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Abstract

Let (g, [p]) be a finite-dimensional restricted Lie algebra over an algebraically closed

field K of characteristic p > 0, and G be the adjoint group of g. We say that g satisfies

the generic property if g admits generic tori introduced in [2]. In this paper, we first

prove a generalized conjugacy theorem for Cartan subalgebras by means of the generic

property. We then classify the G-conjugacy classes of homogeneous Borel subalgebras of

the restricted simple Lie algebras g = W (n) when p > 3, and determine representatives

of these classes. Here W (n) is the so-called Jacobson-Witt algebra, by definition the

derivation algebra of the truncated polynomial ring K[T1, · · · , Tn]/(T
p
1 , · · · , T

p
n). We also

describe the closed connected solvable subgroups of G associated with those representative

Borel subalgebras.

0. Introduction

In the structure theory of classical Lie algebras (which arise from Lie al-

gebras of connected semi-simple algebraic groups), Borel subalgebras (which

arise from Lie algebras of Borel subgroups) along with Cartan subalgebras,

Weyl groups, etc., are very important. These concepts are important tools

in the structure and representation theory of classical Lie algebras (cf. [9],

[8], [10] and [11] etc.). It is a basic fact that for a connected semi-simple
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algebraic group G and its Lie algebra g the Borel (resp. Cartan) subalgebra

of g are conjugate under G. (Note that we can identify Borel subalgebras

with maximal solvable subalgebras containing maximal tori when the ground

field is an algebraically closed field of characteristic 6= 2, 3 (cf. [8, §14.3] and

[18, §III.4]).) Especially, the variety B of all Borel subalgebras plays a key

role for understanding the representations of g (for example, the represen-

tation theory of Uχ(g) for a nilpotent p-character χ is closely related to the

geometry of the Springer fiber Bχ which is a connected subvariety of B, see

[1]). By contrast, Cartan subalgebras and the maximal solvable subalgebras

containing maximal tori, which will still be called Borel subalgebras in the

present paper, of arbitrary restricted Lie algebras in prime characteristic,

usually are no longer conjugate. In [5], [14], [15], Farnsteiner and Premet

studied systematically Cartan subalgebras of restricted Lie algebras. Regular

Cartan subalgebras which are the most important class of Cartan subalge-

bras, and which by definition are the ones containing a maximal torus of

maximal dimension, are proved to be conjugate by means of a finite number

of so-called elementary switchings (some invertible linear transformations

provided by root vectors). Premet further proposed a conjecture on the

conjugation of regular Cartan subalgebras under the adjoint group G of g.

As for Borel subalgebras, there is less study on them so far. Especially, for

non-classical restricted simple Lie algebras, we neither know the number of

conjugacy classes of Borel subalgebras nor what kind of role the Borel subal-

gebras play in the representation theory of these Lie algebras although their

Cartan subalgebras are well-known (cf. [19]). Our motivation for writing

this paper is to understand more about Borel subalgebras of non-classical

restricted simple Lie algebras, and then possibly to develop the geometric

aspects of non-classical Lie algebras and to apply them to representation

theory.

The purpose of the present paper is twofold. One is to prove a general-

ized conjugacy theorem for Cartan subalgebras (Theorem 1.6), and by using

this result to settle Premet’s conjecture mentioned above in the negative

(Remark 1.7); the other one is to study Borel subalgebras of restricted Lie

algebras of type W (Theorem 4.6).

According to the Block-Wilson-Strade-Premet classification of restricted

simple Lie algebras over an algebraically closed field of characteristic p > 3

(cf. [17]), it is known that aside from the analogues of the complex simple
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Lie algebras (called classical Lie algebras) there are usually four additional

classes of restricted simple Lie algebras1 , the so-called restricted Lie algebras

of Cartan type, among which the Jacobson-Witt algebras W (n) will be a

main topic of the present paper. In his article [16], Premet studied analogues

of Weyl groups and of the Chevalley restriction theorem for complex simple

Lie algebras, and the variety of nilpotent elements for W (n). Along this

direction, Bois, Farnsteiner and the author of the present paper developed

some general theory of Weyl groups for restricted Lie algebras, and studied

the Weyl groups for the other three classes of Cartan type Lie algebras (cf. [2]

and [5]). They proposed in [2] the notion “generic tori” which play the same

important role as the maximal tori in classical Lie algebras, associated with

which Weyl groups and the Chevalley restriction theorem were obtained,

with aid of the classification of isomorphism classes of maximal tori in [3]

and [4]. Inspired by the work mentioned above, we initiate to study Borel

subalgebras of restricted Lie algebras. One aim of the present paper is to

determine the conjugacy classes of homogenous Borel subalgebras of W (n)

(see Definition 2.3 for the meaning of “homogeneous”). In particular, we

consider generic Borel subalgebras and the associated solvable subgroups for

W (n). We will continue to finish the determination of conjugacy classes for

Borel subalgebras of restricted simple Lie algebras of type S(n) and H(n)

in the future. Along this direction the geometric structure of the variety X

of completely solvable homogeneous Borel subalgebras can be investigated

(see [12]). (Recall that a Lie algebra L is called completely solvable if [L,L]

is nilpotent.) There, the classification of conjugacy classes for completely

solvable homogeneous Borel subalgebras turns out to be a subclassification

of the one for homogeneous Borel subalgebras obtained in the present paper,

which gives rise to a finite-length stratification of X with a clear geometric

description for each stratum.

Our paper is organized as follows. In the first section, we will give the

notion generic property for a restricted Lie algebra g. Then we will prove

that for generic Cartan subalgebras (see §1.3 for the definition), all of them

are conjugate under the adjoint group of g (Theorem 1.5). Consequently, we

obtain a generalized conjugacy theorem for Cartan subalgebras (Theorem

1.6). The notion of generic Borel subalgebras is proposed here. In Section

1In the case p = 5 there is one additional restricted simple Lie algebra, namely the restricted
Melikian algebra.



298 BIN SHU [September

2, we first recall some well-known results on W (n). Then we propose a tr-

grading on W (n) for any representative tr of the conjugacy classes of the

maximal tori of W (n). Finally, we introduce in this section the notion of

homogeneous Borel subalgebras ofW (n). Section 3 is devoted to the study of

standard Borel subspaces (whose definition will be seen in §3.1) and then to

prove that those subspaces are Lie subalgebras and maximal solvable ones. In

Section 4, we mainly make the argument on the classification of isomorphism

classes of homogeneous Borel subalgebras of W (n) (Theorem 4.6) when the

characteristic p of the ground filed K is greater than 3. In Section 5, we prove

that the solvable groups associated with Borel subalgebras are connected,

and further give a precise description of the solvable subgroups associated

with the generic Borel subalgebras.

In this paper, we have to use many notations in the arguments. For the

convenience of the reader we include a list of notation at the end.

1. Generic property and Borel subalgebras

Throughout, all vector spaces are assumed to be finite-dimensional and

over an algebraically closed field K of prime characteristic char(K) = p > 0

unless mentioned otherwise. Given a restricted Lie algebra (g, [p]), we have

the adjoint group G := Autp(g)
◦, the identity component of the restricted

automorphism group of g.

1.1. Borel subalgebras

A maximal solvable subalgebra B of a restricted Lie algebra (g, [p]) is

called a Borel subalgebra (or Borel for short) if B contains a maximal torus

of g (recall that a torus t is by definition an abelian restricted subalgebra

consisting of semi-simple elements, i.e., X ∈ (X [p])p for all X ∈ t, where

(X [p])p denotes the restricted subalgebra generated by X [p] (see [20, §2.3])).

A Cartan subalgebra is called regular if it contains a torus of maximal di-

mension.

The following observation is clear.

Lemma 1.1. Let (g, [p]) be a restricted Lie algebra over K. Then every

maximal solvable subalgebra of g is a restricted subalgebra.
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Proof. Let B be a given maximal solvable subalgebra of g. Note that the

restricted subalgebra (B)p generated by B is still solvable. By the maximal

solvability of Borel subalgebras, B coincides with (B)p. Hence B itself is

restricted. ���

1.2. Generalized conjugacy of Cartan subalgebras

For a restricted Lie algebra (g, [p]), denote by µ(g) the maximal dimen-

sion of all tori t ⊂ g. Following Premet, we say that h is a regular Cartan

subalgebra of g if this Cartan subalgebra contains a torus of dimension µ(g)

(cf. [15]). The dimension of any regular Cartan subalgebra coincides with

r(g), the rank of g (cf. [14, Theorem 1]). For a given regular Cartan subal-

gebra h with a maximal torus t, one has g = h⊕
∑

α∈∆(g,h) gα, a root-space

decomposition of g with respect to h, where ∆(g, h) is the corresponding

root system. Then, any two regular Cartan subalgebras in g can be ob-

tained from each other by means of a finite number of elementary switchings

defined via the root-space decompositions mentioned above (cf. [15, Theo-

rem 1]). However, two such regular Cartan subalgebras are not necessarily

conjugate under the G-action.

