ON PRIMITIVE AXIAL ALGEBRAS OF JORDAN TYPE

J. I. HALL^{1,a}, Y. SEGEV^{2,b} AND S. SHPECTOROV^{3,c}

Dedicated to Professor Robert L. Griess, Jr. on the occasion of his 71st birthday

¹Department of Mathematics, Michigan State University, Wells Hall, 619 Red Cedar Road, East Lansing, MI 48840, United States.

^aE-mail: jhall@math.msu.edu

²Department of Mathematics, Ben-Gurion University, Beer-Sheva 84105, Israel.

- ^bE-mail: yoavs@math.bgu.ac.il
- ³School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham, B15 2TT, United Kingdom.

 c E-mail: s.shpectorov@bham.ac.uk

Abstract

In this note we give an overview of our knowledge regarding primitive axial algebras of Jordan type half and connections between 3-transposition groups and Matsuo algebras. We also show that primitive axial algebras of Jordan type η admit a Frobenius form, for any η .

1. Introduction

The purpose of this note is threefold. In §2 we give an overview of our knowledge regarding *primitive axial algebras of Jordan type half.* This is taken from [2]. In fact we focus in §2 on one of the main results in [2] which characterizes Jordan algebras of Clifford type amongst primitive axial algebras of Jordan type half. The primitive axial algebras of Jordan type $\eta \neq \frac{1}{2}$ are reviewed (amongst other things) by Jon Hall in another paper of this volume. In §3, we complete, for the case $\eta = \frac{1}{2}$, a result connecting 3-transposition groups and Matsuo algebras, established in [1, Theorem 6.3] for $\eta \neq \frac{1}{2}$. In §4 we show that any primitive axial algebra of Jordan type η (any η) admits a Frobenius form.

Received May 9, 2017 and in revised form September 14, 2017.

AMS Subject Classification: Primary: 17A99; Secondary: 17C99, 17B69.

Key words and phrases: Axial algebra, 3-transposition, Jordan algebra, Frobenius form.

We start by recalling a few definitions. We do not give the historical background as it can be best found in the introduction to [1].

All algebras A in this note are *commutative*, *non-associative* over a field \mathbb{F} of *characteristic not* 2.

For $a \in A$ the adjoint operator ad_a is multiplication by a, so

$$\operatorname{ad}_a \colon A \to A, \ x \mapsto xa.$$

An axis in A is, by definition, a semisimple idempotent, i.e., an idempotent whose minimal ad-polynomial has few distinct linear factors; where the minimal ad-polynomial is the minimal polynomial of the linear operator ad_a (we are not assuming that A is finite dimensional, however, we are assuming that ad_a has a minimal polynomial).

Axial algebras, introduced recently by Hall, Rehren and Shpectorov ([1]), are, by definition, algebras generated by axes. When certain *fusion rules*, i.e. multiplication rules, between the eigenspaces corresponding to an axis, are imposed the structure of axial algebras remains interesting yet it is more rigid.

Given an element $a \in A$ and a scalar $\lambda \in \mathbb{F}$, the λ -eigenspace of ad_a is denoted $A_{\lambda}(a)$, so:

$$A_{\lambda}(a) := \{ x \in A \mid xa = \lambda x \}.$$

(We allow $A_{\lambda}(a) = 0.$)

Axial algebras of Jordan type η , where $\eta \notin \{0,1\}$ is fixed, are algebras generated by a set of axes \mathcal{A} such that for each $a \in \mathcal{A}$:

- (1) The minimal ad-polynomial of a divides $(x-1)x(x-\eta)$.
- (2) The *fusion rules* imitate the *Peirce multiplication rules* in Jordan algebras. These fusion rules are:

$$A_{1}(a)A_{1}(a) \subseteq A_{1}(a) \quad \text{and} \quad A_{0}(a)A_{0}(a) \subseteq A_{0}(a),$$
$$A_{1}(a)A_{0}(a) = \{0\},$$
$$(A_{0}(a) + A_{1}(a))A_{\eta}(a) \subseteq A_{\eta}(a), \quad \text{and} \quad A_{\eta}(a)^{2} \subseteq A_{0}(a) + A_{1}(a).$$

In particular, if we set

$$A_{+}(a) = A_{1}(a) \oplus A_{0}(a)$$
 and $A_{-}(a) = A_{\eta}(a)$.

then

$$A_{\delta}(a)A_{\epsilon}(a) \subseteq A_{\delta\epsilon}(a)$$

for $\delta, \epsilon \in \{+, -\}$.

