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Abstract

The symbiotic relationship between groups and algebras goes back at least to Sophus

Lie, who introduced Lie algebras to support the study of Lie groups. Later the classification

of finite dimensional, complex, semisimple Lie algebras was in turn reduced (primarily by

Weyl) to the classification of finite groups generated by Euclidean reflections.

The topics discussed here had a similar start. Algebras were introduced to aid in the

construction of finite simple groups, particularly those that are sporadic. These algebras

then found a broader context, and there groups were reintroduced to aid in construction

and classification.

Twenty years ago, Masahiko Miyamoto [40] observed that many OZ

vertex operator algebras admit automorphisms canonically associated with

the idempotents of the associated Griess algebra. Soon after that, Bob Griess

pointed out to me that Miyamoto and others were finding use for results of

mine about 3-transposition groups [10, 19, 20].

Similar algebra automorphisms have been found in other circumstances.

In each instance a central question is: what automorphism groups can be

generated by such elements? This survey paper1 examines such results,

particularly in the case where the automorphisms belong to a normal set of

3-transpositions.
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1. Some Sporadic Groups and Algebras

The earliest sporadic finite simple groups were constructed as permuta-

tion groups. In the mid-19th century, Mathieu discovered and constructed

the first five sporadic groups as multiply-transitive groups of small degree.

The next examples, discovered in the 1960’s, were constructed as permu-

tation groups of degree large enough to need careful computer calculation.

Their construction and analysis was aided by the fact that many of the per-

mutation representations had rank 3 [27]; that is, they were transitive with

the stabilizer of a point having exactly three orbits. Thus the permutation

representation carried extra structure—in this case a graph—that admitted

the group as automorphisms.

Bernd Fischer [11] constructed three sporadic groups as 3-transposition

groups. As such they are rank 3 permutation groups, acting by conjugation

on the 3-transposition class. We shall see below that there is extra geometric

structure on these representations.

From our point of view, the next major step was Simon Norton’s 1976

thesis (published as [41]) in which he constructed a conjectured 3-fold cover

of the largest Fischer group Fi′24 as the automorphism group of a commu-

tative, nonassociative algebra N ♮ of degree 783. Again, this arose as extra

structure coming from the permutation representation on the 3 × 306936

transpositions. From the character table, Norton observed that a 783-

dimensional constituent of the permutation representation occurs as a sum-

mand in its own symmetric square. That is, the constituent admits the

structure of a commutative algebra on which the group acts. Norton gave

a construction by hand of this algebra, which not only proved the existence

of the cover but also allowed relatively easy calculation within the group (in

contrast to viewing it as a permutation group of degree nearly a million).

Soon after this, Norton observed from hypothetical character values of

the conjectured Monster simple groupM that the group should act on a com-

mutative algebra of degree 196883 possessing an invariant bilinear form. In

a tour de force, Bob Griess gave a computer-free construction of this algebra

and so of M. More precisely, Griess [16, 17] constructed an algebra exten-

sion 196884 = 1+196883 having the additional property that the subalgebra

fixed by O2(C) is the Jordan algebra of symmetric 24 × 24 matrices. Here
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C is the group of module automorphisms from which Griess constructed the

algebra, thereby revealing C to be the centralizer in M of a 2B involution.

The Monster and its existence gave birth to large amounts of interesting

and difficult questions and work. Up to this point we have discussed algebras

in aid of groups, but now we see the other direction as well. Of particular

note is the Borcherds-Frenkel-Lepowsky-Meurman [2, 12, 13] construction of

a vertex algebra V ♮ that admits M and naturally embeds the 196883 algebra.

Miyamoto [40] viewed V ♮ in a more general context. A vertex operator

algebra is a type of Z-graded vertex algebra. Following Frenkel, Lepowsky,

and Meurman [13, §10.3], Miyamoto observed that for any OZ vertex oper-

ator algebra V (that is, V<0 = 0 = V1 and dimV0 = 1) the weight 2 piece

V2 naturally admits a commutative algebra, and he named these Griess al-

gebras. The piece V2 contains exceptional elements (conformal vectors) that

correspond to idempotents of the Griess algebra. Furthermore Miyamoto

noted that in many situations these idempotents induce automorphisms of

order 2 (involutions) on V and V2.

In the motivating special case V = V ♮ the algebra V2 = V ♮
2 is the

Conway-Griess-Norton real algebra M ♮, an extension 196884♮ = 1 + 196883

that is a deformation of Griess’ algebra 196884 and was studied by Conway

[7]. The conformal vectors/idempotents of M ♮ are Conway’s axes, and the

Miyamoto involutions are precisely the 2A involutions of M. The algebra

M ♮ is a compact Griess algebra, by which we mean that it arises from a real

vertex operator algebra and admits an invariant positive definite form.2

2. Norton Algebras

Some group theorists find vertex operator algebras too bulky and confus-

ing for their purposes. There have been efforts to separate a large part of the

group theoretic content from that broader context. Ivanov [28] isolated sev-

eral properties of the commutative algebra M ♮ and its Miyamoto involutions

to define a class of algebras admitting prescribed automorphisms, which he

called Majorana involutions. Hall, Rehren, and Shpectorov [22, 23] in turn

2As the helpful referee pointed out, while many vertex operator algebras admit invariant forms,
this may not be the case—especially for positive definite forms. The circumstances under which
a complex vertex operator algebra admits an invariant symmetric bilinear form were investigated
by Li [35].



158 J. I. HALL [June

put these into the broader category of axial algebras, where the existence of

Miyamoto involutions depends upon the presence of fusion (multiplication)

rules resembling those of the Griess algebras of Miyamoto.

We will get to axial algebras below, but now we return to Norton’s

original constructions and motivations.

As already mentioned, Simon Norton in [41] described his construction

of a 783-dimensional complex algebra N ♮ for 3 · Fi′24. The algebra is a

quotient (constituent) of the (conjectured) permutation representation on

3× 306936 transpositions. Norton went on in that paper to describe several

similar algebra-plus-group constructions, including the 196883 algebra for

the Monster. He next said:

The term “Norton algebra” was coined by J.H. Conway to de-

scribe a generic class of algebra on a small constituent of a natural

permutation representation, but no definition has been found that

includes these cases without being far too general.

This remains true.

The only precise definition of a Norton algebra in use today sits in an

even broader context than the one described by Norton, that of association

schemes—generalizations of the centralizer algebras for transitive permuta-

tion groups. The eigenspace decomposition of an association scheme gener-

alizes the constituent decomposition of the centralizer algebra and similarly

admits a natural algebra structure. Cameron, Goethals, and Seidel [5] de-

fined a Norton algebra to be such an eigenspace with multiplication given by

projection of the decomposition product. This admits numerous examples.

