t;x0, t0) ∼=

√
κt0

λ0t0+x0
+

√
κt0

λ0t0−x0√
κt

λ0t+x +
√
κt

λ0t−x

e
− t(x0−t0x/t)

2

4κt0(t−t0)

√

4κt0(t− t0)

We now analyze this expression. First, the propagation of waves is around

the zero line of the exponential:

t(x0 − t0x/t)
2

4κt0(t− t0)
= 0, or, x =

t

t0
x0,

that is, along the characteristic line through the source at (x0, t0) of the rar-

efaction wave according to the inviscid Hopf solution hR(x, t). The essential

support of the information is in the region given by

t(x0 − t0x/t)
2

4κt0(t− t0)
= O(1), or

∣

∣

∣
x− t

t0
x0

∣

∣

∣
= O(1)

√

κ(t− t0)
t

t0
.

Thus, for short and intermediate time propagation, 0 < t − t0 < t/2, the

width of the support is

O(1)

√

κ(t− t0)
t

t0
= O(1)

√

κ(t− t0),

for short and intermediate time, 0 < t− t0 < t/2.

For short and intermediate time, that is, the source time is close to the

target time, the effect of the inviscid expansion of the rarefaction wave is

not obvious and the width O(1)
√

κ(t− t0) is of the same order as the linear

dissipation. On the other hand, for large time propagation,

O(1)

√

κ(t− t0)
t

t0
= O(1)

√

κ

t0
t, for large time,

t

2
< t− t0 < t,
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the width is linear in time t, the same rate of expansion of the inviscid

rarefaction wave. Notice that the strength of the source

√
κt0

λ0t0+x0
+

√
κt0

λ0t0−x0√
κt

λ0t+x +
√
κt

λ0t−x

varies significantly also. This has to be so as the L1(x) norm of the Green’s

function is kept as the constant one. As the source and target approach the

boundary of the inviscid rarefaction wave

λ0t0 + x0√
κt0

≪ 1,
λ0t0 − x0√

κt0
≪ 1,

λ0t+ x√
κt

≪ 1,
λ0t− x√

κt
≪ 1,

the effect of diffusion becomes as important as the inviscid nonlinear expan-

sion. The study of rarefaction waves is interesting even for scalar equation,

[16], and richer wave phenomenon occurs for system, [26]. We emphasis that

these rich wave phenomena can be studied only by resorting to the explicit

expression obtained by Hopf-Cole transformation.

8. Hyperbolic Conservation Laws

We turn now to the system of equations in this and next sections and

show that the theory for the Burgers and Hopf equations plays an essential

role in the study of these systems. This section is concerned with systems

of hyperbolic conservation laws. First we recall that a scalar convex conser-

vation law

ut + f(u)x = 0, u ∈ R, f ′′(u) > 0,

is turned into Hopf equation by considering the characteristic speed λ(u) =

f ′(u):

λt + λλx = 0, λ = λ(u) = f ′(u).

This is valid for smooth solutions, but as conservation laws, the two equations

ut + f(u)x = 0, λt + (
λ2

2
)x = 0,

are not equivalent in the sense of weak solutions. The jump conditions are,
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respectively,







s = f(u+)−f(u−)
u+−u−

= f ′(u+)+f ′(u−)
2 +O(1)|u+ − u−|2;

s = λ++λ−
2 = f ′(u+)+f ′(u−)

2 .

Thus the approximation by the Hopf equation is of second order accuracy.

Consider system of hyperbolic conservation laws



















ut + f(u)x = 0, u ∈ R
n,

lj(u)f
′(u) = λj(u)lj(u), f ′(u)rk = λk(u)rk(u),

lj(u) · rk(u) = δjk.

An important example that motivates the general study of system of hyper-

bolic conservation laws is the Euler equations in gas dynamics



















ρt + (ρv)x = 0, conservation of mass,

(ρv)t + (ρv2 + p)x = 0, conservation of momentum,

(ρE)t + (ρEv + pv)x = 0, conservation of energy.

The approximation by the Hopf equation can be generalized to system

of hyperbolic conservation laws for i-simple waves:

u(x, t) ∈ Ri(u0), Ri(u0) integral curve of ri(u) through a state u0.