Thus, for example, Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$, provided that they are generated by idempotents.

An axis $a \in A$ is absolutely primitive if $A_1(a) = \mathbb{F}a$ (this is stronger than the usual notion of primitivity). We call an absolutely primitive axis asatisfying (1), (2) above an η -axis.

A primitive axial algebra of Jordan type η is an algebra generated by η axes. For $\eta \neq \frac{1}{2}$, primitive axial algebras of Jordan type η were thoroughly analyzed by Hall, Rehren, and Shpectorov in [1]. The case $\eta = \frac{1}{2}$, is much less understood and is of a different nature. This case is the focus of [2] and of §§2,3 of this note.

Given an η -axis $a \in A$, recall that

$$A = \overbrace{A_1(a) \oplus A_0(a)}^{A_+(a)} \oplus \overbrace{A_\eta(a)}^{A_-(a)}.$$

The map $\tau(a): A \to A$ defined by $x^{\tau(a)} = x_+ - x_-$, where $x = x_+ + x_- \in A_+(a) + A_-(a)$, is an automorphism of A of order 1 or 2. It is called the *Miyamoto involution corresponding to a*.

1.1. Jordan algebras of Clifford type

A Jordan algebra of Clifford type J(V, B) consists of the following information:

- (1) A vector space V over \mathbb{F} together with a symmetric bilinear form B on V. The corresponding quadratic form is denoted q(v) = B(v, v).
- (2) The Jordan algebra J(V, B) is $\mathbb{F1} \oplus V$ with multiplication defined by

 $\mathbb{1}$ is the identity and $v * w = B(v, w)\mathbb{1}$, $\forall v, w \in V$.

The algebra J(V, B) comes from the associative *Clifford algebra* Cl(V, q): it is a sub-Jordan algebra of $Cl(V, q)^+$, where, as usual, \mathfrak{A}^+ denotes the special Jordan algebra that emerges from the associative algebra \mathfrak{A} .

Let J = J(V, B). It is easy to check that:

- (a) For $u \in V$ and $\alpha \in \mathbb{F}$, the element $\alpha \mathbb{1} + u$ is an idempotent if and only if $\alpha = \frac{1}{2}$ and $q(u) = \frac{1}{4}$.
- (b) Assume that $a = \frac{1}{2}\mathbb{1} + u$ is an idempotent in J. Then
 - (i) $J_1(a) = \mathbb{F}a$, so a is a $\frac{1}{2}$ -axis. (Thus J(V, B) is a primitive axial algebra of Jordan type $\frac{1}{2}$ iff it is generated by idempotents.)
 - (ii) $J_0(a) = \mathbb{F}(\mathbb{1} a)$ (of course $\mathbb{1} a$ is a $\frac{1}{2}$ -axis), and

(iii)
$$J_{\frac{1}{2}}(a) = u^{\perp} = J_{\frac{1}{2}}(1-a)$$
, where $u^{\perp} = \{v \in V \mid B(u,v) = 0\}$.

(c) It follows that $\tau(a) = \tau(\mathbb{1} - a)$, for any $\frac{1}{2}$ -axis a.

The purpose of §2 is to show that property (c) above essentially characterizes Jordan algebras of Clifford type amongst primitive axial algebras of Jordan type $\frac{1}{2}$.

2. Primitive Axial Algebras of Jordan Type Half

Throughout this section A is a primitive axial algebra of Jordan type η , generated by a set \mathcal{A} of η -axes.

