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Abstract

In this note we give an overview of our knowledge regarding primitive axial algebras

of Jordan type half and connections between 3-transposition groups and Matsuo algebras.

We also show that primitive axial algebras of Jordan type η admit a Frobenius form, for

any η.

1. Introduction

The purpose of this note is threefold. In §2 we give an overview of

our knowledge regarding primitive axial algebras of Jordan type half. This

is taken from [2]. In fact we focus in §2 on one of the main results in [2]

which characterizes Jordan algebras of Clifford type amongst primitive axial

algebras of Jordan type half. The primitive axial algebras of Jordan type

η 	= 1

2
are reviewed (amongst other things) by Jon Hall in another paper

of this volume. In §3, we complete, for the case η = 1

2
, a result connecting

3-transposition groups and Matsuo algebras, established in [1, Theorem 6.3]

for η 	= 1

2
. In §4 we show that any primitive axial algebra of Jordan type η

(any η) admits a Frobenius form.
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We start by recalling a few definitions. We do not give the historical

background as it can be best found in the introduction to [1].

All algebras A in this note are commutative, non-associative over a field

F of characteristic not 2.

For a ∈ A the adjoint operator ada is multiplication by a, so

ada : A → A, x �→ xa.

An axis in A is, by definition, a semisimple idempotent, i.e., an idempo-

tent whose minimal ad-polynomial has few distinct linear factors; where the

minimal ad-polynomial is the minimal polynomial of the linear operator ada

(we are not assuming that A is finite dimensional, however, we are assuming

that ada has a minimal polynomial).

Axial algebras, introduced recently by Hall, Rehren and Shpectorov ([1]),

are, by definition, algebras generated by axes. When certain fusion rules,

i.e. multiplication rules, between the eigenspaces corresponding to an axis,

are imposed the structure of axial algebras remains interesting yet it is more

rigid.

Given an element a ∈ A and a scalar λ ∈ F, the λ-eigenspace of ada is

denoted Aλ(a), so:

Aλ(a) := {x ∈ A | xa = λx} .

(We allow Aλ(a) = 0.)

Axial algebras of Jordan type η, where η /∈ {0, 1} is fixed, are algebras gen-

erated by a set of axes A such that for each a ∈ A :

(1) The minimal ad-polynomial of a divides (x− 1)x(x− η).

(2) The fusion rules imitate the Peirce multiplication rules in Jordan alge-

bras. These fusion rules are:

A1(a)A1(a) ⊆ A1(a) and A0(a)A0(a) ⊆ A0(a),

A1(a)A0(a) = {0},

(A0(a) +A1(a))Aη(a) ⊆ Aη(a), and Aη(a)
2 ⊆ A0(a) +A1(a).
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In particular, if we set

A+(a) = A1(a)⊕A0(a) and A−(a) = Aη(a).

then

Aδ(a)Aε(a) ⊆ Aδε(a) ,

for δ, ε ∈ {+,−}.

Thus, for example, Jordan algebras are axial algebras of Jordan type 1

2
,

provided that they are generated by idempotents.

An axis a ∈ A is absolutely primitive if A1(a) = Fa (this is stronger

than the usual notion of primitivity). We call an absolutely primitive axis a

satisfying (1), (2) above an η-axis.

A primitive axial algebra of Jordan type η is an algebra generated by η-

axes. For η 	= 1

2
, primitive axial algebras of Jordan type η were thoroughly

analyzed by Hall, Rehren, and Shpectorov in [1]. The case η = 1

2
, is much

less understood and is of a different nature. This case is the focus of [2] and

of §§2,3 of this note.

Given an η-axis a ∈ A, recall that

A =

A+(a)︷ ︸︸ ︷
A1(a)⊕A0(a)⊕

A−(a)︷ ︸︸ ︷
Aη(a) .

The map τ(a) : A → A defined by xτ(a) = x+ − x−, where x = x+ + x− ∈

A+(a) + A−(a), is an automorphism of A of order 1 or 2. It is called the

Miyamoto involution corresponding to a.