For instance, motivated by Scott’s Krein Condition [48], Cameron, Goethals,

and Seidel proved that essentially every rank 3 permutation representation

admits a nontrivial Norton algebra as defined. That is, at least one of the

nontrivial irreducible constituents of the permutation representation occurs

with positive multiplicity in its own symmetric square.

Norton preferred a narrower field. He went on to say:

However, in our special case, the present argument proves the

existence of the algebra in a particularly simple manner.
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We interpret this to mean that in the algebra, as constructed by Norton,

the multiplication constants with respect to the canonical spanning set are

described simply. With this in mind, we offer another too-general definition:

Definition 2.1. A local Norton ( LN) algebra (A,P) over F is an F-algebra

A spanned by a subset P of vectors, with the following properties:

(i) for x ∈ P, x2 = ǫx for a fixed ǫ ∈ F;

(ii) for each a, b ∈ P the 2-generated algebra ℓa,b = 〈a, b〉 has isomorphism

type from A, a given set of F-algebra isomorphism classes.

We may refer to A as the algebra with the generating set P to be un-

derstood from the context.

The vectors of P (or, at times, the 1-spaces they span) will be called

points. The 2-generated spaces of L = { ℓa,b | a, b ∈ P } are then lines. If

ǫ 6= 0 then the elements 1
ǫp for p ∈ P are idempotents in an algebra over

F. Thus we often choose ǫ to be 0 or 1, although there are situations where

other choices are appropriate [7, 40, 36, 37].

Under the definition ℓa,b = ℓb,a. All the examples we discuss are com-

mutative or skew.

For a permutation constituent algebra such as Norton’s N ♮, the set P is

the image of the set being permuted. In the examples discussed by Norton

each point generates a 1-dimensional subalgebra. The parameter ǫ is then

constant since the automorphism group induced by the permutation group

is transitive on P. The set A of isomorphism classes for 2-generated algebras

will be assumed small, corresponding to the permutation group having small

rank. For N ♮ the set A has size five.

The description of the algebra is local, in that the requirements only

discuss 1- and 2-generated subalgebras. There are usually other global con-

sequences or assumptions:

Definition 2.2. Possible global properties.

(a) For each a ∈ P there is a transposition ta ∈ AutF(A) with

(i) t2a = 1 6= ta always;

(ii) ata = a and ℓtaa,b = ℓa,b always.

(b) On A there is a nonzero bilinear form that is invariant in that 〈〈ij, k〉〉 =

〈〈i, jk〉〉 for all i, j, k ∈ A.
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Invariant forms have also been called associative forms and Frobenius forms

[22, 23].

The transposition property is natural in our discussion. When 2.2(a)

holds, we extend the terminology introduced by Norton (for the case of

3-transposition groups) by calling an LN algebra admitting such automor-

phisms a transposition algebra. The dihedral group 〈ta, tb〉 acts naturally on

the algebra ℓa,b, so these line-algebras are often called dihedral-algebras.

Both Norton’s algebra3 N ♮ and the Monster algebra M ♮ are transposi-

tion algebras admitting nondegenerate invariant forms.

The existence of an invariant form is not only interesting but very help-

ful.

Lemma 2.3. Let B be a commutative F-algebra that admits the invariant

bilinear from 〈〈·, ·〉〉 : B ×B −→ F. Then the radical

Rad(B) = {x ∈ B | 〈〈x, b〉〉 = 0 for all b ∈ B }

is an ideal of B.

Proof. The radical R = Rad(B) is clearly a subalgebra. As the form is

invariant, for r in the radical and x, v arbitrary in B we have

〈〈v, xr〉〉 = 〈〈vx, r〉〉 = 0 .

Therefore, for all x ∈ B and r ∈ R we also have xr = rx ∈ R; the radical R

is an ideal. ���

This often allows us to reduce to the study of simple algebras A admit-

ting forms with Rad(A) = 0; such forms are called nondegenerate.

3. Geometric Presentations of Lie Algebras I

We start with an example in which both desired LN global properties

2.2 for an algebra are consequences of its local definition. The construction is

due to Kaplansky [31], although a version was apparently known to him and

3thought of as an algebra of dimension 2× 783 over the reals
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others much earlier, as evidenced by papers by Block [1] and Kaplansky’s

student Hamelink [26].

Let V be an F2-vector space admitting the symplectic form (·, ·) (that is,

a bilinear form with (x, x) = 0 always). Let P be a subset of the nonradical

vectors in V with the following property:

if a, b ∈ P with (a, b) = 1, then a+ b ∈ P.

Theorem 3.1 (Kaplansky). Define on A =
⊕
a∈P

F2va the LN algebra with

presentation

v2a = 0 and vavb = (a, b)va+b

for all a, b ∈ P. Then A is a Lie algebra and 〈〈va, vb〉〉 = (a, b) extends to an

invariant symplectic form on A.

Here ǫ = 0 and the setA of size three contains algebras ℓa,b of dimensions

1, 2, and 3 for the respective cases a = b, a 6= b with (a, b) = 0, and a 6= b

with (a, b) = 1.

The elementary but crucial observation is that the restriction regarding

2-generated subalgebras actually determines the possibilities for 3-generated

subalgebras. The only nontrivial case is the critical:

Lemma 3.2. If linearly independent a, b, c ∈ P with (a, b) = 1 = (b, c) then

F1a+ F2b + F2c = S is a symplectic 3-subspace Sp3(2) of V ; that is, S has

radical of dimension 1. Furthermore S \Rad(S) = S ∩ P.

This has two direct consequences:

(i) The Jacobi identity and the definition of form invariance (as in 2.2(b))

are linear in each of their three variables. Thus for the theorem they

only need to be checked on the spanning set { va | a ∈ P }, where the

lemma can be applied.

(ii) The configuration P is left invariant by the group generated by the sym-

plectic transvections centered at members of P. Thus the LN algebra

A is in fact a transposition algebra with symplectic F2-transvections

playing the role of transpositions.
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Kaplansky [31] used the theorem to construct three infinite families of

simple Lie algebras over F2—one already found by Block [1] and two others

that appeared to be new (although one of those was essentially in Hamelink’s

thesis [26]).

The second consequence above—the existence of transposition auto-

morphisms—allows the application of early results of McLaughlin [39] both

to explain Kaplansky’s simple examples and to suggest a path to classifica-

tion.

Theorem 3.3 (McLaughlin [39]). There are exactly three types of finite

dimensional irreducible groups generated by symplectic F2-transvections:

Sym(n), Oǫ
2m(2), Sp2m(2) .

4. Transposition Groups and Algebras

We focus on those groups generated by conjugacy classes of k-transpo-

sitions, particularly Fischer’s 3-transpositions.