Let Δ be the graph on the set of all η -axes of A, where distinct a, b form an edge iff $ab \neq 0$. Let also $\Delta_{\mathcal{A}}$ be the full subgraph of Δ on the set \mathcal{A} . The purpose of this section is to sketch a proof of the following theorem:

Theorem 2.1. Assume that Δ_A is connected and that there are two distinct η -axes $a, b \in A$ such that $\tau(a) = \tau(b)$. Then $\eta = \frac{1}{2}$, a + b = 1 is the identity of A, and A is a Jordan algebra of Clifford type.

In the remainder of this section we will sketch a proof of Theorem 2.1. First we need a theorem that enables us to identify A as a Jordan algebra of Clifford type in the case $\eta = \frac{1}{2}$.

Theorem 2.2. Let $\eta = \frac{1}{2}$. Assume that A contains two $\frac{1}{2}$ -axes $a, b \in \mathcal{A}$ such that $a+b = \mathbb{1}_A$ and such that $v_a v_c \in \mathbb{F1}_A$, for all $c \in \mathcal{A}$, where $v_c = c - \frac{1}{2}\mathbb{1}_A$. Then A is a Jordan algebra of Clifford type.

We do not include a proof of Theorem 2.2, see [2, Theorem 5.4].

We will need some information about 2-generated subalgebras of A. This information is taken from [1]. Let $a, b \in \Delta$ with $a \neq b$. We denote by $N_{a,b}$ the subalgebra generated by a and b. If $N_{a,b}$ contains an identity element, we denote it by $1_{a,b}$. Note that by [1], 2-generated subalgebras are at most 3-dimensional.

Lemma 2.3 (Lemma 3.1.2 in [2]). Let $a, b \in \Delta$ with $a \neq b$. Then $N_{a,b}$ is 2-dimensional precisely in the following cases:

- (1) ab = 0; we then denote: $N_{a,b} = 2B_{a,b}$.
- (2) $\eta = -1, ab = -a b;$ we then denote: $N_{a,b} = 3C(-1)_{a,b}^{\times}$.
- (3) $\eta = \frac{1}{2}, ab = \frac{1}{2}a + \frac{1}{2}b$; we then denote: $N_{a,b} = J_{a,b}$.

Furthermore,

(4) the algebras $N_{a,b}$ in cases (2) and (3) above do not have an identity element.

The following proposition deals with 2-generated 3-dimensional subalgebras.

Proposition 2.4 (Proposition 4.6 [1]). Let $a, b \in \Delta$ with $a \neq b$. Then $N_{a,b}$ is 3-dimensional precisely when $ab \neq 0$ and there exists $0 \neq \sigma \in N_{a,b}$ and a scalar $\varphi = \varphi_{a,b} \in \mathbb{F}$ such that if we set $\pi = \pi_{a,b} = (1 - \eta)\varphi - \eta$, then

- (1) $ab = \sigma + \eta a + \eta b;$
- (2) $\sigma v = \pi v$, for all $v \in \{a, b, \sigma\}$.

furthermore

(3) $N_{a,b}$ contains an identity element if and only if $\pi \neq 0$, in which case $1_{a,b} = \frac{1}{\pi}\sigma$.

When $N_{a,b}$ is 3-dimensional we denote: $N_{a,b} = B(\eta, \varphi)_{a,b}$, where $\varphi \in \mathbb{F}$ is the scalar mentioned above.

From now on we assume that $\Delta_{\mathcal{A}}$ is connected. Note that by [2, Lemma 6.4], $\Delta_{\mathcal{A}}$ is connected iff Δ is connected. Further, we assume that $a, b \in \Delta$ are distinct with $\tau(a) = \tau(b)$.

Proposition 2.5 (Proposition 6.5 in [2]). ab = 0 and

- (1) for any $c \in \Delta \setminus \{a, b\}$ exactly one the following holds:
 - (i) ac = bc = 0.
 - (ii) $\eta = \frac{1}{2}$, and for some $x \in \{a, b\} = \{x, y\}$, we have $N_{x,c} = B(\frac{1}{2}, 0)_{x,c}$ is 3-dimensional, $N_{y,c} = J_{y,c}$ and $N_{y,c} \subset N_{x,c}$. Further $a + b = 1_{x,c}$.
 - (iii) $\eta = \frac{1}{2}$, $N_{a,c} = N_{b,c}$ is 3-dimensional and $a + b = 1_{a,c}$.
- (2) If d is an η -axis in A such that $\tau(d) = \tau(a)$, then $d \in \{a, b\}$.