1.1. Jordan algebras of Clifford type

A Jordan algebra of Clifford type J(V,B) consists of the following in-

formation:

(1) A vector space V over F together with a symmetric bilinear form B on

V . The corresponding quadratic form is denoted q(v) = B(v, v).

(2) The Jordan algebra J(V,B) is F�⊕ V with multiplication defined by

� is the identity and v ∗ w = B(v,w)�, ∀v,w ∈ V.
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The algebra J(V,B) comes from the associative Clifford algebra Cl(V, q): it

is a sub-Jordan algebra of Cl(V, q)+, where, as usual, A+ denotes the special

Jordan algebra that emerges from the associative algebra A.

Let J = J(V,B). It is easy to check that:

(a) For u ∈ V and α ∈ F, the element α�+ u is an idempotent if and only

if α = 1

2
and q(u) = 1

4
.

(b) Assume that a = 1

2
�+ u is an idempotent in J . Then

(i) J1(a) = Fa, so a is a 1

2
-axis. (Thus J(V,B) is a primitive axial

algebra of Jordan type 1

2
iff it is generated by idempotents.)

(ii) J0(a) = F(�− a) (of course �− a is a 1

2
-axis), and

(iii) J1

2

(a) = u⊥ = J1

2

(�− a), where u⊥ = {v ∈ V | B(u, v) = 0}.

(c) It follows that τ(a) = τ(�− a), for any 1

2
-axis a.

The purpose of §2 is to show that property (c) above essentially charac-

terizes Jordan algebras of Clifford type amongst primitive axial algebras of

Jordan type 1

2
.

2. Primitive Axial Algebras of Jordan Type Half

Throughout this section A is a primitive axial algebra of Jordan type η,

generated by a set A of η-axes.

Let Δ be the graph on the set of all η-axes of A, where distinct a, b form

an edge iff ab 	= 0. Let also ΔA be the full subgraph of Δ on the set A. The

purpose of this section is to sketch a proof of the following theorem:

Theorem 2.1. Assume that ΔA is connected and that there are two distinct

η-axes a, b ∈ A such that τ(a) = τ(b). Then η = 1

2
, a+ b = � is the identity

of A, and A is a Jordan algebra of Clifford type.

In the remainder of this section we will sketch a proof of Theorem 2.1.

First we need a theorem that enables us to identify A as a Jordan algebra

of Clifford type in the case η = 1

2
.

Theorem 2.2. Let η = 1

2
. Assume that A contains two 1

2
-axes a, b ∈ A such

that a+b = �A and such that vavc ∈ F�A, for all c ∈ A, where vc = c− 1

2
�A.

Then A is a Jordan algebra of Clifford type.
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We do not include a proof of Theorem 2.2, see [2, Theorem 5.4].

We will need some information about 2-generated subalgebras of A. This

information is taken from [1]. Let a, b ∈ Δ with a 	= b. We denote by Na,b

the subalgebra generated by a and b. If Na,b contains an identity element,

we denote it by 1a,b. Note that by [1], 2-generated subalgebras are at most

3-dimensional.

Lemma 2.3 (Lemma 3.1.2 in [2]). Let a, b ∈ Δ with a 	= b. Then Na,b is

2-dimensional precisely in the following cases:

(1) ab = 0; we then denote: Na,b = 2Ba,b.

(2) η = −1, ab = −a− b; we then denote: Na,b = 3C(−1)×a,b.

(3) η = 1

2
, ab = 1

2
a+ 1

2
b; we then denote: Na,b = Ja,b.

Furthermore,

(4) the algebras Na,b in cases (2) and (3) above do not have an identity

element.

The following proposition deals with 2-generated 3-dimensional subal-

gebras.

Proposition 2.4 (Proposition 4.6 [1]). Let a, b ∈ Δ with a 	= b. Then Na,b

is 3-dimensional precisely when ab 	= 0 and there exists 0 	= σ ∈ Na,b and a

scalar ϕ = ϕa,b ∈ F such that if we set π = πa,b = (1− η)ϕ− η, then

(1) ab = σ + ηa+ ηb;

(2) σv = πv, for all v ∈ {a, b, σ}.

furthermore

(3) Na,b contains an identity element if and only if π 	= 0, in which case

1a,b =
1

π
σ.