By definition, ux(x, t) and ut(x, t) are parallel to ri(u(x, t)):

ux(x, t) = α(x, t)ri(u(x, t)),

ut(x, t) = β(x, t)ri(u(x, t)),
for some scalar functions α(x, t), β(x, t).

Plug this into the hyperbolic conservation laws to obtain

β(x, t) + α(x, t)λi(u(x, t)) = 0.

The convexity condition for scalar equations is that the characteristic speed

λ(u) = f ′(u) is a strictly monotone function of the state u. The gener-

alization to the system is that this is so for the simple waves, that is, the

characteristic speed λi(u) is strictly monotone in the characteristic direction
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ri(u):

∇λi(u) · ri(u) 6= 0, for genuine nonlinearity.

For the Euler equations in gas dynamics, the characteristic families for the

acoustic waves are genuinely nonlinear. Besides lj(u) · rk(u) = δjk, we may

make the additional normalization of

∇λi(u) · ri(u) = 1, for genuine nonlinearity.

For i-simple waves,

∂

∂x
λi(u(x, t)) = ∇λi(u(x, t)) · ux(x, t) = α(x, t),

and similarly
∂

∂t
λi(u(x, t)) = β(x, t).

We thus obtain the Hopf equation for the simple wave u(x, t), [22]:

λt + λλx = 0, λ = λi(u(x, t)).

Thus we construct i-simple waves u(x, t) for the system by requiring the

wave to take values along characteristic curve and the movement along the

curve according to a Hopf solution λ(x, t):

u(x, t) ∈ Ri(u0), λi(u(x, t)) = λ(x, t), i-simple wave.

Again, the construction of i-shock waves for the system according to the

Hopf equation is not exact and is of second order accuracy.

The theory of N -waves for the Hopf equation can be generalized to

systems. For scalar laws, the convergence to the N -waves can be expressed

in pointwise sense. Two relatively strong shock waves emerge in the solution

and in between the solution is dominated by rarefaction wave. This is done

for general convex scalar conservation laws. In particular the convergence

is at the rate of t−1/2 in L1(x). The time invariants are directly computed

from the initial data

p = min
x

∫ x

−∞
u(y, 0)dy, q = max

x

∫ ∞

x
u(y, 0)dy.
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For systems, there are nonlinear interactions between waves pertaining to

distinct characteristic fields. Consider

Cijk = li(u)f
′′(u)rj(u)rk(u).

The coefficients Cijk for i = l = k measure the nonlinearity of the give

characteristic field, for instance Ciii 6= 0 means that the i-th characteristic

field is genuinely nonlinear. The other coefficients measure the coupling of

distinct characteristic fields. Due to the interaction of waves pertaining to

distinct characteristic fields, the convergence toN -waves for system is slower.

Two relatively strong shock waves emerge for each genuinely nonlinear field.

Each N -waves carries two time invariants, which can only be computed time-

asymptotically. There are waves propagating between the primary waves

and cause the convergence to N -waves to be of the slower rate. In L1(x),

the rate is t−1/4, [23]. This is obtained by careful wave tracing, [21], and

strong estimates on the secondary waves between the primary waves, using

the Glimm scheme, [14]. The analysis for the primary waves is motivated

and uses the theory of N waves for the Hopf equation.

The study of N -waves for the systems was initiated for the 2×2 systems,

[9]. This is natural, as there exist the Riemann invariants coordinates for

such systems and the scalar equations by the earlier studies can be viewed as

measuring the variation for one of the Riemann invariants. Moreover, there

is the difficult paper of Glimm-Lax, [15], on the decay of solutions for the

2×2 systems. As seen above, it is more natural to consider the characteristic

values in forming the Hopf equation.

9. Viscous Conservation Laws

Consider a general system of viscous conservation laws:

ut + f(u)x = (B(u,µ)ux)x, u ∈ R
n.

The viscosity matrix B(u,µ) contains dissipative parameters, which in gen-

eral depend on the solution, µ = µ(u).
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A prime example is the compressible Navier-Stokes equations:



















ρt + (ρv)x = 0, conservation of mass,

(ρv)t + (ρv2 + p)x = (νux)x, conservation of momentum,

(ρE)t + (ρEv + pv)x = (νuux + κTx)x, conservation of energy.

There are two dissipation parameters µ = (ν, κ), the viscosity and heat

conductivity coefficients. From kinetic theory, these coefficients are functions

of the temperature T .