Proof sketch. By [2, Lemma 3.2.1], for any $c \in \Delta$, we have $ac = 0 \iff c^{\tau(a)} = c$, and since, by definition, $a^{\tau(b)} = a^{\tau(a)} = a$, we see that ab = 0.

If ac = 0, then, as above bc = 0 (and vice versa), so (i) holds. Hence we may assume that $ac \neq 0 \neq bc$.

If $\eta \neq \frac{1}{2}$, then by [1, Proposition 6.5], and since Δ is connected, a = b, a contradiction. Thus $\eta = \frac{1}{2}$.

Now consider

$$V := N_{c,c^{\tau(a)}} \subseteq N_{a,c} \cap N_{b,c}.$$

V is either 2 or 3-dimensional. If V is 3-dimensional, then $N_{a,c} = V = N_{b,c}$, and since ab = 0, one shows that $a + b = 1_{a,c}$ ([2, Lemma 3.2.5]), so (iii) holds.

So suppose V is 2-dimensional. If both $N_{a,c}$ and $N_{b,c}$ are 2-dimensional, then they both equal to $N_{a,b} = \mathbb{F}a \oplus \mathbb{F}b$. But then c = a or b, a contradiction.

Therefore without loss $N_{a,c}$ is 3-dimensional and V is 2-dimensional. If $V = N_{b,c}$ then (ii) holds: Clearly $N_{b,c} \subset N_{a,c}$ and $a + b = 1_{a,c}$, and then a careful analysis of the situation gives (ii).

The case where both $N_{a,c}$ and $N_{b,c}$ are 3-dimensional and V is 2-dimensional is the hardest case and some precise work is required to get a contradiction.

Proposition 2.6. $\eta = \frac{1}{2}$ and

- (1) $xa \neq 0 \neq xb$, for all $x \in \Delta \setminus \{a, b\}$;
- (2) A contains an identity element 1 = a + b;
- (3) for any $x \in \Delta$ such that $N_{a,x}$ is 3-dimensional we have $\mathbb{1} = \mathbb{1}_{a,x}$.

Proof. Let d(,) be the distance function on Δ . Let

$$\Delta_1(a) := \{ x \in \Delta \mid d(a, x) = 1 \}.$$

Since Δ is connected $\Delta_1(a) \neq \emptyset$. Also, by Proposition 2.5(1i), $\Delta_1(a) = \Delta_1(b)$. Let $c \in \Delta_1(a)$. By Proposition 2.5, $\eta = \frac{1}{2}$ and after perhaps interchanging *a* and *b*, $N_{a,c}$ is 3-dimensional and $a + b = 1_{a,c}$. Set

$$1 = 1_{a,c} = a + b,$$

then

$$\mathbb{1}c = c$$
, for all $c \in \Delta_1(a)$.

Let $y \in \Delta \setminus \Delta_1(a)$ be at distance 2 from a in Δ , and let

$$x \in \Delta_1(a) \cap \Delta_1(y).$$

Without loss $N_{a,x}$ is 3-dimensional and $1 = 1_{a,x}$. Now

- $ay = 0 = by \implies \mathbb{1}^{\tau(y)} = (a+b)^{\tau(y)} = a^{\tau(y)} + b^{\tau(y)} = a+b = \mathbb{1}.$
- $1^{\tau(x)} = 1$ because $1 = 1_{a,x}$.

•
$$1y = 0$$
 so $1y^{\tau(x)} = 0$.

