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Abstract

We continue the study of total positivity in reductive groups started in my 1994

paper.

0. Introduction

0.1. The theory of totally positive real matrices (see [14]) has been de-

veloped in the 1930’s by I.Schoenberg and independently by F.Gantmacher

and M.Krein after earlier contributions by M.Fekete and G.Polya (1912) and

with later contributions by A.Whitney and C.Loewner (1950’s). In [8] I ex-

tended a part of this theory by replacing the group SLn(R) by an arbitrary

split semisimple real Lie group G. This paper is a continuation of [8].

0.2. One of the main tools in [8] was the use of the canonical basis B of the

+ part U+ of a quantized enveloping algebra U (over Q(v)) of type A,D,E,

introduced in [5], and in particular the use of its positivity properties. Now

U+ admits a family of bases (the PBW-bases) indexed by the various re-

duced expressions for the longest element wI in the Weyl group. In [5] it

was shown that the specialization of any of these PBW-bases at v = ∞ is

independent of the PBW-basis and is in fact the same as the specialization

of B at v = ∞. Since each PBW-basis is naturally parametrized by Nν

(where ν is the number of positive roots), it follows that B has a family of

parametrizations by Nν indexed by the various reduced expressions for wI .

Moreover, in [5] it is shown that any two of these parametrizations are related
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by a piecewise linear automorphism of Nν built from adding or substract-

ing two integers or by taking the minimum of two integers. These piecewise

linear automorphisms extend in an obvious way to piecewise linear automor-

phisms of Zν which can be viewed as maps relating the parametrizations of

a new object B̃ (containing B as a subset) by Zν , these parametrizations

being again indexed by the various reduced expressions for wI . The set B̃

with this family of parametrizations by Zν is the first example of a positive

structure (see 1.3), which is one of the themes of this paper.

A second example of positive structure appeared in [8]. In [8] I define

the positive part U+
>0 and the non-negative part U+

≥0 of the strictly upper

triangular part U+ of the real Lie group G (which in this introduction is

assumed for simplicity to be of the same type as U above). In [8] it is

shown that U+
>0 has several parametrizations by Rν

>0; moreover any two

of these parametrizations are related by an automorphism of Rν
>0 which

is built from multiplying or dividing two numbers in R>0, or adding two

numbers in R>0. Moreover, in [8] it is shown that this last automorphism

is related to the analogous automorphism for B̃ by a process (“passage to

zones”) which connects geometrical objects over R(t) (t is an indeterminate)

with piecewise linear objects involving only integers. I believe that this was

the first time that such a connection was used in relation to Lie theory,

see also 1.4. In later works, this process, introduced in [8], appears under

the name of “tropicalization” (see for example [3]) or under the name of

“ultra-discretization” (see for example [13]).

We now describe the contents of the various sections.

In §1 we give a definition of a positive K-structure and that of a non-

negative K-structure. Here K can be for example R>0 or Z, see 1.1.

In §2 we recall following [8] the definition of the non-negative submonoid

of the real Lie groups G and of U+. A new result is that these non-negative

monoids can be defined by explicit generators and relations. In this definition

these monoids have non-negative K-structures where K can be more general

than R>0 (for example it can be Z).

In §3 we show following [9] that the positive part B>0 of the real flag

manifold B of G (defined in [8]) has a natural positive structure. (This

result of [9] is one of the ingredients in the work of Fock and Goncharov [3]

on higher Teichmüller theory.) By passage to zones we can replace R>0 by Z
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and we obtain a set B(Z)>0 with a positive structure (with parametrizations

by Zν). This set can be identified with B̃ and by 3.4(d) it admits a natural

action of the monoid attached to G and Z. This can be viewed as a new

symmetry property of the canonical basis B (which is visible only after B

is enlarged to B̃). In §3 we show also that there is a version of the positive

structure on B>0 where B is replaced by G/U− (here U− is the strictly lower

triangular part of G).

In §4 we study two involutions Φ,Φ′ of B̃ and their lifting over R>0

which originate in the study [9] of the positive structure on B>0.

In §5 we give another version of the positive structure on B>0 where B

is replaced by a partial flag manifold; this complements the results of [10].

As shown in [12], a Chevalley group over an algebraically closed field

of any characteristic can be reconstructed from the non-negative monoid

attached to G and R>0. But this did not include a description in the same

spirit of the coordinate ring of that group; this is done (conjecturally) in §6,

where we also describe in the same spirit the Weyl modules of that group.

In §7 we reformulate some results of Rietsch [15] on the connected com-

ponents of the intersection of two opposed Bruhat cells in B in terms the

non-negative monoid attached to U+ and K = Z. The result in §7 suggests

that at least in some cases, the set of connected components of a real al-

gebraic variety can be described in terms of a positive structure involving

R(t).

In §8 we are concerned with the subset Bλ of B attached in [5] to a

dominant weight λ; this subset has the property that, when applied to a

lowest weight vector in the simple U-module Vλ indexed by λ, it gives rise

to a basis of Vλ. (The elements in B−Bλ applied to that lowest weight vector

give the zero vector.) In [5], the subset Bλ was given a purely combinatorial

description in terms of the piecewise linear structure of B. In §8 we give

another combinatorial description of Bλ (this time conjectural). One of new

ingredients in this description is the involution Φ in §4.

In §9 we prove some (partly conjectural) properties of the semisimple

and unipotent part of an element in the non-negative monoid attached to G

and R>0.

In §10 we define a partition of B indexed by the Weyl group.
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0.3. In this paper we write

U+(K), U+
wI

(K), U−(K), U−
wI
(K), G(K), GwI ,−wI

(K),B(K)>0

with K = R>0 for what in [8] was denoted by

U+
≥0, U

+
>0, U

−
≥0, U

−
>0, G≥0, G>0,B>0.

We use the adjective “positive” (resp. “non-negative”) for what in [14] is

called “strictly totally positive” (resp. “totally positive”).

In this paper, a monoid is always understood to have 1.

0.4. Errata to [9]. In Theorem 2.10 delete the first sentence. In 2.10(a),

(b), 4.10, 4.11, replace f∗ by f .

0.5. I thank Xuhua He and Konstanze Rietsch for discussions.

1. Positive K-structures

1.1. The non-negative monoid in 0.2 can be defined not only over R>0

but over a structure K in which addition, multiplication, division (but no

substraction) are defined. In [8] two types of such K were considered.

(i) There exists a field k (necessarily of characteristic zero) such that K ⊂

k − {0} and the addition, multiplication, division on K are induced

from the analogous operations in k. (We can take, for example, k =

R,K = R>0 or k = R(t) with t an indeterminate and K = R(t)>0 to

be the set of f ∈ k of form f = tef0/f1 for some f0, f1 in R[t] with

constant term in R>0, e ∈ Z.)

(ii) K = Z with a new sum (a, b) 7→ min(a, b) and a new product (a, b) 7→

a+ b. (We write Z for Z with these new operations.)

A third type of K is:

(iii) K = {1} with 1 + 1 = 1, 1× 1 = 1.

In each case K is a semifield (a terminology of Berenstein, Fomin, Zelevinsky

[2]): a set with two operations, +, ×, which is an abelian group with respect

to ×, an abelian semigroup with respect to + and in which (a+b)c = ac+bc

for all a, b, c. In this paper, K is as in (i)-(iii). (However, most definitions
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and results of this paper remain valid for any semifield.) There is an obvious

semifield homomorphism K → {1}. We denote by K0 the smallest semifield

contained in K which contains the unit element (1) of K with respect to ×.

If K is as in (i), we have K0 = Q>0. If K is as in (ii) we have K0 = {0}.

1.2. For anym ∈ Z>0 let Pm be the set of rational functions φ = f/f ′ where

f, f ′ are nonzero polynomials in the indeterminates X1,X2, . . . ,Xm with

coefficients in N. A map Km → Km′
(with m ∈ Z>0,m

′ ∈ Z>0) is said to

be admissible if it is of the form (a1, a2, . . . , am) 7→ (φ1(a1, . . . , am), φ2(a1, . . .,

am), . . . , φm′(a1, . . . , am)) for some φ1, φ2, . . . , φm′ ∈ Pm. (Note that φi(a1,

. . . , am) is a well defined element of K if (a1, . . . , am) ∈ Km.) In the case

where K = Z, such a map is piecewise-linear. We interpret K0 to be a

point. If m ∈ N, the unique map Km → K0 is considered to be admissible.

If m′ ∈ Z>0, a map K0 → Km′
is said to be admissible if its image is a point

in Km′

0 . A bijection Km ∼
→Km (with m ∈ N) is said to be bi-admissible if

it is admissible and its inverse is admissible. From the definitions we have

the following result (with m,m′,m′′ in N).

(a) A composition of admissible maps Km → Km′
, Km′

→ Km′′
is an

admissible map Km → Km′′
.

1.3. A positive K-structure on a set X consists of a family of bijections

fj : Km ∼
→X (with m ≥ 0 fixed) indexed by j in a finite nonempty set

J , such that f−1
j′ fj : Km → Km is bi-admissible for any j, j′ in J ; the

bijections fj are said to be the charts of the positive structure. A non-

negative K-structure on a set X is a partition X = ⊔χ∈HXχ (with H finite)

together with a positive K-structure on Xχ for every χ ∈ H; the subsets Xχ

are said to be the pieces of X.

If {fj : K
m → X, j ∈ J } (resp. {f ′j′ : K

m′
→ X ′, j′ ∈ J ′}) is a positive

K-structure on a set X (resp. X ′) then {fj×fj′ : K
m+m′

→ X×X ′, (j, j′) ∈

J × J ′} is a positive K-structure on X × X ′; a map φ : X → X ′ is said

to be admissible if for some (or equivalently any) (j, j′) ∈ J × J ′, the map

f−1
j′ φfj : K

m → Km′
is admissible. If X (resp. X ′) is a set with non-negative

K-structure with pieces Xχ, χ ∈ H (resp. X ′
χ′ , χ′ ∈ H ′) then X × X ′ has

a non-negative K-structure with pieces Xχ ×Xχ′ , (χ, χ′) ∈ H ×H ′; a map

φ : X → X ′ is said to be admissible if for any χ ∈ H, φ(Xχ) is contained in



✐

“BN14N42” — 2019/12/21 — 16:13 — page 408 — #6
✐

✐

✐

✐

✐

408 G. LUSZTIG [December

X ′
χ′ for a (well defined) χ′ ∈ H ′ and the restriction of φ from Xχ to X ′

χ′ is

admissible.

When K is as in 1.1(iii), a set with positive K-structure is just a point

with no structure; a set with non-negative K-structure is just a finite set

with no structure.

1.4. We now assume that K = R(t)>0. In [8] we observed that there

is a semifield homomorphism α : K → Z given by tef0/f1 7→ e which

connects geometrical objects over K with piecewise linear objects involving

only integers.

Let {fj : K
m ∼
→X, j ∈ J } be a positive K-structure on a set X. Assume

first that m > 0. For any j ∈ J we define an equivalence relation on

X in which x, x′ in X are equivalent if we have f−1
j (x) = (a1, a2, . . . , am),

f−1
j (x′) = (a′1, a

′
2, . . . , a

′
m) where ak, a

′
k in K satisfy α(ak) = α(a′k) for k =

1, . . . ,m. If this condition holds for some j ∈ J then it holds for any j′ ∈ J .

Indeed, setting f−1
j′ (x) = (b1, b2, . . . , bm), f−1

j′ (x′) = (b′1, b
′
2, . . . , b

′
m) with

bk, b
′
k in K we have

(b1, b2, . . . , bm) = (φ1(a1, . . . , am), φ2(a1, . . . , am), . . . , φm(a1, . . . , am)),

(b′1, b
′
2, . . . , b

′
m) = (φ1(a

′
1, . . . , a

′
m), φ2(a

′
1, . . . , a

′
m), . . . , φm(a′1, . . . , a

′
m))

where φk ∈ Pm. Since α is a semifield homomorphism it follows that

(α(b1), α(b2), . . . , α(bm))

= (φ1(α(a1), . . . , α(am)), φ2(α(a1), . . . , α(am)), . . . , φm(α(a1), . . . , α(am)))

= (φ1(α(a
′
1), . . . , α(a

′
m)), φ2(α(a

′
1), . . . , α(a

′
m)), . . . , φm(α(a′1), . . . , α(a

′
m)))

= (α(b′1), α(b
′
2), . . . , α(b

′
m)).

so that α(bk) = α(b′k) for k = 1, . . . ,m. Thus, our equivalence relation does

not depend on the choice of j ∈ J . Following [8, §9], the equivalence classes

are called the zones of X. When m = 0, X consists of one point and by

definition it is a single zone. Let X be the set of zones of X. If m > 0, for

any j ∈ J , we define f
j
: Zm → X by

(c1, c2, . . . , cm) 7→ zone of X containing fj(a1, a2, . . . , am)
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where (a1, a2, . . . , am) ∈ Km is such that α(ak) = ck for k = 1, . . . ,m. This

map is well defined by the definition of zones and is a bijection. Moreover, for

j, j′ in J , the bijection f−1
j′
f
j
: Zm → Zm is bi-admissible; it is induced by

the bi-admissible bijection f−1
j′ fj : K

m → Km. Thus {f
j
: Zm → X ; j ∈ J }

is a positive Z-structure on X. The same is true if m = 0 when f
j
are taken

as bijections from a point to a point.

If X,X ′ are two sets with positive K-structure, then X ×X ′ = X ×X ′

as sets with positive Z-structure; if in addition φ : X → X ′ is an admissible

map, then φ maps any zone of X into a zone of X ′ and the induced map

φ : X → X ′ is admissible.

1.5. In the setup of 1.4, let X be a set with a given non-negative K-structure

with pieces Xχ, χ ∈ H. Let X = ⊔χ∈HXχ. By 1.4, each Xχ has a positive

Z-structure. This defines a non-negative Z-structure on X with pieces Xχ,

χ ∈ H.

If X,X ′ are two sets with non-negative K-structure with pieces Xχ, χ ∈

H and X ′
χ′ , χ′ ∈ H ′, then X ×X ′ = X × X ′ as sets with non-negative Z-

structure; if in addition φ : X → X ′ is an admissible map then there is a

well defined admissible map φ : X → X ′ such that the following holds: if

χ ∈ H and χ′ ∈ H ′ is such that φ(Xχ) ⊂ X ′
χ′ then φ(Xχ) ⊂ X ′

χ′ and the

map φ : Xχ → X ′
χ′ is induced (as in 1.4) by φ : Xχ → X ′

χ′ .

2. The monoids U(K),G(K)

2.1. Let k be an infinite field. We will often identify an algebraic variety

over k with its set of k-points. We fix a split, connected, simply connected

algebraic group G over k with a given k-split maximal torus T and a pair

B+, B− of Borel subgroups with B+ ∩ B− = T , with unipotent radicals

U+, U−. Let NT be the normalizer of T in G and let W = NT/T be the

Weyl group. Let Y (resp. X ) be the abelian group of all homomorphisms of

algebraic groups k∗ → T (resp. T → k∗) with operation written as +. We

define a pairing 〈, 〉 : Y × X → Z by x(y(a)) = a〈y,x〉 for all a ∈ k∗. The

set of simple coroots (resp. simple roots) determined by B+, T is a Z-basis

I of Y (resp. a subset {i∗; i ∈ I} of X ). We set r = ♯(I). The matrix

(〈i, j∗〉) indexed by I × I is the Cartan matrix of G. For i ∈ I, let U+
i be

the simple root subgroup of U+ defined by i∗ and let U−
i (i ∈ I) be the
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corresponding root subgroup of U−. We assume that for any i ∈ I we are

given isomorphisms a 7→ xi(a), k
∼
→U+

i and a 7→ yi(a), k
∼
→U−

i as algebraic

groups such that the assignment

( 1 a
0 1 ) 7→ xi(a),

(

b 0
0 b−1

)

7→ i(b), ( 1 0
c 1 ) 7→ yi(a)

where a, c ∈ k, b ∈ k∗, defines a homomorphism SL2(k) → G. Let ṡi be the

image of
(

0 1
−1 0

)

under this homomorphism. We have ṡi ∈ NT . For a, b in

k∗ we have

xi(a)i(b) = yi(a
−1)i(ab−1)ṡiyi(a

−1b2). (a)

Let si be the image of ṡi inW . ThenW is a Coxeter group on the generators

{si; i ∈ I}. Let w 7→ |w|,W → N be the standard length function. For J ⊂ I

letWJ be the subgroup ofW generated by {i; i ∈ J}. Let wJ be the element

of WJ such that |wJ | is maximal. In particular, wI ∈ W is defined. We set

ν = |wI |. Let i 7→ i! be the involution I → I such that wIsiwI = si! for all

i ∈ I. There is a unique W -action on X such that for i ∈ I, λ ∈ X we have

si(λ) = λ− 〈i, λ〉i∗ and a unique W -action on Y such that for i ∈ I, ζ ∈ Y

we have si(ζ) = ζ − 〈ζ, i∗〉i.

