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Abstract

We generalize the well-known numerical criterion for projective spaces by Cho, Miyaoka

and Shepherd-Barron to varieties with at worst quotient singularities. Let X be a nor-

mal projective variety of dimension n ≥ 3 with at most quotient singularities. Our result

asserts that if C · (−KX) ≥ n+ 1 for every curve C ⊂ X, then X ∼= P
n.

1. Introduction

We work over the field C. The n-dimensional projective space P
n is

probably the simplest compact (projective) complex manifold. Let KPn be

the canonical bundle (the line bundle of holomorphic n-forms). It is elemen-

tary to see that the −KPn = O(n+1). In particular, (line) · (−KX ) = n+1

and C · (−KPn) ≥ n + 1 for all curves C ⊂ P
n. This is a rather unusual

property: recall that if X is a smooth projective variety of dimension n and

KX is not nef, then the Cone theorem implies that there is a rational curve

C such that 0 < C · (−KX) ≤ n+ 1.

From this perspective, the anti-canonical bundle −KPn is unusually pos-

itive. It turns out that this property characterizes P
n among smooth pro-

jective varieties of dimension n.
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Theorem 1.1 ([4] and [10]). Let X be a smooth projective variety of dimen-

sion n ≥ 3. Assume that C · (−KX) ≥ n + 1 for all curves C ⊂ X. Then

X ∼= P
n.

This result was first proved by Cho, Miyaoka and Shepherd-Barron [4]

and later by Kebekus [10].

Since the condition

C · (−KX) ≥ n+ 1 ∀ C ⊂ X

is very strong, it is natural to ask if the assumption on smoothness is neces-

sary. In [5], H,-H, Tseng and the author proved the characterization result

assuming that X has only isolated LCIQ singularities. The main goal of this

paper is to further weaken the smoothness assumption; it builds upon meth-

ods developed in [5]. The precise statement of our result is the following:

Theorem 1.2. Let X be a projective variety of dimension n ≥ 3 with at

most quotient singularities. Assume that

C · (−KX) ≥ n+ 1 ∀ C ⊂ X.

Then X ∼= P
n.

We now explain the strategy used in [10]. First consider the projective

space Pn. Let p ∈ P
n be any point. Let P̃n be the blowing up of Pn along the

point p. The variety P̃n is a P
1-bundle over Pn−1. Let E ∼= P

n−1 ⊂ P̃n be the

exceptional divisor. The normal bundle of the exceptional divisor E ∼= P
n−1

is OPn−1(−1). The variety P̃n is the Chow family of minimal degree rational

curves (lines) through the point p ∈ P
n.

Now consider the variety X. Take a general point x ∈ X. Denote by

X̃ the blowing up of X along x. If we can prove that X̃ is the Chow family

of minimal degree (with respect to an ample line bundle) rational curves

through x, then we have a good chance to prove that X̃ ∼= P̃n and hence

X ∼= P
n.

When X is smooth, Kebekus proved that the Chow scheme Hx of min-

imal degree rational curves through a general point x ∈ X is isomorphic to

P
n−1 and X̃ ∼= P̃n [10]. It follows easily that X ∼= P

n. One important step
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in his proof is to show that X has a lot of minimal degree rational curves

through x. More precisely, one needs to show that

dim Hx ≥ l · (−KX)− 2 = n− 1,

where [l] ∈ Hx. Note that dim Hx ≤ n − 1 by a standard bend and break

argument. It follows that the Chow scheme Hx has the expected dimen-

sion n − 1. Kebekus then proved that the tangent map Hx → P
n−1 is an

isomorphism [9] [10].

WhenX is possibly singular, the situation is quite different: it is difficult

to have the desired lower bound on the dimension of Hx. In [5] (joint work

with H.-H. Tseng), we proved the characterization result when X has at

worst isolated LCIQ singularities. We used the Deligne-Mumford stack X →

X, twisted stable maps into X and Mori’s bend and break techniques to show

the existence of a rational curve f : P1 → X such that (1) f(P1) · (−KX) =

n+ 1, and (2) f(P1) does not meet the singular locus of X. Using this fact,

one can show (following [10]) that Hx
∼= P

n−1 and X ∼= P
n. In [5], the

condition that Xsing is isolated is essential; it ensures that we can deform

a specific rational curve in X. Our methods do not apply without this

assumption.