- 1x = x so $1x^{\tau(y)} = x^{\tau(y)}$.
- $W := \operatorname{Span}(\{y, y^{\tau(x)}\}) \cap \operatorname{Span}(\{x, x^{\tau(y)}\}) \neq \{0\}$. Indeed, W is the intersection of two 2-dimensional subspaces of $N_{x,y}$ which is of dimension at most 3.
- 1 both annihilates and acts as identity on W, a contradiction.

Hence $\Delta_1(a) = \Delta \setminus \{a, b\}$ and clearly d(a, b) = 2 in Δ . But now, as we saw above, $\mathbb{1}c = c$ for all $c \in \Delta$. It follows that $\mathbb{1}$ is the identity of A and (3) holds as well.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We show that the hypotheses of Theorem 2.2 are satisfied. By Proposition 2.6, $\eta = \frac{1}{2}$ and $a + b = \mathbb{1}_A$. Let $c \in \Delta$. Then

$$v_a v_c = (a - \frac{1}{2}\mathbb{1})(c - \frac{1}{2}\mathbb{1}) = ac - \frac{1}{2}a - \frac{1}{2}c + \frac{1}{4}\mathbb{1} = \sigma_{a,c} + \frac{1}{4}\mathbb{1}.$$

Clearly $v_a v_c \in \mathbb{F}1$ if $c \in \{a, b\}$. Otherwise, by Proposition 2.6(1), $ac \neq 0$. If $N_{a,c}$ is 2-dimensional, then since $ac \neq 0$, $\sigma_{a,c} = 0$, and so $v_a v_c \in \mathbb{F}1$. If $N_{a,c}$ is 3-dimensional, then by Proposition 2.6(3), $1 = 1_{a,c}$. Furthermore by [1], $\sigma_{a,c} = \pi_{a,c} 1_{a,c} = \pi_{a,c} 1$, for some $\pi_{a,c} \in \mathbb{F}$, and again $v_a v_c \in \mathbb{F}1$.

3. 3-transpositions and Matsuo Algebras

Recall that a set of axes \mathcal{A} is closed iff $a^{\tau_b} \in \mathcal{A}$, for all $a, b \in \mathcal{A}$. In this section A is a primitive axial algebra of Jordan type η generated by a closed set of η -axes \mathcal{A} , such that $|\mathcal{A}| > 1$.

Let G be a group generated by a normal set of involutions D. Recall that D is called a set of 3-transpositions in G if $|st| \in \{1, 2, 3\}$, for all $s, t \in D$. The group G is then called a 3-transposition group.

Let D be a normal set of 3-transpositions in the group G that generates G. The Matsuo algebra associated with the pair (G, D), denoted here $M_{\delta}(G, D)$, is defined as follows. As a vector space over \mathbb{F} it has the basis D. Multiplication is defined for $x, y \in D$ as follows

$$x \cdot y = \begin{cases} x, & \text{if } y = x \\ 0, & \text{if } |xy| = 2 \\ \delta(x + y - x^y), & \text{if } |xy| = 3. \end{cases}$$

This is extended by linearity to the entire algebra. (Note that we denote multiplication in G by juxtaposition and in $M_{\delta}(G, D)$ by dot.) By [1, Theorem 6.2], $M_{\delta}(G, D)$ is a primitive axial algebra of Jordan type 2δ .

The purpose of this section is to prove the following Theorem:

Theorem 3.1. Suppose that the graph $\Delta_{\mathcal{A}}$ is connected. Let $D := \{\tau_a \mid a \in \mathcal{A}\}$ and $G = \langle D \rangle$. Assume that the map $a \mapsto \tau_a$ on \mathcal{A} is injective and that D is a set of 3-transpositions in G. Then A is a quotient of the Matsuo algebra $M_{\frac{n}{2}}(G, D)$.

Remark 3.2. Theorem 3.1 was proved in [1, Theorem 6.3] for $\eta \neq \frac{1}{2}$. The proof for $\eta = \frac{1}{2}$ needed a correction, in view of [2]. Note that the summand $\bigoplus_{i \in I} \mathbb{F}$ does not appear in Theorem 3.1 since we are assuming that $\Delta_{\mathcal{A}}$ is connected. We also mention that for $\eta \neq \frac{1}{2}$, the map on \mathcal{A} defined by $a \mapsto \tau_a$ is always injective, by [2, Proposition 6.5], and since $\Delta_{\mathcal{A}}$ is connected.