We say that G is simply laced if for any i 6= j in I, sisj has order ≤ 3 in

W .

For w ∈W withm = |w| let Ow be the set of all sequences (i1, i2, . . . , im)

such that si1si2 · · · sim = w. Following Tits, for w ∈W with m = |w|, we set

ẇ = ṡi1 ṡi2 · · · ṡim where i = (i1, i2, . . . , im) ∈ Ow; this is independent of the

choice of i. Let Gw = B−ẇB− ⊂ G.

There is a well defined isomorphism Ψ : G → Gopp (the opposite group

structure) such that Ψ(xi(a)) = yi(a), Ψ(yi(a)) = xi(a) for i ∈ I, a ∈ k. Let

ω : G→ G be the isomorphism such that ω(xi(a)) = yi(a), ω(yi(a)) = xi(a)

for all i ∈ I, a ∈ k. For i ∈ I we have Ψ(ṡi) = ṡ−1
i , ω(ṡi) = ṡ−1

i .

Let X+ = {λ ∈ X ; 〈i, λ〉 ∈ N ∀i ∈ I}. Let C be the category whose

objects are finite dimensional k-vector spaces with a given rational G-module

structure. For any λ ∈ X+ we denote by Λλ a simple object of C with a

nonzero vector ηλ which is fixed by the U+-action and satisfies tηλ = λ(t)ηλ

for all t ∈ T .
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2.2. We now assume that k,K are as in 1.1(i). The following identities

hold:

txi(a) = xi(i
∗(t)a)t, tyi(a) = yi(i

∗(t)−1a)t for i ∈ I, t ∈ T, a ∈ K;

yi(a)xj(c) = xj(c)yi(a) for a, c ∈ K and i 6= j in I;

yi(a)i(b
−1)xi(c) = xi(c

′)i(b′)yi(a
′)

for i ∈ I and a, b, c, a′, b′, c′ in K such that

a′ = a/(ac+ b2), b′ = b/(ac+ b2), c′ = c/(ac + b2)

or equivalently a = a′/(a′c′ + b′2), b = b′/(a′c′ + b′2), c = c′/(a′c′ + b′2).

2.3. Let w ∈W with m = |w|. The statements (a), (b) below are proved in

[8, 2.7(a), (b)].

(a) Let i = (i1, i2, . . . , im) ∈ Ow. The map τ+i : Km → U+ given by

(a1, a2, . . . , am) 7→ xi1(a1)xi2(a2) · · · xim(am)

is injective.

(b) Let i = (i1, i2, . . . , im) ∈ Ow, i
′ = (i′1, i

′
2, . . . , i

′
m) ∈ Ow. There is a well

defined bijection Ri′

i : Km → Km such that for any (a1, a2, . . . , am) ∈

Km we have

xi1(a1)xi2(a2) · · · xim(am) = xi′1(a
′
1)xi′2(a

′
2) · · · xi′m(a

′
m)

where (a′1, a
′
2, . . . , a

′
m) = Ri′

i (a1, a2, . . . , am) ∈ Km that is, τ+
i′
Ri′

i = τ+
i

:

Km → Km.

Now let i, i′ be as in (b) and let i′′ = (i′′1 , i
′′
2 , . . . , i

′′
m)∈Ow. For (a1, a2, . . . , am)

∈ Km we have

xi1(a1)xi2(a2) · · · xim(am) = xi′1(a
′
1)xi′2(a

′
2) · · · xi′m(a

′
m)

= xi′′1 (a
′′
1)xi′′2 (a

′′
2) · · · xi′′m(a

′′
m)

where

(a′1, a
′
2, . . . , a

′
m)=Ri′

i (a1, a2, . . . , am), (a′′1 , a
′′
2 , . . . , a

′′
m)=Ri′′

i′
(a′1, a

′
2, . . . , a

′
m),
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(a′′1 , a
′′
2 , . . . , a

′′
m)=Ri′′

i (a1, a2, . . . , am).

It follows that

Ri′′

i (a1, a2, . . . , am) = Ri′′

i′
(a′1, a

′
2, . . . , a

′
m) = Ri′′

i′
Ri′

i (a1, a2, . . . , am).

Hence

(c) Ri′′

i = Ri′′

i′
Ri′

i .

From the proof in [8, 2.6, 2.7] one can also extract the following result.

(d) The bijection Ri′

i : Km → Km is bi-admissible.

By a lemma of Iwahori [4], i, i′ can be connected by a finite sequence of

braid moves. Using this, (c) and 1.2(a), we see that to prove (d) we can

assume that i, i′ are connected by a braid move that is, i′ is obtained from

i by replacing e consecutive entries i, j, i, . . . of i by the e entries j, i, j, . . .

where i 6= j in I are such that sisj has order e in W . If e is 2 or 3, the

desired result follows from [8, 2.5(a), (b)]. (Hence (d) holds whenever G is

simply laced.) Assume now that e > 3, that is e = 2e′ with e′ ∈ {2, 3}.

We can assume G = Gi,j , the subgroup of G generated by U+
i , U

+
j , U

−
i , U

−
j ,

so that that I = {i, j} and i = (i, j, i, . . .), i′ = (j, i, j, . . .) (both sequences

consist of 2e′ terms). We can find a group Ġ like G in 2.1 but of type A3 (if

e′ = 2) or D4 (if e′ = 3) and an automorphism of order e′ of Ġ whose fixed

point set is G. We have 〈i, j∗〉 ∈ {−1,−e′}. Let Ẇ be the Weyl group of

Ġ. The simple reflections of Ẇ are denoted σ1, σ2, . . . , σe′ , σ0 where σa, σb

commute for a, b ∈ {1, 2, . . . , e′} and σaσ0 has order 3 for a ∈ {1, 2, . . . , e′}.

(The indexing set for the simple reflections of Ẇ is İ = {1, 2, . . . , e′, 0}.) We

can identify W with a subgroup of Ẇ in such a way that either

(i) si becomes σ1σ2 · · · σe′ , sj becomes σ0 (in this case 〈i, j∗〉 = −e′), or

(ii) si becomes σ0, sj becomes σ1σ2 · · · σe′ (in this case 〈i, j∗〉 = −1).

We consider two reduced expressions for the longest element (of length

e′(e′+1)) of Ẇ namely (1, 2, . . . , e′, 0, 1, 2, . . . , e′, 0, . . .), where 1, 2, . . . , e′, 0 is

repeated e′ times, and (0, 1, 2, . . . , e′, 0, 1, 2, . . . , e′, . . .), where 0, 1, 2, . . . , e′ is

repeated e′ times. In case (i), the first of these reduced expressions is denoted

by i̇ and the second by i̇
′
. In case (ii), the first of these reduced expressions is
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denoted by i̇
′
and the second by i̇. In case (i) we define λ : K2e′ → Ke′(e′+1)

by

(a1, a2, . . . , a2e′)

7→ (a1, a1, . . . , a1, a2, a3, a3, . . . , a3, a4, . . . , a2e′−1, . . . a2e′−1, a2e′)

(with a2t+1 repeated e′ times) and µ : Ke′(e′+1) → K2e′ by

(a1, a2, . . . , ae′(e′+1)) 7→ (a1, a2, ae′+2, ae′+3, a2e′+3, a2e′+4, . . .).

In case (ii) we define λ : K2e′ → Ke′(e′+1) by

(a1, a2, . . . , a2e′) 7→ (a1, a2, . . . , a2, a3, a4, . . . , a4, . . . , a2e′−1, a2e′ , . . . , a2e′)

(with a2t repeated e
′ times) and µ : Ke′(e′+1) → K2e′ by

(a1, a2, . . . , ae′(e′+1)) 7→ (a1, ae′+1, ae′+2, a2e′+2, a2e′+3, a3e′+3, . . .).

We consider the composition

K2e′ λ
−→Ke′(e′+1)

Ri̇
′

i̇−→Ke′(e′+1) µ
−→K2e′

where the middle map is defined in terms of Ġ. By the earlier part of the

proof, the middle map is admissible (since Ġ is simply laced); it follows that

the composition is admissible. By the argument in the proof of [8, 2.6, 2.7]

this composition is equal to Ri′

i : K2e′ → K2e′ . Thus, Ri′

i : K2e′ → K2e′ is

admissible. The inverse of Ri′

i : K2e′ → K2e′ is Ri
i′
: K2e′ → K2e′ which is

admissible. Thus, Ri′

i : K2e′ → K2e′ is bi-admissible and (d) holds.

Another proof of (d) was given later by Berenstein and Zelevinsky, see

Theorem 1.6 and 3.1 of [1].

Using the automorphism ω, from (a), (b) we deduce:

(e) Let i = (i1, i2, . . . , im) ∈ Ow. The map τ−i : Km → U− given by

(a1, a2, . . . , am) 7→ yi1(a1)yi2(a2) · · · yim(am)

is injective.
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(f) Let i = (i1, i2, . . . , im) ∈ Ow, i
′ = (i′1, i

′
2, . . . , i

′
m) ∈ Ow. Then the bi-

jection Ri′

i : Km → Km in (b) has the following property: for any

(a1, a2, . . . , am) ∈ Km we have

yi1(a1)yi2(a2) · · · yim(am) = yi′1(a
′
1)yi′2(a

′
2) · · · yi′m(a

′
m)

where (a′1, a
′
2, . . . , a

′
m) = Ri′

i (a1, a2, . . . , am) ∈ Km that is, τ−
i′
Ri′

i = τ−i :

Km → Km.

2.4. Let i 6= j be two elemens of I and let e be the order of sisj in W . Let

Gi,j be as in 2.3. Then the bijection

(a) R(i, j) := Rj,i,j,...
i,j,i,... : K

e → Ke

(where i, j, i, . . . has e terms and j, i, j, . . . has e terms) is well defined in

terms of Gi,j. It is bi-admissible by 2.3(d). If e = 2, then R(i, j) is given by

(b) (a, b) 7→ (b, a).

If e = 3, then R(i, j) is given by

(c) (a, b, c) 7→ (a′, b′, c′) where a′ = bc/(a + c), b′ = a + c, c′ = ab/(a + c) or

equivalently a = b′c′/(a′ + c′), b = a′ + c′, c = a′b′/(a′ + c′).

A formula like (c) appeared in [5] (for K = Z) in connection with the

problem of parametrizing canonical bases.

When e = 2e′ is 4 or 6 then, with the notation of 2.3, R(i, j) is a product

over a set of braid moves connecting (1, 2, . . . , e′, 0, 1, 2, . . . , e′, 0, . . .) with

(0, 1, 2, . . . , e′, 0, 1, 2, . . . , e′, . . .) in a Weyl group of type A3 orD4 of bijections

of type (b) and (c) involving two or three coordinates. For example, if e = 4

and 〈i, j∗〉 = −2, then R(i, j) is given by

(d) (a, b, c, d) 7→ (a′, b′, c′, d′) where a′ = bc2d/E, b′ = E/A, c′ = A2/E, d′ =

abc/A, A = ab+ ad+ cd, E = a2b+ a2d+ c2d+ 2acd,

or equivalently

(e) d = a′b′2c′/E′, c = E′/A′, b = A′2/E′, a = b′c′d′/A′, A′ = c′d′+a′d′+a′b′,

E′ = d′2c′ + a′d′2 + a′b′2 + 2a′b′d′.

Note that in (d), (e) we have
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(f) abc = b′c′d′, bc2d = a′b′2c′, a+ c = b′ + d′, b+ d = a′ + c′.

Conversely, if a, b, c, d, a′, b′, c′, d′ in K satisfy (f), then either the equalities

in (d) hold or we have (a′, b′, c′, d′) = (d, c, b, a).

A formula like (d) appeared (for K = Z) in [6] in connection with the

problem of parametrizing canonical bases.

2.5. Let U+(K) be the submonoid of U+ generated by {xi(a); i ∈ I, a ∈ K}.

Let U−(K) be the submonoid of U− generated by {yi(a); i ∈ I, a ∈ K}. Let

T (K) be the submonoid of T generated by {i(a); i ∈ I, a ∈ K}; it is a

subgroup of T since i(a)−1 = i(a−1) for i ∈ I, a ∈ K. Let G(K) be the

submonoid of G generated by {xi(a), yi(a), i(a); i ∈ I, a ∈ K}. (These defi-

nitions appeared in [8, 2.2].) We have Ψ(U+(K)) = U−(K), Ψ(U−(K)) =

U+(K), Ψ(T (K)) = T (K), Ψ(G(K)) = G(K) and ω(U+(K)) = U−(K),

ω(U−(K)) = U+(K), ω(T (K)) = T (K), ω(G(K)) = G(K). The following

is proved in [8, 2.3].

(a) If u+ ∈ U+(K), t ∈ T (K), u− ∈ U−(K) then u+tu− ∈ G(K) and

u−tu+ ∈ G(K). Any g ∈ G(K) can be written uniquely in the form

g = u+tu− with u+ ∈ U+(K), t ∈ T (K), u− ∈ U−(K). Any g ∈ G(K)

can be written uniquely in the form g = u−1 t1u
+
1 with u+1 ∈ U+(K), t1 ∈

T (K), u−1 ∈ U−(K).

Let w ∈ W , m = |w|. Let U+
w (K) = τ+

i
(Km) where i ∈ Ow; by 2.3(b), this

is independent of the choice of i and τ+
i

defines a bijection Km ∼
→U+

w (K).

Let U−
w (K) = τ−

i
(Km) where i ∈ Ow; by 2.3(f), this is independent of the

choice of i and τ−i defines a bijection Km ∼
→U−

w (K). Note that U−
w (K) =

ω(U+
w (K)).

Following [8, 2.11], for w,w′ in W we set

(b) Gw,−w′(K) = U−
w′(K)T (K)U+

w (K) = U+
w (K)T (K)U−

w′(K).

(The last equality follows from repeated applications of the identities in 2.2.)

For future reference we state:

(c) U+
w (K) ⊂ B−ẇB−.



✐

“BN14N42” — 2019/12/21 — 16:13 — page 416 — #14
✐

✐

✐

✐

✐

416 G. LUSZTIG [December

(See the proof of [8, 2.7]).

From [8, 2.7(a), 2.8] we see that

(d) U+(K) = ⊔w∈WU
+
w (K).

Applying ω to (d) we obtain

(e) U−(K) = ⊔w∈WU
−
w (K).

2.6. From 2.5(a), (d), (e) we deduce

(a) G(K) = ⊔w,w′ in WGw,−w′(K).

2.7. Let w ∈W,m = |w|. From 2.3(d) we deduce:

(a) The bijections Km → U+
w (K),

(a1, a2, . . . , am) = xi1(a1)xi2(a2) · · · xim(am)

(for various i = (i1, i2, . . . , im) ∈ Ow) form a positive K-structure on

U+
w (K). The bijections Km → U−

w (K),

(a1, a2, . . . , am) = yi1(a1)yi2(a2) · · · yim(am)

(for various i = (i1, i2, . . . , im) ∈ Ow) form a positive K-structure on

U−
w (K). When m = 0 these bijections are interpreted as the obvious

bijections from a point to a point.

These positive K-structures can be viewed as a non-negative K-structure

on U+(K) (with pieces U+
w (K), w ∈W ) and a non-negative K-structure on

U−(K) (with pieces U−
w (K), w ∈W ).