In this paper, we develop methods to study the case when X has only

quotient singularities (not necessarily isolated). The main idea is quite sim-

ple: instead of considering the twisted stable map directly, we consider a

double cover and study the possible degeneration types. The assumption

C · (−KX) ≥ n+ 1 ∀ C ⊂ X

ensures that the possible degeneration types are limited and we are able to

show the existence of a minimal degree rational curve f : P1 → X which

does not meet Xsing. Once this fact is established, it is standard [10] [5] to

prove that the Chow family has the right dimension, i.e. n− 1, and X ∼= P
n.

A few words on using Deligne-Mumford stacks: for a singular variety X,

it is difficult to prove the existence of enough rational curves via deformation

theory; obtaining a lower bound of the dimension Mor(P1,X) (in terms of

−KX-degree) is difficult. However, if X has only local complete intersection

quotient (LCIQ) singularities, one can study representable morphisms from a



300 JIUN-CHENG CHEN [December

twisted curve1 to the stack X whose coarse moduli space is X. This provides

a reasonable alternative. We can obtain a lower bound on the dimension of

the space of twisted stable maps expressed in terms of the −KX -degree and

the number of twisted points, see [6].

The rest of this paper is organized as follows: In Section 2, we recall

basic definitions on twisted curves and twisted stable maps. We also give a

formula on the lower bound on the morphism space. The main proposition

(Proposition 3.7) is proved in Section 3. In Section 4, we conclude the proof

of the main theorem. We also make a few remarks in that section.
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2. Twisted Curves and Twisted Stable Maps

Twisted curves play an important role in this paper. One of the main

motivations of introducing twisted curves is to compactify the space (Deligne-

Mumford stack) of stable maps into a proper Deligne-Mumford stack [2].

Roughly speaking, twisted curves are nodal curves having certain stack struc-

tures étale locally near nodes (and, for pointed curves, marked points). For

the precise definition, see [2], Definition 4.1.2.

Let C be a twisted curve and C its coarse moduli space.

2.0.1. Nodes

For a positive integer r, let µr denote the cyclic group of r-th roots of

unity. Étale locally near a node, a twisted curve C is isomorphic to the stack

1Roughly speaking, this is a one dimensional Deligne-Mumford stack with isolated cyclic quotient
stack structures and with coarse moduli space being a nodal curve [2].
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quotient [U/µr] of the nodal curve U = {xy = f(t)} by the following action

of µr:

(x, y) 7→ (ζrx, ζ
−1
r y),

where ζr is a primitive r-th root of unity. Étale locally near this node, the

coarse curve C is isomorphic to the schematic quotient U/µr.

2.0.2. Markings

Étale locally near a marked point, C is isomorphic to the stack quotient

[U/µr]. Here U is a smooth curve with local coordinate z defining the marked

point, and the µr-action is defined by

z 7→ ζrz.

Near this marked point the coarse curve is the schematic quotient U/µr.

2.1. Twisted stable maps

Definition 2.1. A twisted n-pointed stable map of genus g and degree d

over a scheme S consists of the following data (see [2], Definition 4.3.1):

C
f

−−−−→ X

πC

y π

y

C
f̄

−−−−→ X
y

S.

along with n closed substacks Σi ⊂ C such that

(1) C is a twisted nodal n-pointed curve over S (see [2], Definition 4.1.2),

(2) f : C → X is representable,

(3) Σi is an étale gerbe over S, for i = 1, . . . , n, and

(4) the map f̄ : (C, {pi}) → X between coarse moduli spaces induced from

f is a stable n-pointed map of degree d in the usual sense.
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A twisted map f : C → X is stable if and only if for every irreducible

component Ci ⊂ C, one of the following cases holds:

(1) f |Ci is nonconstant,

(2) f |Ci is constant, and Ci is of genus at least 2,

(3) f |Ci is constant, Ci is of genus 1, and there is at least one special points

on Ci,

(4) f |Ci is constant, Ci is of genus 0, and there are at least three special

points on Ci.