When Na,b is 3-dimensional we denote: Na,b = B(η, ϕ)a,b, where ϕ ∈ F

is the scalar mentioned above.

From now on we assume that ΔA is connected. Note that by [2, Lemma

6.4], ΔA is connected iff Δ is connected. Further, we assume that a, b ∈ Δ

are distinct with τ(a) = τ(b).

Proposition 2.5 (Proposition 6.5 in [2]). ab = 0 and
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(1) for any c ∈ Δ� {a, b} exactly one the following holds:

(i) ac = bc = 0.

(ii) η = 1

2
, and for some x ∈ {a, b} = {x, y}, we have Nx,c = B(1

2
, 0)x,c

is 3-dimensional, Ny,c = Jy,c and Ny,c ⊂ Nx,c. Further a+ b = 1x,c.

(iii) η = 1

2
, Na,c = Nb,c is 3-dimensional and a+ b = 1a,c.

(2) If d is an η-axis in A such that τ(d) = τ(a), then d ∈ {a, b}.

Proof sketch. By [2, Lemma 3.2.1], for any c ∈ Δ, we have ac = 0 ⇐⇒

cτ(a) = c, and since, by definition, aτ(b) = aτ(a) = a, we see that ab = 0.

If ac = 0, then, as above bc = 0 (and vice versa), so (i) holds. Hence we

may assume that ac 	= 0 	= bc.

If η 	= 1

2
, then by [1, Proposition 6.5], and since Δ is connected, a = b,

a contradiction. Thus η = 1

2
.

Now consider

V := Nc,cτ(a) ⊆ Na,c ∩Nb,c.

V is either 2 or 3-dimensional. If V is 3-dimensional, then Na,c = V = Nb,c,

and since ab = 0, one shows that a + b = 1a,c ([2, Lemma 3.2.5]), so (iii)

holds.

So suppose V is 2-dimensional. If both Na,c and Nb,c are 2-dimensional,

then they both equal to Na,b = Fa⊕Fb. But then c = a or b, a contradiction.

Therefore without loss Na,c is 3-dimensional and V is 2-dimensional. If

V = Nb,c then (ii) holds: Clearly Nb,c ⊂ Na,c and a + b = 1a,c, and then a

careful analysis of the situation gives (ii).

The case where both Na,c and Nb,c are 3-dimensional and V is 2-

dimensional is the hardest case and some precise work is required to get a

contradiction. ���

Proposition 2.6. η = 1

2
and

(1) xa 	= 0 	= xb, for all x ∈ Δ� {a, b};

(2) A contains an identity element � = a+ b;

(3) for any x ∈ Δ such that Na,x is 3-dimensional we have � = 1a,x.



2018] ON PRIMITIVE AXIAL ALGEBRAS OF JORDAN TYPE 403

Proof. Let d( , ) be the distance function on Δ. Let

Δ1(a) := {x ∈ Δ | d(a, x) = 1}.

Since Δ is connected Δ1(a) 	= ∅. Also, by Proposition 2.5(1i), Δ1(a) =

Δ1(b). Let c ∈ Δ1(a). By Proposition 2.5, η = 1

2
and after perhaps inter-

changing a and b, Na,c is 3-dimensional and a+ b = 1a,c. Set

� = 1a,c = a+ b,

then

�c = c, for all c ∈ Δ1(a).

Let y ∈ Δ�Δ1(a) be at distance 2 from a in Δ, and let

x ∈ Δ1(a) ∩Δ1(y).

Without loss Na,x is 3-dimensional and � = 1a,x. Now

• ay = 0 = by =⇒ �
τ(y) = (a+ b)τ(y) = aτ(y) + bτ(y) = a+ b = �.

• �
τ(x) = � because � = 1a,x.

• �y = 0 so �yτ(x) = 0.

• �x = x so �xτ(y) = xτ(y).