We included a proof of Theorem 3.1 for all η for completeness.

Lemma 3.3. $ab = \frac{\eta}{2}a + \varphi_{a,b}b - \frac{\eta}{2}a^{\tau_b}$, for all $a, b \in \mathcal{A}$.

Proof. Clearly this holds when a = b (since, by definition, $\varphi_{a,a} = 1$, and $a^{\tau_a} = a$), so assume $a \neq b$. Suppose first that $N_{a,b}$ is 2-dimensional. We use [2, Lemma 3.1.2]. If $N_{a,b} = 2B_{a,b}$, then $ab = 0, \varphi_{a,b} = 0$, and $a^{\tau_b} = a$ (see also [2, Lemma 3.2.1]), so the claim holds.

Suppose next that $N_{a,b} = 3C(-1)_{a,b}^{\times}$. Then $\eta = -1, ab = -a - b, \varphi_{a,b} = -\frac{1}{2}$ and $a^{\tau_b} = -a - b$ (see also [2, Lemma 3.1.8]), so the claim holds.

Assume that $N_{a,b} = J_{a,b}$. Then $\eta = \frac{1}{2}, ab = \frac{1}{2}a + \frac{1}{2}b, \varphi_{a,b} = 1$ and $a^{\tau_b} = 2b - a$ (see also [2, Lemma 3.1.9]), so again the claim holds.

We may assume that $N_{a,b}$ is 3-dimensional. Set $\varphi := \varphi_{a,b}$. By [2, Theorem 3.1.3(6)], $a^{\tau(b)} = -\frac{2}{\eta}\sigma - \frac{2(\eta-\varphi)}{\eta}b - a$. Also, $\sigma = ab - \eta a - \eta b$. Hence we get

$$\frac{2}{\eta}\sigma = -a - \frac{2(\eta - \varphi)}{\eta}b - a^{\tau_b}$$
$$\iff \sigma = -\frac{\eta}{2}a - (\eta - \varphi)b - \frac{\eta}{2}a^{\tau_b}$$
$$\iff ab = \frac{\eta}{2}a + \varphi b - \frac{\eta}{2}a^{\tau_b}.$$

Corollary 3.4 (See Corollary 1.2 in [1]). A is spanned over \mathbb{F} by \mathcal{A} .

Proof. This is immediate from Lemma 3.3 and the definition of a closed set of axes. \Box

Lemma 3.5. Suppose that

the map
$$a \mapsto \tau_a$$
 on \mathcal{A} is injective. (*)

Let $a, b \in \mathcal{A}$ be distinct. Then

(1) if $(\tau_a \tau_b)^2 = 1$, then ab = 0.

(2) if $(\tau_a \tau_b)^3 = 1$, then $\varphi_{a,b} = \frac{\eta}{2}$.

Proof. (1): By [2, Lemmas 3.2.7(2) and 3.1.6(2)] and by (*), $N_{a,b} = 2B_{a,b}$, so (1) holds (see also [2, Lemma 3.1.2(1a)]).

(2): If $\eta \neq \frac{1}{2}$, then (2) follows from [1, Proposition 4.8]. So suppose $\eta = \frac{1}{2}$. By [2, Lemma 3.2.7(1) and Corollary 3.3.2] and by (*), we get $\varphi_{a,b} = \frac{1}{4}$.

[December

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Set $M := M_{\frac{\eta}{2}}(G, D)$. We claim that the map

$$f: M \to A: \tau_a \mapsto a,$$

extended by linearity is a surjective algebra homomorphism. Note that f is well defined since the map $a \mapsto \tau_a$ is injective on \mathcal{A} .

Now f is surjective by Corollary 3.4. Next we need to check that

$$f(\tau_a \cdot \tau_b) = ab, \text{ for all } a, b \in \mathcal{A}.$$
 (*)

If a = b, then $\tau_a \cdot \tau_b = \tau_a$, and ab = a, so (*) holds.