In [15, Conjecture 2], Premet proposed a conjecture that any finite-

dimensional restricted Lie algebra satisfies the following generalized conju-

gacy property for Cartan subalgebras:

Definition 1.2 (Generalized conjugacy of Cartan subalgebras). A restricted

Lie algebra (g, [p]) is said to admit generalized conjugacy of Cartan subal-

gebras if there exists a nonempty Zariski open subset V (⊂ g) consisting of

regular elements such that for any u, v ∈ V the Cartan subalgebras g0(adu)

and g0(adv) are conjugate under G, where the Fitting-nilspace is defined by

g0(adX) := {v ∈ g | adXm(X,v)v = 0 for some postive integer m(X, v)} for

X ∈ g.

1.3. Generic property

A torus tgen of dim tgen = µ(g) is called generic if G·tgen is a dense subset

of Sg, where Sg stands for the Zariski closure of all semisimple elements in

g (cf. [2, §1]). Set hgen := Cg(tgen), the centralizer of tgen in g. By [20,

Theorem 2.4.1], hgen is a regular Cartan subalgebra of g, which is called a
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generic Cartan subalgebra. A Borel subalgebra B of g is called generic if it

contains a generic torus of g.

Recall that X ∈ g is called regular if g0(adX) has minimal dimension

among all Fitting-nilspaces (cf. [14] and [15]). Denote by Reg(g) the set of

regular elements of g. Then Reg(g) is an open dense subset of g.

A regular element X in g is called generic if G·g0(adX) is a dense subset

of g. It is worthwhile to remind the reader that it is not always the case

that a restricted Lie algebra contains generic elements. (In view of Lemma

1.3 and Remark 1.4(1), the restricted contact Lie algebras are examples of

such restricted Lie algebras.) From [2, Proposition 1.7] and the definitions,

we can give a criterion for the existence of generic elements. We say that g

satisfies the generic property if g admits generic tori.

Lemma 1.3. Let (g, [p]) be a restricted Lie algebra. The generic property is

equivalent to any one of the following items

(1) There are generic Borel subalgebras in g.

(2) There are generic Cartan subalgebras in g.

(3) There are generic elements in g.

Remark 1.4.

(1) For a classical Lie algebra g, all regular elements are generic because G·h

is a dense subset of g for any Cartan subalgebra h (cf. [18, Theorem III

4.1]). According to [2, Proposition 3.3], restricted simple Lie algebras

of type W,S and H have generic elements. So these Lie algebras satisfy

the generic property. However, the restricted contact Lie algebras do not

satisfy the generic property (cf. [2, Theorem 6.6]).

(2) Generic elements of W (n), S(n) and H(n) can be precisely described

(cf. [13]).

If hgen is a generic Cartan subalgebra of g containing the generic torus

tgen, then it follows from [5, Lemma 3.2] that there exists an open dense

subset U in tgen such that all elements of U are generic. Furthermore, we

will see in the forthcoming Theorem 1.6 that in such a case, there exists an

open dense subset V in g such that all elements of V are generic.
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Theorem 1.5. Let (g, [p]) be a restricted Lie algebra satisfying the generic

property. Then all generic Cartan subalgebras (resp. generic tori) are con-

jugate under G.

Proof. For any given two generic tori Cartan subalgebras h1 and h2, by

definition G · hi (i = 1, 2) are two dense subsets of g. Note that both G · hi
are constructible, thereby G · hi (i = 1, 2) contain open dense subsets of g,

respectively (cf. [6, II.§3] or [9, 4.4]). On the other hand, the set Reg(g) of

regular elements of g is also an open dense subset of g, which is G-stable. So

we have that (G · h1)∩ (G · h2)∩Reg(g) is nonempty. Choose an element H

from this nonempty set. Then there is a unique regular Cartan subalgebra h

containing H. Hence h coincides with g1 · h1 and g2 · h2 for some g1, g2 ∈ G.

Thus h1 and h2 are conjugate. This completes the proof. ���

1.4. Generalized conjugacy theorem for Cartan subalgebras

From the above theorem, we can prove the following generalized conju-

gacy theorem for Cartan subalgebras.

Theorem 1.6. Let (g, [p]) be a restricted Lie algebra, and let G be the adjoint

group of g. Then the following statements are equivalent.

(1) g admits generalized conjugacy of Cartan subalgebras;

(2) g satisfies the generic property.

Proof. (2) ⇒ (1): Suppose that g satisfies the generic property. Then

g has a generic Cartan subalgebra hgen (cf. Lemma 1.3). By definition,

G · hgen is dense in g, thereby a constructible subset of g. This means that

G · hgen contains an open dense subset U . Set V := U ∩ Reg(g). Then V

is non-empty and an open dense subset of g. For any v ∈ V , g0(adv) is G-

conjugate to g0(adv0) for v0 ∈ hgen ∩Reg(g) with v = g · v0 for g ∈ G. From

the uniqueness of the regular Cartan subalgebra containing v0 it follows

that g0(adv0) coincides with hgen. Thus g0(adv) is also a generic Cartan

subalgebra. Thanks to Theorem 1.5, the Cartan subalgebras g0(adv) and

g0(adu) are conjugate under G for u, v ∈ V , and Statement (1) follows.

(1) ⇒ (2): Suppose that V is a nonempty Zariski open subset of g consisting

of regular elements, and that the regular Cartan subalgebras g0(adv) for
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all v ∈ V are conjugate under G. Note that v ∈ g0(adv). Hence for any

given v∈V , G · g0(adv)⊃V = g. Thus, the Cartan subalgebra h := g0(adv)

is generic (in particular, v is a generic element of g), and Statement (2)

follows. ���

Remark 1.7. The above theorem shows that the statement in Premet’s

conjecture for a given restricted Lie algebra g is valid if and only if g satis-

fies the generic property. As mentioned in Example 1.4, restricted simple Lie

algebras of type W,S and H satisfy the generic property. Hence the state-

ment in Premet’s conjecture holds for them. However, the restricted contact

simple Lie algebras do not satisfy the generic property. So the contact re-

stricted simple Lie algebras are examples showing the failure of Premet’s

conjecture2 .

In view of Theorem 1.5, we propose the following question.

Question 1.8. Let (g, [p]) be a restricted Lie algebra satisfying the generic

property. When are all generic Borel subalgebras conjugate under the adjoint

group G?

In view of the known examples, we hope that for a restricted Lie algebra

g satisfying the generic property, all generic Borel subalgebras of maximal

dimension are conjugate under G.

2. Automorphisms and Standard Maximal Tori of

the Restricted Simple Lie Algebra W (n)

From now on, we assume that K is an algebraically closed field of char-

acteristic p > 3. Set P = {0, 1, . . . , p− 1}. For an element a = (a1, . . . , an) ∈

Zn, we denote |a| := a1 + · · ·+ an.

2.1. Define the truncated polynomial algebra A(n) to be the quotient of

the polynomial algebra K[T1, . . . , Tn] by the ideal generated by T p
1 , . . . , T

p
n .

Set xi to be the image of Ti in the quotient. Then A(n) =
∑

a∈Pn Kxa,

where xa = xa11 · · · xann with a = (a1, . . . , an) ∈ Pn. We sometimes write

2I was told that Skryabin had been aware of the failure of Premet’s conjecture after the present
work was finished and submitted.
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A(n) as K[x1, . . . , xn] to emphasize those indeterminants, and naturally re-

gard A(n) =
⊕n(p−1)

i=0 A[i] as a Z-graded algebra, where A[i] is spanned by

monomials xa = xa11 · · · xann , |a| = i. The Jacobson-Witt algebra W (n) is

defined to be the derivation algebra of A(n). This is to say, W (n) consists

of all linear transformations D of A(n) satisfying D(fg) = D(f)g + fD(g)

for f, g ∈ A(n). It is easily seen that W (n) is a free A(n)-module of rank n

with basis ∂i, i = 1, . . . , n,

W (n) =

n∑

i=1

A(n)∂i.

Here ∂i is the image of ∂
∂Ti

in the quotient of the K[T1, . . . , Tn]-module

Der(K[T1, . . . , Tn]) by the submodule arising from the ideal generated by

T p
i , i = 1, . . . , n. Hence

∂ix
a = aix

a−ǫi

where ǫi = (δi,1, . . . , δi,n) ∈ Pn, δi,j = 1 if i = j, and δi,j = 0 otherwise.

Set g =W (n). Then g is a Z-graded restricted simple Lie algebra. The

Z-grading of W (n) arises from the one of the polynomial ring K[T1, . . . , Tn].

More precisely, g =
∑

i g[i] with g[i] =
∑n

j=1A[i+1]∂j and the following prop-

erties hold:

g =

h⊕

i=−1

g[i], [g[i], g[j]] ⊂ g[i+j], g
[p]
[i] ⊂ g[pi] (2.1)

where h = n(p − 1) − 1, and we set g[i] := 0 if i is not between −1 and h.

Associated with such a grading, one has a filtration

g = g−1 ⊃ g0 ⊃ · · · ⊃ gh ⊃ 0 (2.2)

for gi =
∑h

j=i g[j], i = −1, 0, 1, . . . , h. For more details on W (n), the reader

is referred to [20, Ch.4].