In the remainder of this subsection we assume that k = R(t),K =

R(t)>0. For w ∈ W we set U+
w (Z) = U+

w (K), a set with a positive Z-

structure, see 1.4. We set U+(Z) = U+(K) = ⊔w∈WU
+
w (Z), a set with a

non-negative Z-structure, see 1.5. In 2.12 we will see that U+(Z) is naturally

a monoid.

Let ∼2 be the equivalence relation on U+
wI
(Z) generated by the relation

for which x, x′ in U+
wI

(Z) are related if for some i ∈ OwI
, x, x′ correspond

under the bijection Zν → U+
wI
(Z) indexed by i to sequences (n1, n2, . . . , nν),
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(n′1, n
′
2, . . . , n

′
ν) in Zν such that ns = n′smod 2 for s = 1, 2, . . . , ν. Let

U+
wI
(Z)/2 be the set of equivalence classes.

2.8. We assume that K,k are as in 1.1(i). We now explain in more detail

the argument of [8, 2.11] (based on the identities in 2.2) which was used to

prove the last equality in 2.5(b).

In addition to the set I we consider the set −I = {−i; i ∈ I} ⊂ Y

and another set I = {i; i ∈ I} in obvious bijection with I. For w,w′ in

W with m = |w|,m′ = |w′| let M = m + m′ + r and let Ow,−w′ be the

set of sequences (h1, h2, . . . , hM ) in I ⊔ (−I) ⊔ I such that the subsequence

consisting of symbols in I is in Ow, the subsequence consisting of symbols

in −I is of the form (−i1,−i2, . . . ,−im′) with (i1, i2, . . . , im′) ∈ Ow′ in O−w′

and the subsequence consisting of symbols in I contains each symbol i (with

i ∈ I) exactly once.

Let Γw,−w′ be the set of all pairs (h,a) ∈ Ow,−w′ × KM . We regard

Γw,−w′ as the set of vertices of a graph in which

(h,a) = ((h1, h2, . . . , hM ), (a1, a2, . . . , aM )) ∈ Γw,−w′,

(h′,a′) = ((h′1, h
′
2, . . . , h

′
M ), (a′1, a

′
2, . . . , a

′
M )) ∈ Γw,−w′

are joined if one of (i)-(iv) below holds:

(i) for some t and some ǫ ∈ {1,−1} we have (ht, ht+1, . . . , ht+m−1) =

(ǫi, ǫj, ǫi, . . .) (m terms),

(h′t, h
′
t+1, . . . , h

′
t+m−1) = (ǫj, ǫi, ǫi, . . .)

(m terms) where i 6= j, m is the order of sisj,

(a′t, a
′
t+1, . . . , a

′
t+m−1) = R(i, j)(at, at+1, . . . , at+m−1)

and h′s = hs, a
′
s = as for s /∈ {t, t+ 1, . . . , t+m− 1}.

(ii) for some t we have (ht, ht+1) = (i, j), (h′t, h
′
t+1) = (j, i), (a′t, a

′
t+1) =

(at+1, at) and h
′
s = hs, a

′
s = as for s /∈ {t, t+ 1};

(iii) for some t and some ǫ ∈ {1,−1} we have (ht, ht+1) = (j, ǫi), (h′t, h
′
t+1) =

(ǫi, j), (a′t, a
′
t+1) = (a

ǫ〈j,i∗〉)
t at+1, at) where i, j ∈ I and h′s = hs, a

′
s = as

for s /∈ {t, t+ 1};
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(iv) for some t we have (ht, ht+1, ht+2) = (i, i,−i), (h′t, h
′
t+1, h

′
t2) = (−i, i, i),

where i ∈ I,

(a′t, a
′
t+1, a

′
t+2)

= (at+2/(atat+2 + a2t+1), (atat+2 + a2t+1)/at+1, at/(atat+2 + a2t+1))

and h′s = hs, a
′
s = as for s /∈ {t, t+ 1, t+ 2}.

We regard Ow,−w′ as the set of vertices of a graph in which h,h′ are joined if

for some a,a′ in KM , (h,a), (h′,a′) are joined in Γw,−w′. The map Γw,−w′ →

Ow,−w′, (h,a) 7→ h, respects the graph structures.

This graph Ow,−w′ is connected: if h ∈ Ow,−w′ we can join h (using

edges in the graph which are images of edges of type (ii), (iii), (iv)) with an

h′ in which the first m terms are in I and the last m′ terms are in −I and

then we note that, by Iwahori’s lemma, any two such h′ can be joined by a

sequence of edges which are images of edges of type (i), (ii).

We define a map γw,−w′ : Γw,−w′ → G(K) by

(a) (h,a) = ((h1, h2, . . . , hM ), (a1, a2, . . . , aM )) 7→ ha11 h
a2
2 · · · haMM

where hass is xi(as) if hs = i, is yi(as) if hs = −i and is i(as) if hs = i.

For any h = (h1, h2, . . . , hM ) ∈ Ow,−w′ we define ψh : KM → G(K) by

ψh(a) = γw,−w′(h,a).

From the definitions and from 2.3(d) we see that if h,h′ are joined in

the graph Ow,−w′ then ψh′ = ψhσ where σ : KM → KM is a bi-admissible

bijection and that the image of ψh is equal to the image of ψh′ . (For the

last statement we use the formulas in 2.2 and 2.3(b),2.3(f),2.4(a).) Using

this and the connectedness of the graph Ow,−w′ we see that for any h,h′ in

Ow,−w′ we have ψh′ = ψhσ̃ where σ̃ : KM → KM is a bi-admissible bijection

and that the image of ψh is independent of h. Now, if h ∈ Ow,−w′ has the

first m terms in I and the last m′ terms in −I, then ψh defines a bijection

of KM onto U+
w (K)T (K)U−

w′(K) (we use 2.5(a) and 2.7(a)). We see that for

any h, ψh is a bijection of KM onto U+
w (K)T (K)U−

w′(K). If h ∈ Ow,−w′ has

the first m′ terms in −I and the last m terms in I, then the image of ψh is

U−
w′(K)T (K)U+

w (K). We see that the last equality in 2.5(b) holds and the

definition of Gw,−w′ in 2.5(b) is justified. From the arguments above,

(b) For h ∈ Ow,−w′, ψh : KM → Gw,−w′ is a bijection;
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(c) the bijections ψh : KM ∼
→Gw,−w′(K) (for various h ∈ Ow,−w′) define a

positive K-structure on Gw,−w′(K);

(d) these positive K-structures can be viewed as a non-negative K-structure

on G(K) (with pieces Gw,−w′(K), (w,w′) ∈W ×W ).

In the remainder of this subsection we assume that k = R(t),K = R(t)>0.

For w,w′ in W we set Gw,−w′(Z) = Gw,−w′(K), a set with a positive Z-

structure, see 1.4. We set G(Z) = G(K) = ⊔w,w′ in WGw,−w′(Z), a set

with a non-negative Z-structure, see 1.5. In 2.12 we will see that G(Z) is

naturally a monoid.

2.9. Assume that K is as in 1.1(i)-(iii). Let U(K) be the monoid with

generators the symbols ia with i ∈ I, a ∈ K and with relations

(i) iaib = ia+b for i ∈ I, a, b in K;

(ii) ia1ja2 ia3 · · · = ja
′
1 ia

′
2ja

′
3 · · · (both products have m factors) where i 6= j

in I, m is the order of sisj and (a1, a2, . . . , am) ∈ Km, (a′1, a
′
2, . . . , a

′
m) ∈

Km are such that (a′1, a
′
2, . . . , a

′
m) = R(i, j)(a1, a2, . . . , am).

In the case where K = Z and G is simply laced, the definition of U(K)

appeared in [8, 9.11]. The definition of U(K) is reminiscent of the definition

of the Coxeter group attached to the Cartan matrix (〈i, j∗〉).

For any w ∈ W with m = |w| and any i = (i1, i2, . . . , im) ∈ Ow let

Uw(K) be image of the map ei : K
m → U(K) given by (a1, a2, . . . , am) 7→

ia11 i
a2
2 · · · iamm ; this image is independent of the choice of i. Indeed if i, i′ are in

Ow then i, i′ are connected by a sequence of braid moves (Iwahori’s lemma)

so it is enough to show that ei(K
m) = ei′(K

m) when i, i′ are connected by

a single braid move. But in this case the desired equality follows from (ii).

Let U′ = ∪w∈WUw(K) ⊂ U(K). We show that

(a) iaU′ ⊂ U′

for any i ∈ I, a ∈ K. It is enough to show that for w ∈ W the following

holds:

(b) if |siw| > |w| then iaUw(K) ⊂ Usiw(K);

(c) if |siw| < |w| then iaUw(K) ⊂ Uw(K).
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Now (b) is clear from the definition. In the setup of (c) we have Uw(K) =

∪b∈Ki
bUsiw(K) hence iaUw(K) ⊂ ∪b∈Ki

a+bUsiw(K) ⊂ Uw(K) and (c) is

proved. Thus, (a) holds. From (a) we deduce that U′ = U(K) that is,

U(K) = ∪w∈WUw(K). (This proof is almost a copy of that in [8, 2.8].)

For each w ∈W we choose iw ∈ Ow. By the arguments above, the map

ζ ′ = ⊔w∈W eiw : ⊔w∈WK
|w| → U(K)

is surjective.

Assume now that K is as in 1.1(i). There is a well defined homomor-

phism of monoids ζ : U(K) → U+(K) such that ia 7→ xi(a) for any i ∈ I, a ∈

K. (We use 2.3(b),2.4(a).) The composition ζζ ′ : ⊔w∈WK
|w| → U+(K) is a

bijection (we use 2.3(a) and 2.5(d)) hence ζ ′ is injective. It follows that ζ ′

is bijective hence ζ is bijective. Thus the following holds.

(d) For K as in 1.1(i), the homomorphism of monoids ζ : U(K) → U+(K)

is an isomorphism.

Similarly,

(e) For K as in 1.1(i), there is a unique isomorphism of monoids

U(K)
∼
→U−(K) such that ia 7→ yi(a) for any i ∈ I, a ∈ K.

Let K be as in 1.1(i)-(iii). We show:

(f) there is a unique isomorphism of monoids Ψ̃ : U(K) → U(K)opp (the

opposed monoid) such that ia 7→ ia for any i ∈ I, a ∈ K.

Assume first that K,k are as in 1.1(i). Then there is a unique isomorphism

of monoids Ψ̃ : U(K) → U(K)opp such that the following diagram is commu-

tative:

U(K)
Ψ̃

−−−−→ U(K)




y





y

U+(K)
Ψ

−−−−→ U−(K)

Here the vertical maps are as in (d), (e) and Ψ is as in 2.1. Then (f)

follows in our case. The case where K = Z is obtained from the case where

K = R(t)>0 by passage to zones. The case where K = {1} is immediate.
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2.10. Assume that K is as in 1.1(i)-(iii). Let G(K) be the monoid with

generators the symbols ia, (−i)a, ia with i ∈ I, a ∈ K and with relations

(i)-(vii) below.

(i) (ei)a(ǫi)b = (ǫi)a+b for i ∈ I, ǫ = ±1, a, b in K;

(ii) (ǫi)a1(ǫj)a2(ǫi)a3 · · ·=(ǫj)a
′
1(ǫi)a

′
2(ǫj)a

′
3 · · · (both products have m fac-

tors) where e=±1, i 6=j in I, m is the order of sisj and (a1, a2, . . . , am)

∈ Km, (a′1, a
′
2, . . . , a

′
m) ∈ Km are such that (a′1, a

′
2, . . . , a

′
m) = R(i, j)(a1,

a2, . . . , am);

(iii) iaib(−i)c = (−i)c/(ac+b2)i(ac+b2)/bia/(ac+b2) for i ∈ I, a, b, c in K;

(iv) iaib = iab, i(1) = 1 for i ∈ I, a, b in K;

(v) iajb = jbia for i, j in I, a, b in K;

(vi) ja(ǫi)b = (ǫi)a
ǫ〈j,i∗〉bja for i, j in I, ǫ = ±1, a, b in K;

(vii) (ǫi)a(−ǫj)b = (−ǫj)b(ǫi)a for i 6= j in I, ǫ = ±1, a, b in K.

Let w,w′ inW be such that |w|+ |w′|+r =M . Let γw,−w′ : Γw,−w′ → G(K)

be as in 2.8. We define a map δ : Γw,−w′ → G(K) by

(a) (h,a) = ((h1, h2, . . . , hM ), (a1, a2, . . . , aM )) 7→ ha11 h
a2
2 · · · haMM .

Note that βδ = γw,−w′.

For any h = (h1, h2, . . . , hM ) ∈ Ow,−w′ we define θh : KM → G(K)

by θh(a) = δ(h,a). As in the proof in 2.8 we see that the image of θh is

independent of the choice of h; we denote it by Gw,−w′(K).

Let G′ = ∪w∈W,w′∈WGw,−w′(K) ⊂ G(K). We show

(b) iaG′ ⊂ G′

for any i ∈ I, a ∈ K. It is enough to show that for w ∈ W the following

holds:

(c) if |siw| > |w| then iaGw,−w′(K) ⊂ Gsiw,−w′(K); if |siw| < |w| then

iaGw,−w′(K) ⊂ Gw,−w′(K).

The proof is entirely similar to that of 2.9(b), (c). Similarly we have

(d) (−i)aG′ ⊂ G′
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for any i ∈ I, a ∈ K. From the definitions we have

(e) iaG′ ⊂ G′

for any i ∈ I, a ∈ K. From (a), (d), (e) we see that G′ = G(K).

For each w,w′ in W we choose hw,−w′ ∈ Ow,−w′ . By the arguments

above, β′ := ⊔w,w′ in W θhw,−w′ : ⊔w,w′ in WK
|w|+|w′|+r → G(K) is surjective.

Assume now that K is as in 1.1(i). There is a well defined homomor-

phism of monoids β : G(K) → G(K) such that ia 7→ xi(a), (−i)
a 7→ yi(a),

i)a 7→ i(a) for any i ∈ I, a ∈ K. (We use 2.2, 2.3(b), 2.3(f), 2.4(a).) The

composition ββ′ : ⊔w,w′ in WK
|w|+|w′|+r → G(K) is a bijection (we use 2.6(a)

and 2.8(b)) hence β′ is injective. It follows that β′ is bijective hence β is

bijective. Thus the following holds.

(f) If K is as in 1.1(i), the homomorphism of monoids β : G(K) → G(K)

is an isomorphism.

2.11. In this subsection K is as in 1.1(i)-(iii). As in 2.9, 2.10 we have:

(a) U(K) = ∪w∈WUw(K), G(K) = ∪w,w′ in WGw,−w′(K).

Assume now thatK = {1}. In this case U({1}) is the monoid with generators

the symbols i1 = i with i ∈ I and with relations ii = i for i ∈ I and

iji · · · = jij · · · (both products have m factors) where i 6= j in I and m is

the order of sisj. If w ∈ W , |w| = m, then Uw({1}) consists of a single

element given by i1i2 · · · im where (i1, i2, . . . , im) is any element of Ow. We

have a bijectionW
∼
→U({1}) which takes w to the unique element of Uw({1}).

Now G({1}) is the monoid with generators the symbols i,−i with i ∈ I

and with relations

(ei)(ǫi) = (ǫi) for i ∈ I, ǫ = ±1;

(ǫi)(ǫj)(ǫi) · · · = (ǫj)(ǫi)(ǫj) · · · (both products have m factors) where i 6= j

in I, ǫ = ±1 and m is the order of sisj;

i(−j) = (−j)i for i, j ∈ I.

It follows that we have an obvious isomorphism of monoids

U({1})×U({1})
∼
→G({1}). For w,w′ in W , |w| = m, |w′| = m′, Gw,−w′({1})
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consists of a single element given by i1i2 · · · im(−i′1)(−i
′
2) · · · (−i

′
m′) where

(i1, i2, . . . , im) is any element of Ow and (i′1, i
′
2, . . . , i

′
m′) is any element of

Ow′ . We have a bijectionW×W
∼
→G({1}) which takes (w,w′) to the unique

element of Gw,−w′({1}).