In particular, a nonconstant representable morphism from a smooth twisted

curve to X is stable.

We say a twisted stable map C → X is rational if the coarse moduli

space C of C is rational.

Let Kg,n(X , d) denote the category of twisted n-pointed stable maps to

X of genus g and degree d. The main result of [2] is that Kg,n(X , d) is a

proper Deligne-Mumford stack with projective coarse moduli space denoted

by Kg,n(X , d). Let β ∈ H2(X) be a homology class. The space of twisted n-

pointed stable maps f : C → X of genus g and homology class [(π◦f)∗(C)] =

β is denoted by Kg,n(X , β). This stack is also proper [2].

2.2. Morphism space from a twisted curve to a Deligne-Mumfors

stack

In this paper, we use both the stack of twisted stable maps and the

morphism space from C to X . Roughly speaking, an element in the morphism

space Mor(C,X ) is a twisted stable map together with a parameterization

on the source curve C. Let Σ ⊂ C be the set of twisted points and B ⊂ C a

finite set of points (twisted or untwisted). Let f : C → X be a representable

morphism. When X is smooth, we have a lower bound on the dimension of

Mor(C,X ; f |B) near the morphism [f ].

Lemma 2.2 (=[6] Lemma 4.4).

dim[f ]Mor(C,X ; f |B) ≥ −C·KX+n[χ(OC)− Card(B)]−
∑

x∈Σ\B

age(f∗TX , x).
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Remark 2.3. The age term contribution from each twisted point can be

computed using local stack structure of that twisted point. For each twisted

point, the age term is strictly less than dimX.

Remark 2.4. When X has only LCI singularities, a similar formula still

holds as long as the image of C does not lie completely in Xsing (the locus

where the stack X is singular).

2.3. Lifting

Let X be a normal projective variety with quotient singularities and X

a proper smooth Deligne-Mumford stack such that π : X → X is isomorphic

over Xreg = X − Xsing and X is a coarse moduli space of X . Let C be a

smooth irreducible curve and f̄ : C → X a morphism.

We want to “lift” the map f̄ : C → X to a map C → X . In general,

this is not possible unless we endow a orbicurve structure on C [2] Lemma

7.2.5, or pass to a finite cover C ′ → C [2] Theorem 7.1.1.

First consider the case when the image f̄(C) meets the smooth locus of

X. Let {pi|i ∈ I} ⊂ C be the finite set of points which are mapped to the

singular locus of X, and let C0 = C \{pi|i ∈ I}. Since X is isomorphic to X

away from the singular locus Xsing, the map f̄ |C0
: C0 → X admits a lifting

C0 → X . By [2], Lemma 7.2.5, there exists a twisted curve C with coarse

moduli space C, and a twisted stable map f : C → X extending C0 → X .

Now consider the case when f̄(C) ⊂ Xsing. Let η ∈ C be the generic

point of C. Consider the morphism η ∈ C → X. After a finite extension

η′ → η, there is a lifting η′ → X since X is proper. Let η′ ∈ C ′ be the

smooth irreducible curve. Note that the morphism η′ → X is defined over

an open set U → X . One can extend the finite morphism η′ → η to C ′ → C

since C is proper. Let C ′ − U = {pj|j ∈ J}. Endowing stack structures on

this finite set of points, we can extend the morphism U → X to C′ → X .

After a further finite cover C ′′ → C ′, we can find a morphism C ′′ → X .
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3. Untwisted Rational Curves

In this section, we prove the existence of ”good” rational curves with

−KX-degree n + 1, i.e. rational curves which do not intersect the singular

locus of X.

Consider a smooth Fano variety X. Let x ∈ X be a general point and

S = {x1, x2, · · · , xk} ⊂ X be any finite set of points which does not contain

x. It is possible to find a rational curve through the point x which misses

the finite set S = {x1, x2, · · · , xk} ⊂ X. This property is, however, not true

for singular varieties.