2.2. Automorphisms of W (n)

Recall that an automorphism ϕ ∈ Aut(A(n)) induces an automorphism

ϕ of W (n) defined via ϕ : D 7→ ϕ ◦D ◦ ϕ−1. The induced correspondence
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gives rise to a group isomorphism from Aut(A(n)) to Aut(W (n)) (cf. [21]).

As to Aut(A(n)), any element is determined by its action on the generators

xi, i = 1, . . . , n. We have a criterion that an algebra endomorphism ϕ of

A(n) is an automorphism if and only if ϕ stabilizes the unique maximal ideal

of A(n) and the determinant det((∂iϕ(xj))n×n) is invertible in A(n).

Theorem 2.1 ([21]). Let g = W (n) over K of characteristic p > 3 (unless

n = 1 when p > 3). The following statements hold.

(1) The automorphism group Aut(g) coincides with the adjoint group G =

Autp(g)
◦ (see the paragraph before §1.1 for notation).

(2) The filtration (2.2) is G-invariant.

(3) The group G is a semi-direct product G = G0⋉U , where G0
∼= GL(n,K)

consists of those automorphisms preserving the Z-grading of g, and

U = {g ∈ G; (g − idg)(gi) ⊂ gi+1}.

2.3. Conjugacy classes of maximal tori

According to Demus̆kin’s result [3], we have the following conjugacy

property for maximal tori of W (n).

Theorem 2.2. Let g =W (n). Then the following statements hold.

(1) Two maximal tori t, t′ belong to the same G-orbit if and only if dim t ∩

g0 = dim t′ ∩ g0.

(2) There are (n + 1) conjugacy classes for the maximal tori of g. Each

maximal torus of g is conjugate to one of

tr =
n∑

i=1

Kzi∂i, r = 0, 1, . . . , n

where zi = xi for i = 1, . . . , n−r, and zi = 1+xi for i = n−r+1, . . . , n.

We call these tr the standard maximal tori of W (n).

2.4. Gradings associated with tr

Note that the truncated polynomial algebra A(n) can be presented as

the quotient algebra K[T1, . . . , Tn]/(T
p
1 − 1, . . . , T p

n − 1). Denote the image
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Ti in the quotient algebra by yi. Then we can write A(n) as K[y1, . . . , yn].

Comparing with the notation used in §2.1, we actually have yi = 1+ xi, i =

1, . . . , n. More generally, A(n) can be presented as a truncated polynomial

algebra

K[z1, . . . , zn−r; zn−r+1, . . . , zn]

with generators zi := xi, zj := yj, i = 1, . . . , n − r; j = n− r + 1, . . . , n, and

defining relations:

[xi, xi′ ] = [yj , yj′ ] = [xi, yj] = xpi = ypj − 1 = 0.

Thus, W (n) can be presented, as a vector space,

W (n) =

n∑

i=1

∑

c(i)∈Pn

Kzc(i)∂i, (2.3)

where z = (z1, . . . , zn) and zc(i) = zc11 · · · zcnn with c(i) = (c1, . . . , cn) ∈ Pn.

Associated to the presentation (2.3), there is a Z-graded structure as follows,

called Z(tr)-grading:

W (n) =
⊕

s

W
(tr)
[s] , with

W
(tr)
[s] = K-Span{zc(i)∂i | |c(i)| = s+ 1, i = 1, . . . , n}. (2.4)

Actually, every homogenous space W
(tr)
[s] is a tr-module. For the case r = 0,

the associated graded structure in (2.4) is called a standard-graded structure,

coinciding with the one in (2.1). It is worthwhile to mention that for a given

v ∈W (n), v belongs to W
(tr)
[s] if and only if

adTr(v) = sv,

with Tr :=
∑n

i=1 zi∂i, where zi = xi and zj = 1 + xj , i = 1, . . . , n − r;

j = n− r + 1, . . . , n.

When talking about t0, we will omit the superscript for the associated

graded structure as below

W (n) =
⊕

s

W[s], with W[s] = K-Span{xc(i)∂i | |c(i)| = s+ 1, i = 1, . . . , n}.
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This gives rise to a Z-graded Lie algebra structure for W (n) as shown in

(2.1). Thanks to Theorem 2.1, the associated filtration is invariant under

Aut(W (n)). Let H be a subalgebra of W (n). Call H a Z(tr)-graded subal-

gebra if H =
∑

i H
(tr)
[i] , where H

(tr)
[i] = H ∩W (n)

(tr)
[i] .

It will be useful to refine the grading of any Z(tr)-graded subalgebra of

W (n). If a subalgebra H is Z(tr)-graded, we set for α ∈ Pn with |α| = i+1,

Hα = {v ∈ H
(tr)
[i] | adzi∂i(v) = αiv}. Then

H =
∑

α∈Pn

H(tr)
α . (2.5)

If H has a decomposition as in (2.5), we say that H is tr-graded. The weight

system of H associated with tr is the set of all α with nonzero weight space

H
(tr)
α . Naturally, the conditions of being tr-graded and of being Z(tr)-graded

are equivalent.

Definition 2.3. A subalgebra Q is called homogeneous if its image under

ϕ is tr-graded as long as Q contains a maximal torus conjugate to tr under

ϕ ∈ Aut(W (n)).

2.5. Recall W (n)[0] ∼= gl(n,K) under the mapping xi∂j 7→ Eij , where Eij is

the elementary matrix with all entries equal to 0 except the (i, j)th-entry

being equal to 1. We then have a triangular decomposition W (n)[0] =∑
i<j Kxj∂i + t0 +

∑
i<j Kxi∂j . Denote b = t0 +

∑
i<j Kxi∂j, which is a

standard Borel subalgebra of W (n)[0]. We identify W (n)[0] with gl(n,K)

and Aut(W (n)[0]) with GL(n,K) in the sequel whenever the context is clear.

Lemma 2.4. Assume the characteristic p of the ground field K is greater

than 3, and W (n)0 =
∑

i>0W (n)[i]. The following statements hold.

(1) All maximal tori in W (n)0 are conjugate to t0 under Aut(W (n)).

(2) All Borel subalgebras of W (n)0 are conjugate to B0 := b+W (n)1 under

Aut(W (n)), where W (n)1 =
∑

i>1W (n)[i].

Proof. (1) Set g =W (n) and G = Aut(W (n)). Denote the standard-graded

and filtered structure by g =
∑

i g[i] and {gi} respectively. According to

Demus̆kin’s result (cf. [3]), we only need to show that maximal tori of g0
are also the ones of g. Suppose that t is a maximal torus of g0 with basis
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Zi, i = 1, . . . ,m. We can write Zi = Ti + Vi with Ti ∈ g[0] and Vi ∈ g1. Note

that Vi is nilpotent. Hence Ti must be a semisimple element. Thus the set

{Ti, i = 1, . . . ,m} spans a maximal torus of g0, thereby the maximal torus of

g[0]. The latter is conjugate to t0 under GL(n,K) (cf. [18, Theorem III.4.1].

The first assertion is proved.

(2) We first observe that for any Borel subalgebra b′ of g[0]
∼= gl(n,K),

B′ := b′ + g1 must be a Borel subalgebra of g0. The solvability of B′ comes

from the fact that B′(n) ⊂ g1, and g1 is nilpotent, where L(m) for a Lie

algebra L denotes the m-th derived ideal, i.e. L(m) := [L(m−1), L(m−1)] with

L(0) := L. In order to check the maximal solvability of B′, we observe that

B′ ⊂ g0 is standard-graded with B′
[0] = b′ and B′

[i] = g[i] for all i > 0. So any

other solvable subalgebra of g0 containing B′ is also standard-graded. Then

the maximal solvability of b′ in g[0] implies that of B′ in g0. Note that any

Borel subalgebra of gl(n,K) is conjugate to the standard Borel subalgebra

under GL(n,K) ⊂ Aut(W (n)) (cf. [8, §14.3-4]). It follows that any Borel

subalgebra of g0, up to conjugation, can be constructed in this way.

By the invariance of the filtration {gi} under G (Theorem 2.1), we know

those Borel subalgebras are conjugate to B0 = b +W (n)1 under GL(n,K).

This completes the proof. ���

2.6. An application to W (1)

We assume g = W (1) and the characteristic p of the ground field is

greater than 3. In this special case, we adopt the notations x and ∂, with

the same meaning as x1 and ∂1, respectively. It is easy to see that any sub-

algebra of W (1) which contains ti (i ∈ {0, 1}) is ti-graded. Hence, all Borel

subalgebras of W (1) are homogeneous, and therefore we have the following

results for the conjugacy classes of Borel subalgebras of W (1).

Proposition 2.5. There are only two conjugacy classes of Borel subalgebras

for the Witt algebra W (1). The standard representatives are B1 := K∂+Kx∂
and B0 as defined in Lemma 2.4.