For any K as in 1.1(i)-(iii) we have a homomorphism of monoids h :

U(K) → U({1}) given by ia 7→ i and a homomorphism of monoids h′ :

G(K) → G({1}) given by ia 7→ i, (−i)a 7→ −i, ia 7→ 1. From the definitions

we have h(Uw(K)) = Uw({1}) for w ∈W and h′(Gw,−w′(K)) = Gw,−w′({1})

for w,w′ in W . Since Uw({1}) are disjoint for various w ∈W , it follows that

Uw(K) are disjoint for various w ∈ W . Since Gw,−w′({1}) are disjoint for

various w,w′ in W , it follows that Gw,−w′(K) are disjoint for various w,w′

in W . Combining this with (a) we obtain:

(b) U(K) = ⊔w∈WUw(K), G(K) = ⊔w,w′ in WGw,−w′(K).

(This is already known for K as in 1.1(i).) Since h, h′ above are monoid

homomorphisms we see that:

(c) for w,w′ in W , the multiplication in U(K) maps Uw(K) × Uw′(K) into

Uw′′(K) where w′′ is the product of w,w′ in U({1}) =W ;

(d) for w1, w2, w
′
1, w

′
2 in W , the multiplication in G(K) maps

Gw1,−w′
1
×Gw2,−w′

2
(K)

into Gw3,−w′
3
(K) where (w3, w

′
3) is the product of (w1,−w

′
1), (w2,−w

′
2)

in G({1}) =W ×W .

2.12. We now assume that K is as in 1.1(i). The map Uw(K)× Uw′(K) →

Uw′′(K) in 2.11(c) can be viewed as a map U+
w (K) × U+

w′(K) → U+
w′′(K)

(multiplication in U+(K)); using the definitions we see that this map is ad-

missible. Hence the map µ : U+(K) × U+(K) → U+(K) (multiplication

in U+(K)) is admissible. The map Gw1,−w′
1
× Gw2,−w′

2
(K) → Gw3,−w′

3
(K)

in 2.11(d) can be viewed as a map Gw1,−w′
1
× Gw2,−w′

2
(K) → Gw3,−w′

3
(K)

(multiplication in U(K)); using the definitions we see that this map is admis-

sible. Hence the map µ′ : G(K) ×G(K) → G(K) (multiplication in G(K))

is admissible. Applying these results with K replaced by K ′ = R(t)>0

we see that µ and µ′ induce admissible maps of non-negative Z-structures

µ : U+(K ′)× U+(K ′) → U+(K ′) and µ′ : G(K ′)×G(K ′) → G(K ′), that is,
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µ : U+(Z)× U+(Z) → U+(Z) and µ : G(Z) ×G(Z) → G(Z), which define

monoid structures on U+(Z) and G(Z).

From the definition there is a unique homomorphism of monoids c :

U(Z) → U+(Z) which takes ia to the zone of U+(K ′) containing xi(t
a) (for

i ∈ I, a ∈ Z) and a unique homomorphism of monoids c′ : G(Z) → G(Z)

which takes ia to the zone of Gsi,−1(K
′) containing xi(t

a), (−i)a to the zone

of of G1,−si(K
′) containing yi(t

a) and ia to the zone of G1,−1(K
′) containing

i(ta) (for i ∈ I, a ∈ Z).

2.13. Assume that K is as in 1.1(i)-(iii). Let w ∈W be such that |w| = m.

For any i ∈ Ow we define ei : K
m → Uw(K) by the same formula as in 2.9.

We state the following property.

(a) ei : K
m → Uw(K) is a bijection.

Let w,w′ in W be such that |w| + |w′| + r = M . For any h ∈ Ow,−w′ we

define θh : KM → Gw,−w′(K) by the same formula as in 2.10. We state the

following property.

(b) θh : KM → Gw,−w′(K) is a bijection.

Now (a), (b) are already known when K is as in 1.1(i) and are obvious whe

K = {1}. Moreover the maps in (a), (b) are surjective. It remains to show

that the maps in (a), (b) are injective whenK = Z. It is then enough to show

that the map in (a) (resp. (b)) for K = Z is injective after composition with

c (resp. c′) in 2.12. But that composition is a bijection since it is obtained by

applying the functor of taking zones to the corresponding map for K = K ′

which is already known to be a bijection. This proves (a), (b).

This argument shows also that c defines for any w ∈ W a bijection

Uw(Z) → U+
w (Z) and that c′ defines for any w,w′ inW a bijection Gw,−w′(Z)

→ Gw,−w′(Z). It follows that

(c) c : U(Z) → U+(Z) is an isomorphism and c′ : G(Z) → G(Z) is an

isomorphism.

Thus, for any K as in 1.1(i)-(iii) we have

(d) U(K) = U+(K), G(K) = G(K);
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for K as in 1.1(i) this is already known from 2.9(d) and 2.10(f).

For any K as in 1.1(i)-(iii) we have the following results.

(e) Let w ∈ W . The bijections ei in (a) define a positive K-structure on

Uw(K). These positive K-structures can be viewed as a non-negative K-

structure on U(K) with pieces Uw(K), w ∈ W . The multiplication map

U(K)× U(K) → U(K) is admissible.

(f) Let w,w′ in W . The bijections θh in (b) define a positive K-structure

on Gw,−w′(K). These positive K-structures can be viewed as a non-

negative K-structure on G(K) with pieces Gw,−w′(K), (w,w′) ∈W ×

W . The multiplication map G(K)×G(K) → G(K) is admissible.

When K is as in 1.1(i) these statements are already known, see 2.7,

2.8 and 2.9(d), 2.10(f). When K = {1} these statements are trivial.

When K = Z these statements can be deduced from the corresponding

statements with K replaced by R(t)>0 using (c).

2.14. Let N = {0, 1, 2, · · · } ⊂ Z. Let w ∈ W with |w| = m. For i ∈ Ow let

Uw(N ) be the image of the map ei : N
m → U(Z) given by (a1, a2, . . . , am) 7→

ia11 i
a2
2 · · · iamm ; this image is independent of the choice of i. To prove the last

statement it is enough to show that if i, i′ in Ow are connected by a single

braid move then ei(N
m) = ei′(N

m). This is a property of R(i, j) in 2.9(ii).

(The computation of R(i, j) is reduced in 2.3 to the case where sisj has order

2 or 3. When this order is 3 we use that a+ b−min(a, c) ∈ N if a, b, c ∈ N .)

Let U(N ) = ⊔w∈WUw(N ). This is the submonoid of U(Z) generated by ia

with i ∈ I, a ∈ N .

2.15. Let w,w′ in W be such that |w| + |w′| + r = M . For h ∈ Ow,−w′

let (NM )′ = (a1, a2, · · ·αm) ∈ NM ; ak = 0 whenever hk = i for some i}

and let Gw,−w′(N ) be the image of the map (NM )′ → G(Z) given by

(a1, a2, . . . , am) 7→ ha11 h
a2
2 · · · haMM ; this image is independent of the choice

of h. (We use the argument in 2.14 and the fact that, if a, b, c are in N

and b = 0 then c − min(a + c, b) = c ∈ N , min(a + c, b) − b = 0.) Let

G(N ) = ⊔w,w′ in WGw,−w′(N ). This is the submonoid of G(Z) generated

by ia and (−i)a with i ∈ I, a ∈ N . We have an isomorphism of monoids

U(N )× U(N )
∼
→G(N ) given by (ia, 1) 7→ ia, (1, ia) 7→ (−i)a.
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2.16. Let K be as in 1.1(i)-(iii). Let w ∈ W,m = |w|. For i ∈ I, a ∈ K

such that |siw| = m − 1 we define Ti,a : Uw(K) → Uw(K) as follows. Let

x ∈ UwI
(K). We choose i = (i2, . . . , im) ∈ Osiw and we set Ti,a;i(x) =

ia1aia22 · · · iamm where x = ia1 ia22 · · · iamm and (a1, a2, . . . , am) ∈ Km is uniquely

determined by x. We show that Ti,a;i(x) is independent of the choice of i.

Using Iwahori’s lemma, we see that it is enough to show that Ti,a;i(x) =

Ti,a;i′(x) if i, i′ in Osiw are connected by a single braid move. In this case

the desired result follows from 2.9(ii). We set Ti,a(x) = Ti,a;i(x) where i is

any sequence in Osiw. This defines the map Ti,a. We have Ti,aTi,a′ = Ti,aa′

for any and a, a′ in K.

2.17. Let K be as in 1.1(i)-(iii). Let λ ∈ X , w ∈W,m = |w|. We will define

a map

(a) θλ : Uw(K) → K.

For any i = (i1, i2, . . . , im) ∈ Ow we define θλ,i : Uw(K) → K by

ia11 i
a2
2 · · · iamm 7→ ac11 a

c2
2 · · · acmm

where (a1, a2, . . . , am) ∈ Kν and ck = 〈si1si2 · · · sik−1
(ik), λ〉 ∈ Z for k ∈

[1,m]. We show that θλ,i = θλ,i′ for any i, i′ in Ow. It is enough to show this

assuming that i, i′ are related by a single braid move.

Assume first that for some l we have il = i, il+1 = j where 〈i, j∗〉 = 0

and al = a, al+1 = b. We set y = si1si2 · · · sil−1
∈ W . It is enough to show

that

a〈y(i),λ〉b〈ysi(j),λ〉 = b〈y(j),λ〉a〈ysj(i),λ〉.

This follows from si(j) = j, sj(i) = i.

Assume next that for some l we have il = i, il+1 = j, il+2 = i where

〈i, j∗〉 = 〈j, i∗〉 = −1 and al = a, al+1 = b, al+2 = c. We set y = si1si2 · · · sil−1

∈W . It is enough to show that

a〈y(i),λ〉b〈ysi(j),λ〉c〈ysisj(i),λ〉

= (bc/(a + c))〈y(j),λ〉(a+ c)〈ysj(i),λ〉(ab/(a+ c)〈ysjsi(j),λ〉.

This follows from sjsi(j) = i, sisj(i) = j, si(j) = i+ j = sj(i).
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Assume next that for some l we have il = i, il+1 = j, il+2 = i, il+3 = j

where 〈i, j∗〉 = −2 and al = a, al+1 = b, al+2 = c, al+3 = d. We set y =

si1si2 · · · sil−1
∈W . It is enough to show that

a〈y(i),λ〉b〈ysi(j),λ〉c〈ysisj(i),λ〉d〈ysisjsi(j),λ〉

= (bc2d/E)〈y(j),λ〉(E/A)〈ysj (i),λ〉(A2/E)〈ysjsi(j),λ〉(abc/A)〈ysjsisj(i),λ〉

where A,E are as in 2.4(d). This follows from si(j) = i + j, sj(i) = i+ 2j,

sisj(i) = i+ 2j, sjsi(j) = i+ j, sisjsi(j) = j, sjsisj(i) = si.

Finally we assume that for some l we have il = i, il+1 = j, il+2 = i, il+3 =

j, il+4 = i, il+5 = j where 〈i, j∗〉 = −3. In this case an argument similar to

the one above applies. We see that θλ,i is indeed independent of the choice of

i; we denote it by θλ. Note that for λ, λ
′ in X we have θλ+λ′(u) = θλ(u)θλ′(u)

for any u ∈ Uw(K).

In the case where K = Z, w = wI , a map like θλ (restricted to UwI
(N ))

is defined in [5, 2.9(a)].

In the case where λ ∈ X+ and K,k are as in 1.1, we define a map

θ̃λ : G → k, g 7→ x where g ∈ G and x ∈ k is the coefficient of the highest

weight vector in the canonical basis of Λλ in the vector obtained by applying

g to the lowest weight weight vector in the canonical basis of Λλ. One can

show that in this case (with w = wI):

(b) θλ is the composition UwI
(K)

∼
→U+

wI
(K) ⊂ G

θ̃λ→k.

3. The Positive Part of a Flag Manifold

3.1. We assume that K,k are as in 1.1(i). In this and next subsection we

define the positive part of G/U−.

Let M = ν + r. Let

O′ = ⊔w∈WOw,−wIw,

a set of sequences of length M in I⊔ (−I)⊔I, see 2.8. Let Γ′ be the set of all

pairs (h,a) ∈ O′ ×KM . With notation of 2.8 we have Γ′ = ⊔w∈WΓw,−wIw.
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We define a map ρ : Γ′ → G/U− by the requirement that the restriction of

ρ to Γw,−wIw is

((h1, h2, . . . , hM ), (a1, a2, . . . , aM )) 7→ ha11 h
a2
2 · · · haMM (w−1wI )̇U

−

where hass = xi(as) if hs = i, hass = yi(as) if hs = −i and hass = i(as) if

hs = i.

We view Γ′ as the set of vertices of a graph with two kind of edges:

internal edges and external edges. An internal edge is an edge joining two

elements in the same Γw,−wIw for the graph structure of Γw,−wIw described in

2.8. An external edge is one joining ((h1, h2, . . . , hM ), (a1, a2, . . . , aM )) ∈ Γ′,

((h′1, h
′
2, . . . , h

′
M ), (a′1, a

′
2, . . . , a

′
M )) ∈ Γ′ where

(a) (hM−1, hM ) = (i, i), (h′M−1, h
′
M ) = (−i, i) for some i ∈ I,

(a′M−1, a
′
M ) = (a−1

M−1, aM−1a
−1
M ),

h′s = hs, a
′
s = as for s /∈ {M − 1,M};

this edge joins an element of Γysi,−wIysi with an element of Γy,−wIy for some

y ∈W such that |ysi| > |y|.

We regard O′ as the set of vertices of a graph in which h,h′ are joined if

either h,h′ belong to the same Ow,−wIw and are joined in the graph Ow,−wIw

(see 2.8), or

(b) h,h′ are of the form h = (h1, . . . , hM−2, i, i), h
′ = (h1, . . . , hM−2,−i, i)

with i ∈ I.

The map Γ′ → O′, (h,a) 7→ h, respects the graph structures.

3.2. For any h ∈ O′ we define ρh : KM → G/U− by ρh(a) = ρ(h,a). We

show:

(a) The image of ρh is independent of the choice of h ∈ O′; we denote this

image by (G/U−)(K)>0. For any h∈O′, ρh defines a bijection

ρ′h : KM ∼
→ (G/U−)(K)>0.

The bijections ρ′h(h ∈ O′) define a positive K-structure on (G/U−)(K)>0.

Assume first that h,h′ in O′ are joined in the graph O′. Then
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(b) ρh, ρh′ are related by ρh = ρh′σ where σ : KM → KM is a bi-admissible

bijection. In particular, the image of ρh is equal to the image of ρh′ and

ρh is injective if and only if ρh′ is injective.

If h,h′ are in the same Ow,−wIw, this follows from results in 2.8. Assume

now that h,h′ are as in 3.1(b) so that h ∈ Oysi,−wIysi , h
′ ∈ Oy,−wIy for some

y ∈W such that |ysi| > |y|. Then (b) follows from the calculation

xi(a)i(b)(s
−1
i y−1wI )̇U

− = yi(a
−1)i(ab−1)ṡiyi(a

−1b2)(s−1
i y−1wI )̇U

−

= yi(a
−1)i(ab−1)ṡi(s

−1
i y−1wI )̇U

− = yi(a
−1)i(ab−1)(y−1wI )̇U

−

for a, b in K. (We have used 2.1(a) and yi(c)ẇ ∈ ẇU−, ṡiẇ = (siw)̇ for

c ∈ k and w ∈ W with |siw| > |w|, or more precisely, w = s−1
i y−1wI .) In

this case σ : KM → KM is (a1, . . . , aM−2, a, b) 7→ (a1, . . . , aM−2, a
−1, ab−1).

In particular, σ is a bi-admissible bijection.

Using (b), we see that to prove (a) it is enough to show (c), (d) below.

(c) For any h ∈ OwI ,−1, ρh : KM → G/U− is injective.

(d) the graph O′ is connected.

We prove (c). Let h in OwI ,−1. Let a ∈ KM , a′ ∈ KM be such that

ρh(a) = ρh(a
′), that is

γwI ,−1(a)U
− = γwI ,−1(a

′)U−

(notation of 2.8). Since γwI ,−1(a) ∈ B+, γwI ,−1(a
′) ∈ B+ and B+ ∩ U− =

{1}, it follows that

γwI ,−1(a) = γwI ,−1(a
′).