If $|\tau_a \tau_b| = 2$, then $\tau_a \cdot \tau_b = 0$, while by Lemma 3.5(1), ab = 0, so (*) holds in this case as well.

Finally assume that $|\tau_a \tau_b| = 3$. Then

$$\tau_a \cdot \tau_b = \frac{\eta}{2} (\tau_a + \tau_b - \tau_a^{\tau_b}) = \frac{\eta}{2} (\tau_a + \tau_b - \tau_a^{\tau_b}),$$

where the last equality follows from the standard fact that $\tau_a^{\tau_b} = \tau_{a^{\tau_b}}$. Thus $f(\tau_a \cdot \tau_b) = \frac{\eta}{2}(a + b - a^{\tau_b})$. However, by Lemma 3.5(2) and Lemma 3.3, $ab = \frac{\eta}{2}(a + b - a^{\tau_b})$, so (*) holds in this case as well and the proof of the theorem is complete.

4. The Existence of a Frobenius Form

Recall that a non-zero bilinear form (\cdot, \cdot) on an algebra A is called *Frobenius* if the form associates with the algebra product, that is,

$$(xy,z) = (x,yz)$$

for all $x, y, z \in A$.

For primitive axial algebras of Jordan type η , we specialize the concept of Frobenius form further by asking that the condition (e, e) = 1 be satisfied for each η -axis e.

The purpose of this section is to prove the following theorem:

Theorem 4.1. Let A be a primitive axial algebra of Jordan type η . Then A admits a Frobenius form (\cdot, \cdot) . Furthermore, $(e, u) = \varphi_e(u)$, for any η -axis $e \in A$ and any $u \in A$.

The proof of Theorem 4.1 depends on two properties of primitive axial algebras of Jordan type. The first is Corollary 3.4. The second is proven in [1] (Lemma 4.2 below).

For an η -axis $e \in A$, let φ_e be the projection function with respect to e. That is, for $u \in A$, we have that $u = \varphi_e(u)e + u_0 + u_\eta$, where u_0 and u_η are eigenvectors of the adjoint linear transformation ad_e for the eigenvalues 0 and η , respectively.

Lemma 4.2 (Lemma 4.4 in [1]). For a primitive axial algebra A of Jordan type and for any η -axes $e, f \in A$, we have $\varphi_e(f) = \varphi_f(e)$.

Note that by [1] the constant $\varphi_{a,b}$, that we used earlier for η -axes a, b, is the same as $\varphi_a(b)$.

Proof of Theorem 4.1. We start by defining the bilinear form (\cdot, \cdot) on A. Using Corollary 3.4 we can select a basis \mathcal{B} of A consisting of η -axes, and we let

$$(a, b) = \varphi_a(b), \text{ for all } a, b \in \mathcal{B}.$$

Extending by linearity we get the bilinear form (\cdot, \cdot) . Note that Lemma 4.2 implies that (\cdot, \cdot) is symmetric.

Lemma 4.3. (1) $(e, u) = \varphi_e(u)$, for all η -axes $e \in A$ and all $u \in A$;

- (2) (e, e) = 1, for all η -axes $e \in A$;
- (3) (\cdot, \cdot) is invariant under automorphisms of A.

Proof. (1&2): Let e be an η -axis and suppose that

$$\varphi_e(b) = (e, b), \text{ for all } b \in \mathcal{B}.$$
 (*)

Since φ_e is linear,

$$\varphi_e(u) = \varphi_e(\sum_{b \in \mathcal{B}} \alpha_b b) = \sum_{b \in \mathcal{B}} \alpha_b \varphi_e(b)$$

$$= \sum_{b \in \mathcal{B}} \alpha_b(e, b) = (e, \sum_{b \in \mathcal{B}} \alpha_b b) = (e, u),$$

and (1) holds for e. Now if $e = a \in \mathcal{B}$, then (*) holds by definition, so (1) holds for a. Suppose $e \notin \mathcal{B}$. Let $b \in \mathcal{B}$. Then $\varphi_e(b) = \varphi_b(e)$, by Lemma 4.2, and $\varphi_b(e) = (b, e)$, as (1) holds for b. Finally, since (\cdot, \cdot) is symmetric (b, e) = (e, b), so $\varphi_e(b) = (e, b)$, and (*) holds for any η -axis e. This shows that (1) holds.