Example 3.1. Let E ⊂ P
2 be a smooth elliptic curve. Let X ⊂ P

3 be

the projective cone of E. The surface X has only one LCI singularity at

the vertex. The surface X is Fano and all rational curves pass through the

vertex.

This example shows that the existence of a rational curve which does

not meet the singular locus Xsing is non-trivial.

Notation 3.2. Let X be a normal projective variety with at worst quotient

singularities. Fix a proper smooth Deligne-Mumford stack π : X → X

such that X is a coarse moduli space of X and π is an isomorphism over

Xreg = X \Xsing. Note that KX = π∗KX and

C ·KX = C ·KX

for any (twisted) curve C → X with coarse curve C [6].

We start with the following lemma:

Lemma 3.3. Let R ⊂ NE(X) be any KX -negative extremal ray. Then

there exists a twisted rational curve f : C → X such that (1) C has at most

one twisted point, (2) the intersection number C · (−KX ) ≤ n + 1, and (3)

[(π ◦ f)∗(C)] ∈ R.

Proof. This is essentially Proposition 3.1 in [5]; one only needs to note

that the argument goes through when the stack X has only isolated LCI

singularities. ���

Unless mentioned otherwise, we make further assumptions in the rest of

this paper:
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Assumptions 3.4. From now on we assume that X is a projective variety

of dimX = n ≥ 3 with at most quotient singularities and has the property

that

C · (−KX) ≥ n+ 1

for every curve C ⊂ X.

Lemma 3.5. Assumptions as in Assumptions 3.4. Let R ∈ NE(X) be any

KX-negative extremal ray and x ∈ X a general point. Then there exists a

twisted rational curve f : C → X such that (1) C has at most 1 twisted point,

(2) x ∈ f(C), (3) [(π ◦ f)∗(C)] ∈ R ⊂ H2(X), and (4) C · f∗(−KX ) = n+ 1.

Proof. We only need to verify the condition (2) by Lemma 3.3. Let f : C →

X be a twisted rational curve as in Lemma 3.3 and ∞ ∈ C the twisted point

on C. By Lemma 2.2,

dim[f ] Mor(C,X , f |∞, n+ 1) ≥ (n+ 1) + (1− 1)n = n+ 1.

Denote by Hf(∞) ⊂ K0,1(X , [(π ◦ f)∗C]) the stack of twisted stable maps

through the twisted point f(∞).

Abusing the notation, we also view [f ] ∈ Mor(C,X , f |∞, n + 1) as an

element of Hf(∞). Note that dim[f ] Hf(∞) ≥ n− 1.

Let T → Hf(∞) be any quasi-finite morphism where T is a normal

irreducible quasi-projective variety of dimension n−1 such that [f ] ∈ Im(T ).

Consider the pull back family UT → T of twisted stable maps and the

morphism iT : UT → X . Forgetting the stack structures on the source

curves and on the target stack X , one obtains a family of stable maps (into

X). Denote this family of stable maps by φT : UT → T and the morphism

(into X) by īT : UT → X.

Note that the homology class [(π ◦f)∗(C)] can not be written as the sum

of at least two curve classes by Assumptions 3.4. Let q = (π ◦ f)(∞).

Recall that K0,1(X , [(π ◦ f)∗(C)]) → K0,1(X, [(π ◦ f)∗(C)]) is quasi-finite

[2]. Being the composition of two quasi-finite morphisms, the morphism

T → Hf(∞) → K0,1(X, [(π ◦ f)∗(C)]) is also quasi-finite.

Claim 3.6. The morphism īT : UT → X is quasi-finite away from the

preimage of q.
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Proof. This is a standard bend and break argument. Note that every fiber

of the family φT : UT → T is irreducible since the homology class [(π ◦ f)∗C]

is unbreakable. It follows that no fiber of φT : UT → T is contracted by the

morphism īT .

Suppose that īT is not quasi-finite (away from the preimage of q). Then

there is a curve C ⊂ UT (may not be projective) such that īT (C) = q1 6= q.

Let φT (C) ⊂ T be the image of C and C ′ → φT (C) the normalization. Note

that the morphism

C ′ → φT (C) ⊂ T → K0,1(X, [(π ◦ f)∗(C)])

is still quasi-finite. Pull back the family of stable maps to the curve C ′.

