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Abstract

We study the quantizations of the algebras of regular functions on nilpotent orbits.

We show that such a quantization always exists and is unique if the orbit is birationally

rigid. Further we show that, for special birationally rigid orbits, the quantization has

integral central character in all cases but four (one orbit in E7 and three orbits in E8).

We use this to complete the computation of Goldie ranks for primitive ideals with integral

central character for all special nilpotent orbits but one (in E8). Our main ingredient are

results on the geometry of normalizations of the closures of nilpotent orbits by Fu and

Namikawa.

1. Introduction

1.1. Nilpotent orbits and their quantizations

Let G be a connected semisimple algebraic group over C and let g be

its Lie algebra. Pick a nilpotent orbit O ⊂ g. This orbit is a symplectic

algebraic variety with respect to the Kirillov-Kostant form. So the algebra

C[O] of regular functions on O acquires a Poisson bracket. This algebra

is also naturally graded and the Poisson bracket has degree −1. So one

can ask about quantizations of O, i.e., filtered algebras A equipped with an

isomorphism grA
∼
−→ C[O] of graded Poisson algebras.
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We are actually interested in quantizations that have some additional

structures mirroring those of O. Namely, the group G acts on O and the

inclusion O →֒ g is a moment map for this action. We want the G-action

on C[O] to lift to a filtration preserving action on A. Further, we want

a G-equivariant homomorphism U(g) → A such that, for any ξ ∈ g, the

endomorphism [ξ, ·] : A → A coincides with the differential of the G-action

(in other words, A has to be a Dixmier algebra in the sense of Vogan, [40]).

A motivation to consider quantizations of C[O] of this form comes from

attempts to extend the orbit method to reductive groups, see, e.g., [30]

for details, where quantizations of C[O] for certain orbits O in classical Lie

algebras are constructed.

We establish the existence of such a quantization A and we investigate

the questions of when A is unique and when the kernel of the map U(g) →

A has integral central character. The latter question is of importance for

computing Goldie ranks of primitive ideals with integral central characters

in exceptional algebras (the case of classical Lie algebras was settled in [23]).

We elaborate on our results in the next section.

The questions above are closely related to the representation theory of

finite W-algebras introduced by Premet in [36], see [19, 33, 41] for reviews.

Each W-algebra is constructed from a pair (g,O) of a semisimple Lie algebra

g and a nilpotent orbit O ⊂ g. Dixmier algebras quantizing C[O] are closely

related to one-dimensional modules (with certain additional properties) over

the W-algebra constructed from (g,O).

1.2. Main results

Here are three lists of nilpotent orbits in exceptional Lie algebras that

are all exceptional in some further ways explained below in the paper.

(e1) Ã1 in G2, Ã2+A1 in F4, (A3+A1)
′ in E7, A3+A1, A5+A1,D5(a1)+A2

in E8.

(e2) A4 +A1 in E7, A4 +A1, E6(a1) +A1 in E8.

(e3) A4 + 2A1 in E8.
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We note that the three orbits in (e2) are exceptional in the sense of

Lusztig, [26].

Theorem 1.1. The following is true.

(1) For any nilpotent orbit O, there is a Dixmier algebra A quantizing C[O].

(2) If O is birationally rigid (see Section 2.3 below for a definition), then A

in (1) is unique.

(3) If O is special but not one of the four orbits in (e2),(e3), then A from

(ii) has integral central character. For orbits (e2) and (e3), A does not

have integral central character.

In the subsequent paper [24] we will classify all filtered quantizations of

C[O].

Corollary 1.2. Let J be a primitive ideal in U(g) with integral central char-

acter. Suppose that the associated orbit is not as in (e3). Then the Goldie

rank of J coincides with the dimension of the corresponding W-algebra mod-

ule.

In [23] we have obtained basically Kazhdan-Lusztig type formulas for

the dimensions of the irreducible finite dimensional W-algebra modules with

integral central character. So we can view Corollary 1.2 as a formula for the

Goldie ranks. This corollary has been already proved for classical types in

[23, Theorem 1.2].

1.2. Content of the paper

We start by recalling various properties of nilpotent orbits: their clas-

sification, the notion of a special orbit, Lusztig-Spaltenstein induction and

(birationally) rigid orbits, the structure of the boundary, and Q-factorial

terminalizations.

In Section 3 we recall some known results about W-algebras. First, we

recall their definition following the approach taken in [16] and refined in

further papers by the author, see, e.g., [22]. Then we recall an important

construction from [17]: functors between the categories of Harish-Chandra

bimodules. After that we recall the category O from [5] and related construc-

tions. Next, we recall the classification, [25], of finite dimensional irreducible
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modules with integral central characters over W-algebras. Finally, we ex-

plain some constructions and results related to quantizations of symplectic

varieties, including nilpotent orbits.

In Section 4 we prove our main results. An important auxiliary result

is Theorem 4.4 that gives a sufficient condition for a functor •† from [17]

between suitable categories of bimodules to be an equivalence. We also

derive some corollaries, see Section 4.3.

2. Preliminaries on Nilpotent Orbits

2.1. Classification and special orbits

First, let us recall the classification of nilpotent orbits in semisimple Lie

algebras. The nilpotent orbits in sln are classified by the partitions of n.

We sometimes will write partitions as mdm(m− 1)dm−1 . . . 1d1 , where super-

scripts indicate multiplicities. The nilpotent orbits in so2n+1 are classified

by the partitions of 2n + 1 that have type B meaning that every even part

appears even number of times (to an orbit we assign its Jordan type in the

tautological representation of dimension 2n+1). The nilpotent orbits in sp2n

are classified by partitions of 2n that have type C meaning that every odd

part appears even number of times. The nilpotent orbits of O2n in so2n are

classified by partitions of 2n of type D meaning that every even part appears

even number of times. The SO2n-action on the O2n-orbit corresponding to

a partition µ is transitive if and only if there is an odd part in µ, otherwise

the O2n-orbit splits into the union of two SO2n-orbits. For a partition µ, we

will write Oµ for the corresponding orbit (in the case of g = so2n we consider

orbits for O2n).

The classification in the exceptional types is also known, there the orbits

have labels consisting of a Dynkin diagram type (e.g., A3 +A2), sometimes

with an additional decoration. The Dynkin diagram is that of a minimal

Levi subalgebra containing an element of a given orbit.

Below we will need some information about so called special orbits (as

defined by Lusztig, [26, 13.1.1]). All orbits in type A are special. An orbit in

type B or C corresponding to a partition µ is special if µt has type B or C,

respectively. An orbit in type D is special if µt has type C. Special orbits
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in the exceptional algebras have been classified as well, see [6, Section 13.4]

or [7, Section 8.4].

There is an order reversing bijection d (called the Barbasch-Vogan-

Spaltenstein duality, a somewhat implicit construction was earlier discov-

ered by Lusztig) between the sets of special orbits in g and in the Langlands

dual algebra Lg. For the classical types, it is described combinatorially, see

[7, Section 6.3], we will not need this description. The description of this

duality in exceptional types is provided in [6, Section 13.4].