Using the injectivity of γwI ,−1 : KM → G (see 2.8) we deduce that a = a′.

This proves (c).

We prove (d). As mentioned in 2.8, the graph Ow,−wIw is connected for

any w ∈W . In particular OwI ,−1 is contained in a connected component O′
0

of O′. We show by descending induction on |w| that Ow,−wIw is contained

in O′
0. We can assume that |w| < ν. We can find i ∈ I such that |wsi| > |w|.

Since the graph Ow,−wIw is connected, we can find h′ ∈ Ow,−wIw such that

h′ = (h1, h2, . . . , hM−2,−i, i). Then h = (h1, h2, . . . , hM−2, i, i) is joined

with h′ in O′ and is in Owsi,wIwsi. By the induction hypothesis we have
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h ∈ O′
0 hence h′ ∈ O′

0 so that Ow,−wIw ⊂ O′
0. This completes the induction.

We see that O′ = O′
0 and (d) holds. This completes the proof of (a).

We show:

(e) If g1 ∈ G(K) and gU− ∈ (G/U−)(K)>0 then g1gU
− ∈ (G/U−)(K)>0.

Hence there is a well defined action of the monoid G(K) on (G/U−)(K)>0

given by g1 : gU
− 7→ g1gU

−.

Assume first that g1 = xi(a) with i ∈ I, a ∈ K. We can find h ∈ OwI ,−1

such that h starts with i and a = (a1, a2, . . . , aM ) ∈ KM such that gU− =

ρh(a). We have xi(a)gU
− = xi(a)ρh(a) = ρh(a1 + a, a2, a3, . . . , aM ) ∈

(G/U−)(K)>0, as required. Next we assume that g1 = yi(a) with i ∈

I, a ∈ K. We can find h ∈ O1,−wI
such that h starts with −i and a =

(a1, a2, . . . , aM ) ∈ KM such that gU− = ρh(a). We have yi(a)gU
− =

yi(a)ρh(a) = ρh(a1 + a, a2, a3, . . . , aM ) ∈ (G/U−)(K)>0, as required. We

now assume that g1 = i(a) with i ∈ I, a ∈ K. We can find h ∈ OwI ,−1 such

that h starts with i and a = (a1, a2, . . . , aM ) ∈ KM such that gU− = ρh(a).

We have i(a)gU− = i(a)ρh(a) = ρh(aa1, a2, a3, . . . , aM ) ∈ (G/U−)(K)>0,

as required. It remains to use that the monoid G(K) is generated by

xi(a), yi(a), i(a) for various i ∈ I, a ∈ K.

From the definitions we see that for w,w′ in W , the map

Gw,−w′(K)× (G/U−)(K)>0 → (G/U−)(K)>0

(restriction of the G(K)-action in (e)) is admissible. Hence the map

(f) G(K)× (G/U−)(K)>0 → (G/U−)(K)>0

given by the G(K)-action is admissible.

Now let K ′ = R(t)>0. We set (G/U−)(Z)>0 = (G/U−)(K ′)>0. By

passage to zones in (f) we obtain an admissible map G(Z)×(G/U−)(Z)>0 →

(G/U−)(Z)>0 which is an action of G(Z).

3.3. Now T acts on G/U− by t : gU− 7→ gtU−. We show:

(a) This restricts to an action of the group T (K) on (G/U−)(K)>0.
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Let gU− ∈ (G/U−)(K)>0, t ∈ T (K). Let (i1, i2, . . . , iν) ∈ OwI
and let

j1, . . . , jr be a list of the elements in I. We have t = j1(b1) · · · jr(br) with

(b1, . . . , br) ∈ Kr. We can find (a1, a2, . . . , aν+r) ∈ Kν+r such that

gU− = xi1(a1) · · · xiν (aν)j1(aν+1) · · · jr(aν+r)U
−.

We have

gtU− = xi1(a1) · · · xiν (aν)j1(aν+1b1) · · · jr(aν+rbr)U
−.

Hence gtU− ∈ (G/U−)(K)>0.

We show:

(b) The obvious map (G/U−)(K)>0/T (K) → (G/U−)/T is injective.

Let gU− ∈ (G/U−)(K)>0, g
′U− ∈ (G/U−)(K)>0, t ∈ T be such that

gtU− = g′U−. We must show that t ∈ T (K). With notation in the proof of

(a) we have

gU− = xi1(a1) · · · xiν (aν)j1(aν+1) · · · jr(αν+r)U
−,

g′U− = xi1(a
′
1) · · · xiν (a

′
ν)j1(a

′
ν+1) · · · jr(a

′
ν+r)U

−,

t = j1(c1) · · · jr(cr),

with (c1, . . . , cr)∈(k∗)r, (a1, a2, . . . , aν+r)∈K
ν+r, (a′1, a

′
2, . . . , a

′
ν+r)∈K

ν+r.

Our assumption implies

xi1(a
′
1) · · · xiν (a

′
ν)j1(a

′
ν+1) · · · jr(a

′
ν+r)U

−

= xi1(a1) · · · xiν (aν)j1(aν+1c1) · · · jr(aν+rcr)U
−.

It follows that B+j1(aν+1c1) · · · jr(aν+rcr)U
− = B+j1(a

′
ν+1) · · · jr(a

′
ν+r)U

−.

By a property of Bruhat decomposition we deduce that

j1(aν+1c1) · · · jr(aν+rcr) = j1(a
′
ν+1) · · · jr(a

′
ν+r)

hence aν+1c1 = a′ν+1, . . . , aν+rcr = a′ν+r, so that (c1, . . . , cr) ∈ Kr and

t ∈ T (K). This proves (b).
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3.4. We assume that K,k are as in 1.1(i). Let B the set of subgroups of G

of the form gB−g−1 for some g ∈ G. Following [8] we set

B(K)>0 = {B ∈ B;B = uB+u−1 for some u ∈ U−
wI
(K)}

= {B ∈ B;B = u′B−u′−1 for some u′ ∈ U+
wI
(K)}.

(The last equality is proved in [8, 8.7].)

Consider the set of orbits for the free action of T on G/U− given by

t : gU− 7→ gtU−. This set can be identified with B by gU− 7→ gB−g−1.

Under this identification, B(K)>0 becomes the set of orbits for the free action

of T (K) on (G/U−)(K)>0 (the restriction of T -action above); here we use

3.3(b).

For any h = (h1, h2, . . . , hM ) ∈ O′, there is a unique free action t : â 7→

t◦h â of T (K) on KM such that the bijection KM → (G/U−)(K)>0 given by

(a1, a2, . . . , aM ) 7→ ρh(a1, a2, . . . , aM ) is compatible with the T (K)-actions

on the two sides. Let k1 < k2 < · · · < kν be the subsequence of 1, 2, . . . ,M

such that hk1 , hk2 , . . . , hkν are in I⊔(−I). We define an imbedding ǫ′h : Kν →

KM by (a1, a2, . . . , aν) 7→ (a′1, a
′
2, . . . , a

′
M ) where a′kj = aj for j = 1, . . . , ν

and a′e = 1 if e ∈ {1, 2, . . . ,M} − {k1, k2, . . . , kν}. To any T (K)-orbit in

KM for the ◦h-action we associate the unique element a ∈ Kν such that our

T (K)-orbit contains ǫ′h(a). This defines a map δ̄′h : KM/T (K) → Kν which

is easily seen to be a bijection. Let δ′h : KM → Kν be the composition

of δ̄′h with the obvious map KM → KM/T (K). There is a unique map

τ̄ ′h : Kν → B(K)>0 such that the following diagram is commutative:

KM τ ′
h−−−−→ (G/U−)(K)>0

δ′
h





y





y

Kν τ̄ ′
h−−−−→ B(K)>0

Here τ ′h is the bijection given by a 7→ ρh(a) and the right vertical map is the

obvious orbit map. Clearly, τ̄ ′h is a bijection. We show:

(a) The bijections Kν
τ̄ ′
h→B(K)>0 for various h ∈ O′ define a positive K-

structure on B(K)>0.
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Let h,h′ be elements of O′. Let

A = τ ′
h′

−1τ ′h : KM → KM , Ā = τ̄ ′
h′

−1τ̄ ′h : Kν → Kν .

We have a commutative diagram

KM A
−−−−→ KM

δ′
h





y

δ′
h′





y

Kν Ā
−−−−→ Kν

From 3.2(a) it follows that A is admissible. From the definitions we see that

the surjective maps δ′h, δ
′
h′ are admissible. Moreover δ′hǫ

′
h = 1. Thus we have

Ā = δ′
h′Aǫ′h. It follows that Ā is admissible. Interchanging the roles of h,h′

we see that Ā−1 is admissible. This proves (a).

From 3.2(a) and the definitions we deduce:

(b) There is a well defined action of the monoid G(K) on B(K)>0 given by

g1 : gB
−g−1 7→ g1gB

−g−1g−1
1 where gB−g−1 ∈ B(K)>0.

From the definitions we see that for w,w′ in W , the map

Gw,−w′(K)× B(K)>0 → B(K)>0

(restriction of the G(K)-action in (b)) is admissible. Hence the map

(c) G(K)× B(K)>0 → B(K)>0

given by the G(K)-action is admissible.

Now let K ′ = R(t)>0. We set B(Z)>0 = B(K ′)>0. By passage to zones

in (c) we obtain

(d) an admissible map G(Z) × B(Z)>0 → B(Z)>0 which is an action of

G(Z).
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4. The involutions Φ,Φ′ of UwI
(K)

4.1. We assume that K,k are as in 1.1(i). Let i = (i1, i2, . . . , iν) ∈ OwI
. We

define ξi : K
ν ∼
→B(K)>0 by (a1, a2, . . . , aν) 7→ gB−g−1 where

g = xi1(a1)xi2(a2) · · · xiν (aν) ∈ G.

We define ξ′i : K
ν ∼
→B(K)>0 by (a1, a2, . . . , aν) 7→ g′B+g′−1 where

g′ = yi1(a1)yi2(a2) · · · yiν (aν) ∈ G.

Clearly,

(a) the bijections ξi, ξ
′
i are parts of the positive K-structure of B(K)>0 de-

scribed in 3.4.

For u ∈ U+
wI
(K) we have by 2.5(d) u = φ′(u)ẇIb where b ∈ B− and φ′

is a well defined map U+
wI
(K) → U−. We show:

(b) u 7→ φ′(u) is a bijection U+
wI

(K) → U−
wI

(K).

The map U+
wI
(K) → B(K)>0, u 7→ uB−u−1, is a bijection; the map U−

wI
(K)

→ B(K)>0 u 7→ uB+u−1, is a bijection. Hence if u ∈ U+
wI
(K), there is a

unique u′ ∈ U−
wI
(K) such that uB−u−1 = u′B+u′−1 so that

uB−u−1 = φ′(u)ẇIB
−ẇ−1

I φ′(u)−1 = φ′(u)B+φ′(u)−1 = u′B+u′−1

and u′ = φ′(u). Moreover u 7→ u′ is a bijection U+
wI
(K) → U−

wI
(K) so that

u 7→ φ′(u) is a bijection φ′ : U+
wI
(K) → U−

wI
(K). This proves (b).

For u ∈ U+
wI
(K) we have by 2.5(c) u ∈ U−ẇIB

− hence u−1 ∈ B−ẇIU
−.

Thus we have u−1 = φ(u)−1ẇIb where b ∈ B− and φ is a well defined map

U+
wI
(K) → U−. We show:

(c) u 7→ φ(u) is a bijection U+
wI
(K) → U−

wI
(K).

From the definition of φ′, for u ∈ U+
wI
(K) we have φ′−1(Ψ(u)) = Ψ(u)ẇIb

for some b ∈ B− (with Ψ as in 2.1.) Hence Ψ(u) = φ′−1(Ψ(u))ẇIb1 for some

b1 ∈ B+ and u = b2ẇIΨ(φ′−1(Ψ(u))) for some b2 ∈ B−.

From the definition we have φ(u)−1 = u−1ẇIb3, for some b3 ∈ B+ hence

u = ẇIb3φ(u) = b4ẇIφ(u) for some b4 ∈ B−. Thus
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b4ẇIφ(u) = b2ẇIΨ(φ′−1(Ψ(u))). From properties of Bruhat decomposition

we deduce φ(u) = Ψ(φ′−1(Ψ(u))). Thus (c) follows from (b).

From the definition, for u ∈ U+
wI
(K) we have φ(u) = bẇIu for a uniquely

defined b ∈ B+. Let i = (i1, i2, . . . , iν) ∈ OwI
. There is a unique bijection

z : Kν → Kν , (a1, . . . , aν) 7→ (a′1, . . . , a
′
ν) such that

φ(xi1(a1) · · · xiν (aν)) = yi1(a
′
1) · · · yiν (a

′
ν)

where

yi1(a
′
1) · · · yiν (a

′
ν) = bẇIxi1(a1) · · · xiν (aν)

for some b ∈ B+; moreover, by (a), z is bi-admissible.

Applying the involution ω (see 2.1) we deduce

xi1(a
′
1) · · · xiν (a

′
ν) = b′ẇIyi1(a1) · · · yiν (aν)

for some b′ ∈ B− hence

yi1(a1) · · · yiν (aν) = b′′ẇIxi1(a
′
1) · · · xiν (a

′
ν)

for some b′′ ∈ B+. It follows that z2 = 1.

Let

(d) e : UwI
(K)

∼
→U+

wI
(K), e′ : UwI

(K)
∼
→U−

wI
(K)

be the bijections induced by 2.9(d), (e). We define a bijection Φ : UwI
(K)

∼
→

UwI
(K) by Φ = e′−1φe. We have Φ2 = 1 (we use the equality z2 = 1).

We define a bijection Φ′ : UwI
(K)

∼
→UwI

(K) by Φ′ = e′−1φ′e. Recall

that the bijection Ψ̃ : UwI
(K)

∼
→UwI

(K) (see 2.9(f)) satisfies Φ̃ = e′−1Ψe

and Ψ̃2 = 1. We have Φ = Ψ̃Φ′−1Ψ̃ hence 1 = Φ2 = Ψ̃Φ′−2Ψ̃ and Ψ′2 = 1.

It follows that

(e) Φ = Ψ̃Φ′Ψ̃.

Now let K ′ = R(t)>0. The bijection Φ : UwI
(K ′)

∼
→UwI

(K ′) is bi-

admissible since z is so. Hence Φ′ is also bi-admissible. Thus Φ induces by

passage to zones a bi-admissible bijection UwI
(Z)

∼
→UwI

(Z) denoted again

by Φ (with Φ2 = 1), see also [9, 2.9]. Similarly, Φ′ induces by passage to
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zones a bi-admissible bijection UwI
(Z)

∼
→UwI

(Z) denoted again by Φ′ (with

Φ′2 = 1). Then (e) continues to hold.

In type A2 with I = {1, 2}, Φ is given by

2a21a12a
′
2 7→ 2a2/((a2+a′2)a

′
2)1(a2+a′2)/(a1a2)21/(a2+a′2).

In type A3 with I = {1, 2, 3} and s1s3 = s3s1, Φ is given by

2a21a13a32a
′
21a

′
13a

′
3 7→ 2

a′1a
′
3

a1a2a3 1
a1

a′1(a1+a′1) 3
a3

a′3(a3+a′3) 2
(a1+a′1)(a3+a′3)

a1a3a
′
2 1

1
a1+a′1 3

1
a3+a′3 .

4.2. Let K be as in 1.1(i)-(iii). For i ∈ I, a ∈ K we have

(a) ΦTi,a = Ti!,a−1Φ : UwI
(K) → UwI

(K)

where Φ : UwI
(K) → UwI

(K) is as in 4.1 (for K = {1}, Φ is the identity

map) and Ti,a is as in 2.16. For K as in 1.1(i) this follows from [9, 3.6]; for

K = Z this follows from the case K = R(t)>0 by passage to zones. For

K = {1}, (a) is trivial.

For K as in 1.1(i)-(iii) we state:

(b) Conjecture. We have θλΦ = θ−λ! : UwI
(K) → K for any λ ∈ X (notation

of 2.17(a)); here λ! ∈ X is defined by 〈i, λ!〉 = 〈i!, λ〉 for all i ∈ I.