Definition 4.1 (Fischer [11]). Let D be a conjugacy class of elements of

order 2 in the group G = 〈D〉. Further assume that, for all d, e ∈ D, we have

|de| ≤ 3 . Then (G,D) is called a 3-transposition group and D is its class of

3-transpositions.

We may call G a 3-transposition group when the class D is evident.

There is an obvious extension to normal sets D, but the most important

case is that of a conjugacy class.

The case |de| = 3 occurs when the two involutions d and e generate a

dihedral group of order 6, a group that has many lives:

Dih6 = Sym(3) = W(A2) = Sp2(2) = O−
2 (2) = ORad

2 (3) = SU2(2) .

Fischer’s motivating example was the class of transpositions (that is, 2-

cycles) in a symmetric group, hence the name. But there are other examples

as well. Specifically, the symplectic F2-transvections of the previous section

are 3-transpositions; so the symmetric groups are joined by the other groups

from McLaughlin’s Theorem 3.3, the orthogonal and symplectic groups over
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F2. Our list of aliases suggests the two further infinite classes of nearly sim-

ple 3-transposition groups—orthogonal groups over F3 and their reflections;

unitary groups over F4 and their transvections.

Theorem 4.2 (Fischer [11]). A finite 3-transposition group with no non-

trivial solvable normal subgroup is symmetric; symplectic or orthogonal over

F2; orthogonal over F3; unitary over F4; or is isomorphic to one of the five

groups

PΩ+
8 (2)⋊Sym(3), PΩ+

8 (3)⋊Sym(3), F i22, F i23, F i24 .

The two triality groups have orthogonal 3-transposition groups of index

3, but the three other groups found by Fischer give rise to sporadic simple

groups—the first two are simple while the third has the simple index 2

subgroup Fi′24 (which we have mentioned earlier).

Fischer’s classification was extended by Cuypers and Hall [10], who re-

moved the finiteness condition and reduced the restriction on normal sub-

groups to requiring the center of G to be trivial. There are many additional

examples, but all are essentially variations on those found by Fischer.

The diagram of a set of 3-transpositions is the graph with that set as

vertex set, two connected by an edge precisely when their product has order

3. This has importance because the 3-transposition group generated by that

set is a quotient of the Coxeter group with the same simply-laced diagram.

We have:

(i) Two elements of a normal set S of 3-transpositions are conjugate in

the group G generated by the set precisely when they are in the same

connected components of the diagram of S, and G is a central product

of 3-transposition groups associated with those components, since the

corresponding results are already true for Coxeter groups.

(ii) The Weyl groups with simply-laced spherical Coxeter diagram An, Dn,

En are 3-transposition groups with their generating reflections con-

tained in the transposition class. The corresponding affine Weyl groups

W(X̃) for X ∈ {An,Dn, En} are not, but their quotients W2(X̃) and

W3(X̃) by, respectively, twice the root lattice and three times the

root lattice are. For instance, W(A2) = Sym(3) (as noted above) and

W(A3) = W2(Ã2) = Sym(4). Also W3(Ã2) = SU3(2)
′ of order 54.
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(iii) Especially, any set of three 3-transpositions has diagram that is either

spherical or affine, and so the group it generates is effectively known.

There is a natural generalization of Fischer’s definition.

Definition 4.3. Let D be a conjugacy class of elements of order 2 in the

group G = 〈D〉. Further assume that, for all d, e ∈ D, we have |de| ≤

k . Then (G,D) is called a k-transposition group and D is its class of k-

transpositions.

This is relevant for us because the Monster M is a 6-transposition group

[7]. For the conjugacy class of 2A involutions in M there are nine conjugacy

classes of 2-generated subgroups 〈d, e〉. These are dihedral subgroups of order

2k with k ≤ 6. The conjugacy class of the product de is then named kX for

X ∈ {A,B,C}, forming an extended E8 picture (attributed to McKay [7]):

The Monster algebras of dimension 196884 arise (at least as modules)

from the rank 9 conjugation action of M on its 2A class. Conway observed

that the 1-space of M ♮ fixed by the centralizer of a 2A involution contains

an idempotent, which he called an axis. The involution acts on M ♮ as

the corresponding Miyamoto involution. This reveals M ♮ as a transposition

algebra where the isomorphism classes for subalgebras generated by two axes

form a set A of size 9. If the 2A involutions d and e have product in class kX

(as given above), then the corresponding line/dihedral-algebra ℓd,e is named

kX.

These nine 2-generated subalgebras of M ♮ are described in detail by

Conway and Norton [7]. They naturally arise in other related situations.

Especially Sakuma [47] proved that in a compact Griess algebra (in the

sense of Miyamoto) any subalgebra generated by two Ising vectors (conformal

vectors of central charge 1
2 ) is isomorphic to one of these nine. The same

classification occurs in the more general contexts of [29] and [22]; see Section

7 for further discussion.
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Example 4.4 (Certain Conway-Norton-Sakuma algebras). Although M ♮

is an algebra over the reals, it makes sense to define these algebras over

arbitrary fields F.

(i) The algebra 1A is generated by the single axis z0 = 1 and is F.

(ii) The algebra 2B is the 2-dimensional associative algebra F ⊕ F with

{b0, b1} a basis of axes having the relations

b20 = b0 , b21 = b1 , b0b1 = 0 .

(iii) Assume char(F) 6= 2. The algebra 2A is a 3-dimensional algebra with

{a0, a1, a2} a basis of axes subject (for {i, j, k} = {0, 1, 2}) to the rela-

tions

a2i = ai , aiaj =
1
8(ai + aj − ak).

(iv) Assume char(F) 6= 2. The algebra 3C is a 3-dimensional algebra with

{c0, c1, c2} a basis of axes subject (for {i, j, k} = {0, 1, 2}) to the rela-

tions

c2i = ci , cicj =
1
64 (ci + cj − ck).

5. Point-line Geometry

5.1. Definitions and examples

We have used the terminology of points and lines in the context of

LN algebras because the associated presentations are often described via a

geometric “skeleton” of points and lines. For instance, Kaplansky’s algebras

of Theorem 3.1 were defined via a set of projective points and lines embedded

in a symplectic geometry over F2.

Definition 5.1.

(i) A point-line geometry (P,L) is a point set P and a line set L such that

each line is a subset of P of size at least 2.

(ii) A point-line geometry is a partial linear space if every pair of points

is in at most one line and a linear space if every pair of points is in a

unique line.
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(iii) A partial linear space (P,L) is a partial triple system if every line is a

3-subset of P; it is a Steiner triple system if it is additionally a linear

space.

(iv) A point-line geometry is connected if it is possible to “walk along” lines

from any point to any other. That is, the collinearity graph on its point

set is connected.

(v) A subspace (P ′,L′) of a point-line geometry (P,L) is a subset P ′ of

P that contains all points of every line of L meeting it in at least two

points, equipped with the line set L′ of all such lines.