2.2. Structure of the boundary

Below we will need some information about singularities of the closures

O. We start by studying the situation when codimO ∂O > 4.

The following claim is [35, Proposition 1.3.2].

Lemma 2.1. Suppose g is classical. For O = Oµ, the inequality codimO ∂O

> 4 is equivalent to µi − µi+1 6 1 for all i.

The following is the list of the orbits O in exceptional Lie algebras that

satisfy codimO ∂O > 4. This information can be extracted, for example,

from [11, Section 13].

G2: A1.

F4: A1, Ã1, A1 + Ã1, A2 + Ã1.

E6: A1, 2A1, 3A1, A2 +A1, A2 + 2A1, 2A2 +A1.

E7: A1, 2A1, (3A1)
′, 4A1, A2 +A1, A2 + 2A1, 2A2 +A1, A4 +A1.

E8: A1, 2A1, 3A1, 4A1, A2+A1, A2+2A1, A2+3A1, 2A2+A1, 2A2+2A1, A3+

2A1, A3 +A2 +A1, A4 +A1, 2A3, A4 + 2A1,D4(a1) +A1, A4 +A3.

Let us proceed to explaining results about the structure of the boundary

of the normalization Spec(C[O]).

Lemma 2.2. The codimension of Spec(C[O])reg \ O in Spec(C[O]) is > 4

for all but the following cases:

G2: Ã1,

F4: Ã2 +A1, C3(a1),
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E6: A3 +A1,

E7: (A3 +A1)
′,D6(a2),

E8: A3 +A1, A5 +A1,D5(a1) +A2,D6(a2), E6(a3) +A1, E7(a2), E7(a5).

Here and below the superscript “reg” means the smooth locus.

Proof. The smooth locus in O coincides with O. So the inequality codim

Spec(C[O])reg \ O > 4 is equivalent to the claim that, for any orbit O′

of codimension 2 in O, the normalization of a formal slice to O′ in O is

not smooth. By results of [14, 15], this is always true when g is classi-

cal. Now we consider exceptional algebras. By results of [11], the equality

codimSpec(C[O])reg \ O = 2 is equivalent to at least one edge going down

from the label of O in the graphs of Section 14 being marked with an “m”.

Examining these tables we get a required result. ���

2.3. Induction and birational induction

Let l be a Levi subalgebra in g and O′ ⊂ l be a nilpotent orbit. Pick a

parabolic subalgebra p ⊂ g with Levi subalgebra l and let n denote the nilpo-

tent radical of p. Let P ⊂ G denote the corresponding parabolic subgroup.

Then the fiber bundle G ∗P (O
′
× n) naturally maps to N , this is known as

the generalized Springer map. Obviously, there is a unique dense orbit O

in the image. This orbit is called induced from O′ (see [28]), in fact, it is

independent of the choice of p. If the map G ∗P (O
′
× n) → O is birational,

then we say that O is birationally induced from O′. An orbit that cannot be

(birationally) induced from an orbit in a proper Levi is called (birationally)

rigid.

The induction for classical Lie algebras can be described combinatorially

on the level of partitions. We say that a partition µ of type X (where X is

B,C or D) is obtained from a partition µ′ by an elementary step if

(i) either there is n such that µi = µ′
i + 2 for i 6 n, and µi = µ′

i for i > n,

(ii) or there is n such that µi = µ′
i + 2 for i < n, µn = µ′

n + 1, µn+1 =

µ′
n+1 + 1, µi = µ′

i for i > n + 1, and the partition obtained from µ′, n

in (i) does not have a correct type.
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The orbit Oµ ⊂ so|µ| is induced from the orbitO|µ′|×{0} ⊂ so|µ′|×gl?×. . . gl?
if and only µ is obtained from µ′ by a sequence of elementary steps (and the

same is true for sp’s).

Proposition 2.3. Any special orbit can be birationally induced from a bira-

tionally rigid special orbit.

Proof. Classical types. We claim that the induction is birational if and only

if only elementary steps of type (i) are involved. The “if” part is established

in [23, 5.4.2-5.4.4]. To establish the “only if” part, we just need to show

that, for an elementary step of type (ii), the generalized Springer map is not

birational.

Let us consider the orthogonal case, the symplectic one is similar. Note

that in (ii), the numbers µ′
n and µ′

n+1 coincide and are even. The orbit Oµ

is induced from Oµ′ × {0} ⊂ som × gln. Recall that P acts transitively on

(O′ × n) ∩ O, see [28, Theorem 1.3]. So if we know that ZG(e) 6⊂ ZP (e) for

a particular choice of e in (O′ × n) ∩O, then the corresponding induction is

not birational. Split Cm into the sum (U ⊕U∗)⊕V ′, where dimU = µ′
n, the

subspaces U⊕U∗ and V ′ are orthogonal to one another, and U is lagrangian

in U ⊕ U∗. We can then split Cm+2n as (Ũ ⊕ Ũ∗) ⊕ Ṽ with Ũ = U ⊕ C.

We have an element in (O′ × n) ∩ O of the form e1 + e2, where e1 ∈ so(Ṽ ′)

and e2 ∈ gl(Ũ) →֒ so(Ũ ⊕ Ũ∗) is a single Jordan block. Then the summand

C ⊂ Ũ is the kernel of e2. But note that the centralizer of e2 ∈ so(Ũ ⊕ Ũ∗)

does not preserve the kernel of e2 in Ũ . This finishes the argument for g of

orthogonal type.

So all “weakly rigid” orbits listed in [23, 5.4.2-5.4.4] are birationally

rigid. Since any special orbit can be birationally induced from one of weakly

rigid orbits, our claim follows.

Exceptional types. We proceed by the induction on rk g. We need to show

that if a special orbit is not birationally rigid, then it can be birationally

induced from a special orbit.

First, we consider the case when the group A(O) is trivial. Here any

induction is birational, so O is birationally rigid if and only if it is rigid.

By [7, Theorem 8.3.1], if the dual of O intersects a Levi subalgebra, then

O is properly induced from a special orbit. So we only need to consider

orbits whose duals are distinguished (and are not distinguished themselves,
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those are obviously induced). The duality is described in [6, Section 13.4].

Examining the data from there we arrive at the following list of orbits whose

duals are distinguished and that are not distinguished (regardless of A(O)):

(G2) None.

(F4) Ã1, Ã1 +A1.

(E6) A1, A2.

(E7) A1, 2A1, A2, A2 + 2A1,D4(a1).

(E8) A1, 2A1, A2, A2 +A1, A2 +2A1, 2A2,D4(a1),D4(a1) +A1,D4(a1) +A2.

According to tables in [7, Section 8.4], the orbits Ã1 in F4, A2 in E6,

A2,D4(a1) in E7, A2, A2 +A1, 2A2,D4(a1),D4(a1) +A1,D4(a1) +A2 in E8

have nontrivial groups A(O). The remaining orbits in the list above are

rigid, see, e.g., [8, Section 4].