When K = Z, (b) can be deduced from [9, 4.9]. For general K but for type

A2 with I = {i, j}, (b) follows from the identity:

a〈j,λ〉b〈i,λ〉+〈j,λ〉c〈i,λ〉 = (
a

(a+ c)c
)−〈i,λ〉(

a+ c

ab
)−〈i,λ〉−〈j,λ〉(

1

a+ c
)−〈j,λ〉

where a, b, c are in K.

When K = Z we define h0 ∈ UwI
(K) by h0 = i01i

0
2 · · · i

0
ν where i =

(i1, i2, . . . , iν) is any element of Ow0 . The following result appears in [9, 2.9].

(c) Assume that K = Z. Then Φ : UwI
(K) → UwI

(K) is the unique bijection

satisfying (a) for any i ∈ I, a ∈ K and such that Φ(h0) = h0.

4.3. Let λ : I → K be a map. We have the following results.
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(a) There is a unique monoid automorphism Sλ : U(K) → U(K) such that

for any i ∈ I, a ∈ K we have Sλ(i
a) = iaλ(i). This maps the subset

Uw(K) onto itself for any w in W .

(b) There is a unique monoid automorphism Sλ : G(K) → G(K) such that

for any i ∈ I, a ∈ K we have Sλ(i
a) = iaλ(i), Sλ((−i)

a) = (−i)aλ(i)
−1
,

Sf (i
a) = ia. This maps the subset Gw,−w′(K) onto itself for any w,w′

in W .

Indeed, one can check that the relations defining U(K), G(K) are respected

by Sλ. Alternatively, assuming that K,k are as in 1.1(i), let S̃λ : G→ G be

given by conjugation by an element tλ ∈ T (K) such that i∗(tλ) = λ(i) for

any i ∈ I. It is enough to note that S̃λ maps xi(a) to xi(aλ(i)) and yi(a) to

yi(aλ(i)
−1) for any i ∈ I, a ∈ k. The case whereK = Z can be deduced from

the case where K = R(t)>0 by passage to zones. The case where K = {1}

is trivial.

For u ∈ U+
wI
(K) with K,k as in 1.1(i), we show:

(c) S̃λ(φ(u)) = φ(S̃λ(u)).

We have φ(u) ∈ B+ẇIu, φ(tλut
−1
λ ) ∈ B+ẇItλut

−1
λ , hence

tλφ(u)t
−1
λ ∈ B+ẇItλut

−1
λ .

It follows that

S̃λ(φ(u)) ∈ B+ẇI S̃λ(u), φ(S̃λ(u)) ∈ B+ẇI S̃λ(u)

so that S̃λ(φ(u))φ(S̃λ(u))
−1 ∈ B+. Since

S̃λ(φ(u))φ(S̃λ(u))
−1 ∈ U−

and B+ ∩ U− = {1}, we deduce that S̃λ(φ(u))φ(S̃λ(u))
−1 = 1 so that (c)

holds.

For u ∈ UwI
(K) we show:

(d) Sλ(Φ(u)) = Φ(Sλ−1(u)) where λ−1 : I → K is given by λ−1(i) = λ(i)−1.
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An equivalent statement is that Sλ(e
′−1(φ(e(u)))) = e′−1(φ(e((Sλ−1(u))))

where e, e′ are as in 4.1(d). Let u′ = φ(e(u)) ∈ U−
wI
(K). From the definitions

we have

Sλ(e
′−1(u′)) = e′−1(S̃λ−1(u′)), e((Sλ−1(u))) = S̃λ−1(e(u)).

Hence it is enough to show that

e′−1(S̃λ−1(u′)) = e′−1(φ(S̃λ−1(e(u))))

or that S̃λ−1(φ(e(u)) = φ(S̃λ−1(e(u))). This follows from (c).

For u ∈ UwI
(K) we show:

(e) Sλ(Φ
′(u)) = Φ′(Sλ−1(u)).

This follows from (d), 4.1(e) and the identity SλΨ̃ = Ψ̃Sλ (which follows

from definitions).

4.4. For λ : I → K,λ′ : I → K we have SλSλ′ = Sλλ′ . Using this, together

with 4.3(d), (e) and the equalities Φ2 = 1, Φ′2 = 1, we see that

(a) (SλΦ)
2 = 1, (SλΦ

′)2 = 1

as maps UwI
(K) → UwI

(K).

5. The Positive Part of a Partial Flag Manifold

5.1. We assume that K,k are as in 1.1(i). Let J ⊂ I. Let P+
J be the

subgroup of G generated by xi(a) with i ∈ I, a ∈ k, by yi(a) with i ∈ J, a ∈ k

and by T . Let P−
J be the subgroup of G generated by yi(a) with i ∈ I, a ∈ k,

by xi(a) with i ∈ J, a ∈ k and by T . Let PJ be the set of subgroups of G

of the form gP−
J g

−1 for some g ∈ G or equivalently of the form gP+
J !g

−1 for

some g ∈ G. Here J ! ⊂ I is the image of J under the involution i 7→ i! of I

(see 2.1). Note that P+
∅ = B+, P−

∅ = B−, P∅ = B. Let πJ : B → PJ be the

map which to any B ∈ B associates the unique subgroup P ∈ PJ such that

B ⊂ P . We have πJ(B
−) = P−

J , πJ(B
+) = P+

J ! . Following [10] we define

P(K)J,>0 = πJ(B(K)>0), a subset of PJ .

Let w = wIwJ , m = |w| = |wI | − |wJ |. Let i = (i1, i2, . . . , im) ∈ Ow.

Define fi : K
m → PJ by (a1, a2, . . . , am) 7→ uP−

J u
−1 where

u = xi1(a1)xi2(a2) · · · xim(am) ∈ U+.
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Define f ′i : K
m → PJ by (a1, a2, . . . , am) 7→ u′P+

J !u
′−1 where

u′ = yim(am)yim−1(am−1) · · · yi1(a1) ∈ U−.

We show:

(a) fi, f
′
i are injective.

Assume that (a1, a2, . . . , am) ∈ Km, (a′1, a
′
2, . . . , a

′
m) ∈ Km are such that,

setting

u = xi1(a1)xi2(a2) · · · xim(am) ∈ U+, u′ = xi1(a
′
1)xi2(a

′
2) · · · xim(a

′
m) ∈ U+,

we have uP−
J u

−1 = u′P−
J u

′−1 that is, u = u′g for some g ∈ P−
J . We have

u ∈ Gw, u
′ ∈ Gw, g ∈ Gy (see 2.1) for some y ∈ WJ . Since |wy| = |w| + |y|,

we have u′g ∈ Gwy. Since u = u′g, it follows that w = wy hence y = 1.

Thus, g ∈ B−. We have u ∈ U+, u′ ∈ U+ hence g = u′−1u ∈ U+∩B− = {1}.

Thus, u′ = u. From xi1(a1)xi2(a2) · · · xim(am) = xi1(a
′
1)xi2(a

′
2) · · · xim(a

′
m)

we deduce that (a1, a2, . . . , am) = (a′1, a
′
2, . . . , a

′
m) (see 2.3(a)). This proves

(a) for fi.

Next we assume that (a1, a2, . . . , am) ∈ Km, (a′1, a
′
2, . . . , a

′
m) ∈ Km are

such that, setting

u = yim(am) · · · yi2(a2)yi1(a1) ∈ U−,

u′ = yim(a
′
m) · · · yi2(a

′
2)yi1(a

′
1) ∈ U−,

we have uP+
J !u

−1 = u′P+
J !u

′−1. Applying the involution ω : G→ G (see 2.1),

we deduce ω(u)P−
J !ω(u

−1) = ω(u′)P−
J !ω(u

′−1) where

ω(u) = xim(am) · · · xi2(a2)xi1(a1) ∈ U+,

ω(u′) = xim(a
′
m) · · · xi2(a

′
2)xi1(a

′
1) ∈ U+.

It follows that u1P
−
J u

−1
1 = u′1P

−
J u

′
1
−1 where

u1 = xi!m(am) · · · xi!2
(a2)xi!1

(a1) ∈ U
+,

u′1 = xi!m(a
′
m) · · · xi!2

(a′2)xi!1
(a′1) ∈ U

+.
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Applying the first part of the argument to (i!m, i
!
m−1, . . . , i

!
1) instead of i we

deduce that u1 = u′1 and (a1, a2, . . . , am) = (a′1, a
′
2, . . . , a

′
m). This proves (a)

for f ′i .

We show:

(b) The image of fi is equal to P(K)J,>0; in particular it is independent of

i. The image of f ′i is equal to P(K)J,>0; in particular it is independent

of i.

Let j = (i1, i2, . . . , im, j1, j2, . . . , js) where (j1, j2, . . . , js) ∈ OwJ
. We have

j ∈ OwI
hence P(K)J,>0 is the set of all gP−

J g
−1 where

g = xi1(a1)xi2(a2) · · · xim(am)xj1(b1)xj2(b2) · · · xjs(bs)

with a1, a2, . . . , am, b1, b2, . . . , bs in K. Since xj1(b1), xj2(b2), . . . , xjs(bs) are

in P−
J , it follows that P(K)J,>0 is the set of all gP−

J g
−1 where

g = xi1(a1)xi2(a2) · · · xim(am)

with a1, a2, . . . , am in K. Thus P(K)J,>0 is the image of fi (see 4.1(a)). This

proves the first sentence in (b).

Let j′=(im, im−1, . . . , i1, j
!
1, j

!
2, . . . , j

!
s). We have j′∈OwI

hence P(K)J,>0

is the set of all gP+
J !g

−1 where

g = yim(am) · · · yi2(a2)yi1(a1)yj!1
(b1)yj!2

(b2) · · · yj!s(bs)

with a1, a2, . . . , am, b1, b2, . . . , bs in K. Since yj!1
(b1), yj!2

(b2), . . . , yj!s(bs) are

in P+
J ! , it follows that P(K)J,>0 is the set of all gP+

J !g
−1 where

g = yim(am) · · · yi2(a2)yi1(a1)

with a1, a2, . . . , am in K. Thus, P(K)J,>0 is the image of f ′i (see 4.1(a)).

This proves the second sentence in (b).

5.2. Let i, j, j′, j1, j2, . . . , js be as in 5.1(b) and its proof. Define f̃j : K
ν →

B(K)>0 by

f̃j(a1, a2, . . . , am, b1, b2, . . . , bs) = gB−g−1
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where g = xi1(a1)xi2(a2) · · · xim(am)xj1(b1)xj2(b2) · · · xjs(bs). Define f̃ ′
j′

:

Kν → B(K)>0 by

f̃ ′
j′
(a1, a2, . . . , am, b1, b2, . . . , bs) = g′B+g′−1

where g′ = yim(am) · · · yi2(a2)yi1(a1)yj!1
(b1)yj!2

(b2) · · · yj!s(bs). Let A : Kν →

Kν be the bijection given by f̃ ′
j′
A = f̃j. Let Ā : Km → Km be the bijection

given by f ′i Ā = fi. We show:

(a) there is a commutative diagram

Kν A
−−−−→ Kν





y





y

Km Ā
−−−−→ Km

where the vertical maps are given by

(a1, a2, . . . , am, b1, b2, . . . , bs) 7→ (a1, a2, . . . , am).

Let (a1, a2, . . . , am, b1, b2, . . . , bs) ∈ Kν and let

(a′1, a
′
2, . . . , a

′
m, b

′
1, b

′
2, . . . , b

′
s) ∈ Kν

be its image under A. We must show that (a′1, a
′
2, . . . , a

′
m) ∈ Km is the

image of (a1, a2, . . . , am) ∈ Km under Ā. Let

g = xi1(a1)xi2(a2) · · · xim(am)xj1(b1)xj2(b2) · · · xjs(bs),

g′ = yim(a
′
m) · · · yi2(a

′
2)yi1(a

′
1)yj!1

(b′1)yj!2
(b′2) · · · yj!s(b

′
s).

We have gB−g−1 = g′B+g′−1 that is g1B̃g
−1
1 = g′1B̃

′g′1
−1, B̃ = g2B

−g−1
2 ,

B̃′ = g′2B
+g′2

−1, where

g1 = xi1(a1)xi2(a2) · · · xim(am), g′1 = yim(a
′
m) · · · yi2(a

′
2)yi1(a

′
1),

g2 = xj1(b1)xj2(b2) · · · xjs(bs), g
′
2 = yj!1

(b′1)yj!2
(b′2) · · · yj!s(b

′
s).
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Since xj1(b1), xj2(b2), . . . , xjs(bs) are contained in P−
J and

yj!1
(b′1), yj!2

(b′2), . . . , yj!s(b
′
s)

are contained in P+
J ! we see that B̃ ⊂ P−

J and B̃′ ⊂ P+
J ! . Hence

g1B̃g
−1
1 ⊂ g1P

−
J g

−1
1 and g′1B̃

′g′1
−1 ⊂ g′1P

+
J !g

′
1
−1.

Since a subgroup in B is contained in a unique subgroup in PJ , we deduce

that g1P
−
J g

−1
1 = g′1P

+
J !g

′
1
−1. This proves (a).

Using (a) and the fact that A : Kν → Kν is admissible (see 4.1(a)),

we see that Ā : Km → Km is admissible. Now (a) remains a commutative

diagram if A is replaced by A−1 and Ā is replaced by Ā−1. Using this

and the fact that A−1 : Kν → Kν is admissible (see 4.1(a)), we see that

Ā−1 : Km → Km is admissible.

5.3. Let i, fi : K
m → P(K)J,>0 be as in 5.1 and let j, f̃j : K

ν → B(K)>0 be

as in 5.2. Let i1 be another sequence in Ow; let fi1 , j
1, f̃j1 be defined in terms

of i1 in the same way as fi, j, f̃j were defined in terms of i. Let A′ : Kν → Kν

be the bijection given by f̃j1A
′ = f̃j. Let Ā′ : Km → Km be the bijection

given by fi1Ā
′ = fi. From the definitions we have a commutative diagram

Kν A′

−−−−→ Kν





y





y

Km Ā′

−−−−→ Km

where the vertical maps are as in 5.2(a). Since A′ and A′−1 are admissible

it follows that Ā′ and Ā′−1 are admissible. This, together with the results

in 5.2 implies that

(a) the bijections fi : K
m → P(K)J,>0, f

′
i : K

m → P(K)J,>0 (with i ∈ Ow)

define a positive K-structure on P(K)J,>0.

From 3.4(b) and the definitions we deduce:

(b) There is a well defined action of the monoid G(K) on P(K)J,>0 given

by g1 : gP
−
J g

−1 7→ g1gP
−
J g

−1g−1
1 where gP−

J g
−1 ∈ P(K)J,>0.
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From the definitions we see that for w,w′ in W , the map

Gw,−w′(K)× P(K)J,>0 → P(K)J,>0

(restriction of the G(K)-action in (b)) is admissible. Hence the map

(c) G(K)× P(K)J,>0 → P(K)J,>0

given by the G(K)-action is admissible.

Now let K ′ = R(t)>0. We set P(Z)J,>0 = P(K ′)J,>0. By passage to

zones in (c) we obtain an admissible map G(Z) × P(Z)J,>0 → P(Z)J,>0

which is an action of G(Z).

6. Coordinate Rings

6.1. In this section we assume that we are in the setup of 2.1 with k an

algebraically closed field of any characteristic. For any irreducible algebraic

variety V over k be denote by O(V ) the algebra of regular functions V → k

and by [O(V )] the quotient field of O(V ).

For any i = (i1, i2, . . . , iν) ∈ OwI
, the map fi : k

ν → U+ given by

(a1, a2, . . . , aν) 7→ xi1(a1)xi2(a2) · · · xiν (aν)

defines a field isomorphism f∗i : [O(U+)] → [O(kν)]. We fix a numbering

I = {1, 2, . . . , k, k + 1, . . . , r} where si, sj commute if i ≤ k ≥ j or if i >

k < j. Let j′ = (1, 2, . . . , k), j′′ = (k + 1, k + 2, . . . , r). Let j ∈ OwI
be the

concatenation j′j′′j′j′′ · · · (of length ν) and let j′ ∈ OwI
be the concatenation

j′′j′j′′j′ · · · (of length ν). We state:

(a) Conjecture. Let F ∈ [O(U+)]. We have F ∈ O(U+) if and only if

f∗j (F ) ∈ O(kν) and f∗
j′
(F ) ∈ O(kν).