(vi) A plane of a point-line geometry is a subspace generated by two inter-

secting lines—the intersection of all subspaces containing the two lines

and the points on them.

Example 5.2.

(i) The points and lines of any projective space form a linear space. Espe-

cially when the field is F2, the points and lines form the Steiner triple

system PGn(2) (where n is the rank, one less than the vector space

dimension).

(ii) Similarly the points and lines of any affine space form a linear space,

and over the field F3 we have the Steiner triple system AGn(3), where

n is the vector space dimension.

(iii) For Kaplansky’s algebras from Section 3 we are considering subspaces of

a symplectic geometry Spn(2), where the points are nonradical vectors

( 1-spaces) and the lines are the 2-spaces that are nondegenerate under

restriction of the form.

(iv) All planes of PGn(2) are PG2(2).

(v) All planes of AGn(3) are AG2(3). Equally well this is O+
3 (3): the 1-

spaces of square length in a nondegenerate orthogonal 3-space over F3

with lines the 2-spaces ORad
2 (3) whose radical has dimension 1. It is

also SU3(2): the singular 1-spaces in a nondegenerate unitary 3-space

over F4 with lines the nondegenerate 2-spaces.

(vi) All planes of Spn(2) are Sp3(2) = AG2(2)
∗, the symplectic space of

dimension 3 with radical of dimension 1. Equally well this is the dual

affine plane of order 2: the projective PG2(2) with a point and all lines

through it deleted. Sp3(2) is also called the Pasch configuration.
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5.2. Fischer spaces

We have seen above that the planes Sp3(2) and AG2(3) lead multiple

lives. For us, the most important subclass of point-line geometries will be:

Definition 5.3 (Buekenhout [4]). The connected partial triple system (P,L)

is a Fischer space provided its planes are Sp3(2) or AG2(3). It is said to be

of symplectic type if only Sp3(2) occurs.

Theorem 5.4 (Buekenhout [4]). Fischer spaces and 3-transposition groups

“are the same thing.”

Formally, appropriate categories of Fischer spaces and 3-transposition

groups are equivalent. Thus Fischer spaces were classified by Fischer [11]

and Cuypers and Hall [10]. Those of symplectic type were identified by Shult

[49] and Hall [19, 20].

We sketch a proof of the theorem:

(a) Let (P,L) be a Fischer space. For each p ∈ P define tp ∈

Sym(P) to be the involution that fixes p and each q not

collinear with p and switches q and r when {p, q, r} ∈ L.

Then D(P,L) = { tp | p ∈ P } is a conjugacy class of 3-

transpositions in the subgroup 〈D(P,L)〉 = G(P,L) of the

automorphism group Aut(P,L).

(b) Let the 3-transposition group G be generated by the class D

of 3-transpositions. Set P(D) = D, and let L(D) consist of

the triples D∩S as S runs through all D-generated subgroups

isomorphic to Sym(3). Then (P(D),L(D)) is a Fischer space.

(c) If we start with a Fischer space (P,L), move to the 3-trans-

position group G(P,L) as in (a) and then back as in (b), the

resulting Fischer space

(P(D(P,L)),L(D(P,L)))

is isomorphic to (P,L).

The first part can be checked within subspaces generated by a point and

a line of (P,L); it is immediate except in planes where it follows directly.

The second can be checked in 3-generated subgroups; each 3-subset of D has
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a diagram that is either spherical or affine as Coxeter diagram. The third

part then follows. Conjugacy corresponds to connectivity. See [19, (3.2)] for

details of these arguments.4

5.3. Triple and Matsuo algebras

Let (P,L) be a partial triple system. An associated triple algebra

A(P,L) is an LN algebra A =
⊕
p∈P

Fp with presentation

(i) i2 = ǫi for all i ∈ P;

(ii) ij = 0 if i 6= j but there is no k with {i, j, k} ∈ L;

(iii) ij = αi+ βj + γk when {i, j, k} ∈ L,

where α, β, γ, and ǫ are constants from F.

In an algebra A(P,L) associated with (P,L), each line-algebra ℓa,b is

determined by the line l ∈ L on the points a, b ∈ P. Especially ab = 0 if a, b

are not collinear in L, so in that case ℓa,b is a copy of the 2B algebra F⊕ F.

If the partial triple system (P,L) is disconnected, being the disjoint

union of two subspaces (P1,L1) and (P2,L2) with no point of P1 collinear

with any point of P2, then A(P,L) is the algebra direct sum of the two

algebras A(P1,L1) and A(P2,L2). This allows us to focus on connected

partial triple systems (P,L) when desirable.

Algebras A(P,L) for Fischer spaces (P,L) will appear in the next sec-

tion. Of related importance is the Matsuo algebra associated with a partial

triple system (P,L). It is the triple algebra A(P,L) =
⊕
p∈P

Fp given by

i2 = i and ij = α(i+ j − k) for {i, j, k} ∈ L ,

4The correspondence just discussed is not quite the category equivalence claimed above. For
(G,D) an arbitrary 3-transposition group, after the double transition

G
(b)
−→ (P(D),L(D))

(a)
−→ G(P(D),L(D))

we finish with G(P(D),L(D)) isomorphic to G/Z(G), not always isomorphic to G. To remedy
this and other problems, we must replace each 3-transposition group by an appropriate “uni-
versal central extension” and consider the subcategory of such universal groups. This is similar
to the situation encountered in [21].
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so that α = β = −γ and ǫ = 1. These were introduced by Matsuo and

Matsuo [38, 36, 37].

In Matsuo algebras each point yields an idempotent generating a 1A

algebra F.

For characteristic other than 2, the Matsuo line-algebras ℓi,j = ℓj,k = ℓi,k
where {i, j, k} ∈ L are said to have type 3C(η) for η = 2α, after [23]. Certain

of these are familiar (and motivate the notation).

Lemma 5.5.

(a) The algebra 3C is the Matsuo algebra 3C( 1
32).

(b) The algebra 2A is the Matsuo algebra 3C(14 ).

(c) The Matsuo algebra 3C(12) is a Jordan algebra.

As we shall discuss in Section 8, the case η = 1
2 is quite exceptional.

6. Geometric Presentations of Lie Algebras II

6.1. Kaplansky’s algebras

For the partial triple system (P,L), the triple algebra of Kaplansky type

A(P,L) =
⊕
p∈P

F2p is given by

i2 = 0 and ij = k for {i, j, k} ∈ L .

When (P,L) is a subspace of one of the symplectic partial triple systems

Spn(2), this is precisely one of Kaplansky’s algebras. These algebras have

been regularly rediscovered and studied. The definitive results are due to

Cuypers.

Theorem 6.1 (Cuypers [8]). Assume (P,L) is connected. The algebra

A(P,L) above is a Lie algebra if and only if (P,L) is a Fischer space of

symplectic type.