Let us proceed to the case of nontrivial A(O). According to [10, Section

3] combined with the lists of special orbits, see, e.g., [6, Section 13.4] or [7,

Section 8.4], the following special orbits have nontrivial A(O) and are not

birationally induced from a zero orbit.

(G2) None.

(F4) None.

(E6) None.

(E7) A2 +A1, A3 +A2, A4 +A1,D5(a1).

(E8) A3 +A2, A4 +A1, A4 + 2A1,D5(a1), E6(a1) +A1, E7(a3), E7(a4).

The orbits A2+A1, A4+A1 in E7, and A4+A1, A4+2A1 in E8 are birationally

rigid by [10, Proposition 3.1].The orbit A3+A2 in E7 is birationally induced

from the orbit (2216, 12) in D5 + A1 that is special. The orbit D5(a1) is

birationally induced from the orbit 322212 in D6 which is also special. These

computations were done in [10, Section 3.3].

Let us proceed to the remaining 5 orbits in E8 following [10, Section 3.4].

The orbit A3+A2 is birationally induced from the special orbit 22110 in D7.

The orbit D5(a1) is birationally induced from the special orbit A2 + A1 in

E7. The orbit E6(a1) + A1 is birationally induced from the special orbit

A4 + A1 in E7. The orbit E7(a3) is birationally induced from the special
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orbit 322212 in D6. Finally, the orbit E7(a4) is birationally induced from the

special orbit A3 +A2 in E7. ���

Note that the proof implies that an orbit Oµ in a classical Lie algebra

is birationally rigid if and only if µ satisfies the combinatorial condition of

Lemma 2.1. Note also that the orbits A2 + A1, A4 + A1 in E7 and A4 +

A1, A4 + 2A1 in E8 are only birationally rigid but not rigid orbits in the

exceptional Lie algebras, see [10, Proposition 3.1]. This fact together with

the classification of rigid orbits, see, e.g., [8, Section 4], and Lemma 2.2 imply

the following claim.

Lemma 2.4. The only birationally rigid orbits that fail the condition of

Lemma 2.2 are the six orbits from (e1).

2.4. Q-factorial terminalizations

Here we are going to recall a result of [35] and [10] and explain some

corollaries. This result (proved in [35] for the classical types, in [10] for the

exceptional types, and in [24, Proposition 4.4] conceptually) can be stated

as follows.

Proposition 2.5. Let O be a birationally rigid orbit. Then Spec(C[O]) has

Q-factorial terminal singularities.

Now let O be an arbitrary orbit. Suppose that O is birationally induced

from O′ ⊂ l. Then the morphism G ∗P (Spec(C[O′]) × n) → Spec(C[O])

(obtained by lifting the generalized Springer map to the normalizations) is

a Q-factorial terminalization.

Also recall the following classical result, see, e.g., [9, Corollary 2.10].

Proposition 2.6. For any O, the variety Spec(C[O]) has symplectic singu-

larities in the sense of Beauville.

Let us deduce some corollaries from these results. The following result

can be proved along the lines of the proof of [34, Lemma 12].

Corollary 2.7. Let O′ ⊂ l be a birationally rigid orbit and let O ⊂ g

be birationally induced from O′. Let X := G ∗P (Spec(C[O′]) × n). Then

H i(Xreg,OXreg ) = 0 for i = 1, 2.
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The next claim follows from Corollary 2.7 and Lemma 2.4.

Corollary 2.8. Let O be a birationally rigid orbit that is not one of the six

orbits listed in Lemma 2.4. Then H i(O,OO) = 0 for i = 1, 2.

We will need one more result about nilpotent orbits.

Lemma 2.9. For any nilpotent orbit O, we have H1
DR(O) = {0}. If O is

birationally rigid, then H2
DR(O) = {0}.

Proof. To prove that H1
DR(O) = {0}, we note that the fundamental group

of O is finite.

Now let us consider the case of birationally rigid orbits. Since Spec(C[O])

is Q-factorial, we conclude that the group Hom(ZG(e),C
×) is finite. So (q∗)Q

is zero. On the other hand, a standard argument shows that this space is

H2
DR(O). ���

3. Preliminaries on W-algebras and Quantizations

3.1. W-algebras

Let G be a reductive algebraic group, g its Lie algebra. Pick a nilpotent

orbit O ⊂ g. Choose an element e ∈ O and include it into an sl2-triple

(e, h, f). We write Q for the centralizer of (e, h, f) in G.

From the triple (e, h, f) we can produce a filtered associative algebra

W equipped with a Hamiltonian Q-action. Namely, consider the universal

enveloping algebra U = U(g) with its standard PBW filtration U =
⋃

i>0 U6i.

It will be convenient for us to double the filtration and set FiU := U6[i/2].

Form the Rees algebra U~ :=
⊕

i(FiU)~
i. The quotient U~/(~) coincides with

S(g) = C[g∗]. Identify g with g∗ by means of the Killing form and let χ ∈ g∗

be the image of e. Consider the completion U
∧χ

~ in the topology induced by

the preimage of the maximal ideal of χ. The space V := [g, f ] is symplectic

with the form given by 〈χ, [·, ·]〉. So we can form the homogenized Weyl

algebra A~ of V , that is, the Rees algebra of the usual Weyl algebra A(V ).

We consider the completion A
∧0

~ in the topology induced by the maximal

ideal of 0 ∈ V . Both U
∧χ

~ and A∧0

~ come equipped with actions of Q × C×.

The action of Q on U
∧χ

~ ,A∧0

~ is induced from the natural actions of Q on g

and V , respectively. The group C× acts on g∗ via t.α := t−2γ(t)α, where



✐

“BN13N22” — 2018/1/30 — 14:57 — page 209 — #11
✐

✐

✐

✐

✐

2018] QUANTIZATIONS OF REGULAR FUNCTIONS ON NILPOTENT ORBITS 209

γ : C× → G is the one-parameter subgroup associated to h. It acts on V by

t.v := γ(t)−1v. Finally, we set t.~ := t~, this defines C×-actions on U
∧χ

~ ,A∧0

~

by topological algebra automorphisms that commute with the Q-actions.

It was checked in [16, Section 3.3], see also [22, Section 2.2], that there is

a Q×C×-equivariant C[~]-linear embedding A
∧0

~ →֒ U
∧χ

~ such that we have

the decomposition

U
∧χ

~
∼= A

∧0

~ ⊗̂C[[~]]W
′
~, (3.1)

where we write W ′
~ for the centralizer of A∧0

~ in U
∧χ

~ . This centralizer comes

with an action of Q×C×. Let us write W~ for the C
×-finite part of W ′

~, then

W ′
~ is naturally identified with the completion W

∧χ

~ . Set W := W~/(~− 1).