• W := Span
(
{y, yτ(x)}

)
∩ Span

(
{x, xτ(y)}

)
	= {0}. Indeed, W is the

intersection of two 2-dimensional subspaces of Nx,y which is of dimension

at most 3.

• � both annihilates and acts as identity on W, a contradiction.

Hence Δ1(a) = Δ� {a, b} and clearly d(a, b) = 2 in Δ. But now, as we

saw above, �c = c for all c ∈ Δ. It follows that � is the identity of A and

(3) holds as well. ���

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We show that the hypotheses of Theorem 2.2 are

satisfied. By Proposition 2.6, η = 1

2
and a+ b = �A. Let c ∈ Δ. Then

vavc = (a− 1

2
�)(c− 1

2
�) =ac− 1

2
a− 1

2
c+ 1

4
� = σa,c +

1

4
�.
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Clearly vavc ∈ F� if c ∈ {a, b}. Otherwise, by Proposition 2.6(1), ac 	= 0.

If Na,c is 2-dimensional, then since ac 	= 0, σa,c = 0, and so vavc ∈ F�. If

Na,c is 3-dimensional, then by Proposition 2.6(3), � = 1a,c. Furthermore by

[1], σa,c = πa,c1a,c = πa,c�, for some πa,c ∈ F, and again vavc ∈ F�. ���

3. 3-transpositions and Matsuo Algebras

Recall that a set of axes A is closed iff aτb ∈ A, for all a, b ∈ A. In this

section A is a primitive axial algebra of Jordan type η generated by a closed

set of η-axes A, such that |A| > 1.

Let G be a group generated by a normal set of involutions D. Recall that

D is called a set of 3-transpositions in G if |st| ∈ {1, 2, 3}, for all s, t ∈ D.

The group G is then called a 3-transposition group.

Let D be a normal set of 3-transpositions in the group G that gener-

ates G. The Matsuo algebra associated with the pair (G,D), denoted here

Mδ(G,D), is defined as follows. As a vector space over F it has the basis D.

Multiplication is defined for x, y ∈ D as follows

x · y =

⎧⎪⎪⎨
⎪⎪⎩
x, if y = x

0, if |xy| = 2

δ(x+ y − xy), if |xy| = 3.

This is extended by linearity to the entire algebra. (Note that we denote mul-

tiplication in G by juxtaposition and in Mδ(G,D) by dot.) By [1, Theorem

6.2], Mδ(G,D) is a primitive axial algebra of Jordan type 2δ.

The purpose of this section is to prove the following Theorem:

Theorem 3.1. Suppose that the graph ΔA is connected. Let D := {τa | a ∈

A} and G = 〈D〉. Assume that the map a �→ τa on A is injective and that D

is a set of 3-transpositions in G. Then A is a quotient of the Matsuo algebra

M η

2

(G,D).

Remark 3.2. Theorem 3.1 was proved in [1, Theorem 6.3] for η 	= 1

2
. The

proof for η = 1

2
needed a correction, in view of [2]. Note that the summand

⊕i∈IF does not appear in Theorem 3.1 since we are assuming that ΔA is

connected. We also mention that for η 	= 1

2
, the map on A defined by a �→ τa

is always injective, by [2, Proposition 6.5], and since ΔA is connected.
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We included a proof of Theorem 3.1 for all η for completeness.

Lemma 3.3. ab = η
2
a+ ϕa,bb−

η
2
aτb , for all a, b ∈ A.

Proof. Clearly this holds when a = b (since, by definition, ϕa,a = 1, and

aτa = a), so assume a 	= b. Suppose first that Na,b is 2-dimensional. We use

[2, Lemma 3.1.2]. If Na,b = 2Ba,b, then ab = 0, ϕa,b = 0, and aτb = a (see

also [2, Lemma 3.2.1]), so the claim holds.

Suppose next that Na,b = 3C(−1)×a,b. Then η = −1, ab = −a− b, ϕa,b =

−1

2
and aτb = −a− b (see also [2, Lemma 3.1.8]), so the claim holds.