Compactify this family of stable maps; this is a family (over a proper curve

C̄ ′) of stable maps whose image contains q and q1. This contradicts the

unbreakable assumption on the homology class [(π ◦ f)∗(C)] by Mori’s bend

and break. ���

By Claim 3.6, it follows that the dimension of the image īT (UT ) (and

the dimension of (π ◦ iT )(UT )) is n. Thus a general point x ∈ X lies on the

image of a twisted stable map which satisfies the conditions (1), (3), and

(4). This concludes the proof. ���

Proposition 3.7. Assumptions as in Assumptions 3.4. Let R ⊂ NE(X) be

any KX -negative extremal ray. There is a rational curve f : P1 → X such

that (1) the image π◦f(P1) does not lie in Xsing, (2) x ∈ f(P1) for a general

point x ∈ X , (3) the class [π ◦ f(P1)] ∈ R, and (4) f∗
P
1 · (−KX ) = n+ 1.

Proof. By Lemma 3.5, there is a twisted rational curve C → X such that

(1) C has at most one twisted point, (2) x0 ∈ f(C) (x0 is a general point of

X ), (3) [(π ◦ f)∗(C)] ∈ R ⊂ H2(X), and (4) C · f∗(−KX) = n+ 1.

Let β = [(π ◦ f)∗C] ∈ H2(X). We fix this homology class in the rest of

the proof.

We may assume that C does have a twisted point, denoted by ∞ ∈ C.

Denote by x∞ = f(∞) the image of ∞. May assume that f(0) = x0 and

x0 ∈ π−1(Xreg).
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Step 0. Double cover of C:

Recall that the coarse curve of C is P1. Choose a 2-to-1 cover h : P1 → P
1

such that h(0) = 0, h(∞) = ∞ and h is ramified at {0, ∞} ⊂ P
1, e. g.

h(z) = z2. Choosing a suitable stack structure at ∞ ∈ P
1, we can lift

h : P1 → P
1 to D → C where D is a twisted rational curve. We abuse the

notation and still denote the morphism on the stack level by h : D → C.

Denote the stacky point on D by ∞ and the preimage of 0 ∈ C on D by 0

(an untwisted point).

The composition f◦h : D → X is a twisted stable map into X with−KX -

degree 2n+2. Note that the homology class [(π ◦f ◦h)∗(D)] = 2β ∈ H2(X).

Step 1. Bend and break:

We first show that we can deform the curve f ◦ h : D → X . Let

Mor(D, C, 2) be the space of of degree 2 representable morphisms from D

to C. Let Mor(D, C, h|{0, ∞}, 2) ⊂ Mor(D, C, 2) be the subspace consisted

of morphisms h1 : D → C such that h1(0) = 0 and h1(∞) = ∞. The space

Mor(D, C, h|{0, ∞}, 2) has dimension 3.

By Lemma 2.2,

dim[f◦h] Mor(C,X , (f ◦ h)|{0,∞}, 2β) ≥ 2n + 2 + (1− 2)n = n+ 2 > 3.

Thus we can deform the morphism f ◦h : D → X such that the image de-

forms in X . This also implies that there is a morphism [f ′] ∈ Mor(D,X , 2β)

such that f ′ : D → X is birational to its image.

Choose [g] ∈ Mor(D,X , 2β) such that g : D → X is birational to its

image in X and g(0) = x0. Let 1 ∈ D be an untwisted point and x1 = g(1)

its image in X .

Claim 3.8. Replacing [g] ∈ Mor(D,X , 2β) and the point x1 if necessary, we

may assume that x1 ∈ π−1(Xreg), x1 6= x0, and x1 does not lie on the image

of [h] where [h] ∈ K0,k(X , β), k = 1, 2 is any twisted stable map through x0

and x∞.

Proof. Let K1 ⊂ K0,1(X , 2β) be the family of twisted stable maps whose

image contains x0 and x∞. View the morphism g : D → X as an element of
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K1. Note that

dim[g] K1 = dim Mor[g] (D,X , g|{0, ∞}, 2β) − dim Aut(D, {0, ∞})

≥ 2n+ 2− (1− 2)n− 1 = n+ 1.