This is a filtered algebra with a Hamiltonian Q-action that does not depend

on the choice of the embedding A∧0

~ →֒ U
∧χ

~ up to an isomorphism preserving

the filtration and the action. See [22, Section 2.1]. The associated graded

algebra grW coincides with C[S], where S := e + ker ad f is the Slodowy

slice.

By a result of Ginzburg, which is a footnote in [37, Section 5.7], the

natural map Z(U) → Z(W) (where Z stands for the center) is an isomor-

phism. So we can speak, for example, aboutW-modules with integral central

character.

3.2. Functors between Harish-Chandra bimodules

By a G-equivariant Harish-Chandra U -bimodule (or (U , G)-module) we

mean a finitely generated U -bimodule B such that the adjoint g-action is

locally finite and integrates to an action of G. We can also introduce the

notion of a Q-equivariant HC W-bimodule, see [17, Section 2.5]. We write

HCG(U),HCQ(W) for the categories of equivariant HC bimodules.

In [17], we have constructed an exact functor •† : HC
G(U) → HCQ(W).

Let us recall the construction of the functor. Pick aG-equivariant HC bimod-

ule B and equip it with a good filtration compatible with the filtration Fi U .

So the Rees C[~]-module B~ := R~(B) is a G-equivariant U~-bimodule. Con-

sider the completion B
∧χ

~ in the χ-adic topology. This is aQ×C×-equivariant

U
∧χ

~ -bimodule (the action of Q is Hamiltonian, while the action of C× is not).

As was checked in [17, Proposition 3.3.1], B
∧χ

~ = A
∧0

~ ⊗̂C[[~]]B
′
~, where B′

~ is

the centralizer of A∧0

~ . So B′
~ is a Q × C×-equivariant W

∧χ

~ -bimodule. One
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can show, see loc. cit., that it coincides with the completion of its C×-finite

part B~. We set B† := B~/(~− 1). This is an object in HCQ(W) that comes

equipped with a good filtration. This filtration depends on the choice of a

filtration on B, while B† itself does not.

Let us list properties of the functor •† established in [17, Sec. 3.3,3.4].

Lemma 3.1. The following is true:

(1) U† = W.

(2) •† is an exact functor.

(3) •† intertwines the tensor products.

(4) grB† (with respect to the filtration above) coincides with the pull-back of

grB to S.

(5) In particular, •† maps the category HCG
O
(U) of all HC bimodules

supported on O to the category HCQ
fin(W) of all finite dimensional

Q-equivariant W-bimodules. Further, •† annihilates HCG
∂O(U).

(6) The induced functor HCG
O(U) := HCG

O
(U)/HCG

∂O(U) → HCQ
fin(W) is a

full embedding whose image is closed under taking subquotients.

(7) The functor •† respects central characters on the left and on the right.

(8) For B ∈ HC
O
(U), the dimension of B† coincides with the multiplicity of

B on O.

The functor •† : HC
G
O
(U)→HCQ

fin(W) has a right adjoint •† : HCQ
fin(W)

→ HC
O
(U). We will need the construction of the functor •† below so let us

recall it.

Pick B ∈ HCQ
fin(W) and equip it with a Q-stable bimodule filtration

(we can just take the trivial one). Then form the Rees bimodule B~ and the

Q-equivariant U
∧χ

~ -bimodule B′
~ = A

∧0

~ ⊗̂C[[~]]B
∧χ

~ . Now set

FG(B
′
~) :=

⊕

V

V ⊗Homg(V,B
′
~),

where we view B′
~ as a g-module with respect to the adjoint action, ξ.b :=

1
~2
[ξ, b], and the sum is taken over all G-modules V . In other words, FG(B

′
~)

is the maximal subspace in B′
~, where the adjoint action of g is locally finite

and integrates to an action of G. The space FG(B
′
~) is a G-equivariant

bimodule over the algebra U♦
~ that is the g-finite part of U∧~

~ . Note that the

subspace FG(B
′
~) is Q× C×-stable in B′

~.
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Lemma 3.2. FG(B
′
~) is finitely generated as a left U♦

~ -bimodule.

Proof. We have FG(B
′
~)/~FG(B

′
~) →֒ FG(B

′
~/~B

′
~). The latter is a finitely

generated C[g∗] = U♦
~ /(~)-module by results of [17, Section 3.3]. So FG(B

′
~)/

~FG(B
′
~) is a finitely generated C[g∗]-module as well. Pick b lying in the

V -isotypic component of B′
~. The module B′

~/~B
′
~ is generated by finitely

many elements b1, . . . , bk lying, say, in the components V1, . . . , Vk. Then

we can argue by induction on k to show that, modulo ~k, the element b is

represented as
∑k

i=1 a
k
i bi, where bi is a lift of bi to the Vi-isotypic component

of B′
~, and aki lies in the sum of the isotypic components of U♦

~ corresponding

to summands of V ⊗ V ∗
i . Furthermore, we can achieve that the sequence of

aki has limit for k → ∞. This proves that the elements b1, . . . , bk generate

FG(B
′
~). ���

On FG(B
′
~) we also have another action of Q – one restricted from G.

The two actions coincide on Q◦ and their difference is an action of A := Q/Q◦

commuting with the G-action, see [17, Section 3.3]. Let B~ denote the C×-

finite part in FG(B
′
~)

A. Then we set B† := B~/(~ − 1). Again, B 7→ B† is

a functor and one can show that it is right adjoint to •†. Moreover, the

composition of •† with the quotient functor HCG
O
(U) ։ HCG

O(U) is the left

inverse of •† : HCO(U) → HCQ
fin(W).

3.3. Categories O

One can define the categories O for W, see [5]. Namely, we have the

quantum comoment map q → W, a Lie algebra homomorphism that can

easily be shown to be an embedding, see [23, Section 2.1]. Pick a maximal

torus T ⊂ Q and a regular integral element θ ∈ t. We define the category

Oθ
W to be the full subcategory in the category of the finitely generated W-

modules consisting of all modules M such that the real parts of eigenvalues

are bounded from above and all generalized eigenspaces of θ are finite dimen-

sional. This definition is easily seen to be equivalent to that in [5, Section

4.4].

In Oθ
W we have analogs of Verma modules. To define those we need

some notation. The element θ defines a grading on W, we have W =
⊕

iWi,

whereWi is the eigenspace of [θ, ·] with eigenvalue i. We setW>0 :=
⊕

i>0 Wi

and W>0 :=
⊕

i>0Wi. Note that W>0 acts locally nilpotently on a module
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from Oθ
W . The algebra W0 := W>0/(W>0 ∩WW>0) acts on the annihilator

MW>0 . One can show that MW>0 is a finite dimensional W0-module, this

is an easy consequence of [5, Corollary 4.12]. We have the Verma module

functor ∆θ : W0 -modfg → Oθ
W given by ∆θ(N) := W/WW>0 ⊗W0 N , it is

left adjoint to M 7→ MW>0 .

There is a bijection between the irreducible W0-modules and the irre-

ducible objects in Oθ
W : we send an irreducibleW0-module N to the maximal

proper quotient Lθ(N) of ∆θ(N).