(i) This explains Kaplansky’s construction and gives a classification, since

Fischer spaces of symplectic type are classified.

(ii) McLaughlin’s symplectic transvections are recognized as examples of

symplectic 3-transpositions (hence the terminology).
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The algebras defined above are clearly commutative, so they can only

hope to be Lie algebras in characteristic 2. A slight variation gives access to

Lie algebras over arbitrary fields:

Theorem 6.2 (Brouwer, Cohen, Cuypers, Hall, Postma [3]). Given a con-

nected partial triple system (P,L), consider a point-line algebra B(P,L) =
⊕
p∈P

Fp given by

(i) i2 = 0 for all i ∈ P;

(ii) ij = 0 if i 6= j but there is no k with {i, j, k} ∈ L;

(iii) ij = ±k when {i, j, k} ∈ L.

Then the signs can be chosen so that B(P,L) is a Lie algebra if and only if

we have one of:

(a) (P,L) is a Fischer space of symplectic type;

(b) F has characteristic 3 and (P,L) consists of the points and lines disjoint

from a fixed subspace PGm(2) of a projective space PGm+2(2).

In all successful cases B(P,L) is uniquely determined up to isomorphism.

The new examples are associated with nonsimplicity of the Lie algebra

g2 in characteristic 3.

6.2. More Lie and non-Lie algebras from Fischer spaces

For (P,L) a Fischer space, consider the triple algebra A(P,L) =
⊕
p∈P

F2p

with

i2 = 0 and ij = i+ j + k for {i, j, k} ∈ L

so that ǫ = 0 and α = β = γ = 1. This algebra admits a natural invariant

symplectic form on P given by:

〈〈i, j〉〉 = 1 if i, j are distinct and collinear;

〈〈i, j〉〉 = 0 otherwise.

Set Ā(P,L) = A(P,L)/Rad(A(P,L)), still an algebra by Lemma 2.3.
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Cuypers, Horn, in ’t panhuis, and Shpectorov [9] studied these algebras

with an eye open for Lie algebras. They found a characterization in the same

spirit as Cuypers’ Theorem 6.1.

Theorem 6.3 (Cuypers, Horn, in ’t panhuis, Shpectorov [9]). The algebra

Ā(P,L) is a Lie algebra if and only if the Fischer space (P,L) contains no

subspace AG3(3), an affine 3-space over F3.

They next listed the appropriate Fischer spaces and examined the asso-

ciated Lie algebras.

Example 6.4 (Nice Lie Examples [9]). We have

PΩ+
8 (2) : 2 ≤ PΩ+

8 (2)⋊Sym(3) ≤ Fi22. The associated chain of quotient

algebras consists of Lie algebras.

(a) dimF2 Ā(PΩ
+
8 (2) : 2) = 8, an abelian Lie algebra;

(b) dimF2 Ā(PΩ
+
8 (2)⋊Sym(3)) = 26 (= 2 + 3 × 8), a Lie algebra of type

D4(2);

(c) dimF2(Ā(Fi22)) = 78, a Lie algebra of type 2E6(2).

Fischer had earlier shown Fi22 ≤ 2E6(2), and here we see that observation

in a broader context.

Cuypers, Horn, in ’t panhuis, and Shpectorov went on to calculate many

examples that were not Lie algebras.

Example 6.5 (Nice Non-Lie Examples [9]). We have

PΩ+
8 (3) : 2 ≤ PΩ+

8 (3)⋊Sym(3) ≤ Fi23. The associated chain of quotient

algebras contains no Lie algebras.

(a) dimF2 Ā(PΩ
+
8 (3) : 2) = 260;

(b) dimF2 Ā(PΩ
+
8 (3)⋊Sym(3)) = 782 (= 2 + 3× 260);

(c) Ā(Fi23) = Ā(PΩ+
8 (3)⋊Sym(3)) of dimension 782.

This suggests an elegant construction of the sporadic 3-transposition

group Fi23 as the automorphism group of a quotient triple algebra of di-

mension 782 arising naturally from the triality group PΩ+
8 (3)⋊Sym(3).

Our starting point was Simon Norton’s construction of 3 · Fi′24 as auto-

morphisms of a triple algebra of complex dimension 783. These last examples
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suggest an elegant F4-triple algebra version of the original Norton algebra

in dimension 783.

7. Axial Algebras with Ising Fusion

We begin with another algebra definition which, by itself, is too general.

An idempotent e in the F-algebra A is an axis if its associated adjoint linear

operator

ade : A −→ A given by a 7→ ae

is semisimple. That is, if the minimal polynomial of ade is square-free. For

associative algebras, the minimal polynomial divides x2−x and always splits.

For nonassociative algebras there may be additional eigenvalues and the

adjoint need not be semisimple. It is a well-known theorem [30, II.11] that

in Jordan algebras all idempotents are ad-semisimple but with eigenvalues

from {1, 0, 12}.

An axial algebra (A,A) is then a commutative algebra A generated by

a set of axes A. (Mention of the generating set A is sometimes omitted.)

Any Jordan algebra generated by idempotents gives an example. An axis is

primitive if it spans its own 1-eigenspace.5 Similarly, an axial algebra (A,A)

is primitive if it is generated by the set A of primitive axes.

We narrow the field by restricting the fusion properties of the idempo-

tents. For the subset Λ ⊆ F, a fusion rule is a map F : Λ× Λ −→ 2Λ. The

decomposition A =
⊕
λ∈Λ

Aλ obeys the fusion rule if, for all λ, µ ∈ Λ we have

AλAµ ⊆
∑

ν∈F(λ,µ)

Aν .

An axis e in A is an F-axis if Λ is a subset containing the eigenvalues of e

and the eigenspace decomposition for ade

A =
⊕

λ∈Λ

Aλ(e)

5This is a stricter definition of primitivity than is standard for Jordan algebras [30, p. 158].
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obeys F (where Aλ(e) is the λ-eigenspace for ade). An axial algebra (A,A)

is an F-axial algebra if it is generated by the set A of F-axes.

If we set F(λ, µ) = F for all pairs λ, µ then every idempotent is an F-

axis, and we have learned nothing. The cases of interest are those with each

F(λ, µ) small. For instance, if always |F(λ, µ)| ≤ 1 then we have a grading

by a magma within Λ ∪ {∅} whose multiplication satisfies λ ⋆ µ ⊆ F(λ, µ).