A consequence of (a) is that the algebra O(U+) can be identified with the

algebra consisting of all (h, h′) ∈ O(kν)×O(kν) such that under the field iso-

morphism [O(kν)]
∼
→ [O(kν)] induced by the birational isomorphism fjf

−1
j′

,

h, h′ correspond to each other. Thus the algebra O(U+) is described com-

pletely in terms of the transition function between two charts in the positive

R>0-structure attached to U+.
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We will verify (a) in two examples.

Assume first that G is of type A2. We can assume that I = {1, 2},

j = (1, 2, 1), j′ = (2, 1, 2). We identify k3 with U+ as varieties by (A,B,C) 7→

x1(A)x12(B)x2(C) where x12 : k → U+ is a root subgroup corresponding to

the nonsimple positive root. In these coordinates the map fj (resp. fj′) is

given by (a, b, c) 7→ (A,B,C) where A = a + c,B = bc, C = b (resp. A =

b,B = ab,C = a+c). The inverse (rational) map to fj is (A,B,C) 7→ ((AC−

B)/C,C,A/C); it is regular on the complement of the hypersurface C = 0.

The inverse (rational) map to fj′ is (A,B,C) 7→ (B/A,A, (AC − B)/A); it

is regular on the complement of the hypersurface A = 0. If F ∈ [O(U+)] is

regular after taking inverse image under fj and under fj′ then it is regular

outside the set {(A,B,C);A = C = 0}. Since this set has codimension 2 in

U+, F must be regular. Thus (a) holds in this case.

Next we assume that G is of type A3. We can assume that I = {1, 3, 2},

i1 = (1, 3, 2, 1, 3, 2), i2 = (2, 1, 3, 2, 1, 3). We identify k6 with U+ as varieties

by

(X,Y,Z,U, V,W ) 7→ x1(X)x3(Y )x213(Z)x21(U)x23(V )x2(W )

where x21, x23, x123 are root subgroups k → U+ corresponding to the non-

simple positive roots. In these coordinates the map fj (resp. fj′) is given

by

(a, b, c, d, e, f) 7→ (X,Y,Z,U, V,W )

where

X = a+ d, Y = b+ c, Z = cde, U = cd, V = ce,W = c+ f

(resp.

X = c+ e, Y = b+ f, Z = def + a(b+ f)(c+ e), U = a(c+ e) + de,

V = ab+ af + df,W = a+ d).

The inverse (rational) map to fj is

(X,Y,Z,U, V,W )

7→ ((XV −Z)/V, (UX−Z)/U, V U/Z,Z/V,Z/U, (WZ−V U)/Z);
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it is regular on the complement of the hypersurface XUV = 0. The inverse

(rational) map to fj′ is (X,Y,Z,U, V,W ) 7→ (a, b, c, d, e, f) where

a = (ZW − UV )/(XYW −XV − UY + Z),

b = (XYW −XV − UY + Z)/(XW − U),

c = (XYW −XV − UY + Z)/(WY − V ),

d = (XW − U)(WY − V )/(XYW −XV − UY + Z),

e = (UY − Z)/(WY − V ), f = (XV − Z)/(XW − U);

thisis regular on the complement of the hypersurface (WY − V )(XYW −

XV − UY + Z)(XW − U) = 0. To prove (a) in this case it is then enough

to observe that the last two hypersurfaces have interesection of codimension

≥ 2 (they don’t have an irreducible component in common).

6.2. We write i1, i2, . . . , ir for the order 1, 2, . . . , r on I. Let i = (i1, i2, . . . , iν)

∈ OwI
, i′ = (i′1, i

′
2, . . . , i

′
ν) ∈ OwI

. We consider the map fi,i′ : k
ν × (k∗)r ×

kν → G given by

(a1, a2, . . . , aν , b1, b2, . . . , br, c1, c2, . . . , cν)

7→ xi1(a1)xi2(a2) · · · xiν (aν)i
1(b1)i

2(b2) · · · i
r(br)yi′1(c1)yi′2(c2) · · · yi′ν (cν)

and the map f̃i,i′ : k
ν × (k∗)r × kν → G given by

(a1, a2, . . . , aν , b1, b2, . . . , br, c1, c2, . . . , cν)

7→ yi1(a1)yi2(a2) · · · yiν (aν)i
1(b1)i

2(b2) · · · i
r(br)xi′1(c1)xi′2(c2) · · · xi′ν (cν).

These defines field isomorphisms f∗
i,i′
, f̃∗

i,i′
from [O(G)] to [O(kν×(k∗)r×kν)].

We state:

(a) Conjecture. Let j, j′ be as in 6.1. Let F ∈ [O(G)]. We have F ∈ O(G) if

and only if f∗
j,j′

(F ) ∈ O(kν×(k∗)r×kν) and f̃∗
j′,j

(F ) ∈ O(kν×(k∗)r×kν).

More precisely, the inverse of the rational map fj,j′ is regular on the com-

plement of a hypersurface in G and the inverse of the rational map f̃j′,j is

regular on the complement of another hypersurface in G and it should be

true that these two hypersurfaces have intersection of codimension ≥ 2 (they

don’t have a common irreducible component).
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A consequence of (a) is that the algebra O(G) can be identified with

the algebra consisting of all (h, h′) ∈ O(kν × (k∗)r × kν) × O(kν × (k∗)r ×

kν) such that under the field isomorphism [O(kν × (k∗)r × kν)]
∼
→ [O(kν ×

(k∗)r×kν)] induced by the birational isomorphism fj,j′ f̃
−1
j′,j

, h, h′ correspond

to each other. Thus the algebra O(G) is described completely in terms of

the transition function between two charts in the positive R>0-structure

attached to G.

We verify the conjecture when G is of type A1. Let V be the variety of

all
(

A B
C D

)

in k4 such that AD−BC = 1. Consider the map s : k×k∗×k → V

given by (a, x, b) 7→
(

A B
C D

)

where A = x+ abx−1, B = ax−1, C = bx−1,D =

x−1 and the map s′ : k × k∗ × k → V given by (a, x, b) 7→
(

A B
C D

)

where

A = x,B′ = ax,C = bx,D = abx + x−1. The inverse of s as a rational

map is
(

A B
C D

)

7→ (B/D, 1/D,C/D). The inverse of s′ as a rational map is
(

A B
C D

)

7→ (B/A,A,C/A). It remains to note that a rational map V → k

which is regular on the subset D 6= 0 and is regular on the subset A 6= 0 is

regular everywhere.

We verify the conjecture when G is of type A2. Let V be the variety of all
(

A B C
E D F
G H J

)

in k9 with determinant 1. Consider the map s : k3×(k∗)2×k3 → V

given by

(a, b, c, ǫ, δ, a′, b′, c′) 7→

(

ǫ+(a+c)ǫ−1δb′+abδ−1a′b′ (a+c)ǫ−1δ+abδ−1(a′+c′) abδ−1

ǫ−1δb′+bδ−1a′b′ ǫ−1δ+bδ−1(a′+c′) bδ−1

δ−1a′b′ δ−1(a′+c′) δ−1

)

.

Consider the map s′ : k3 × (k∗)2 × k3 → V given by

(a, b, c, ǫ, δ, a′ , b′, c′) 7→

(

ǫ ǫ(a′+c′) ǫa′b′

bǫ bǫ(a′+c′)+ǫ−1δ bǫa′b′+ǫ−1δb′

abǫ abǫ(a′+c′)+(a+c)ǫ−1δ abǫa′b′+(a+c)ǫ−1δb′+δ−1

)

.

The inverse of s as a rational map is

(

A B C
E D F
G H J

)

7→ (a, b, c, ǫ, δ, a′ , b′, c′)

where

a =
C

F
, b =

F

J
, c =

(BF − CE)J

(EJ − FH)F
, ǫ =

1

EJ − FH
), δ =

1

J
,

a′ =
(EJ − FH)G

(DJ − FG)J
, b′ =

DJ − FG

EJ − FH
, c′ =

DH −GE

DJ − FG
.
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The inverse of s′ as a rational map is

(

A B C
E D F
G H J

)

7→ (a, b, c, ǫ, δ, a′ , b′, c′)

where

a =
G

D
, b =

D

A
, c =

(HD − EG)A

(AE −BD)D
, ǫ = A, δ = AE −BD,

a′ =
(AE −BD)C

(AF − CD)A
, b′ =

AF − CD

AE −BD
, c′ =

BF − CE

AF − CD
.

It remains to note that a rational map V → k which is regular on the subset

defined by FJ(EJ−FH)(DJ−FG) 6= 0 and is regular on the subset defined

by AD(AE −BD)(AF − CD) 6= 0 is regular everywhere.

6.3. Let i1, i2, . . . , ir be as 6.2. Let i = (i1, i2, . . . , iν) ∈ OwI
. We consider

the map fi : k
ν × (k∗)r → G/U− given by

(a1, a2, . . . , aν , b1, b2, . . . , br)

7→ xi1(a1)xi2(a2) · · · xiν (aν)i
1(b1)i

2(b2) · · · i
r(br)U

−

and the map f̃i : k
ν × (k∗)r → G/U− given by

(a1, a2, . . . , aν , b1, b2, . . . , br)

7→ yi1(a1)yi2(a2) · · · yiν (aν)i
1(b1)i

2(b2) · · · i
r(br)ẇIU

−.

These define field isomorphisms f∗i , f̃
∗
i from [O(G/U−)] to [O(kν × (k∗)r].

Let j be as in 6.1. We state:

(a) Conjecture. Let F ∈ [O(G/U−)]. We have F ∈ O(G/U−) if and only if

f∗j (F ) ∈ O(kν × (k∗)r) and f̃∗j (F ) ∈ O(kν × (k∗)r).

More precisely, the inverse of the rational map fj is regular on the comple-

ment of a hypersurface in G/U− and the inverse of the rational map f̃j is

regular on the complement of another hypersurface in G/U− and it should

be true that these two hypersurfaces have intersection of codimension ≥ 2

(they don’t have a common irreducible component).

A consequence of (a) is that the algebra O(G/U−) can be identified

with the algebra consisting of all (h, h′) ∈ O(kν × (k∗)r) × O(kν × (k∗)r)



✐

“BN14N42” — 2019/12/21 — 16:13 — page 448 — #46
✐

✐

✐

✐

✐

448 G. LUSZTIG [December

such that h, h′ correspond to each other under the field isomorphism κ∗ :

[O(kν × (k∗)r)]
∼
→ [O(kν × (k∗)r)] induced by the birational isomorphism

κ = fjf̃
−1
j . Thus the algebra O(G/U−) is described completely in terms

of the transition function between two charts in the positive R>0-structure

attached to G/U−.

We verify the conjecture when G is of type A2. Let V be the variety of all
(

A B C
A′ B′ C′

)

in k6 such that (A,B,C) 6= 0, (A′, B′, C ′) 6= 0, AA′+BB′+CC ′ =

0. (We can identify V = G/U−.)

Consider the map s : k3 × (k∗)2 → V given by

(a, b, c, ǫ, δ) 7→
(

δ−1bc δ−1(a+c) δ−1

ǫ−1 −e−1b ǫ−1ab

)

and the map s′ : k3 × (k∗)2 → V given by

(a, b, c, ǫ, δ) 7→
(

ǫ bǫ abǫ
δbc −δ(a+c) δ

)

.

The inverse of s as a rational map is

(

A B C
A′ B′ C′

)

7→ (a, b, c, ǫ, δ)

where a = −C ′/A′, b = −B′/A′, c = −AA′/(CB′), ǫ = 1/A′, δ = 1/C. The

inverse of s′ as a rational map is

(

A B C
A′ B′ C′

)

7→ (a, b, c, ǫ, δ)

where a = C/B, b = B/A, c = A′A/(C ′B), ǫ = A, δ = C ′. It remains to

note that a rational map V → k which is regular on the subset defined by

A′B′C 6= 0 and is regular on the subset defined by ABC ′ 6= 0 is regular

everywhere.

6.4. We preserve the setup of 6.3. Now T acts on G/U− by t : gU− 7→ gtU−.

For any λ ∈ X we set

O(G/U−)λ = {f ∈ O(G/U−); f(gt−1U−) = λ(t)f(gU−) ∀g ∈ G, t ∈ T}.

It is known that O(G/U−)λ is a finite dimensional k-vector space and it

is 6= 0 if and only if λ ∈ X+. Moreover as a k-vector space we have



✐

“BN14N42” — 2019/12/21 — 16:13 — page 449 — #47
✐

✐

✐

✐

✐

2019] TOTAL POSITIVITY IN REDUCTIVE GROUPS, II 449

O(G/U−) = ⊕λ∈X+O(G/U−)λ. The left translation by G induces a G-

action on O(G/U−) and this keeps stable each of the subspaces O(G/U−)λ

with λ ∈ X+ which (in the case where the characteristic of k is zero) becomes

an irreducible representation of G (Borel-Weil).

Consider the T -action on kν × (k∗)r given by

t : (a1, a2, . . . , aν , b1, b2, . . . , br) 7→ (a1, a2, . . . , aν , b1t1, b2t2, . . . , brtr)

where t = i1(t1) · · · i
r(tr), (t1, . . . , tr) ∈ Kr. This induces a T -action on

O(kν × (k∗)r); for λ ∈ X we denote by O(kν × (k∗)r)λ the subspace of

O(kν × (k∗)r) on which T acts according to λ. We have an isomorphism

eλ : O(kν × (k∗)r)λ
∼
→O(kν) given by f 7→ f ′ where

f ′(a1, a2, . . . , aν) = f(a1, a2, . . . , aν , 1, 1, . . . , 1).

Now fj : k
ν × (k∗)r → G/U− is T -equivariant hence f∗j defines an (injective)

linear map f∗j,λ : O(G/U)λ → O(kν × (k∗)r)λ. Similarly, f̃j : k
ν × (k∗)r)λ →

G/U− is T -equivariant for the T -action on kν × (k∗)r described above and

the T -action on G/U− given by gU− 7→ gwItW
−1
i U− hence f̃∗j defines an

(injective) linear map f̃∗j,λ : O(G/U)λ → O(kν×(k∗)r)−λ! with λ! as in 4.2(b).

For λ ∈ X+, the following statement is a consequence of the conjecture

6.3(a):

(a) Let F ∈ [O(G/U−)]. We have F ∈ O(G/U−)λ if and only if f∗j (F ) ∈

O(kν × (k∗)r)λ and f̃∗j (F ) ∈ O(kν × (k∗)r)−λ! .

As in 6.3, this implies:

(b) O(G/U−)λ can be identified with the vector space consisting of all

(h, h′) ∈ O(kν × (k∗)r)λ ×O(kν × (k∗)r)−λ! such that h, h′ correspond to

each other under the field isomorphism κ∗ in 6.3.

Equivalently,

(c) O(G/U−)λ can be identified with the vector space consisting of all (h0, h
′
0)

∈ O(kν) × O(kν) such that e−1
λ (h), e−1

−λ!(h
′) correspond to each other

under the field isomorphism κ∗ in 6.3.
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Thus, the vector space O(G/U−)λ is described completely in terms of the

transition function between two charts in the positive R>0-structure at-

tached to G/U−.

We consider for example the case where G is of type A2 and I = {i1, i2}.

Let

(a, b, c, ǫ, δ), (a′ , b′, c′, ǫ′, δ′)

in k3× (k∗)2 be such that s(a, b, c, ǫ, δ) = s′(a′, b′, c′, ǫ′, δ′), (notation of 6.3),

that is
(

δ−1bc δ−1(a+c) δ−1

ǫ−1 −e−1b ǫ−1ab

)

=
(

ǫ′ b′ǫ′ a′b′ǫ′

δ′b′c′ −δ′(a′+c′) δ′

)

.

We have

a′ = 1/(a + c), b′ = (a+ c)/(bc), c′ = c/(a(a + c)), ǫ′ = δ−1bc, δ′ = ǫ−1ab.