One can describe the algebra W0. Namely, consider the W-algebra W

for the pair (g0, e), where g0 is the centralizer of θ in g. Then there is a

T -equivariant filtered algebra isomorphism ι : W0 ∼
−→ W, see [5, Theorem

4.3]. An important feature of this isomorphism is its behavior on t. Namely,

we have ι(ξ) = ξ + 〈δ, ξ〉, where δ is half the character of the action of t on

ΛtopV>0, the sum of the θ-eigenspaces in V with positive eigenvalues.

Below we will only need to know δ for birationally rigid orbits up to

adding a character of a maximal torus T ⊂ Q.

Lemma 3.3. Assume that G is simply connected and O is birationally rigid.

Suppose that g0 is a standard Levi subalgebra and that the Lie algebra t of

T is the center of g0. Then up to adding a character of T , δ coincides with

half the sum of the positive roots α satisfying 〈α, h〉 = 1.

Proof. We may assume that θ is dominant. Note that V>0 ⊕ zg(e)>0 =

g>0. Since G is simply connected, an integral element in t is the same as a

restriction of an element in the weight lattice to t. Hence the character of the

T -action on Λtopg>0 is divisible by 2. Note further that zg(e) ∼= g(0)⊕g(1) as

a T -module, where we write g(i) for the eigenspace for [h, ·] with eigenvalue

i. So, to establish the claim of the lemma it is enough to check that the

character of T on Λtop(g(0)∩g>0) is divisible by 2. For this, we observe that

(G(0), G(0)) is simply connected because G is simply connected. Also as we

have seen in the proof of Lemma 2.9, the group Q has no invariants in q∗

or, equivalently, in q. Since Q ⊂ G(0), we conclude that Q◦ ⊂ (G(0), G(0)).

Since (G(0), G(0)) is simply connected, the character of a maximal torus of

(G(0), G(0)) on Λtop(g(0) ∩ g>0) is indeed divisible by 2. ���

We will need to compute δ (up to adding an integral weight) in two

cases.
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Example 3.4. Consider the orbit A2 + A1 in E7. We use the notation for

(simple) roots in E7 from the table section of [32]. There the dual Cartan

space h∗ is the quotient of C8 (with basis ǫ1, . . . , ǫ8) by
∑8

i=1 ǫi. The invariant

bilinear form on h∗ is given (ǫi, ǫj) = −1
8 for i 6= j and (ǫi, ǫi) =

7
8 . The basis

of simple roots is given by αi = ǫi − ǫi+1, (i < 7), α7 = ǫ5 + ǫ6 + ǫ7 + ǫ8.

For a minimal Levi containing e we take the standard Levi with simple

roots α1 = ǫ1− ǫ2, α2 = ǫ2− ǫ3, α6 = ǫ6− ǫ7. So we can take h = 2ǫ1 − 2ǫ3+

ǫ6 − ǫ7. The positive roots of E7 are of the form ǫi − ǫj , where i < j < 8 or

i = 8 and ǫi + ǫj + ǫk + ǫ8, where i, j, k are pairwise different numbers less

than 8. There are twelve positive roots whose pairing with h equals 1:

ǫ1 − ǫ6, ǫ8 − ǫ7, ǫi − ǫ7, ǫ1 + ǫi + ǫ7 + ǫ8, where i = 2, 4, 5, ǫ1 + ǫ3 + ǫ6 +

ǫ8, ǫ1 + ǫ3 + ǫ6 + ǫ8, ǫi + ǫj + ǫ6 + ǫ8, where i, j ∈ {2, 4, 5}.

The sum of these roots equals κ := 5ǫ1+4ǫ2+ǫ3+4ǫ4+4ǫ5+3ǫ6−ǫ7+8ǫ8.

The intersection of t with the coroot lattice has basis ǫ1 + ǫ2 + ǫ3 −

3ǫ8, 3ǫ8− ǫ5− ǫ6− ǫ7, 2ǫ8− ǫ6− ǫ7, 4ǫ8. The values of these elements on κ are

equal −14, 18, 14, 16. We deduce that 1
2κ is integral on t (where the lattice

is the intersection of t with the coroot lattice).

Example 3.5. Now consider the orbit A4 + 2A1 in E8. We again use the

notation from [32]. There h∗ is the quotient of C9 (with basis ǫ1, . . . , ǫ9) by∑9
i=1 ǫi. The invariant bilinear form on h∗ is given (ǫi, ǫj) = −1

9 for i 6= j

and (ǫi, ǫi) = 8
9 . The basis of simple roots is given by αi = ǫi − ǫi+1, (i <

8), α8 = ǫ6 + ǫ7 + ǫ8.

For a minimal Levi containing e, we take the standard Levi subalgebra

with simple roots α1 = ǫ1 − ǫ2, α2 = ǫ2 − ǫ3, α3 = ǫ3 − ǫ4, α4 = ǫ4 −α5, α7 =

ǫ7−ǫ8, α8 = ǫ6+ǫ7+ǫ8. So we can take h = 4ǫ1+2ǫ2−2ǫ4−4ǫ5+ǫ6+2ǫ7. The

positive roots for E8 are of the form ǫi− ǫj, 1 6 i < j 6 9, ǫi+ ǫj + ǫk, where

i, j, k ∈ {1, 2, . . . , 8} are pairwise distinct, −ǫi− ǫj− ǫ9, where 1 6 i < j < 9.

There are 14 positive roots that pair by 1 with h:

ǫ6−ǫ8, ǫ6−ǫ9, ǫ2−ǫ6, ǫ1+ǫ2+ǫ5, ǫ1+ǫ5+ǫ7, ǫ1+ǫ3+ǫ4, ǫ1+ǫ4+ǫ8, ǫ2+ǫ3+

ǫ8, ǫ2+ǫ4+ǫ7, ǫ3+ǫ7+ǫ8,−ǫ3−ǫ8−ǫ9,−ǫ1−ǫ5−ǫ9,−ǫ2−ǫ4−ǫ9,−ǫ4−ǫ7−ǫ9.

The sum of these roots equals κ := 2ǫ1 + 2ǫ2 + ǫ3 + ǫ7 − 6ǫ9. A basis

in the intersection of t with the coroot lattice is given by the fundamental

weights π5 :=
∑5

i=1 ǫi − 5ǫ9, π6 :=
∑6

i=1 ǫi − 3ǫ9. Their pairings with κ are

35, 23. So we see that δ is not integral.
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3.4. Classification of finite dimensional irreducible representations

Here we will review results from [25] that concern the classification of

finite dimensional irreducible W -algebra modules with integral central char-

acter.

Namely, recall that a primitive ideal J with associated variety O exists

if and only if O is special. Recall that the set of special nilpotent orbits is

in one-to-one correspondence with the two-sided cells in W . To a two-sided

cell c Lusztig assigned the quotient Ā of the component group A = Q/Q◦,

see [26, p. 343]. One description of Ā is as follows. Consider the cell W -

module [c] and the Springer W × A-module SprO. Then Ā coincides with

the quotient of A by the kernel of the A-action on HomW ([c],SprO).