The viscosity matrix B(u,µ) tends to zero as µ vanishes and the system

becomes hyperbolic conservation laws. Similar to the theory for hyperbolic

conservation laws, the Burgers equation, with its Hopf-Cole transformation,

is essential for the study of viscous conservation laws. To see the Burgers

equation approximation, we again start with the i-simple waves u(x, t) ∈
Ri(u0), for a genuinely nonlinear field ∇λi(u) · ri(u) = 1. Due to the

viscosity term, the simple waves are only approximate solutions. There is

also the question of determining the viscosity coefficient κ for the Burgers

equation. Following the reasoning for the hyperbolic conservation laws, we

have

β(x, t) + α(x, t)λi(u(x, t)) = li(u)[B(u,µ)α(x, t)ri(u)]x.

The viscosity term is rewritten as

li(u)[B(u,µ)α(x, t)ri(u)]x = [li(u)B(u,µ)α(x, t)ri(u)]x

−li(u)x[B(u,µ)α(x, t)ri(u)].

For the consideration of solutions around a given state u0, the viscosity

coefficient κ for the associated Burgers equation is

κ = li(u0)B(u0,µ)ri(u0).

Same as in the hyperbolic case, λi(u(x, t))x = α(x, t), λi(u(x, t))t = β(x, t),

and we obtain the Burgers equation

λt + λλx = κλxx, λ = λi(u).
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Here we have ignored the term

li(u)x[B(u,µ)α(x, t)ri(u)] = λxli(u)xB(u,µ)ri(u).

This term is of the order of (λx)
2, a higher decaying term when one considers

the dissipation around a constant state u0.

As noted before, the Burgers equation is a good approximation also for

nonlinear waves such as the shock and rarefaction waves, and the Hopf-Cole

transformation is useful for the study of initial layer and these nonlinear

waves for large time, [17]. The analysis carries over to the Boltzmann equa-

tion in the kinetic theory, [30]. There is a connection of the Boltzmann

equation to the compressible Navier-Stokes equations through the Chapman-

Enskog expansion.

In addition to the coupling induced by the hyperbolic nonlinearity through

the coefficients Cijk, there is additional coupling due to viscosity. For the

above approximate solution u(x, t) based on the Burgers equation, we have

the truncation error for the system:







ut + f(u)x = (B(u,µ)ux)x + truncation error,

truncation error =
∑

j 6=i[λx(ljBriri]x,

where the aforementioned higher order term is again ignored. The truncation

error induces the interaction of wave of distinct characteristic families, j 6= i,

due to the presence of the viscosity matrix B. The two coupling mechanisms,

one due to the nonlinearity of the flux f(u) and one due to the coupling of

the flux and the viscosity matrix B(u,µ), yield a rich wave structure, [24],

[27]. For a finite mass perturbation of a constant state u0, the main waves are

Burgers kernels b(x, t;A) for each genuinely nonlinear field and heat kernels

for fields of weaker nonlinearity. Due to the coupling, the convergence to

the combination of Burgers and heat kernels is slower than for the scalar

equations. Interestingly, the convergence rate in L1(x) is t
−1/4, same as for

the convergence to N -waves in the hyperbolic case.

The study of nonlinear wave interactions is based on the explicit con-

struction. For the study of shock waves, the Burgers Green’s function is

used in the construction of the Green’s function, [28].
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10. Concluding Remarks and Open Problems

10.1. Burgers

The main motivation of J. M. Burgers for the study of the equation

ut + uux = µuxx was to understand certain key elements of turbulence for

compressible flows, [3, 4, 5]. It is the simplest model with strong nonlin-

earity and dissipation. It is remarkable that the simple nonlinear equation

is capable of exhibiting some of the essential features of turbulence in the

transfer of energy between low frequency and high frequency waves. Based

on earlier works on laminar and turbulent solutions, Burgers first considered

the 2× 2 system







∂v
∂t = U(v − w) + ν ∂2v

∂y2
− 2v ∂v

∂y + 2w ∂w
∂y ,

∂w
∂t = U(v + w) + ν ∂2w

∂y2 + 2w ∂v
∂y + 2v ∂w

∂y .