The original fusion rule of interest to us is Ising fusion I given by the

fusion table

+ −

I 1 0 1
4

1
32

1 1 ∅ 1
4

1
32

+ 0 ∅ 0 1
4

1
32

1
4

1
4

1
4 1, 0 1

32

− 1
32

1
32

1
32

1
32 1,0,14

Conway [7] observed that in M ♮ there are 1-dimensional subalgebras gen-

erated by ad-semisimple idempotents for Λ = {1, 0, 14 ,
1
32} (after rescaling)

and called such an element an axis. Miyamoto [40] noted that, with respect

to the embedding of M ♮ as V ♮
2 within the Monster vertex operator algebra

V ♮, these axes are spanned by conformal vectors of central charge 1
2 . Such

vectors give rise to vertex operator action by the Virasoro algebra of central

charge 1
2 . The representation theory of this Lie algebra is well-understood,

and Miyamoto used it to prove that the associated idempotents are primitive

I-axes. Indeed, Miyamoto proved this for the conformal vectors of central

charge 1
2 in any compact Griess algebra V2. (The vectors are sometimes

called Ising vectors [47].)

As noted by Miyamoto, a striking consequence of this is that associated

to each Ising idempotent e there is an automorphism te of the Griess algebra

A = V2 (and indeed of V itself). This is a simple consequence of the Ising

fusion rule. As suggested in the fusion table, we set Λ+ = {1, 0, 14} and
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Λ− = { 1
32}. Then the decomposition A = A+(e)⊕A−(e) is a grading of the

algebra A by the group {±1} = {±} of order 2:

Aδ(e)Aǫ(e) ⊆ Aδǫ(e) for δ, ǫ ∈ {±} .

Therefore

te : A −→ A given by te : a+ + a− 7→ a+ − a−

is an automorphism of A. We have te of order 1 or 2 depending upon whether

A 1
32
(e) is trivial. In the nontrivial case Miyamoto called te a τ -involution

(using notation τe). These give the motivating examples of what we call

Miyamoto involutions.

We have the crucial result:

Theorem 7.1 (Sakuma’s Theorem [47]). Let A be the compact Griess alge-

bra of an OZ vertex operator algebra. The subalgebra of A generated by two

Ising vectors is isomorphic to one of the nine algebras

1A, 2A, 3A, 4A, 5A, 6A, 2B, 4B, 3C

found by Conway and Norton [7] as subalgebras of M ♮ generated by two axes.

The four important examples 1A, 2B, 2A, 3C were given in 4.4.

Sakuma’s Theorem reveals the axial algebra generated by the Ising vec-

tors within a compact Griess algebra as a transposition algebra, the trans-

positions being provided by the τ -involutions.6

A compact Griess algebra has various properties in addition to being

a primitive Ising axial algebra [40]. It is a real algebra A equipped with a

symmetric bilinear form 〈〈·, ·〉〉 that:

(i) is invariant;

(ii) is positive definite;

(iii) satisfies the Norton inequality : 〈〈a, a〉〉〈〈b, b〉〉 ≥ 〈〈ab, ab〉〉 for all a, b ∈ A.

6This assumes τ 6= 1. See the next section for discussion of the case τ = 1.
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Ivanov [28, 8.6.1] stepped away from the arena of vertex operator alge-

bras by defining a class of algebras that enjoy certain of the properties noted

by Miyamoto. Ivanov’s algebras are defined as real, primitive, Ising axial

algebras equipped with a form satisfying the above properties (i)-(iii). Since

the axes of Ivanov’s algebras obey the Ising fusion rules, each axis admits

the corresponding Miyamoto (τ -)involution, called by Ivanov a Majorana

involution.

Ivanov and others were able to duplicate many results on Griess algebras

in this context. Especially Ivanov, Pasechnik, Seress, and Shpectorov [29]

proved that Sakuma’s Theorem remains valid.

Later Hall, Rehren, and Shpectorov [22] proved that Sakuma’s Theorem

holds for any primitive Ising axial algebra admitting a nontrivial invariant

form.

8. Axial Algebras of Jordan Type

The results of this section are all from Hall, Rehren, and Shpectorov

[23], one of the two papers (the other being [22]) where axial algebras were

first defined and studied.

It must be noted that portions of the results in this section had been

proven by Matsuo ten years earlier in [36], the unpublished original version of

the published paper [37]. Matsuo’s results were in the more restricted context

of compact Griess algebras (allowing him to make use of a positive definite,

invariant form), but it is regrettable that his results were unremarked for so

long.

In [40] Miyamoto did not restrict his attention to the Ising case. He

showed that each conformal vector (idempotent) in the Griess algebra of an

OZ vertex operator algebra is associated with a vertex operator action by

the Virasoro algebra with an appropriate central charge c. The representa-

tion theory of that Virasoro algebra then determines a fusion rule satisfied

by the eigenspaces of the corresponding axis/conformal vector. If that rep-

resentation theory is nice enough, then more can be done. For instance the

fusion rule may dictate a grading and hence automorphisms similar to the

Miyamoto τ -involutions. The Ising situation is far better understood than

any other, with the possible exception of fusion of Jordan type, which we

discuss in this section.
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In the previous section we said that the Ising vector e of a Griess algebra

A provides a transposition in the form of the τ -involution of Miyamoto. This

was loose, since there is the possibility that the resulting te is trivial; that

happens when A 1
32
(e) = 0. Miyamoto observed that in this case, there

is nevertheless a good candidate transposition. When the 1
32 -eigenspace is

trivial, the resulting reduced fusion table is

I 1 0 1
4

1 1 ∅ 1
4

0 ∅ 0 1
4

1
4

1
4

1
4 1,0

Here we have a different ±-grading, namely

A+(e) = A1(e)⊕A0(e) and A−(e) = A 1
4
(e) .

This new grading provides a new transposition automorphism te, called a

σ-involution by Miyamoto.7

Compare this with the case of an Ising vector for which the 1
4 -eigenspace

is trivial. There the reduced fusion table is

I 1 0 1
32

1 1 ∅ 1
32

0 ∅ 0 1
32

1
32

1
32

1
32 1,0

and the τ -involution remains an algebra transposition.

In the rest of this section, the only assumption we make for the field F

is that char(F) 6= 2.

7An Ising vector e having V 1

32

(e) = 0 = V 1

4

(e) associates with everything, with τe and then σe

both being trivial. We will not discuss this degenerate case further.
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Let η ∈ F be a constant not equal to 0 or 1. The two fusion tables above

are the special cases η = 1
4 and η = 1

32 of the fusion rule Jη of Jordan type

η:

Jη 1 0 η

1 1 ∅ η

0 ∅ 0 η

η η η 1,0

The terminology arises from the fact that any idempotent of a Jordan algebra

is an axis of Jordan type 1
2 . That is, its eigenspace decomposition obeys the

Jordan fusion rule with η = 1
2 . This is a well-known property of the Peirce

decomposition; see [30, p. 119].

For arbitrary η we have the ±-grading

A+(e) = A1(e)⊕A0(e) and A−(e) = Aη(e) ,

so each axis admits a Miyamoto involution. Again, this is well-known for

Jordan algebras, which fall under the case η = 1
2 .