Now consider the primitive ideals with regular integral central character

and associated variety O. This set is in bijection with the set of left cells

in c. When the character is not regular, the set of primitive ideals embeds

into the set of left cells. To a left cell σ ⊂ c one can assign a subgroup

Hσ ⊂ Ā that was first introduced in [27]. It can be defined as follows, see

[25, Section 6]. Consider the A-module HomW ([σ],SprO), where [σ] denotes

the cell module. Then Hσ is a unique (up to conjugacy) subgroup in Ā such

that the Ā-module HomW ([σ],SprO) is induced from the trivial Hσ-module.

Now take a primitive ideal J with associated variety O. The image J†

is a maximal Q-stable ideal of finite codimension in W. The simple finite

dimensional modules annihilated by J† therefore form an A-orbit. It was

checked in [16, Theorem 1.2.2] that every finite dimensional irreducible W-

module N is annihilated by J† for some J as above that is forced to have the

same central character as N . The main result of [25, Theorem 1.1] is that

the A-orbit over a primitive ideal J with integral central character coincides

with Ā/Hσ, where σ is the left cell corresponding to J .

This implies the following corollary, see [25, Sections 6.5-6.8].

Corollary 3.6. Let O be a special orbit. Then the following is equivalent.

(a) W has no A-stable finite dimensional irreducible module with integral

central character.

(b) O is one of the orbits in (e2) of Section 1.2.
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3.5. Quantizations of symplectic varieties

HereX is a smooth algebraic symplectic variety with form ω. We assume

thatX comes equipped with a C×-action such that t.ω = tω. We are going to

recall the notion of a filtered quantization of X. By the conical topology on

X, we mean a topology, where “open” means Zariski open and C×-stable.

In particular, the structure sheaf OX can be viewed as a sheaf of graded

algebras in the conical topology. By a filtered quantization D of X we mean

a sheaf of filtered algebras together with an isomorphism grD
∼
−→ OX of

sheaves of graded Poisson algebras such that the filtration on D is complete

and separated.

Now suppose that a reductive group G acts on X in a Hamiltonian

way commuting with the C×-action rescaling the form. Suppose that the

G-action lifts to a filtration preserving action on D. We say that the lifted

action is Hamiltonian if there is a G-equivariant homomorphism Φ : g →

Γ(D) such that [Φ(ξ), ·] coincides with the derivation induced by the G-

action, for any ξ ∈ g. The map Φ automatically exists provided H1
DR(X) =

0.

Consider the case when X is a nilpotent orbit. Here H1
DR(X) = 0 by

Lemma 2.9.

Lemma 3.7. Let G be a semisimple group and O its nilpotent orbit. There

is a natural bijection between the following two sets.

(a) The set of quantizations of O with Hamiltonian G-action.

(b) The set of primitive ideals J ⊂ U with associated variety O and the

multiplicity of U/J on O is 1.

A more general statement (that deals with coverings of nilpotent orbits)

can be found in [31, Theorem 15], [20] (note that the set in (b) is in one-to-

one correspondence with the set of 1-dimensional A-stable W-modules). We

provide an independent proof in our case.

Proof. Let D be a quantization. The map Φ extends to an algebra homo-

morphism U → Γ(D). We have gr Γ(D) →֒ C[O]. Moreover, the composition

of grΦ : g → gr Γ(D) with this inclusion coincides with the comoment map

µ∗ : g → C[O]. So the composition of grΦ : S(g) → gr Γ(D) with the

inclusion gr Γ(D) →֒ C[O] coincides with the map µ∗ : S(g) → C[O]. Set
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JD := ker Φ. We have grJD ⊂ ker µ∗, the latter coincides with the ideal

of O. In particular, O is contained in the associated variety of JD. On the

other hand, we see that

imµ∗ ⊂ gr(U/JD) ⊂ gr Γ(D) ⊂ C[O], (3.2)

where the filtration on U/JD is induced from Γ(D). The algebra C[O] is

finite over imµ∗ = C[O]. It follows that gr Γ(D) is finitely generated and the

GK-dimension equals dimO. So Γ(D) is a HC bimodule. From the inclusion

U/JD →֒ Γ(D) we deduce that the associated variety of JD is exactly O.

Also from here we see that the multiplicity is 1. Further, the algebra Γ(D)

has no zero divisors. It follows that JD is a completely prime ideal. So it is

primitive.

Given J as in (b), we can get a quantization D as in (a) by microlocal-

izing U/J to the open subvariety O ⊂ Spec(gr(U/J )). Let us denote the

resulting quantization by DJ .

Now let us check that the maps J 7→ DJ and D → JD are dual to one

another. First of all, Φ factors through U/JD → Γ(D). This gives rise to

a homomorphism DJD
→ D of filtered sheaves of algebras. From (3.2), we

see that on the level of associated graded sheaves, this homomorphism is the

identity. So DJD

∼
−→ D.

On the other hand, we see that J ⊂ JDJ
. Since both ideals are prime

and have the same associated variety, the equality J = JDJ
follows now

from [3, Corollary 3.6]. ���

Now let us assume that H1(X,OX) = H2(X,OX ) = 0. In this case

there is classification of quantizations, see [2, 21]. Namely, there is a natural

bijection between the set of isomorphism classes of filtered quantizations ofX

and H2
DR(X), see [21, Section 2.3]. If a reductive group G is connected, then

the G-action lifts to any filtered quantization, see the proof of [2, Proposition

6.2].
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4. Proofs of the Main Results

4.1. Q-equivariance

Here we will prove two results that give sufficient conditions for a q-

action on a finite dimensional W-module V to integrate to an action of Q◦.

Lemma 4.1. Let V be a 1-dimensional Q-stable W-module. Assume O is

birationally rigid. Then the action of q on V is trivial.

So the action of q on V obviously integrates to an action of Q◦.

Proof. The proof of Lemma 2.9 shows that (q∗)Q = {0}. Let χ be a

character of the q-action on V . Since V is Q-stable, we see that χ = q.χ for

any q ∈ Q so χ is Q-stable. It follows that χ is zero. ���

Proposition 4.2. Let G be simply connected. Let V be an irreducible W-

module with integral central character. Then the q-action on V integrates to

a Q◦-action if and only if the character δ recalled in Section 3.3 is integral.

Proof. Let us pick a maximal torus T ⊂ Q◦ and let t ⊂ q be its Lie algebra.

What we need to show is that t acts diagonalizably and with characters

lying in the character lattice of T . Pick a regular integral element θ ∈ t.

Let g0,W
0 be as in Section 3.3. Let us write G0 for the connected subgroup

of G corresponding to g0. Note that T = Z(G0)
◦. Since the group G is

simply connected, we see that the character group of T is spanned by the

fundamental weights that vanish on the roots for g0.