In particular, for every η -axis $e \in A$, we have that (e, e) = 1, since, clearly, $\varphi_e(e) = 1$. Thus (2) holds.

(3): Let $\psi \in \operatorname{Aut}(A)$, if $u = \varphi_e(u)e + u_0 + u_\eta$ is the decomposition of $u \in A$ with respect to the η -axis e, then $u^{\psi} = \varphi_e(u)e^{\psi} + u_0^{\psi} + u_\eta^{\psi}$ is the decomposition of u^{ψ} with respect to the η -axis e^{ψ} . Hence $\varphi_{e^{\psi}}(u^{\psi}) = \varphi_e(u)$, and so $(e^{\psi}, u^{\psi}) = (e, u)$. Finally, taking an arbitrary $v \in A$ and decomposing it with respect to the basis \mathcal{B} as $v = \sum_{b \in \mathcal{B}} \alpha_b b$, we get that $(v^{\psi}, u^{\psi}) =$ $(\sum_{b \in \mathcal{B}} \alpha_b b^{\psi}, u^{\psi}) = \sum_{b \in \mathcal{B}} \alpha_b(b^{\psi}, u^{\psi}) = \sum_{b \in \mathcal{B}} \alpha_b(b, u) = (\sum_{b \in \mathcal{B}} \alpha_b b, u) =$ (v, u). So indeed, (\cdot, \cdot) is invariant under the automorphisms of A.

Lemma 4.4. For every η -axis $e \in A$, different eigenspaces of ad_e are orthogonal with respect to (\cdot, \cdot) .

Proof. Clearly, if $u \in A_0(e) + A_\eta(e)$ then $(e, u) = \varphi_e(u) = 0$. Hence $A_1(e) = \mathbb{F}e$ is orthogonal to both $A_0(e)$ and $A_\eta(e)$. It remains to show that these two are also orthogonal to each other. Let $u \in A_0(e)$ and $v \in A_\eta(e)$, the fact that (\cdot, \cdot) is invariant under τ_e gives us $(u, v) = (u^{\tau_e}, v^{\tau_e}) = (u, -v) = -(u, v)$. Clearly, this means that (u, v) = 0.

We are now ready to complete the proof that (\cdot, \cdot) associates with the algebra product. Note that the identity

$$(x, yz) = (xy, z)$$

that we need to prove is linear in x, y, and z. In particular, since A is spanned by η -axes, we may assume that y is an η -axis. Furthermore, since A decomposes as the sum of the eigenspaces of ad_y , we may assume that xand z are eigenvectors of ad_y , say, for the eigenvalues μ and ν . We have two cases: If $\mu = \nu$ then

$$(x, yz) = (x, \nu z) = \nu(x, z) = \mu(x, z) = (\mu x, z) = (yx, z) = (xy, z)$$

If $\mu \neq \nu$ then

$$(x, yz) = \nu(x, z) = 0 = \mu(x, z) = (xy, z),$$

since $A_{\mu}(y)$ and $A_{\nu}(y)$ are orthogonal to each other. Thus, in both cases we have the desired equality (x, yz) = (xy, z), proving that the form (\cdot, \cdot) is Frobenius. Also, by Lemma 4.3(1), the second part of Theorem 4.1 holds.

References

- J. I. Hall, F. Rehren and S. Shpectorov, Primitive axial algebras of Jordan type, J. Algebra, 437 (2015), 79-115.
- J. I. Hall, Y. Segev and S. Shpectorov, Miyamoto involutions in axial algebras of Jordan type half, to appear in *Israel J. Math.* (https://arxiv.org/abs/1610.01307)