Proof. Recall thatW (1) admits two conjugacy classes of maximal tori, with

representatives t0 = Kx∂, and t1 = K(1+ x)∂. For a given Borel subalgebra

B, we can assume that up to conjugation, either B ⊃ t0, or B ⊃ t1.
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In the case when B ⊃ t0, the homogeneous property implies that B is

standard-graded. So B =
∑

i B[i], where B[0] = W[0]. If dimB[−1] = 1, the

maximal solvable subalgebra B contains K∂ + Kx∂. However, the latter

is already a maximal solvable subalgebra. This is because any subalgebra

properly containing K∂ + Kx∂ must contain K∂ + Kx∂ + Kx2∂, while the

latter is not solvable. So B = K∂ +Kx∂ in this case. If dimB[−1] = 0, then

B ⊂ W (1)0. The latter is solvable. The maximal solvability of B implies

B = B0 (note that B0 coincides with W (1)0 in the case of W (1)).

In the following argument, we assume that B ⊃ t1. By the homogeneous

property again, B is t1-graded. Consider the Z(t1)-graded structure W (1) =⊕
iW (1)

(t1)
[i] . In the case that dimB

(t1)
[−1] = 1, we have that B ⊃ K∂ + K(1 +

x)∂ = K∂ + Kx∂ = B1. Hence B = B1. Next we consider the remaining

situation B ⊃ t1 and dimB
(t1)
[−1] = 0. In such a case, B ⊂ K(1 + x)∂ +∑

i>0K(1 + x)i∂. As B is a maximal solvable subalgebra, B % K(1 + x)∂.

Therefore, there exists D := (1 + x)a∂ ∈ B with p > a > 1 (note the

homogeneous property). Consequently, one can conclude that B coincides

with K(1+x)∂+K(1+x)a∂ since the latter is readily known to be a maximal

solvable subalgebra. Actually, any subalgebra properly containing K(1 +

x)∂ + K(1 + x)a∂ must contain K(1 + x)∂ + K(1 + x)a∂ + K∂ (note that

(1+x)p = 1), which contradicts the assumption dimB
(t1)
[−1] = 0. Next, we will

show that B (= K(1 + x)∂ + K(1 + x)a∂) is conjugate to B1. Consider ϕ ∈

Aut(W (1)) which is defined via ϕ(x) = (1+x)b−1, where b ∈ {2, . . . , p−1}

with (1 − a)b ≡ 1mod p. Then the inverse ϕ−1 : x 7→ (1 + x)p−a+1 − 1. We

have an automorphism ϕ of W (1) induced by ϕ (see §2.2), denoted by Φ.

By a straightforward computation, we have

Φ((1 + x)a∂) = (p− a+ 1)∂,
(2.6)

Φ((1 + x)∂) = (p− a+ 1)(1 + x)∂.

Under the conjugation via such a Φ, we have B ∼= K∂ +K(1 + x)∂ = B1. ���

Remark 2.6. For g = W (1), we can show that any maximal solvable sub-

algebra is a Borel. Actually, a given maximal subalgebra B can be endowed

with a filtration structure {Bi} inheriting the one from g as in (2.2). Con-

sider the graded subalgebra Gr(B) of g. Then Gr(B) =
∑p−2

i=−1Gr(B)[i] is

also a maximal solvable subalgebra of g. Now Gr(B) is normalized by Kx∂.
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Hence, Gr(B) contains Kx∂. This implies that B contains nonzero semi-

simple elements, and then contains some maximal torus of g. Therefore, the

above proposition covers the main result of [22].

The above arguments of classifying Borels for W (1) will be extended to

the general case in the next sections. The ideas are essentially the same. The

role of B1 here will be replaced by an extreme Borel subalgebra Bn which

will be called the fully-switched Borel subalgebra in the general case (see

§3.1).

3. Standard Borel Subalgebras

We maintain the notations as before. Suppose n > 1.

3.1. Borel subspaces

We will first introduce (n+1) vector subspaces Bq inW (n), q = 0, 1, . . . , n.

Recall B0 = b +W (n)1 as defined in Lemma 2.4. Next, keeping the same

notation as in (2.3) we set

Bn =W (n)[−1] + b+

n∑

q=1

∑

a(q)

Kxa(q)∂q,

where x = (x1, . . . , xn) and a(q) := (a1, . . . , aq, 0, . . . , 0) ∈ Pn with |a(q)| >

1, ai runs through P for i = 1, . . . , q − 1, and aq = 0, 1. We call B0 and

Bn the unswitched Borel subspace and the fully-switched Borel subspace,

respectively.

Before introducing general Borel subspaces Bq (0 < q < n), we will

need some conventions of which some have appeared before but now are

introduced formally

Conventions 3.1. Let zi be either xi or (1 + xi), i = 1, . . . , n. For a

subsequence u = (u1, . . . , uq) of the sequence (z1, . . . , zn), i.e, {u1, . . . , uq} ⊂

{z1, . . . , zn}, we adopt the notations:

(1) Set B0(u1, . . . , uq) and Bq(u1, . . . , uq) to be the unswitched Borel sub-

space, and the fully-switched Borel subspace of W (q) respectively. Here
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W (q) is the derivation algebra of A(q) = K[u1, . . . , uq], which is the sub-

algebra of the truncated polynomial algebra A(n) = K[x1, . . . , xn] gener-

ated by u1, . . . , uq. For stressing the indeterminants, we sometimes will

use the notations A(u1, . . . , uq) and W (u1, . . . , uq) for A(q) and W (q)

respectively.

(2) Set t0(u1, . . . , uq) := xi1∂i1 + · · · + xiq∂iq , and tq(u1, . . . , uq) = (1 +

xi1)∂i1+· · ·+(1+xiq )∂iq when (u1, . . . , uq) = (xi1 , . . . , xiq ). Those t0 and

tq mean the first and last standard tori of W (xi1 , . . . , xiq ) respectively.

(3) Set ua := ua11 · · · u
aq
q if a = (a1, . . . , aq) ∈ Pq.

Now we are in the position to define the qth Borel subspace Bq (0 < q <

n). Let us first take u = (x1, . . . , xn−q) and w = (xn−q+1, . . . , xn). Define

Bq = B0(x1, . . . , xn−q) +Qq + Bq(xn−q+1, . . . , xn),

where

Qq =

n−q∑

i=1

∑

a(i),b(i)

Kua(i)wb(i)∂i +
n∑

j=n−q+1

∑

a(j);b(j)

Kua(j)wb(j)∂j, (3.1)

where a(i) := (a1, . . . , an−q) ∈ Pn−q is subject to the condition that either

|a(i)| > 1 or |a(i)| = 1 = a1 + · · · + ai, while a(j) ∈ Pn−q is subject to

the condition |a(j)| > 0, and b(−) := (bn−q+1, . . . , bn) runs through Pq for

(−) = (i), (j), subject to the condition |b(i)| > 0.

In the subsequent subsections, we will prove that all Br are Borel sub-

algebras of W (n) (r = 0, 1, . . . , n).

3.2. Switched positive root systems of the rigid root system

Set E = {−1, 0}. Consider a subset ∆ of Γ := Pn × En:

∆ = {(a1, . . . , an)× (η1, . . . , ηn) ∈ Γ | η1 + · · ·+ ηn = −1},

which means that elements in ∆ are of form (
∑

i aiǫi)× (−ǫs). Set

∆̄ = ∆ ∪ {∞}.
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For α = (
∑

i aiǫi)×(−ǫs) and β = (
∑

i biǫi)×(−ǫt) ∈ ∆ (s, t ∈ {1, 2, . . . , n}),

we define an ordered operator ♯ : ∆̄× ∆̄ → ∆̄ by

α♯β :=

{
(
∑

i(ai + bi)ǫi − ǫs)× (−ǫt), if as + bs 6= 0;

∞, otherwise;

and ∞♯any = any♯∞ = ∞. Here any means any element of ∆. Then

W (n) can be decomposed into a direct sum of one-dimensional root spaces,

associated with the so-called rigid root system as below:

W (n) =
∑

α∈∆̄

W (n)α,

where W (n)α := Kxa11 · · · xann ∂j for α = (a1, . . . , an)× (−ǫj), and W (n)∞ :=

0. We call ∆̄ the rigid root system of W (n). Then we have

[W (n)α,W (n)β] ⊂W (n)α♯β +W (n)β♯α. (3.2)

Associated with the unswitched and fully-switched Borel subspaces, we de-

fine positive root systems ∆̄(0)+, and ∆̄(n)+, respectively, as below

∆̄(0)+ :={ǫi × (−ǫj) | 1 6 i 6 j 6 n} ∪ {∞}∪

{ n∑

i=1

aiǫi × (−ǫj) | a1 + · · ·+ an > 1, j = 1, . . . , n
}
;

∆̄(n)+ :={0× (−ǫj) | j = 1, . . . , n} ∪ {ǫi × (−ǫj) | 1 6 i 6 j 6 n} ∪ {∞}∪

{ n∑

i=1

aiǫi × (−ǫj) | a1 + · · ·+ an = a1 + · · ·+ aj > 1;

aj = 0, or 1; j = 1, 2, . . . , n
}
.