He then proposed the model equation for U = 0

∂v

∂t
= ν

∂2v

∂y2
− 2v

∂v

∂y
.

Stability criteria are obtained for these equations. The model equation is

the simplest model with strong nonlinearity and dissipation. Burgers’ initial

success in his series of papers on the difficult subject of turbulence drew

attention to the equation that now bears his name. The Hopf-Cole trans-

formation allows for further studies of the statistical properties by Burgers

himself, [5].

It is interesting to mention that the nonlinear term uux in the Burgers

equation is often compared to the convection terms u · ∇u in the fluid dy-

namics equations. Note, however, that to study the stationary shock waves,

the fluid speed normal to the shock is around the sonic speed. This would

also indicate that it is natural to consider one of the characteristic speeds

λ1 = v− c, λ3 = v+ c for the acoustic field in gas flow to be near zero. This

agrees with the study of simple waves as mentioned before.

The Burgers equation was already proposed in the 1915 paper by H.

Bateman [1]:
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“The possibility of the solution of the equations of motion of a viscous fluid

becoming discontinuous when the viscosity approaches the value zero, may

perhaps be illustrated by a consideration of the equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
.”

Bateman then considered the viscous profiles and demonstrated his

point. As Cole put it: Bateman considered the equation as “worthy of study

and gave a special solution.” The richness of the subject was envisioned by

Burgers much later.

10.2. Friedrichs

In [13], K. O. Friedrichs studied the N -waves to approximate the sta-

tionary flow around a supersonic airfoil. There is the leading shock in front

of the airfoil induced by the compression of the flow due to the presence of

the airfoil. This is followed by expansion wave as the airfoil becomes thinner.

Then the flows on the two sides of the airfoil meet toward the end of the

airfoil and the resulting compression creates another shock wave. Thus the

general flow can be approximated by a rarefaction wave sandwiched by two

shock waves. Friedrichs derived a scalar equation and carried the analysis

for it.1 Although the idea of N -waves was mentioned earlier, [10], Friedrichs

computed the decay rate of t−1/2 of the shock and the width t1/2 of the

expansion wave. Here t represents the distance from the airfoil. The simi-

larity in rates of this inviscid dissipation with the usual viscous dissipation

is striking. This is an important consideration for Hopf’s investigation of

Burgers equation later.

10.3. Hopf and Cole

The Hopf-Cole transformation was found independently by E. Hopf, [18]

and J. Cole, [6].

1During 1976-1977, as a junior visitor at NYU, the author explained to Friedrichs his work on
the N-waves for general system of hyperbolic conservation laws in Friedrichs office. Friedrichs
said, in his usual modest manner, that “I visited Cal. Tech. for a summer. People there said to
me that you are a good applied mathematician and you can solve problems for us. But for the
whole summer I only did the study of N-waves.” Friedrichs asked the author to describe the
N-waves for a system.
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Cole was aware that Bateman proposed the Burgers equation as a model

problem for shock waves. Cole actually derived the Burgers equation from

the full gas dynamics equations to govern the perturbation of gas velocity

around a sonic velocity:

∂w

∂t
+ β

∂w

∂x
=

4

3
ν∗

∂2w

∂x2
.

“for w = excess of flow velocity over a sonic velocity, where β = (γ +

1)/2, ν∗ = the kinematic viscosity at sonic condition.”

Hopf claimed in his paper that

“The reduction of (1) to the heat equation was known to me since the end of

1946. However, it was not until 1949 that I became sufficiently acquainted

with the recent development of fluid dynamics to be convinced that a theory

of (1) could serve as an instructive introduction into some of the mathemat-

ical problems involved.”

Hopf ‘became sufficiently acquainted’ with Burgers equation, equation

(1), in two aspects. He learned that Burgers equation was used for the study

of fluid dynamics. He also learned the behavior of shock waves, particularly

the N -waves, for the inviscid Burgers equation, the Hopf equation. Hopf

learned these through his contacts with IPST at University of Maryland in

the 40’s2 . These prompted Hopf to use his transformation to derive the

formula for the inviscid solutions and the time invariants for the N -waves.

Hopf then concluded that the N -waves are the meta-stable states for the

Burgers solutions and that the time-asymptotic and zero dissipation limits

do not commute.