We have V = Lθ
W(V 0), where V 0 is an irreducible W0-module. Our

claim reduces to checking that the character of the t-action on V 0 is integral.

Now recall the isomorphism W0 ∼
−→ W that induces the shift by δ on

t. Let V be the W-module corresponding to V 0. According to [5, Corollary

4.8], this module has integral central character. It follows that t acts on V

with integral character, i.e., it action integrates to T . So the action of t on

V 0 integrates to T if and only if δ is integral. ���

Corollary 4.3. Let O be birationally rigid and special. Then the following

are equivalent.

(1) W has an A-stable 1-dimensional module with integral central character.
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(2) δ is integral.

In particular, we see that δ is integral when g is classical, [23, Section

5.4], or when O is, in addition, rigid, [38, Theorem B]. We remark that

checking the integrality of δ involves only an elementary combinatorics and

can be done in all these cases directly.

4.2. Equivalence theorem

Theorem 4.4. Suppose that codimO ∂O > 4. Then the functor •† : HC
G
O(U)

→ HCQ
fin(W) is a category equivalence.

We will need to introduce some auxiliary categories related to categories

of HC bimodules. Recall that we write U♦
~ for the g-finite part of U∧~

~ . We

write HCG(U♦
~ ) for the category of G-equivariant finitely generated U♦

~ -

modules. Note that any such module B~ becomes a U~-bimodule by the

formula bξ = ξb− ~2ξ.b, where b ∈ B~, ξ ∈ g and ξ.b is the image of b under

the derivation coming from the G-action. We write H̃C
G
(U♦

~ ) for the ind

completion of HCG(U♦
~ ), it consists of all G-equivariant U♦

~ -modules. Next,

we consider the category HC(U
∧χ

~ ) consisting of the g-equivariant finitely

generated U
∧χ

~ -modules. We also consider the subcategories HCG
O
(U♦

~ ) ⊂

HCG(U♦
~ ) of all modules supported on O and HCO∧χ (U

∧χ

~ ) ⊂ HC(U
∧χ

~ ) of

all modules supported on O∧χ .

Considering the functor F = FG : HCO∧χ (U
∧χ

~ ) → HCG
O
(U♦

~ ) of taking

G-finite sections. It extends a similar functor considered in Section 3.2 and

it is given by

B′
~ 7→

⊕

V

V ⊗HomU(g)(V,B
′
~),

where the sum is taken over all irreducible finite dimensional G-modules V .

So the functor F admits derived functors

RiF : B′
~ 7→

⊕

V

V ⊗ ExtiU(g)(V,B
′
~) : HCO∧χ (U

∧χ

~ ) → H̃C
G
(U♦

~ ).

Here is the main technical result that is needed to establish Theorem

4.4.
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Lemma 4.5. Let B′
~ ∈ HCO∧χ (U

∧χ

~ ) and B := B′
~/~B

′
~. Then the following

is true

(1) all g-isotypic components in R1F(B′
~) are finitely generated C[[~]]-

modules.

(2) R1F(B′
~) is a finitely generated left U♦

~ -module and R1F(B′
~)/~R

1F(B′
~)

is supported on ∂O.

(3) The cokernel of the natural homomorphism F(B′
~)/~F(B′

~) →֒ F(B) is

supported on ∂O.

Proof. The proof is in several steps. Let us write G̃ for the simply connected

cover of G.

Step 1. We start by computing RiF(M) for certain M ∈ HC
O

∧χ (U
∧χ

~ ). We

will consider the objects annihilated by both ~ and the ideal of O. The

category of such objects was shown in [17, Section 3.2] to be equivalent

to the category of ZG̃(e)
◦-modules: an object N ∈ ZG̃(e)

◦ -mod gets sent

to the sections V
∧χ

N of the vector bundle VN = G̃ ∗Z
G̃
(e)◦ N on the formal

neighborhood of ZG̃(e)
◦ in G̃/ZG̃(e)

◦. Moreover, it was computed in [17,

Section 3.2] that F(V
∧χ

N ) = Γ(VN ). By the uniqueness of classical derived

functors (where the source category is that of rational ZG̃(e)
◦-modules), we

see that RiF(V
∧χ

N ) = H i(VN ) for all i (all global sections and cohomology

are taken on Õ := G̃/ZG̃(e)
◦).

Step 2. Let us prove that H1(VN ) is a finitely generated C[Õ]-module sup-

ported on ∂Õ := X \Õ, where we write X for Spec(C[Õ]). Set VN := Γ(VN ),

this is a coherent sheaf on X whose restriction to Õ coincides with VN , see

[17, Section 3.2]. Then H i(VN ) = H i+1
∂Õ

(VN ). By [13, Expose VIII, Cor.

2.3], H i+1

∂Õ
(VN ) is finitely generated (and obviously supported on ∂Õ) pro-

vided i + 1 < codimX ∂Õ. The right hand side in this inequality is at

least codimO ∂O that is bigger than or equal to 4 by the assumptions of the

proposition. The claim in the beginning of this step follows.

Step 3. Since any object B in HC(U
∧χ

~ ) annihilated by ~ admits a finite

filtration by objects of the form V
∧χ

N , we deduce from Step 2 that for any

such B, the C[g∗]-module RF1(B) is finitely generated and is supported on

∂O.
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Step 4. In this step we prove (1). Set B := B′
~/~B

′
~. Note that, for any

finite dimensional g-module V , we have dimExt1U(g)(V,B) < ∞. Indeed, the

latter is the V -isotypic component in the finitely generated module R1F(B)

over A := C[g∗]/Ann(B). The reduced spectrum of A is O, therefore AG is

finite dimensional. The inequality dimExt1U(g)(V,B) < ∞ follows from the

observation that any g-isotypic component in a finitely generated A-module

is a finitely generated AG-module.

Let us complete the proof of (1). The space Homg(V,R
1F(B′

~)) coincides

with Ext1U(g)(V,B
′
~). The Ext groups Ext

1
U(g)(V,B

′
~) are computed using the

Chevalley-Eilenberg complex. In this complex, all cochains are complete

and separated over C[[~]]. Arguing as in the end of the proof of [12, Lemma

5.6.3], we conclude that Ext1U(g)(V,B
′
~) is finitely generated over C[[~]].

Step 5. Let us prove (2). We have the following exact sequence

0 → F(B′
~)/~F(B′

~) → F(B) → R1F(B′
~)

~
−→ R1F(B′

~) → R1F(B).

It follows from Step 3 that R1F(B) is a finitely generated C[g∗]-module

that is supported on ∂O By Step 4, R1F(B′
~) is the direct sum of finitely

generated C[[~]]-modules. The same argument as in the proof of Lemma 3.2

shows that R1F(B′
~) is a finitely generated U♦

~ -module. Since R1F(B) is

supported on ∂O, then so is R1F(B′
~).

Step 6. Let us prove (3). The algebra U♦
~ is Noetherian, this is established

similarly to Lemma 3.2. It follows that the kernel of ~ in R1F(B′
~) admits

a finite filtration whose quotients are subquotients in R1F(B′
~)/~R

1F(B′
~).