Then B0 =
∑

α∈∆̄(0)+
W (n)α and Bn =

∑
α∈∆̄(n)+

W (n)α. Generally, we set

∆̄(q)+ = ∆̄(x1,...,xn−q)(0)+ ∪ ∆̄(xn−q+1,...,xn)(q)+ ∪ ∆̄{Q}+,

where ∆̄(x1,...,xn−q)(0)+, and ∆̄(xn−q+1,...,xn)(q)+ denote the unswitched posi-

tive root system and the fully-switched positive root system associated with

K[x1, . . . , xn−q] and K[xn−q+1, . . . , xn], respectively; and ∆̄{Q}+ denotes a
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subset of ∆̄+ as below:

∆̄{Q}+ =
{( n−q∑

i=1

aiǫi +

n∑

j=n−q+1

bjǫj

)
× (−ǫr) | 1 6 r 6 n− q;

either a1+· · ·+an−q>1 or a1+· · ·+an−q=a1+· · ·+ar=1;

bn−q+1 + · · · + bn > 0
}⋃

{∞}

⋃{( n−q∑

i=1

aiǫi +

n∑

j=n−q+1

bjǫj

)
× (−ǫs) | n− q + 1 6 s 6 n;

a1 + · · ·+ an−q > 0
}
.

By the above construction, we have

Lemma 3.2. Maintain the notations as above. The following statements

hold.

(1) Bq =
∑

α∈∆̄(q)+
W (n)α, q = 0, 1, . . . , n.

(2) Bq contains the maximal tori tr, r = 0, 1, . . . , q.

(3) Furthermore, Bq is a restricted tr-module for r = 0, 1, . . . , q. As a t0-

module the weight system is described as below, in the sense of (2.5):

{a=(a1, . . . , an)∈Pn |ai coincides with the ith entriy of α for α∈∆(q)+}

where α = (·) + (··) for α = (·)× (··) and ∆(q)+ = ∆̄(q)+\{∞}.

(4) Bq is a subalgebra of W (n).

Proof. The first three statements are clear. In order to prove the last one,

we only need to check that the operator ♯ is closed on ∆̄(q)+ in view of

the first three statements, and Formula (3.2), along with the homogenous

condition. By a direct computation, we easily obtain that it is closed on

∆̄(0)+ and ∆̄(n)+. For an arbitrary q, we note that in

Bq = B0(x1, . . . , xn−q) +Qq + Bq(xn−q+1, . . . , xn),

the first and last summands are already known to be subalgebras with mutu-

ally vanishing Lie brackets (i.e., the Lie brackets between them are 0). Fur-

thermore, Qq is normalized by the first summand, and [Qq,Bq(xn−q+1, . . .,
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xn)] ⊂ B0(x1, . . . , xn−q)+Qq. So we only need to prove that Qq is a subalge-

bra. For this, it is sufficient to check that the operator ♯ is closed on ∆̄{Q}+.

By a straightforward and easy computation, one sees that ♯ is closed on the

latter. ���

3.3. Standard Borel subalgebras

In this subsection, we prove that all Bq are Borel subalgebras of W (n).

Proposition 3.3. Maintain the notations as before. All Borel subspaces Br,

r = 0, 1, 2, . . . , n, are Borel subalgebras of W (n), called the standard Borel

subalgebras.

Proof. By the definition of Borel subspaces, every Borel subspace contains

the maximal torus t0 of W (n). According to Lemma 3.2(4), the Borel sub-

spaces Bq are subalgebras of W (n). It remains to show that any Borel sub-

space Bq is solvable and maximal among the solvable subalgebras of W (n).

(1) We want to prove that all the subalgebras Bq are solvable. By Lemma

2.4, we know that B0 is a solvable subalgebra. As for Bn, we first observe

that B
(n+1)
n ⊂ B0, from which it follows that B

(n+1)
n is solvable. Hence Bn

itself is solvable.

For an arbitrary q, recall Bq=B0(x1, . . . , xn−q)+Qq+Bq(xn−q+1, . . . , xn).

The first and last summands have been known to be solvable subalgebras.

Note that the middle summand subalgebra Qq is normalized by the first one

and that the sum of the first and second summands are normalized by the

third one. So we only need to verify that Qq is solvable. This follows from

the inclusion Q
(q)
q ⊂W (n)1 (note that W (n)1 is solvable).

(2) We want to prove that all solvable subalgebras Bq are maximal.

For B0 = b+W (n)1, the maximality is easily seen. Actually, if a solvable

subalgebra H contains B0, then H is t0-graded by the homogenous condition.

Then H =
∑

q H[q] with H[q] = H∩W (n)[q]. The assumption of H being solv-

able implies that H[−1] must be zero. Otherwise H must contain a certain ∂i,

and thereby the subalgebra generated by ∂i, xi∂i, x
2
i ∂i, which is not solvable.

Hence H ⊂W (n)0. On the other hand, H[0] is solvable in W (n)[0]. However

b ⊂ H[0] ⊂ W (n)[0], and b is already a Borel subalgebra of W (n)[0]. Hence

H[0] coincides with b. Thus H = B0.
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As for Bn, recall

Bn =W (n)[−1] + b+

n∑

q=1

∑

a(q)

Kxa(q)∂q,

with the notation x = (x1, . . . , xn), a(q) = (a1, . . . , aq, 0, . . . , 0) ∈ Pn with

|a(q)| > 1, ai runs through P for i = 1, . . . , q−1, and aq = 0, 1. Suppose there

is a solvable algebra H ⊇ Bn. Similar to the above argument, we have that

H =
∑

q H[q] such that H[q] = H ∩W (n)[q] ⊃ (Bn)[q] with H[−1] = W (n)[−1]

and H[0] = b. If H contains Bn properly, then there must be a non-zero

element X ∈ Hα ⊂ H[s] for s > 0, which is not in (Bn)[s]. Therefore we can

write

X =

n∑

q=1

∑

b(q)

Cb(q)x
b(q)∂q,

where Cb(q) ∈ K, b(q) = (b1, . . . , bn) ∈ Pn satisfying either (bq+1, . . . , bn) 6=

0, or (bq+1, . . . , bn) = 0 with bq > 1, as long as Cb(q) 6= 0. Say, either

bt 6= 0 for some t > q, or bq = d ≥ 2. We will deduce a contradiction.

By applying a suitable series of adjoint actions adD on X for some D ∈

H[−1] = W[−1], one of the following situations happens: either H contains a

subalgebra generated by xt∂q, xq∂t, xt∂t − xq∂q, or H contains a subalgebra

generated by x2q∂q, xq∂q, ∂q. But neither of these two subalgebras is solvable,

which contradicts the solvability of H. Hence, H must coincide with Bn. This

completes the proof of the maximality of Bn.

Let us finally investigate Bq (0 < q < n). We need to prove that for any

solvable subalgebra H, the inclusion H ⊇ Bq implies the equality H = Bq.

Observe that H ∩W (x1, . . . , xn−q) ⊇ B0(x1, . . . , xn−q). Along with a result

just proved that B0(x1, . . . , xn−q) is a Borel subalgebra of W (x1, . . . , xn−q),

it follows that H∩W (x1, . . . , xn−q) = B0(x1, . . . , xn−q). For the same reason,

we have

H ∩W (xn−q+1, . . . , xn) = Bq(xn−q+1, . . . , xn).

Thus we have

Bq ⊆ H ⊆ B0(x1, . . . , xn−q) +Qq + Bq(xn−q+1, . . . , xn),



2019] GENERIC PROPERTY AND BOREL SUBALGBRAS 315

where Qq =
n−q∑
i=1

∑
a(i),b(i)Kua(i)wb(i)∂i +

n∑
j=n−q+1

∑
a(j);b(j)Kua(j)wb(j)∂j ,

u = (x1, . . . , xn−q) and w = (xn−q+1, . . . , xn) , and a(−) := (a1, . . . , an−q)

runs through Pn−q for (−) = (i), (j), and b(−) := (bn−q+1, . . . , bn) runs

through Pq for (−) = (i), (j), subject to the condition that |a(j)| > 0 and

|b(i)| > 0.

Suppose H % Bq. Then there must be some element X ∈ Qq\Qq. Com-

paring Qq and Qq, we have

X =

n−q∑

i=1

∑

a(i),b(i)

Ca(i),b(i)u
a(i)wb(i)∂i,

with Ca(i),b(i) ∈ K, and with a(i),b(i) violating the condition listed below

(3.1) as long as Ca(i),b(i) 6= 0. This is to say, there exists j: 1 6 i < j 6 n−q

satisfying |a(i)| = 1 = aj while Ca(i),b(i) 6= 0. By the same arguments as

before, we conclude that H contains xj∂i, xi∂j and xi∂i−xj∂j , and therefore

it contains the subalgebra generated by these elements, which is not solvable.

This contradicts the hypothesis that H is solvable. Consequently, we must

have H = Bq. Thus, this completes the proof of the maximality of the

solvable subalgebras Bq. ���

4. Conjugacy Classes of Homogeneous Borel Subalgebras

Maintain the notations and conventions as before. Especially, the char-

acteristic p of the ground field K is assumed to be greater than 3 throughout

this section.