Assume that Na,b = Ja,b. Then η = 1

2
, ab = 1

2
a + 1

2
b, ϕa,b = 1 and

aτb = 2b− a (see also [2, Lemma 3.1.9]), so again the claim holds.

We may assume that Na,b is 3-dimensional. Set ϕ := ϕa,b. By

[2, Theorem 3.1.3(6)], aτ(b) = − 2

η
σ − 2(η−ϕ)

η
b − a. Also, σ = ab − ηa − ηb.

Hence we get

2

η
σ= −a− 2(η−ϕ)

η
b− aτb

⇐⇒ σ = −η
2
a− (η − ϕ)b− η

2
aτb

⇐⇒ ab = η
2
a+ ϕb− η

2
aτb . ���

Corollary 3.4 (See Corollary 1.2 in [1]). A is spanned over F by A.

Proof. This is immediate from Lemma 3.3 and the definition of a closed set

of axes. ���

Lemma 3.5. Suppose that

the map a �→ τa on A is injective. (∗)

Let a, b ∈ A be distinct. Then

(1) if (τaτb)
2 = 1, then ab = 0.

(2) if (τaτb)
3 = 1, then ϕa,b =

η
2
.

Proof. (1): By [2, Lemmas 3.2.7(2) and 3.1.6(2)] and by (∗), Na,b = 2Ba,b,

so (1) holds (see also [2, Lemma 3.1.2(1a)]).

(2): If η 	= 1

2
, then (2) follows from [1, Proposition 4.8]. So suppose η = 1

2
.

By [2, Lemma 3.2.7(1) and Corollary 3.3.2] and by (∗), we get ϕa,b =
1

4
. ���
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We can now prove Theorem 3.1.

Proof of Theorem 3.1. Set M := M η

2

(G,D). We claim that the map

f : M → A : τa �→ a,

extended by linearity is a surjective algebra homomorphism. Note that f is

well defined since the map a �→ τa is injective on A.

Now f is surjective by Corollary 3.4. Next we need to check that

f(τa · τb) = ab, for all a, b ∈ A. (∗)

If a = b, then τa · τb = τa, and ab = a, so (∗) holds.

If |τaτb| = 2, then τa · τb = 0, while by Lemma 3.5(1), ab = 0, so (∗)

holds in this case as well.

Finally assume that |τaτb| = 3. Then

τa · τb =
η
2
(τa + τb − τ τba ) = η

2
(τa + τb − τ

a
τb
),

where the last equality follows from the standard fact that τ τba = τ
a
τ
b
. Thus

f(τa · τb) = η
2
(a + b − aτb). However, by Lemma 3.5(2) and Lemma 3.3,

ab = η
2
(a + b − aτb), so (∗) holds in this case as well and the proof of the

theorem is complete. ���

4. The Existence of a Frobenius Form

Recall that a non-zero bilinear form (· , ·) on an algebra A is called

Frobenius if the form associates with the algebra product, that is,

(xy, z) = (x, yz)

for all x, y, z ∈ A.

For primitive axial algebras of Jordan type η, we specialize the concept

of Frobenius form further by asking that the condition (e, e) = 1 be satisfied

for each η-axis e.

The purpose of this section is to prove the following theorem:
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Theorem 4.1. Let A be a primitive axial algebra of Jordan type η. Then A

admits a Frobenius form (· , ·). Furthermore, (e , u) = ϕe(u), for any η-axis

e ∈ A and any u ∈ A.

The proof of Theorem 4.1 depends on two properties of primitive axial

algebras of Jordan type. The first is Corollary 3.4. The second is proven in

[1] (Lemma 4.2 below).

For an η-axis e ∈ A, let ϕe be the projection function with respect to

e. That is, for u ∈ A, we have that u = ϕe(u)e + u0 + uη, where u0 and uη

are eigenvectors of the adjoint linear transformation ade for the eigenvalues

0 and η, respectively.

Lemma 4.2 (Lemma 4.4 in [1]). For a primitive axial algebra A of Jordan

type and for any η-axes e, f ∈ A, we have ϕe(f) = ϕf (e).