A Jη-axial algebra is said to have Jordan type η. Proposition 8.2 and

Theorem 8.3 below give an effective classification of all primitive axial alge-

bras of Jordan type η 6= 1
2 .

The case η = 1
2 is genuinely exceptional, not just because it includes

certain Jordan algebras. For instance, as noted by Segev, the result [23,

(5.4)]:

ta = tb ⇐⇒ a = b ,

is true for η 6= 1
2 but false for η = 1

2 , a situation discussed at length and

resolved in [24].8

8The falsity of [23, (5.4)] for η = 1
2
does not affect any other results of that paper, but two proofs

in which it was invoked must be modified. The corollary [23, (5.5)] remains valid, but its proof
must be supported by [24, Theorem B] for the case η = 1

2
. The error also invalidated the proof

of [23, (6.3)] (but not the result) in the case η = 1
2
. The paper [25] from the current volume

provides, among other results, a proof of that result valid for all η. No other results of [23]
appeal to the incorrect case η = 1

2
of [23, (5.4)].
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Recall from Section 5.3 that the Matsuo algebra associated with the

partial triple system (P,L) is the triple algebra A(P,L) =
⊕
p∈P

Fp with

presentation, for a constant α ∈ F:

1A : i2 = i for i ∈ P;

3C(2α) : ij = α(i+ j − k) for {i, j, k} ∈ L;

2B : ij = 0 otherwise.

Proposition 8.1. The Matsuo algebra A(P,L) is a primitive axial algebra

generated by the axes of P, each with eigenvalues from {1, 0, η} where η = 2α.

Proposition 8.2. Assume (P,L) is connected. Let M = A(P,L) be a

Matsuo algebra with η 6= 1
2 . Then the following are equivalent:

(1) (P,L) is a Fischer space.

(2) M admits a transposition (Miyamoto involution) at each point of P.

(3) M is an axial algebra of Jordan type η.

In this case, M admits a nontrivial invariant form that is unique up to a

scalar multiple. Furthermore, the radical of that form is the unique maximal

ideal containing no axes.

Theorem 8.3. Let A be a primitive axial algebra of Jordan type η 6= 1
2 .

Then the Miyamoto involutions for the associated axes form a normal set of

3-transpositions in the automorphism group Aut(A). Indeed A is isomorphic

to a quotient of the corresponding Matsuo algebra by a radical ideal, the

radical itself being an ideal. Especially A is the F-span of the axes for the

normal set.

This theorem contains a version of Sakuma’s Theorem in the Jordan

type context, since a primary step in its proof is to show that a 2-generated

subalgebra is (essentially) of type 1A, 2B, or 3C(η), as is the case by defini-

tion in Matsuo algebras.

Corollary 8.4. Let A be a primitive axial algebra of Jordan type η 6= 1
2 .

Then A is a quotient of the F-permutation module for a set of 3-transpositions

that is normal in its automorphism group.
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This generalizes observations of Miyamoto (η = 1
4 , Ising σ-case) and Shpec-

torov (η = 1
32 , Ising τ -case).

Cuypers and Hall [10] proved that all 3-transposition groups are locally

finite. This implies

Corollary 8.5. A finitely generated primitive axial algebra of Jordan type

η 6= 1
2 is finite dimensional.

9. Compact Axial Algebras of Jordan Type η 6= 1
2

Let us say that an axial algebra is compact if it is real and admits a

symmetric form that is both invariant and positive definite. As we have

mentioned above, compact Griess algebras and their generalizations due to

Ivanov are primitive compact axial algebras. We do not assume the Norton

inequality, which however does hold in these examples. By Theorem 8.3

every compact axial algebra of Jordan type η 6= 1
2 must be the perpendicular

direct sum of quotients of Matsuo algebras of Fischer spaces by their radicals.

We encounter two fundamental questions:

(a) Which Fischer spaces can arise?

(b) Which of these algebras are actually Griess algebras?

By [23, (7.1)] the invariant symmetric form on a primitive axial algebra

of Jordan type η 6= 1
2 with Jordan axis set P must satisfy, after rescaling:

1A : 〈〈i, i〉〉 = 1 for i ∈ P;

3C(η) : 〈〈i, j〉〉 = η
2 for {i, j, k} ∈ L;

2B : 〈〈i, j〉〉 = 0 otherwise.

Thus the Gram matrix of the form is

I + η
2H ,

where H is the adjacency matrix for the diagram of the corresponding nor-

mal set of 3-transpositions. For this form to be positive (semi-)definite the

adjacency matrix must therefore have minimal eigenvalue greater than (or

equal to) − 2
η . The relevant Ising cases are:
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(i) For η = 1
4 this is −8 and was considered by Kitazume and Miyamoto

[32] and Matsuo [36, 37].

(ii) For η = 1
32 this is −64 and was considered by Hall and Shpectorov.

The direct summands of a compact algebra of Jordan type η 6= 1
2 are

primitive such algebras. Each of these is the quotient of a semi-definite

Matsuo algebra by its radical and so is uniquely determined by its Fischer

space and diagram. The first question above is thus reduced to finding the

minimum eigenvalue of the diagram for a conjugacy class of 3-transpositions.

Theorem 9.1 (Hall and Shpectorov 2012). Let r ≥ 2 be a positive inte-

ger. The diagram of a finite conjugacy class of 3-transpositions has minimal

eigenvalue ρmin ≥ −r when the group is one of:

(a) infinitely many groups 3m ⋊ 2 (where ρmin = −1);

(b) m(r) distinct groups N ⋊ Sym(n) for each n ≥ 4;

(c) s(r) “sporadic” examples.

The functions m and s, defined in the theorem and nondecreasing on

Z≥2, are in general hard to calculate. For ρmin ≥ −8 we have

m(8) = 4 and s(8) = 12 ,

while for ρmin ≥ −64 we have

m(64) = 13 and s(64) = 90 .

The compact Griess algebras of Jordan type η 6= 1
2 must be primitive

and compact axial algebras, but the converse need not be true. Let mG(r)

and sG(r) be the functions that correspond to those of the theorem, counting

respectively the number of extended symmetric and sporadic Griess algebra

diagrams with minimal eigenvalue greater than or equal to −r.

For the Griess algebras that are the positive definite quotients of Matsuo

algebras with ρmin ≥ −8, Matsuo [36, 37] found that there are three infinite

families and nine isolated examples. These are accounted for by:

(a) mG(8) = 3 :

W(An) , W(Dn) (= W2(Ãn−1)) , W2(D̃n) ;
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(b) sG(8) = 9 :

W(En) , W2(Ẽn) with n ∈ {6, 7, 8} , O−
8 (2) ≤ Sp8(2) ≤ O+

10(2) .