4.1. In this section, we will prove that the standard Borel subalgebras are

representatives of the conjugacy classes of all homogeneous Borel subalge-

bras. Let B be any given Borel subalgebra of W (n). By the definition of

Borel subalgebras, B contains a maximal torus. In view of Theorem 2.2, we

introduce an invariant r(B) as follows

r(B) := max{r | there exists σ ∈ Aut(W (n)) suth that σ(tr) ⊂ B}

for the G-conjugacy class of B. The following conclusion is obvious.
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Lemma 4.1. r(Br) = r.

4.2. Let us begin with two special cases r(B) = 0 and r(B) = n.

Lemma 4.2. Assume B is a homogeneous Borel subalgebra of W (n) with

r(B) = 0. Then B ∼= B0.

Proof. Up to conjugation, we may assume B ⊃ t0. Since B is homogeneous,

it admits a standard-graded structure. So B =
∑

i B[i]. We claim that

dimB[−1] = 0. Indeed, if there is a non-zero D ∈ B[−1], then D =
∑

i cti∂ti
with cti ∈ K\{0} for ti ∈ {1, . . . , n}. These elements ∂ti belong to B because

[xti∂ti ,D] = −cti∂ti ∈ B. Hence (1 + xti)∂ti ∈ B, which contradicts the

assumption r(B) = 0. Therefore, B is contained in W (n)0. The conclusion

follows then from Lemma 2.4. ���

4.3. Let B be a homogeneous Borel subalgebra ofW (n) with r(B) = n. This

is to say, B ⊃ σ(tn) for some σ ∈ Aut(W (n)) and tn = K(1 + x1)∂1 + · · · +

K(1 + xn)∂n.

Lemma 4.3. B is conjugate to Bn.

Proof. We may assume B ⊃ tn without loss of generality. Since B is

homogeneous, it is tn-graded. We will prove the lemma by induction on

k′ := n − dimB
(tn)
[−1] (recall the notation in §2.4). We additionally set k =

dimB
(tn)
[−1].

When k′ = 0, i.e., dimB
(tn)
[−1] = n, we have B ⊃ t0. Since B is homoge-

neous, it admits a standard-graded structure, i.e., B =
∑

i B[i]. Furthermore,

B[−1] =W (n)[−1] and B[0] ⊃ t0. Set B0 =
∑

i≥0 B[i]. We claim that

(∗) Under the conjugation arising from some permutation π of (12 · · · n)

(see Theorem 2.1(1)),

B0 ⊂
∑

i

∑

a(i)

Kxa(i)∂π(i)

where x = (xπ(1), . . . , xπ(n)), and a(i) = (a1, . . . , ai, 0, . . . , 0) ∈ Pn sub-

ject to the condition that ai = 0 or ai = 1.
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Indeed, if the claim (∗) is not true, since B is t0-graded, we readily conclude

by suitable ad∂s-actions (s ∈ {1, . . . , n}) that one of the following cases

occurs:

(†) there exist in B a pair of elements xi∂j and xj∂i with i 6= j.

(‡) there exists x2i ∂i in B for some i.

The former means that there is a triple xi∂j , xj∂i and xi∂i − xj∂j in B; the

latter means that there is a triple ∂i, xi∂i and x2i ∂i in B. Either situation

contradicts the solvability of B. Hence the claim (∗) is true. Thus, by a

suitable permutation τ of (x1, . . . , xn), which gives rise to an automorphism

of W (n), B is isomorphic to a solvable subalgebra of Bn. Hence B ∼= Bn by

the maximal solvability of Borel subalgebras. This completes the proof for

k′ = 0.

Now suppose k′ > 0 (this is to say, k < n), and suppose that the

statement is true for integers less than k′ (or equivalently, for integers greater

than k). Without loss of generality, we assume B
(tn)
[−1] = K∂1 + · · ·+K∂k (we

may apply some g ∈ GL(n) to get this). Then B ⊃ tn−k = Kx1∂1 + · · · +

Kxk∂k +K(1+ xk+1)∂k+1 + · · ·+K(1+ xn)∂n. Set B1 := B ∩W (x1, . . . , xk)

and B2 := B ∩W (xk+1, . . . , xn). Then

B1 ⊃
k∑

i=1

K∂i +
k∑

i=1

Kxi∂i;

W (xk+1, . . . , xn)
(tn−k)
0 ⊃ B2 ⊃

n∑

i=k+1

K(1 + xi)∂i.

The remaining argument will be divided into two cases: whether or not B2

contains nilpotent elements.

The first case: There is no nilpotent element in B2. Then B2 = K(1 +

xk+1)∂k+1 + · · ·+K(1 + xn)∂n. We write

B = B1 +
∑

(b1,...,bk;ck+1,...,cn;i)∈I

Kxb11 · · · xbkk (1 + xk+1)
ck+1 · · · (1 + xn)

cn∂i + B2;

(4.1)
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for a subset I of Γ = Pk × Pn−k × {1, . . . , k}, where P := {0, 1, . . . , p − 1}.

Denote the second summand on the right hand side of (4.1) by B′
1. Then

surely B′
1 ⊂ B.

Let us introduce a new subset I of Γ associated with I

I := {(b1, . . . , bk; γk+1, . . . , γn; i) |γi = 0, 1, . . . , p− 1;∀i = k + 1, . . . , n

if exists (b1, . . . , bk; ck+1, . . . , cn; i) ∈ I}.

In the following, we simply write elements of I as (b1, . . . , bk;∞, . . . ,∞; i)

(this means that some (b1, . . . , bk;−, . . . ,−; i) appears in I) where ∞ just

stands for any number from P. Note that the same notation ∞ in different

entries does not mean the same number. Set

B′
1 =

∑

(b1,...,bk;∞,...,∞;i)∈I

Kxb11 · · · xbkk (1 + xk+1)
∞ · · · (1 + xn)

∞∂i.

And set

B = B1 + B′
1 + B2.

We claim that

B is a solvable subalgebra of W (n) containing B,

therefore B coincides with B by the maximality of B. To prove the above

claim, we first need to check that the linear subspace B is a subalgebra.

For this, note that B1 + B′
1 is normalized by B2. We only need to check

that B1 + B′
1 (= B′

1) is a subalgebra. In order to check this, we take any

two elements X,X
′
∈ B′

1 with X = xb11 · · · xbkk (1 + xk+1)
∞ · · · (1 + xn)

∞∂i,

X
′
= x

b′
1

1 · · · x
b′
k

k (1 + xk+1)
∞ · · · (1 + xn)

∞∂j . Correspondingly, we can find

two elements X and X ′ in B′
1 defined as follows:

X = xb11 · · · xbkk (1 + xk+1)
ck+1 · · · (1 + xn)

cn∂i

X ′ = x
b′1
1 · · · x

b′
k

k (1 + xk+1)
c′
k+1 · · · (1 + xn)

c′n∂j

for some (ck+1, . . . , cn), (c
′
k+1, . . . , c

′
n) ∈ Pn−k. Then

[X,X
′
] = (1 + xk+1)

∞ · · · (1 + xn)
∞[xb11 · · · xbkk ∂i, x

b′
1

1 · · · x
b′
k

k ∂j] ∈ B
′
1 (4.2)
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because [X,X ′] ∈ [B′
1,B

′
1] ⊂ B′

1, and B′ ⊂ B is tn−k-graded. The solvability

of B follows from (4.2), along with the relations

[B
′
1,B

′
1] ⊂ {

∑
(1 + xk+1)

∞ · · · (1 + xn)
∞X | X ∈ [B′

1,B
′
1]}

and inductively for i = 2, 3, . . .

B
′
1

(i)
⊂ {

∑
(1 + xk+1)

∞ · · · (1 + xn)
∞X | X ∈ B′

1
(i)
},

and the solvability of B. Hence, B = B. On the other hand, the structure of

B implies that B +K∂n = B +K∂n is a solvable subalgebra of W (n), which

contradicts the maximal solvability of B because B + K∂n % B (note that

k < n). So the first case could not happen.

The second case: There exist some nilpotent elements in B2. In this case,

B2 % tn−k(xk+1, . . . , xn) = K(1+xk+1)∂k+1+ · · ·+K(1+xn)∂n. Note that B

is a maximal solvable subalgebra containing tn, and B2 is tn−k(xk+1, . . . , xn)-

graded. We claim that there exists in B2 a nilpotent element of “monomial

form”

X = (1 + xk+1)
ak+1 · · · (1 + xn)

an∂q, (4.3)

which satisfies aq 6= 1 (subsequently called the q-condition). To verify

this, we first have, by a direct computation, that any derivation of the

form (1 + xq)(
∏

i 6=q(1 + xi)
ai)∂q is non-nilpotent, thereby a nilpotent el-

ement of “monomial form” must satisfy the q-condition. Next, we show

that such a nilpotent element of “monomial form” indeed exists in B2. By

employing the tn−k(xk+1, . . . , xn)-grading, we can first take a nilpotent ele-

ment X ′ to be a linear combination of some “monomial form” elements of

a tn−k(xk+1, . . . , xn)-grading (dk+1, . . . , dn). Under a suitable conjugation

similar to the forthcoming (4.4) (only involving xk+1, . . . , xn and satisfying

the forthcoming (Φ-2)), we can get a “monomial” summand from the com-

bination such that its tn−k(xk+1, . . . , xn)-grading is different from the other

summands. Then such a “monomial” summand must be a nilpotent element

in B2. We take it as the desired X (the above computation is trivial and

tedious, we omit the details here).