10.4. Forsyth

While the ingenuity of the Hopf-Cole transform is clear, it is interesting

to note that, already in the early 20th century, in one volume of the clas-

sical books he wrote, A. R. Forsyth put the transform as an exercise, [12].

Before the era of functional analytic approach to establish the existence of

2The authors had conversations with Avron Douglis in the 70’s and 80’s when both were faculty
at University of Maryland. There were opportunities talking to Burgers at IPST, where Burgers
spent final years of his career.
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solutions without having to obtain explicit formulas, much efforts focused on

transformations to simplify the equation which, in some cases, allows one to

solve the equation and obtain explicit solution formulas. For the parabolic

equation

∂2z

∂x2
+ 2α

∂z

∂x
+ 2β

∂z

∂y
+ γz = 0,

it is to consider linear transformations z → z′, which transforms the equation

to another of the same form

∂2z′

∂x2
+ 2α′ ∂z

′

∂x
+ 2β′ ∂z

′

∂y
+ γ′z′ = 0,

Depending on the transformation, there are invariants, combination of the

coefficients that are unchanged under the transformation. In the case z′ =

λz, for a known function λ = λ(x, y), there are two invariants I = I ′, J = J ′:

I = β, J =
∂

∂x

[ 1

β

(

γ − ∂α

∂x
− α2

)]

− 2
∂α

∂y
.

For more complicated transformations, it is not clear that the form of the

equation is preserved. In Volume VI of Forsyth’s books, on Page 102, Ex. 3,

a transform is considered:

z1 =
∂z

∂x
+ (α+ u)z.

Straightforward calculations show that the form of the equation is kept under

the transformation

∂2z1
∂x2

+ 2α1
∂z1
∂x

+ 2β1
∂z1
∂y

+ γ1z1 = 0,

when the function u = u(x, y) satisfies

∂

∂x

[ 1

β

(∂u

∂x
− u2

)]

+ 2
∂u

∂y
= J,
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and the new coefficients are given as























α1 = α− 1

2β

∂β

∂x
,

β1 = β,

γ1 = γ − α

β

∂β

∂x
+

u

β

∂β

∂x
− 2

∂u

∂x
.

J is no longer an invariant and further calculations, as also requested in the

exercise, yield

J1 − J =
∂

∂y

( 1

β

∂β

∂x

)

+
1

2

∂

∂x

[ 1

β

∂

∂x

( 1

β

∂β

∂x

)]

− ∂

∂x

[1

u

∂

∂x

(u2

β

)]

.

This does not lead to ways for finding the solution formulas. Nevertheless,

the form of the equation for z1(x, y) is shown to be the same as that for the

original function z(x, y) and the role of the function u(x, y) is made definite.

In particular, z1 = 0 is a solution and the process yields the Hopf-Cole

transformation by setting z1 =
∂z
∂x + (α+ u)z = 0.

The spirit of going back to the era of finding explicit ways for solving

specific equations comes back in recent decades and is essential for many

studies, such as in the theory of solitons.

10.5. Modern theory of shock waves

Before Hopf-Cole transformation, the shock wave theory was focusing

on the study of gas dynamics, as documented in the classical 1948 book of

Courant-Friedrichs, [7]. This is natural as the shock wave theory, as inaugu-

rated by Riemann and Stokes, was concerned exclusively with the Euler and

Naveir-Stokes equations in gas dynamics. The Hopf-Cole transformation,

particularly Hopf’s analysis, indicated that it is fruitful to consider general

scalar hyperbolic conservation laws. Hopf’s explicit formula for solving the

Hopf equation was generalized to general convex conservation laws by Lax

and by Oleinik. The characterisation of the two time invariants p, and q for

N -waves are also generalised to general convex laws, [20]. For the theory of

general system of hyperbolic conservation laws, the first step is the solution

of the Riemann problem by Lax, [20]. This leads to the fundamental break-

through by James Glimm, [14] for general initial value problem. There is



2017] HOPF-COLE TRANSFORMATION 97

now a sophisticated theory for one spatial dimensional hyperbolic conserva-

tion laws, c.f. [8]. It can be argued that the Hopf-Cole transformation helped

to inaugurate the modern theory of shock waves. Instead of considering par-

ticular physical systems, such as the Euler equations in gas dynamics, one

considers conservation laws of general form

ut + f(u)x = 0.