Here we use Lemma 2.2 and the fact dim Aut(C, {0, ∞}) = 1. The image

of this family is at least a surface since the image of g : D → X deforms.

Consider all possible twisted stable maps [h] ∈ K0,k(X , β), k = 1, 2

such that the points x0 and x∞ lie on the image of h. By Lemma 3.9, there

are only finitely many such such twisted stable maps. The image of all these

twisted stable maps is one dimensional (in X ). The claim follows by choosing

a suitable [g] ∈ K1. ���

Let K ⊂ K0,1(X , 2β) be the substack of twisted stable maps whose

image contains x0, x1 and x∞. Compute the dimension of the stack K ⊂

K0,1(X , 2β) at [g]:

dim[g] K = dim Mor[g] (D,X , g|{0, 1, ∞}, 2β) − dim Aut(D, {0, 1, ∞})

≥ 2n+ 2− (1− 3)n− 0 = 2.

By Mori’s bend and break, the domain curve of some twisted stable map

[h] ∈ K has to degenerate to at least two irreducible components.

Step 2. Analysis on possible types of degenerations:

Since D · (−KX ) = 2n + 2 and every curve has −KX -degree at least

n + 1, only two components of the domain curve are not contracted. Note

that the coarse space of domain curve is a rational tree with an extra special

point (coming from the original stacky point of D). It is easy to see that the

domain curve can only break into two or three pieces.

Case I. The domain curve has three irreducible components.

Denote these components by D1, D2 and D3. Denote by f1 : D1 → X ,

f2 : D2 → X and f3 : D3 → X the twisted stable maps. Let D2 be the

component which intersects other two components. Note that D2 has to be

contracted.
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Note that [π ◦ f1(D1)] + [π ◦ f3(D3)] = [π ◦ g(D1)] = 2β, and

(π ◦ f1)∗D1 · (−KX) = n+ 1 = (π ◦ f3)∗D3 · (−KX).

Since β ∈ R and R is an extremal ray, the class [π ◦ f1(D1)] is a multiple of

the class [π ◦ f3(D3)]. Since they have the same −KX-degree, [π ◦ f1(D1)] =

[π ◦ f3(D3)] = β.

By symmetry, we only need to consider the following cases:

Case I-a: The stacky point ∞ ∈ D2 and x0 ∈ f1(D1) and x1 ∈ f3(D3).

Case I-b: The stacky point ∞ ∈ D2 and {x0, x1} ⊂ f1(D1).

Case I-a. We will show that Case I-a forms a finite set. Pushing forward to

X, and noting that

(1) π(x0) ∈ (π ◦ f1)(D1), π(x∞) ∈ (π ◦ f1)(D1), and

(2) π(x1) ∈ (π ◦ f3)(D3), π(x∞) ∈ π ◦ f3(D3),

it follows that there are only finitely many such stable maps by Lemma 3.9.

Case I-b. This is impossible by our choice of x0, x1, and x∞ (see Claim

3.8).

Case II. The domain curve has two components, denoted by D1 and D2,

intersecting at a node, denoted by q.

Consider the following two cases:

Case II-a: the node q is an untwisted point, i.e. q ∈ π−1(Xreg).

Case II-b: the node q is a twisted point.

Case II-a. This is easy; one of the irreducible components has no twisted

point on it.

We divide Case II-b into several subcases. It suffices to study the following

subcases by symmetry:
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Case II-b-1: the twisted point ∞ ∈ D1 and {x0, x1} ⊂ f1(D1).

Case II-b-2: the twisted point ∞ ∈ D2 and {x0, x1} ⊂ f1(D1).

Case II-b-3: the twisted point ∞ ∈ D1, x0 ∈ f1(D1) and x1 ∈ f2(D2).

Case II-b-1. This subcase is not possible by our choice of the points x1,

x0 and x∞.

Case II-b-2. In this case, D1 has one twisted point and D2 has two twisted

points. Consider f1 : D1 → X . Note that p = f1(q) ∈ X , the image of the

node q, is a stacky point on X .