With such an X ∈ B2 as in (4.3), we can further see that B is conjugate

to some B′ with dim(B′)
(tn)
[−1] = k + 1 as follows.
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By the same way as in §2.2, we define an automorphism ϕ of the trun-

cated polynomial algebra A(n) via

ϕ : xj 7→ xj for j ∈ {1, . . . , n}\{q},

ϕ : xq 7→ (1 + xq)
∏

j∈{k+1,...,n},j 6=q

(1 + xj)
dj − 1, (4.4)

where dj = dq(p − aj) ∈ {0, 1, . . . , p − 1} with dq(aq − 1) ≡ 1mod p. Then

ϕ induces an automorphism ϕ of W (n), denoted by Φ. Then Φ|B1
is the

identity map. We have

Φ(∂q) = ϕ ◦ ∂q ◦ ϕ
−1

=
∏

j∈{k+1,...,n},j 6=q

(1 + xj)
p−dj∂q.

And then we have

Φ(X) =
( ∏

j∈{k+1,...,n},j 6=q

(1 + xj)
aj
)
ϕ((1 + xq)

aq )Φ(∂q)

=(1 + xq)
aq∂q.

Furthermore, Φ((1 + xj)∂j = (1 + xj)∂j for j ∈ {k + 1, . . . , n}\{q}. And

Φ((1 + xq)∂q) = ϕ(1 + xq)Φ(∂q) = (1 + xq)∂q.

Hence Φ satisfies the following properties

(Φ-1) Φ|tn−k(xk+1,...,xn) = identity.

(Φ-2) Under Φ, Φ(B) = B1 + Φ(B2), which contains tn, and intersects with

W (n)
(n)
[−1] at

∑k
i=1K∂i.

(Φ-3) It is a specially important consequence that Φ(B2) admits a nilpotent

element Φ(X) = (1 + xq)
aq∂q.

Next, we define an automorphism Ψ of W (n) via

ψ(xj) =

{
xj , if j 6= q;

(1 + xq)
bq − 1, if j = q;
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where bq ∈ {1, . . . , p−1} with (p−aq+1)bq ≡ 1mod p. By a straightforward

computation as in (2.6), we have Ψ◦Φ(B) ⊃ tn with dimΨ◦Φ(B)
(tn)
[−1] = k+1.

The induction hypothesis yields that Ψ ◦ Φ(B) is conjugate to Bn. This

completes the proof. ���

4.4. Now we are in the position to investigate the general case.

Lemma 4.4. Let B be any given homogeneous Borel subalgebra of W (n).

Then B is conjugate to Br, where r = r(B).

Proof. If r = n, then the statement holds, thanks to Lemma 4.3. In the

following, we assume r < n. Up to conjugation, we may assume that B

contains tr = Kx1∂1 + Kx2∂2 + · · · + Kxn−r∂n−r + K(1 + xn−r+1)∂n−r+1 +

· · · + K(1 + xn)∂n. Since B is homogeneous, we have that B is tr-graded.

According to the assumption, we have the following observation:

(r-0) B
(tr)
[−1] ⊂ K∂n−r+1 + · · · +K∂n.

Note that B
(tr)
[0] ∩W (x1, . . . , xn−r) is a solvable subalgebra of

W (x1, . . . , xn−r)[0] containing the maximal torus t0(x1, . . . , xn−r). And G0 =

GL(n,K) ⊃ GL(n − r,K) ×GL(r). By a result on the conjugacy classes of

Borel subalgebra of classical Lie algebras (cf. [8, §11.3-4]), without loss of

generality, we can additionally make the following assumption:

(r-1) B
(tr)
[0]

∩W (x1, . . . , xn−r) ⊂
∑

i≦j; i,j=1,...,n−r Kxi∂j .

Set B1 = B ∩W (x1, . . . , xn−r). Then B1 is solvable, and t0(x1, . . . , xn−r) ⊂

B1 ⊂ W (n − r)0. According to Lemma 2.4, without loss of generality, we

can additionally make the following assumption:

(r-2) B1 ⊂ B0(x1, . . . , xn−r).

Set B2 = B ∩ W (xn−r+1, . . . , xn). Then B2 is solvable and contains the

maximal torus

tr(xn−r+1, . . . , xn)

of W (xn−r+1, . . . , xn). Observe that

Aut(W (x1, . . . , xn−r))×Aut(W (xn−r+1, . . . , xn)) ⊂ Aut(W (n)).
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So by taking Lemma 4.3 into account, we may additionally make the follow-

ing assumption:

(r-3) B2 ⊂ Θ(Br(xn−r+1, . . . , xn)) for a certain Θ ∈ Aut(W (xn−r+1, . . . , xn)).

Set x = (x1, . . . , xn−r) and y = (yn−r+1, . . . , yn) for yi = 1 + xi. Consider

the subspace Q below (keeping the notations in Conventions 3.1):

Q =

n−r∑

i=1

∑

a(i),b(i)

Kxa(i)yb(i)∂i +

n∑

j=n−r+1

∑

a(j);b(j)

Kxa(j)yb(j)∂j ,

where a(i) := (a1, . . . , an−r) ∈ Pn−r is subject to the condition that either

|a(i)| > 1 or |a(i)| = 1 = a1 + · · · + ai, while a(j) ∈ Pn−r is subject to

the condition |a(j)| > 0, and b(−) := (bn−r+1, . . . , bn) runs through Pr

for (−) = (i), (j). It is readily seen that Q is stable under the action of

Aut(W (xn−r+1, . . . , xn)), and that the following statements hold

(r-4) Q is a subalgebra normalizing B0(x1, . . . , xn−r) andQ+B0(x1, . . . , xn−r)

normalizes Θ(Br(xn−r+1, . . . , xn)).

(r-5) Θ(Br) = B0(x1, . . . , xn−r) + Q + Θ(Br(xn−r+1, . . . , xn)) (note that Θ

can be naturally regarded as an automorphism of W (n)).

Set BQ := B1 +Q+ B2. Then BQ ⊂ Θ(Br). From (r-2), (r-3) and (r-4), we

know that BQ is a solvable subalgebra. We will finally show the following

inclusion relation

(r-6) BQ ⊃ B.

In order to prove (r-6), we first claim that B may contain neither elements

like Y nor elements like Z, where Y and Z are presented as

Y = yb(q)∂q with q ∈ {1, 2, . . . , n− r}; (4.5)

and

Z = xmyb(q)∂q with m, q ∈ {1, 2, . . . , n− r}, m > q. (4.6)

We verify the claim by deriving a contradiction. Suppose the claim is not

true and the elements of the form (4.5) or (4.6) occur in B. First, suppose

that in B there exists an element Y of the form (4.5). Clearly, |b(q)| > 0
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by (r-0). For Y = (1 + xn−r+1)
bn−r+1 · · · (1 + xn)

bn∂q. According to the

argument of §2.2, one can consider an automorphism Ω of W (n) induced by

ω ∈ Aut(A(n)), which is defined via

ω : xi 7→ xi for i ∈ {1, . . . , n}\{q},

ω : xq 7→ xq
∏

j∈{n−r+1,...,n}

(1 + xj)
bj

Then Ω(Y ) = ∂q, while Ω(xq∂q) = xq∂q, and we have Ω(B) ⊃
∑n−r

i=1,i 6=q Kxi∂i
+K(1+xq)∂q+

∑n
i=n−r+1K(1+xi)∂i ∼= tr+1, which contradicts the assump-

tion r(B) = r. Thus we have proved that B does not contain any elements

of the form (4.5).

For elements of the form (4.6), we first conclude that

B does not contain any pair of elements of the forms:

Z(m, q) = xm(1 + xn−r+1)
bn−r+1 · · · (1 + xn)

bn∂q,
(4.7)

Z(q,m) = xq(1 + xn−r+1)
cn−r+1 · · · (1 + xn)

cn∂m,

with m, q ∈ {1, 2, . . . , n − r},m > q. Otherwise, suppose that B con-

tains a pair of elements as above. Then one can easily find a non-solvable

subalgebra in B arising from such pairs, which contradicts the solvability of

B. Combining the statement (4.7) with the assumption (r-1), we finally con-

clude that the maximal solvable subalgebra B does not contain any elements

of the form (4.6) (if necessary, we change the order of the indeterminants xi

for i = 1, . . . , n− r, which gives rise to some automorphism of W (n)). This

verifies the claim.