Several decades of the general study provides people with solid under-

standing of shock wave theory. With the confidence, in recent years, people

increasingly go back to the classical concern of specific physical models.

10.6. Nonlinear transformations

The Hopf-Cole transformation is a strikingly, truly nonlinear transfor-

mation. Its importance goes beyond solving the Burgers equation and takes

on certain philosophical meaning: It is possible that strongly nonlinear equa-

tions can be linearized through a nonlinear transformation. This has inspired

researchers working on quite different nonlinear phenomena. An important

example is the soliton theory. It is based on linearisation, in a very non-

trivial sense. There is the Miura transformation, [29], between two strongly

nonlinear equations, that inaugurates the soliton theory:



















Vt − 6V Vx + Vxxx = 0, KdV

φt − 6φ2φx + φxxx = 0, Modified KdV,

V = φ2 ± φx, Miura transformation.

As Miura put it, [29]:

“It is rare and surprising to find a transformation between two simple non-

linear partial differential equations of independent interest. One is reminded

of the Hopf-Cole transformation of quadratically nonlinear Burgers equation

into the heat conduction (diffusion) equation. A number of investigators (in-

cluding us) have attempted unsuccessfully to find a similar simple linearizing

transformation for the KdV equation, but a complicated one will be given

in VI.”
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10.7. Statistical studies

The Hopf-Cole transformation allows for further studies of the statistical

properties by Burgers himself, [5]. Other researchers have followed Burgers

in the statistical study, for instance, [11] studies the Burgers equation with

stochastic forcing

ut + uux = µuxx +
∂F

∂x
(x, t).

The Burgers equation, with its explicit solution solver, provides the basic

framework for the study of complex physical phenomena. The seminal paper

[19] initiates the study of the evolution of the profile of a growing interface.

Let h(x, t) be the height and consider the local growth of the profile given

by anti-derivative of the Burgers equaiton, a Hamilton-Jacobi equation, plus

a noise η:

∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + η(x, t).

The Hopf-Cole transform provides the first step by turning this into linear

equation with a source:







∂W

∂t
= ν∇2W +

λ

2ν
η(x, t)W,

W (x, t) = e
λ
2ν

h(x,t).

Strikingly, a new scaling, distinct from deterministic dissipation equations

such as the Burgers and heat equations, comes up due to the noise. The

authors marvel that they are able to relate the Burgers equation to their

efforts, [19]:

“We thus have an intriguing connection between evolutions of a hydrody-

namic and a growth pattern!”

This fruitful research direction is being earnestly pursued.

10.8. Open problems

In fluid dynamics and kinetic theory, there are initial, shock and bound-

ary layers. The Hopf-Cole transformation gives definite information on the

interaction of initial and shock layers for the Burgers equation. This has
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been generalised, through approximation by simple waves, to the compress-

ible Navier-Stokes equations, [17] and to the Boltzmann equation, [30]. The

transformation also gives definite information on the interaction of initial

layer and rarefaction wave. It would be desirable to generalise this to gen-

eral viscous conservation laws and to the Boltzmann equation.

More generally, one would like to consider the interaction of initial layer

with combination of distinct types of nonlinear waves. This occurs naturally

in the Riemann problem. By simple scaling, large-time behavior of the

Riemann solutions is related to the zero dissipation limit. The first step to

resolve the Riemann problem for system with physical viscosity would be to

understand the initial layer by the Green’s function approach. The starting

point of the Green’s function approach for systems would be to use Hopf-

Cole transformation for understanding the nonlinear waves for systems. How

to use the transformation for different wave types contained in the Riemann

solution is a worthy problem. It would be interesting to study the Riemann

problem for the Boltzmann equation in the kinetic theory. The initial data

consist of two Maxwellian states. By scaling, the study of the Riemann

problem is directly related to zero dissipation limit for viscous conservation

laws and the zero mean free path limit for the Boltzmann equation. The

zero dissipation limit for systems with artificial viscosity

ut + f(u)x = µuxx

was solved by [2].

As mentioned before, for both system of hyperbolic conservation laws

and viscous conservation laws, the convergence rates to their respective time-

asymptotic states are the same, t−1/4 in L1(x). In light of this, it should be

possible to understand the sense in which the N -waves for hyperbolic system

represent the meta-stable states for the viscous system.
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