Note that by [1] the constant ϕa,b, that we used earlier for η-axes a, b,

is the same as ϕa(b).

Proof of Theorem 4.1. We start by defining the bilinear form (· , ·) on A.

Using Corollary 3.4 we can select a basis B of A consisting of η-axes, and we

let

(a , b) = ϕa(b), for all a, b ∈ B.

Extending by linearity we get the bilinear form (· , ·). Note that Lemma 4.2

implies that (· , ·) is symmetric.

Lemma 4.3. (1) (e , u) = ϕe(u), for all η-axes e ∈ A and all u ∈ A;

(2) (e , e) = 1, for all η-axes e ∈ A;

(3) (· , ·) is invariant under automorphisms of A.

Proof. (1&2): Let e be an η-axis and suppose that

ϕe(b) = (e, b), for all b ∈ B. (∗)

Since ϕe is linear,

ϕe(u) = ϕe(
∑
b∈B

αbb) =
∑
b∈B

αbϕe(b)
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=
∑
b∈B

αb(e, b) = (e,
∑
b∈B

αbb) = (e, u),

and (1) holds for e. Now if e = a ∈ B, then (∗) holds by definition, so (1)

holds for a. Suppose e /∈ B. Let b ∈ B. Then ϕe(b) = ϕb(e), by Lemma

4.2, and ϕb(e) = (b, e), as (1) holds for b. Finally, since (· , ·) is symmetric

(b, e) = (e, b), so ϕe(b) = (e, b), and (∗) holds for any η-axis e. This shows

that (1) holds.

In particular, for every η-axis e ∈ A, we have that (e, e) = 1, since,

clearly, ϕe(e) = 1. Thus (2) holds.

(3): Let ψ ∈ Aut(A), if u = ϕe(u)e+ u0 + uη is the decomposition of u ∈ A

with respect to the η-axis e, then uψ = ϕe(u)e
ψ + uψ

0
+ uψη is the decom-

position of uψ with respect to the η-axis eψ. Hence ϕeψ (u
ψ) = ϕe(u), and

so (eψ, uψ) = (e, u). Finally, taking an arbitrary v ∈ A and decomposing

it with respect to the basis B as v =
∑

b∈B αbb, we get that (vψ, uψ) =

(
∑

b∈B αbb
ψ, uψ) =

∑
b∈B αb(b

ψ, uψ) =
∑

b∈B αb(b, u) = (
∑

b∈B αbb, u) =

(v, u). So indeed, (· , ·) is invariant under the automorphisms of A. ���

Lemma 4.4. For every η-axis e ∈ A, different eigenspaces of ade are or-

thogonal with respect to (· , ·).

Proof. Clearly, if u ∈ A0(e)+Aη(e) then (e, u) = ϕe(u) = 0. Hence A1(e) =

Fe is orthogonal to both A0(e) and Aη(e). It remains to show that these two

are also orthogonal to each other. Let u ∈ A0(e) and v ∈ Aη(e), the fact that

(· , ·) is invariant under τe gives us (u, v) = (uτe , vτe) = (u,−v) = −(u, v).

Clearly, this means that (u, v) = 0. ���

We are now ready to complete the proof that (· , ·) associates with the

algebra product. Note that the identity

(x, yz) = (xy, z)

that we need to prove is linear in x, y, and z. In particular, since A is

spanned by η-axes, we may assume that y is an η-axis. Furthermore, since

A decomposes as the sum of the eigenspaces of ady, we may assume that x

and z are eigenvectors of ady, say, for the eigenvalues μ and ν. We have two

cases:
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If μ = ν then

(x, yz) = (x, νz) = ν(x, z) = μ(x, z) = (μx, z) = (yx, z) = (xy, z).

If μ 	= ν then

(x, yz) = ν(x, z) = 0 = μ(x, z) = (xy, z),

since Aμ(y) and Aν(y) are orthogonal to each other. Thus, in both cases

we have the desired equality (x, yz) = (xy, z), proving that the form (· , ·)

is Frobenius. Also, by Lemma 4.3(1), the second part of Theorem 4.1

holds. ���
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