In order to complete the proof of (r-6), it remains to show that B does

not contain any K-linear combination of some elements of the form (4.5)

or (4.6). Notice that all summands in such a combination admit different

tr-gradings (different elements of the form (4.5) or (4.6) admit different tr-

gradings). On the other hand, since B is homogeneous, it is tr-graded. If

B contains a combination of different tr-graded summands, then B contains

all its summands. This contradicts what we just concluded. So B does not

contain such a combination. Thus, comparing Bq and B, we have BQ ⊃ B.

We have finished the proof of (r-6).
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It follows from (r-2)−(r-6) that B ⊂ BQ ⊂ Θ(Br). The maximality of B

implies B = Θ(Br). This completes the proof. ���

We have a direct consequence

Corollary 4.5. The following statements hold.

(1) Any homogeneous Borel subalgebra of W (n) contains a maximal torus

conjugate to t0.

(Therefore, for a given homogeneous Borel subalgebra B of W (n), we can

take some B0 conjugate to B such that B0 ⊃ t0.)

(2) If we set d(B) = dimB0
[−1], then d(B) = r(B).

So, there is a constant d(B) = r(B) associated with the conjugacy class

of a homogeneous Borel subalgebra B.

4.5. By Lemma 4.4, Corollary 4.5 and [2, Proposition 3.3] (note that in [2],

the order of the parameters in the subscripts of the notations {tr} is reversed

to the one used in the present paper), we have

Theorem 4.6. Assume that g = W (n), G = Aut(W (n)), and that the

characteristic p of the ground field K is greater than 3. Then the following

statements hold.

(1) All standard Borel subalgebras Bi, i = 0, 1, . . . , n are homogeneous.

(2) There are (n+1) conjugacy classes of homogeneous Borel subalgebras of

W (n) under G. The standard Borel subalgebras Bi, i = 0, 1, . . . , n are

representatives of the (n+ 1) conjugacy classes.

(3) There is only one conjugacy class of generic homogeneous Borel subal-

gebras, which is conjugate to Bn.

Remark 4.7. In view of [7, Theorem D], it is reasonable to expect that all

maximal solvable subalgebras of W (n) are Borel subalgebras if and only if

p > n. In the case p 6 n, the problem of determining the conjugacy classes

of maximal solvable subalgebras seems to be much harder.
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5. Solvable Subgroups Associated with Standard Borel Subalgebras

Let (g, [p]) be a restricted Lie algebra, and let G the adjoint group of g.

We are especially interested in StabG(Bgen) and G/StabG(Bgen) for a generic

Borel subalgebra Bgen when g admits generic tori, where StabG(Bgen) denotes

the subgroup of G consisting of elements stabilizing Bgen. In this section, we

investigate the subgroups StabG(Br) associated with standard Borel algebras

in the case g =W (n). Keep the notation as in Theorem 2.1.

5.1. For the standard homogeneous Borel subalgebras Br of W (n), set

Sr = StabG(Br), r = 0, 1, . . . , n. Keeping in mind that G0 is isomorphic

to GL(n,K) (cf. Theorem 2.1), we have a standard Borel subgroup B0 of

G0 which corresponds to the one consisting of invertible upper-triangular

matrices of GL(n,K). Then we have the following general description of Sr.

Proposition 5.1. Let B0 be the standard Borel subgroup of G0 correspond-

ing to the one consisting of invertible upper-triangular matrices of GL(n,K).

The following statements hold.

(1) The solvable subgroup S0 coincides with the Borel subgroup B0⋉U of G.

(2) For r = 0, 1, . . . , n, Sr = B0 ⋉ Ur is a connected subgroup of the Borel

subgroup S0, where Ur = U ∩ StabG(Br).

Proof. The first assertion is immediate. For (2), it is easily verified that

Sr = B0 ⋉ Ur. It remains to prove the connectedness of Ur. We iden-

tify B0 with the standard Borel subgroup of GL(n,K) consisting of invert-

ible upper-triangular matrices, which has a maximal torus group T0 con-

sisting of invertible diagonal matrices. Obviously, T0 normalizes Ur. Take

τ(t) = diag(t, t, . . . , t) ∈ T0 for a given t ∈ K× := K\{0}. Given a unipotent

element g ∈ Ur, we can write g = idA(n) + φ with φ ∈ End(A(n)) satisfying

φ(xi) ∈
∑

j>1A[j] for i = 1, · · · , n, where A(n)[j] is the subspace spanned

by homogeneous truncated polynomials of degree j as defined in §2.1. Fur-

thermore, we can write φ =
∑

j>1 φj with φj mapping A[1] to A[j]. Then we

get

τ(t)gτ(t)−1 = idA(n) +
∑

j>1

tj−1φj
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for all t ∈ K×. We extend the map sending t to τ(t)gτ(t)−1 to a morphism

K → End(An). Clearly, both idA(n) and g belong to the image. Thus g

belongs to the same connected component of Ur as idA(n). The arbitrariness

of g implies that Ur is connected. ���

5.2. Set g = W (n) and G = Aut(W (n)) described as in Theorem 2.1. We

use the notation Bgen for StabG(Bn) instead of Sn.

Proposition 5.2. By identifying G and the automorphism group of A(n),

Bgen can be regarded as a subgroup of the isotropy group of the following flag

of algebras

K[x1, . . . , xn] ⊃ K[x1, . . . , xn−1] ⊃ · · · ⊃ K[x1].

Furthermore, Bgen = B0 ⋉ Un, with

Un = {g ∈ U | (g − id)(xi) ∈ (K+Kxi)K[x1, . . . , xi−1], i = 1, . . . , n}.

Proof. It is clear that Bgen contains both B0 and Un. Hence it contains

also B ⋉ Un. Next we prove the inverse inclusion.

For any σ ∈ Bgen, we can write σ = σ0 ◦ σ1 with σ0 ∈ G0 and σ1 ∈ U

by Theorem 2.1. So σ0 stabilizes b ⊂ Bn, which means that σ0 ∈ B0 ⊂

Bgen. Thus σ1 ∈ Bgen. It remains to show that σ1 ∈ Un. Suppose σ1
is not in Un. Then there exists some i such that σ1(xi) = xi + xjf1 +

x2i f2 + f3 with j > i, f1 ∈ K[x1, . . . , xn], f2 ∈ K[x1, . . . , x̂j, . . . , xn], f3 ∈

(K +Kxi)K[x1, . . . , x̂i, . . . , x̂j , . . . , xn], and f1, f2 are not all zero. Here the

notations x̂i, x̂j mean omitting the indeterminants xi, xj respectively. Note

that σ1 ∈ U . By a straightforward computation, σ−1
1 (xi) = xi+xjg1+x

2
i g2+

g3, where g1, g2, g3 ∈ A(n) are subject to the same conditions as the ones for

f1, f2 and f3. Then σ1(xi∂i) = xi∂i + (xjf1 + x2i f2 + f3)∂i + ∗ does not fall

in Bn. This is a contradiction. Hence σ lies in B0 ⋉ Un. This completes the

proof. ���

Additional Notation List

For the truncated polynomial algebra A(n) and its derivation algebra

W (n).
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• P = {0, 1 . . . , p− 1}.

• ǫi = (δi,1, . . . , δi,n) ∈ Pn, δi,j = 1 if i = j, and 0 otherwise.

• A(n) = K[T1, . . . , Tn]/(T
p
1 , . . . , T

p
n).

• xi = Ti + (T p
1 , . . . , T

p
n) ∈ A(n), yi = xi + 1, and zi = xi or yi according

to the prescribed, i = 1, . . . , n.

• ϕ is an automorphism in W (n) induced from ϕ ∈ Aut(A(n)).

• xa = xa11 · · · xann ; ya = ya11 · · · yann ; and za = za11 · · · zann all in A(n) for

a = (a1, . . . , an) ∈ Pn.

For maximal tori and related gradations:

• tr =
∑n−r

i=1 Kxi∂i +
∑n

i=(n−r)+1K(1 + xi)∂i, r = 0, 1, . . . , n (see §2.3).

• H
(tr)
[i] : Z[tr]-graded subspace (here and below H is a subalgebra of W (n)

containing tr).

• H
[tr ]
α : tr-graded subspace (root subspace).

• H[i]: standard graded subspace (associated with t0), where H contains

t0.

For Borel subalgebras:

• b: the standard Borel subalgebra in W[0]
∼= gl(n) (see §2.5).

• L(i) for a Lie algebra L: the i-th derived ideal (see §2.5).

• Bq: Borel subspaces of W (n), q = 0, 1, . . . , n (see §3.1). All of them are

finally proved to be Borel subalgebras and to parameterize the iso-classes

of homogeneous Borel subalgebras of W (n).

• B0 and Bn: the unswitched Borel subspace and the fully-switched Borel

subspace of W (n), respectively (see §3.1).

• B0(u1, . . . , uq) and Bq(u1, . . . , uq): the same meaning as above with re-

spect to u1, . . . , uq (see Conventions 3.1).

• r(B): an invariant of homogeneous Borel conjugacy classes (see §4.1).
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