The corresponding Griess algebra lists for ρmin ≥ −64 are unknown.

The algebras with ρmin ≥ −8 in the gap between primitive compact

axial and compact Griess are the algebras for

3m ⋊ 2 , W3(Ãn−1) , SU4(2) , SU5(2) , O−
6 (3) .

These all contain the W3(Ã2) = SU3(2) algebra—the Matsuo algebra for the

affine plane of order 3—and so are eliminated by:

Theorem 9.2 (Matsuo [36, 37]). For a compact Griess algebra of Jordan

type η = 1
4 the associated Fischer space is of symplectic type.

Matsuo proved this using

Theorem 9.3 (Miyamoto [40]). In a compact Griess algebra every idempo-

tent is a conformal axis.

That is, it is ad-semisimple with a highly restricted fusion table arising

from the representation theory of a related Virasoro algebra. On the other

hand, any 3-transposition subgroup readily gives rise to idempotents of the

corresponding parent Matsuo algebra. Matsuo’s proof of Theorem 9.2 used

this to show that there can be no transposition subgroups of type SU3(2).

10. Related Topics and Questions

(a) In Griess’ terminology, the twenty-six finite simple sporadic groups are

partitioned as the “Happy Family”—the twenty sporadic groups involved

in the Monster—and the “Pariahs”—the six not found within the Mon-

ster. (See [18] for further discussion.) The groups involved in the Mon-

ster act on M ♮ and smaller algebras derived from it (although not all

are generated by 2A involutions), but more direct constructions would

be of help in their study. For instance, Ryba [46] gave a construction,

in the spirit of Norton [41], of a commutative F2-algebra of dimension

4370 admitting the Baby Monster. As already mentioned, there is hope

for direct construction of the transposition algebras in characteristic 2
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for Fi23 and 3 · Fi24 of respective dimensions 782 and 783. The Fischer

group Fi23 is a subgroup of the Baby Monster, and Ryba observed the

782 algebra as an Fi23-invariant direct factor in the 4370 algebra.

(b) Perhaps more interesting would be the construction of nice algebras for

the pariahs. Frohardt [14] emulated Griess [17] in constructing a com-

mutative algebra of dimension 85 that admits the Janko pariah J3 as an

automorphism group. In [15] he outlined a similar procedure for con-

structing an algebra of dimension 495 that admits the triple cover of the

O’Nan simple group. In that paper, he also discussed candidates for two

other pariahs—a commutative algebra of dimension 48174 for the Lyons

group and a noncommutative algebra of dimension 887778 for the largest

Janko group J4. The smallest Janko pariah J1 is a subgroup of O’Nan

and also of G2(11). The final pariah, the Rudvalis group, has a double

cover contained in E7(5).

(c) Rehren [44, 45] has studied the more general fusion rules of Ising type

Iα,β given by the fusion table:

+ −

Iα,β 1 0 α β

1 1 ∅ α β

+ 0 ∅ 0 α β

α α α 1, 0 β

− β β β β 1,0,α

Except in degenerate situations, nontrivial Miyamoto involutions exist.

A central question is the extent to which a version of Sakuma’s Theorem

can be proven. Rehren makes some progress but a final answer is not

clear. Conversely, by looking at “axial covers” of the standard dihedral-

algebras, he details which of the Conway-Norton-Sakuma algebras have

natural generalizations for parameter sets (α, β) other than (14 ,
1
32 ).

(d) Vertex operator algebras and Griess algebras are defined in character-

istic 0. Rehren’s work on axial covers (mentioned above) and work of

Simon [50] on Z-forms of various Griess algebras speak to a change of

the ring of constants, but appropriate general definitions are not clear.

Furthermore, these treatments always require 2 to be invertible, whereas
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the algebras of Cuypers, Horn, in ’t panhuis, Shpectorov [9], Ryba [46],

and various other algebras of interest are defined in characteristic 2.

(e) Since it is the weight 2 piece of a vertex operator algebra, a Griess

algebra has finite dimension. But in Corollary 8.5 we saw that finitely

generated primitive axial algebras of Jordan type η 6= 1
2 can be proven

to be finite dimensional. The same is true of Kaplansky’s Lie algebras.

What conditions on a triple algebra or axial algebra force this? Or,

conversely, is there benefit in assuming a finitely generated locally defined

algebra to be finite dimensional?

(f) Axial algebras of Jordan type η = 1
2 have been studied extensively [24,

25], but their structure and classification are still not complete or evident.

(g) Results of Miyamoto [40] force compact Griess algebras of Ising type to

be primitive as axial algebras. What is the structure of imprimitive axial

algebras of the types studied so far? In particular, can their study be

reduced to the primitive case?

(h) Griess algebras possess many properties that are not assumed for axial

algebras. What kind of progress can be made by taking on these or

similar properties? What about the assumption of an invariant form?

positive (semi-)definite? satisfying the Norton inequality?

(i) Miyamoto showed that all idempotents of Griess algebras are multiples of

conformal vectors. That result bears fruit, as we saw in Theorems 9.2 and

9.3 above. This suggests that careful study of idempotents in axial and

related (e.g., Matsuo) algebras is worthwhile. Rehren has pursued this

in [42, 43, 45]. As mentioned above, subspaces of Fischer spaces readily

give rise to idempotents in the associated Matsuo and axial algebras.

(j) What can be said about an LN algebra (or transposition algebra) in

which all the line-algebras (dihedral-algebras) are from the Conway-

Norton-Sakuma list or Rehren’s generalizations? The same question can

be asked for Griess algebras.

(k) When is a real compact axial algebra a Griess algebra?

(l) While Matsuo determined precisely the compact Griess algebras that

occur with Jordan type η = 1
4 (the Ising σ-case), the more difficult η = 1

32

(the Ising τ -case) remains open. A result of Chen and Lam [6] shows that

the corresponding 3-transposition groups need not be of symplectic type.

Non-Ising fusion also provides Jordan type examples. For instance, Lam

and Yamauchi [33] constructed Griess algebras of Jordan type η = 1
5 ,
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including one associated with the 3-transposition group O−
8 (3).

9 Still

further relationships among 3-transposition groups, Griess algebras, and

vertex operator algebras are given by Lam and Yamauchi [34]. Whether

these connections are coincidental or part of a deeper relationship is

unclear.

(m) A reason the link between algebras and 3-transposition groups has been

fruitful is that these groups are essentially classified [11, 10]. But the

6-transposition Monster and its related algebras suggest that any ques-

tion asked regarding 3-transposition groups might be of interest when

extended to 4-transposition groups, 5-transposition groups, or even 6-

transposition groups—cases where classification results are thin on the

ground. Interesting subclasses of groups would correspond to interesting

classes of algebras.
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