Therefore the kernel of ~ is finitely generated over C[g∗] and is supported on

∂O. ���

Proof of Theorem 4.4. We can modify the categories involved in Lemma

4.5 considering weakly C×-equivariant modules for U♦
~ and Q-equivariant

and Kazhdan weakly C×-equivariant bimodules for U
∧χ

~ . Then we have the

functor F ′
G(•) = F(•)A

C× -fin and (2) and (3) of that lemma still hold (with the

same proof or as formal corollaries of those claims). Now pick B ∈ HCQ
fin(W)

and apply these claims to B′
~ := A∧0

~ ⊗̂C[[~]]R~(B~)
∧χ . From the construction

of •†, •
† in Section 3.2, we see that (2) and (3) yield multO B† = dimB. It

follows that •† is exact and faithful when viewed as a functor HCQ
fin(W) →
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HCO(U). Also it follows that dim(B†)† = dimB. Since (•†, •
†) is an adjoint

pair, we see that •† is a quasi-inverse of •†. ���

4.3. Consequences of the equivalence theorem

Proof of Theorem 1.1. Proof of (1). Let X be a Q-factorial terminaliza-

tion of Spec(C[O]). Let D be a quantization of Xreg. The group π1(X
reg) is

finite because it coincides with π1(O). It follows that H1
DR(X

reg) = 0 and

so the G-action on D is Hamiltonian. From H1(Xreg,OXreg ) = 0 it follows

that gr Γ(D) = C[Xreg] = C[O]. Since the G-action on Γ(D) is Hamiltonian,

we see that Γ(D) is a Dixmier algebra.

Proof of (2). Recall, Lemma 2.9, that since O is birationally rigid, we get

H2
DR(O) = 0. Since codimXreg Xreg \O > 2, we see that H2

DR(X
reg) = 0. It

follows that Xreg has a unique quantization. This finishes the proof.

Proof of (3). As we have seen in Example 3.4 and Section 4.1, in all cases

except (e2) and (e3), δ is integral. Pick a unique A-stable 1-dimensional rep-

resentation V of W and a finite dimensional representation U of W with in-

tegral central character. By Lemma 4.1 V is Q◦-equivariant. By Proposition

4.2, U is Q◦-equivariant. So HomC(U, V ) is a Q◦-equivariant W-bimodule.

Let B be the set of Q◦-equivariant maps from Q to HomC(U, V ) (with respect

to the action of Q◦ on Q) from the right. It is a Q-equivariant W-bimodule.

Consider B†. By Theorem 4.4, this is a nonzero HC U -bimodule. The central

character on the right is integral and therefore so is integral character on the

left.

For the three orbits in (e2), there are no A-stable irreducible finite di-

mensional representations with integral central characters by Corollary 4.3.

For the orbit in (e3), we have checked in Example 3.5 that δ is non-integral.

���

Lemma 4.6. Let O be a birationally rigid orbit but not one of the orbits in

(e1). Then there is a unique primitive ideal J ⊂ U with associated variety

O and multiplicity of U/J equal to 1.

This lemma also follows from [39, Theorem 4]. Premet has checked in

[38] that for the six orbits listed in (e1) there are exactly two ideals J with

specified properties.
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Proof. By Corollary 2.8, H i(O,OO) = 0 for i = 1, 2. Besides, H1
DR(O) = 0

and H2
DR(O) = 0 by Lemma 2.9. So there is a unique Hamiltonian quanti-

zation of O. The claim of this lemma now follows from Lemma 3.7. ���

There is a conjectural recipe of how to compute a highest weight for

the primitive ideal J (at least, under the additional assumption that O is

special). Namely, let O∨ be the dual orbit of O and let h∨ be a dominant

representative of the semisimple element for the sl2-triple for O∨. Following

[1], set λO := 1
2h

∨. Then an expectation is that λO is a highest weight for

J . This is true for classical types and special birationally rigid orbits, [30,

Corollary 5.19], and for special rigid orbits in exceptional types, [38, Theo-

rem B]. Note that for the orbit A2+A1 in E7, the dual orbit is E6(a1), which

is even. So λO in this case is integral. We also remark that [1, Theorem III]

gives a character formula (i.e., computes the multiplicities of the irreducibles

finite dimensional g-modules) for U/I(λO), where I(λO) denotes the anni-

hilator of the irreducible module with highest weight λO, which holds even

if λO is non-integral. The multiplicities for C[O] are also known thanks to

the work of McGovern, [29]. So one could try to compare the two sets of

multiplicities to check if U/I(λO) is multiplicity free. However, this is far

from being straightforward as the formulas are different.

Proof of Corollary 1.2. If O is not one of the orbits in (e2),(e3), then

there is a primitive ideal J with integral central character and associated

variety O such that the multiplicity of U/J on O is 1. It follows that W

has an A-stable 1-dimensional module with integral central character. The

claim of the present corollary follows from [23, Theorem 1.3].

Consider the three orbits in (e2). Let O be induced from an orbit O′

in a Levi and let W ′ denote the W-algebra corresponding to O′. Recall

the exact dimension preserving functor ρ : W ′ -modfd → W -mod, see [18,

Theorem 1.2.1]. It maps modules with integral central character to modules

with integral central character by [18, Corollary 6.4.2]. The four orbits in

(e2),(e3) are induced from special orbits, this can be shown using arguments

in [10, Sections 3.3, 3.4]. So for all four orbits there are (A-unstable) W-

modules with integral central characters. For the orbits in (e2) we are now

done by [23, Theorem 1.3]. ���

So there is just one orbit, A4+2A1, where a precise relationship between

the dimensions of irreducible W-orbits and the Goldie ranks of primitive
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ideals (with integral central character) is still unknown. Here Ā = Z/2Z. If

the left cell σ corresponding to a primitive ideal J satisfies Hσ = {1}, then

the dimension coincides with the Goldie rank, this follows from the proof of

[23, Theorem 1.2]. If Hσ = Ā, then the ratio of the dimension by the Goldie

rank is either 1 or 2.

Proposition 4.7. Let O be a birationally rigid special orbit. Then A ∼= Ā.

This proposition is basically a special case of the description of Ā given

in [26, p.343]. An advantage of our approach is that it is conceptual.

Proof. We use the notation from Section 3.4. Fix a left cell σ. The num-

ber of irreducible HC bimodules whose left and right annihilators are the

primitive ideal (with central character ρ) corresponding to σ is equal to

σ ∩ σ−1 = | Irr(Ā)|. Applying •† to these irreducible HC bimodules, we get

sheaves on Ā/Hσ whose fibers at Hσ are modules over Hσ. But any repre-

sentation V of A defines an endo-functor HCQ
fin(W) → HCQ

fin(W) given by

V ⊗ •. If A ։ Ā has a kernel, then the image of •† is not stable under all

functors V ⊗ •. ���
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