Since the image of D1 contains x1 and x0 and the class β is unbreakable,

there are only finitely many such twisted stable maps thanks to Lemma 3.9.

Since every such twisted stable map has only finitely many twisted points

(the image only intersects the stacky locus at finitely many points), it follows

that there are only finitely many such stacky points p (since p is the image

of a twisted point on the source curve).

Recall that D2 has two stacky points, denoted by {q, ∞}, such that

(π ◦ f2)(q) = π(p) and (π ◦ f2)(∞) = π(x∞). Consider the morphism

f2 : D2 → X as an element of K0,2(X , β). Consider the set of all possi-

ble twisted stable maps [f ] ∈ K0,2(X , β) such that π ◦ f(q) = π(p) and

π ◦ f(∞) = π(x∞). This set is a finite set by Lemma 3.10. Since (1) p (the

image of the node) is chosen from a finite set, and (2) for every p there are

only finitely many such twisted stable maps [f ] ∈ K0,2(X , β), it follows that

there are only finitely many such twisted stable maps f2 : D2 → X . This

shows that Case II-b-2 also forms a finite set.

Case II-b-3.

The image of f1 : D1 → X contains x∞ and x0. There are only finitely

many such f1 : D1 → X by Lemma 3.9. It follows that the set of all possible

nodes p is also finite as in Case II-b-2.

The image of f2 : D2 → X contains p and x1. By Lemma 3.9 again, the

set of all such f2 : D2 → X is also finite.

Step III. Concluding the proof:
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By Step II, all bad cases, i.e. Case I-a, Case I-b, Case II-b-1, Case II-

b-2 and Case II-b-3, form a finite set. Denote this finite set by S. Since

dimK ≥ 2, we can find a proper irreducible curve T → K which is finite to

its image and does not meet the finite set S. Pull back the family over K to

T . It follows that Case II-a is the only possible type of degeneration in this

family. This concludes the proof. ���

The next two lemmas are needed in the proof of Proposition 3.7.

Lemma 3.9. Let β ∈ H2(X) be a homology class such that β is unbreakable,

i.e. it can not be written as the sum of at least two (effective) curve classes.

Let x1 and x2 be two distinct points on X and x1 ∈ π−1(Xreg). Let k = 1, 2.

Then there are only finitely many stable maps [h] ∈ K0,k(X , β) such that

x1 ∈ h(C) and x2 ∈ h(C).

Proof. The proofs of k = 1 case and k = 2 case are similar; we only prove

k = 1 case here. For any [f ] ∈ K0,0(X,β), the domain curve is irreducible

since β is unbreakable. By bend and break, there are only finitely many

stable maps [fi] ∈ K0,0(X,β) whose image contains π(x1) and π(x2). Denote

this finite collection by I = {[fi]|i ∈ I}. Since x1 ∈ π−1(Xreg), the image

fi(P
1) can only intersect Xsing at finitely many points.

Consider the composition morphism

K0,1(X , β) → K0,1(X,β) → K0,0(X,β),

where the morphism K0,1(X , β) → K0,1(X,β) is quasi-finite [2], and the mor-

phism K0,1(X,β) → K0,0(X,β) (forgetting the marked point) is projective.

Consider any twisted stable map [f ] ∈ K0,1(X , β). Let q be the stacky point

on the domain curve. Since a stacky point can only be mapped to a stacky

point, the image p := f(q) lies in the stacky locus of X and π(p) ∈ Xsing.

Note that one can only endow non-trivial stack structures on these points.

Therefore, for every [fi] ∈ I, there are only finitely many ways to endow

stack structures on the source curve such that we can lift the stable map

(into X) to a twisted stable map (into X ). This concludes the proof. ���

Lemma 3.10. Let β ∈ H2(X) be the homology class in Lemma 3.9. Let x1

and x2 be two points on X (not necessarily distinct). Then there are only

finitely many stable maps [h] ∈ K0,2(X , β) such that π ◦ h(0) = π(x1) and
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π ◦h(∞) = π(x2), where 0 and ∞ are the twisted points on the source curve

of [h].

Proof. Consider the forgetful map K0,2(X , β) → K0,2(X,β). Recall that

this morphism is quasi-finite and the stack K0,2(X , β) is proper [2]. Consider

the collection of all possible (2-pointed) stable maps [f ] ∈ K0,2(X,β) such

that f(0) = π(x1) and f(∞) = π(x2). It has only finitely many elements by

Mori’s bend and break. This concludes the proof. ���

The next proposition is standard:

Proposition 3.11. Assumptions as in Assumptions 3.4. There exists a

twisted stable map f : P1 → X such that its −KX -degree is n + 1 and its

image does not meet π−1(Xsing).

Proof. By Proposition 3.7, there is a twisted rational curve g : P1 → X

whose image does not lie on π−1(Xsing). Pick a point q ∈ g(P1) ⊂ X which

is not on π−1(Xsing). The dimension (at the point [g]) of the family of

twisted stable maps [f ] ∈ K0,0(X , n + 1) whose image contains q and meets

π−1(Xsing) is at most dim Xsing ≤ n− 2 (by a bend and break argument),

while the dimension (at [g]) of twisted stable maps [f ] ∈ K0,0(X , n+1) whose

image contains q is at least n−1 (by Lemma 2.2 and Claim 3.6). By a simple

dimension count, it is easy to see that there is a rational curve which does

not meet π−1(Xsing). ���

Remark 3.12. Let f : P → X be the twisted stable map (in fact, it is

an ordinary stable map) as in Proposition 3.11. Consider an irreducible

component containing [f ] ∈ K0,0(X , n+1). We can obtain a doubly dominant

family of rational curves, i.e. for any general points x and y on X , there is

a rational curve in this family through x and y.

Notation 3.13. Let f : P1 → X be the rational curve in Proposition 3.7.

Let β = [(π ◦ f)∗(P
1)] ∈ R ⊂ H2(X). We will fix this class in the rest of this

section.

The next lemma is a simple observation:

Lemma 3.14. Assumptions and notation as in Assumptions 3.4 and Nota-

tion 3.13. The Deligne-Mumford stack K0,0(X , β) is a projective scheme.
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Proof. Let [f ] ∈ K0,0(X , β). Note that the domain curve is always irre-

ducible since there is no marked point and n + 1 is the minimal possible

−KX -degree. Note that f : P1 → X is birational to its image in X (again,

since n + 1 is the minimal possible −KX -degree). This implies that there

is no non-trivial automorphism for any twisted stable map in K0,0(X , β). It

follows that K0,0(X , β) is a proper scheme. Since it is quasi-finite to the

projective scheme K0,0(X,β). It has to be projective. ���

Let [f ] ∈ K0,0(X , β) be a twisted stable map into X which does not meet

the preimage of Xsing. Let Z ⊂ K0,0(X,β) be an irreducible component

which contains [f ] and Z̃ the normalization. Consider the finite morphism

K0,0(X , β) → K0,0(X,β). Let Z ′ be the component of K0,0(X,β) which

contains the image of Z, i.e. stable maps of the form [π ◦ h] with [h] ∈ Z.

We also take the normalization Z̃ ′ of Z ′. The next lemma compares these

two components.

Lemma 3.15 ([5] Lemma 3.12). The natural map Z̃ → Z̃ ′ is an isomor-

phism.

4. Proof of Theorem 1.2

We give a quick proof of Theorem 1.2 in this section. Return to work

on the variety X, rather than the stack X . Recall the main theorem from

[4]:

Theorem 4.1 (=[4] Main Theorem 0.1). Let X be a normal projective va-

riety over C. If X carries a closed, maximal, unsplitting doubly dominant

family of rational curves, then X is isomorphic to P
n.

The existence of such a family of rational curves follows from Proposition

3.11 and Remark 3.12. This concludes the proof of Theorem 1.2.

Remark 4.2. There is a more elementary proof based on the argument from

[10]. The reader can consult [5] Section 4 for more details.

Remark 4.3. If X has at worst LCIQ singularities, we can prove the same

result with an extra assumption that dim Xsing < (n − 1)/2. H.-H. Tseng

and I are working on removing this extra assumption.
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