Assuming that 〈i1, λ〉 = x ∈ N, 〈i2, λ〉 = y ∈ N, we see that O(G/U−)λ is

identified with the vector space V of polynomials
∑

i,j,k in N ni,j,ka
ibjck in

a, b, c (with ni,j,k ∈ k) such that

(a)
∑

i,j,k in N

ni,j,k(a+ c)−i(a+ c)jb−jc−j(a+ c)−kcka−k(bc)x(ab)y

is a polynomial in a, b, c. If for example x = 1, y = 0, then by direct com-

putation we see that V has a basis consisting of the polynomials 1, b, ab. (In

this case O(G/U−)λ is known to have dimension 3, which agrees with our

computation.) If x = 1, y = 1, then by direct computation we see that V

has a basis consisting of the polynomials 1, b, a+ c, ab, bc, b2c, ab(a+ c), ab2c.

(In this case O(G/U−)λ is known to have dimension 8 which agrees with our

computation.)

7. Arnold’s Problem

7.1. We assume that K,k are as in 1.1(i) with k = R,K = R>0. Let K
′ =

R(t)>0. Let B∗ be the set of all B ∈ B such that (B+, B), (B,B−), (B−, B+)

are in the same G-orbit under simultaneous conjugation. Now B∗ is naturally

a real algebraic manifold. Let [B∗] be the set of connected components of

B∗. Arnold’s problem asks to compute the number of elements of [B∗]. For

G = SLn, this was solved in [16]: the number is 2, 6, 20, 52 if n = 2, 3, 4, 5
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and is 2 × 3n−1 if n ≥ 6. (For n = 2, B∗ is a circle minus two points;

thus it has two connected components.) For a general G, Arnold’s problem

was solved by Rietsch [15], who found a combinatorial parametrization of

the set [B∗]. We reformulate her parametrization by defining a map σ :

U+
wI
(Z)/2 → [B∗] (see 2.7) which is a bijection. To define σ it is enough to

define a map σ̃ : U+
wI

(Z) → [B∗] which is constant on the equivalence classes

for ∼2 (see 2.7). Since U+
wI
(Z) is the set of set of zones in U+

wI
(K ′), it is

enough to associate to each zone an element of [B∗]. Let x ∈ U+
wI
(K ′). Let

i = (i1, i2, . . . , iν) ∈ OwI
. We have

(a) x = xi1(a1)xi2(a2) · · · xiν (aν)

where as : t 7→ tesfs(t)/f
′
s(t) and fs ∈ R[t], f ′s ∈ R[t] have constant term in

R>0. We can find δ ∈ R>0 such that fs(δ
′) > 0, f ′s(δ

′) > 0 for any s and any

δ′ ∈ (−δ, 0). Hence for δ′ ∈ (−δ, 0), as(δ
′) is well defined, is in (−1)esR>0

and

x(δ′) = xi1(a1(δ
′))xi2(a2(δ

′)) · · · xiν (aν(δ
′)) ∈ U+

is well defined. For δ′ ∈ (−δ, 0) we have x(δ′)B−x(δ′)−1 ∈ B∗; this is con-

tained in a connected component C(x) of B∗ which is independent of the

choice of i, δ, δ′.

7.2. Now let x̃ ∈ UwI
(K ′) be in the same zone as x (as in 7.1(a)). We show

that C(x̃) = C(x). We have x̃ = xi1(ã1)xi2(ã2) · · · xiν (ãν) with i as above

where ãs : R → R are rational functions of the form t 7→ tes f̃s(t)/f̃
′
s(t) and

f̃s ∈ R[t], f̃ ′s ∈ R[t] have constant term in R>0. We can find δ1 ∈ R>0 such

that (cfs+(1−c)f̃s)(δ
′) > 0, (cf ′s+(1−c)f̃ ′s)(δ

′) > 0 for any s, any c ∈ [0, 1]

and any δ′ ∈ (−δ1, 0). For c ∈ [0, 1] we set ac,s = tes(cfs + (1− c)f̃s)/(cf
′
s +

(1− c)f̃ ′s) ∈ K ′ and

xc = xi1(ac,1)xi2(ac,2) · · · xiν (ac,ν) ∈ UwI
(K ′).

Then for c ∈ [0, 1], δ′ ∈ (−δ1, 0),

xc(δ
′) = xi1(ac,1(δ

′))xi2(ac,2(δ
′)) · · · xiν (ac,ν(δ

′)) ∈ U+

is well defined. For δ′ ∈ (−δ1, 0) we have xc(δ
′)B−xc(δ

′)−1 ∈ B∗ and the

connected component of B∗ containig it is independent of c, δ1, δ
′. In par-
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ticular for δ′ ∈ (−δ1, 0), x(δ
′)B−x)δ′)−1 and x̃(δ′)B−x̃)δ′)−1 belong to the

same connected component of B∗, so that C(x) = C(x̃).

Next let x′ = xi1(a
′
1)xi2(a

′
2) · · · xiν (a

′
ν) where a′s : R → R are rational

functions of the form t 7→ tes+2nsfs(t)/f
′
s(t) where fs, f

′
s, es are as above and

ns ∈ N. We show that C(x′) = C(x). We can find δ2 ∈ R>0 such that

(c + (1 − c)δ′2nh)fs(δ
′) > 0, f ′s(δ

′) > 0 for any s, any c ∈ [0, 1] and any

δ′ ∈ (−δ2, 0). For c ∈ [0, 1] we set a′c,s = tes((c+ (1− c)t2ns)fs)/f
′
s ∈ K

′ and

x′c = xi1(a
′
c,1)xi2(a

′
c,2) · · · xiν (a

′
c,ν) ∈ UwI

(K ′).

Then for c ∈ [0, 1], δ′ ∈ (−δ2, 0),

x′c(δ
′) = xi1(a

′
c,1(δ

′))xi2(a
′
c,2(δ

′)) · · · xiν (a
′
c,ν(δ

′)) ∈ U+

is well defined. For δ′ ∈ (−δ2, 0) we have x′c(δ
′)B−x′c(δ

′)−1 ∈ B∗ and the

connected component of B∗ containig it is independent of c, δ2, δ
′. In par-

ticular for δ′ ∈ (−δ1, 0), x
′(δ′)B−x′(δ)−1 and x(δ′)B−x(δ′)−1 belong to the

same connected component of B∗, so that C(x) = C(x′.

We see that x 7→ C(x) is a well defined map from the set of zones of

UwI
(K ′) to the set of connected components of B∗ and this map is constant

on the equivalence classes on the set of zones for the equivalence relation

∼2 in 2.7. The resulting map U+
wI
(Z)/2 → [B∗] can be identified with a

bijection defined in [15] hence is itself a bijection.

8. The Sets Uλ
wI
(N ), Ũλ

wI
(N )

8.1. Let K be as in 1.1(i)-(iii). For any i ∈ I we define zi : UwI
(K) → K

as follows. Let x ∈ UwI
(K). We choose i = (i1, i2, . . . , iν−1) ∈ OwIsi and

we set zi,i(x) = aν where x = ia11 i
a2
2 · · · i

aν−1

ν−1 i
aν and (a1, a2, . . . , aν) ∈ Kν is

uniquely determined by x (note that (i1, i2, . . . , iν−1, i) ∈ OwI
). We show

that zi,i(x) is independent of the choice of i. Using Iwahori’s lemma, we see

that it is enough to show that zi,i(x) = zi,i′(x) if i, i
′ in OwIsi are connected

by a single braid move. In this case the desired result follows from 2.9(ii).

We set zi(x) = zi,i(x) where i is any sequence in OwIsi .

8.2. In the remainder of this section we assume that K = Z. Let λ ∈ X+.

The function I → N, i 7→ 〈i, λ〉 is denoted again by λ. Define λ! : I → N by
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λ!(i) = λ(i!) (i! as in 2.1). Let

Uλ
wI
(N ) = {x ∈ UwI

(N ); zi(x) ≤ λ(i) for any i ∈ I}.

It is known that Uλ
wI
(N ) is naturally an indexing set for the canonical basis

of the simple G-module Λλ (see 2.1) with G over k = R. (This is proved

in [5] assuming that G is simply laced; see [6], [11] for the reduction of the

general case to the simply laced case.) According to [9, 4.9], the bijection

SλΦ : UwI
(Z) → UwI

(Z) (see 4.1, 4.3) restricts to a bijection Uλ
wI
(N ) →

Uλ!

wI
(N ). In particular we have

(a) Uλ
wI
(N ) ⊂ Ũλ

wI
(N )

where

Ũλ
wI
(N ) = {x ∈ UwI

(N );SλΦ(x) ∈ UwI
(N )}.

The following is suggested by the results in 6.4:

(b) Conjecture. The inclusion (a) is an equality.

We will verify this conjecture in the case whereG is of type A1 or A2. Assume

first that G is of type A1 and I = {1}. We have Uλ
wI
(N ) = {1a; a ∈ N, a ≤

λ(1)}. In our case Φ is given by 1a 7→ 1−a for a ∈ Z and Sλ(1
a′) = 1a

′+λ(1)

for a′ ∈ Z. Hence SλΦ(1
a) = 1−a+λ(1) and

Ũλ
wI
(N ) = {1a; a ∈ N3, a ≤ λ(1)} = Uλ

wI
(N ).

Thus (b) holds.

Next we assume that G is of type A2 and I = {1, 2}. We have

Uλ
wI
(N ) = {2a1b2c; (a, b, c) ∈ N3, c ≤ λ(2), a + b−min(a, c) ≤ λ(1)}

= {2a1b2c; (a, b, c) ∈ N3, a ≤ c, c ≤ λ(2), b ≤ λ(1)}

⊔{2a1b2c; (a, b, c) ∈ N3, a > c, c ≤ λ(2), a+ b− c ≤ λ(1)}.

In our case Φ is given by 2a1b2c 7→ 1c−a−b2−c1−b for (a, b, c) ∈ Z3 and

Sλ(1
a′2b

′
1c

′
) = 1a

′+λ(1)2b
′+λ(2)1c

′+λ(1)
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for (a′, b′, c′) ∈ Z3. Hence

SλΦ(2
a1b2c) = 1c−a−b+λ(1)2−c+λ(2)1−b+λ(1)

and

Ũλ
wI
(N ) = {2a1b2c; (a, b, c) ∈ N3, a+ b− c ≤ λ(1), c ≤ λ(2), b ≤ λ(1)}.

If a > c we have b ≤ a+ b− c hence the condition b ≤ λ(1) is a consequence

of the condition a + b − c ≤ λ(1); if a ≤ c we have a + b − c ≤ b hence the

condition a + b − c ≤ λ(1) is a consequence of the condition b ≤ λ(1). We

see that in our case we have Ũλ
wI
(N ) = Uλ

wI
(N ) and (b) holds.

9. On G(K) and Conjugacy Classes

9.1. We assume that K,k are as in 1.1(i) with k = R, K = R>0. We denote

by G(C) the group of points of G over C.

Let g ∈ G(K). We show:

(a) If V ∈ C (see 2.1), then all eigenvalues of g : V → V are in K.

By [8, 4.4], there exists a sequence g(k) ∈ GwI ,−wI
(K), k = 1, 2, . . . such that

g = limk 7→∞ g(k) (limit inG). If (a) holds when g is replaced by any g(k) with

k ≥ 1 then it would follow that the eigenvalues of g : V → V are in K ∪{0}.

Since these eigenvalues are 6= 0 (g is invertible in G) they must then be in K.

Thus it is enough to prove (a) assuming that g ∈ GwI ,−wI
(K). In this case,

by the Gantmacher-Krein theorem in type A and by [8, 5.6] in the general

case, g is regular and semisimple and by [8, 8.10], we have g = uu′tu−1 where

u ∈ U−
wI
(K), u′ ∈ U+

wI
(K), t ∈ T (K). Thus we can assume that in (a), g is

regular, semisimple and g = u′t with u′ ∈ U+, t ∈ T (K). In this case g is

conjugate to t by an element of U+. Hence we can assume that in (a) we

have g = t ∈ T (K). In this case the eigenvalues of g : V → V are of the

form µ(t) where µ ∈ X . It remains to observe that µ : T → R∗ carries T (K)

into K. (We use that for i ∈ I, a ∈ K we have µ(i(a)) = a〈i,µ〉 ∈ K.)

Let g ∈ G(K). By [8, 8.11], there exists B ∈ B such that g ∈ B. Let

B(C) be the Borel subgroup of G(C) for which B is the group of real points.

It follows that the semisimple part gs of g is contained in T ′(R) where T ′ is

a maximal torus of B(C), defined and split over R. We show:
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(b) gs is contained in the identity component of T ′(R).

Let X ′ be the group of homomorphisms of algebraic groups T ′ → C∗. For

any µ ∈ X ′, µ(t) is an eigenvalue of gs : Λλ → Λλ for some λ ∈ X+ hence it

is in K (by (a)). An element of T ′(R) such that µ(t) ∈ K for any µ ∈ X ′ is

necessarily in the identity component of T ′(R). This proves (b).

We show:

(c) In the setup of (b), the centralizer Z(gs) of gs in G(C) is the Levi sub-

group of some parabolic subgroup of G(C) defined over R.

Let R be the set of all µ ∈ X ′ which are roots of G(C) with respect to T ′.

Let R0 be the set of all µ ∈ R such that µ(gs) = 1. It is enough to show

that R0 is the intersection of R with a Q-subspace of Q⊗X ′ or equivalently

that:

(d) if α ∈ R and αc =
∏

µ∈R0
µnµ for some integers nµ and some c ∈ Z>0,

then α ∈ R0.

In the setup of (d) we have α(gs)
c = 1. From (b) we see that α(gs) ∈ R>0

so that from α(gs)
c = 1 we can deduce that α(gs) = 1. This proves (d) and

hence (c).

9.2. Let g ∈ G(K). Let Z(gs) be as in 9.1(c). Let gu be the unipotent part

of g, so that gu ∈ Z(gs). We state:

(a) Conjecture. There exists a subgroup H of Z(gs) which is a Levi sub-

group of a parabolic subgroup of Z(gs) such that gu is a regular unipotent

element of H; in particular, any unipotent element in G(K) is a regu-

lar unipotent element in a Levi subgroup of some parabolic subgroup of

G(C).

(This last statement is obvious if G is of type A and can be shown to be

true if G is of type D, using the description of unipotent elements in G(K)

given in [8, 6.6].)

10. A Partition of B

10.1. Let w ∈ W , m = |w|. For any i = (i1, i2, . . . , im) ∈ Ow and any

a = (a1, a2, . . . , am) ∈ Nm we set [i,a] = i1j1i
1
j2
· · · i1jk (product in U({1}))
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where j1 < j2 < · · · < jk is the sequence consisting of all j ∈ [1,m] such that

aj = 0. We show:

(a) Assume that i, i′ in Ow, a,a
′ in Zm are such that i, i′ are equal except at

the indices l, l + 1, l + 2 where they are respectively i, j, i and j, i, j with

i : j = −1 and that a,a′ are equal except at the indices l, l+1, l+2 where

they are respectively a, b, c and a′, b′, c′ with a′ = b + c − min(a, c), b′ =

min(a, c), c′ = a+b−min(a, c). Assume also that a ∈ Nm. Then a′ ∈ Nm

and [i,a] = [i′,a′] (equality in U({1})).

The fact that a′ ∈ Nm is immediate. Let j1 < j2 < · · · < jt be the sequence

consisting of all j ∈ [1, l − 1] such that aj = 0 or equivalently a′j = 0;

let jt′ < jt′+1 < · · · < jk be the sequence consisting of all j ∈ [l + 3,m]

such that aj = 0 or equivalently a′j = 0. Let y = i1j1i
1
j2
· · · i1jt ∈ U+({1}),

y′ = i1jt′ i
1
jt′+1

· · · i1jk ∈ U+({1}). We have [i,a] = y[(i, j, i), (a, b, c)]y′ , [i′,a′] =

y[(j, i, j), (a′ , b′, c′)]y′. Thus, to prove (a) we can assume that i = (i, j, i),

i′ = (j, i, j), a = (a, b, c),a′ = (a′, b′, c′). We consider a number of cases.

(I) a = b = c = 0 so that a′ = b′ = c′ = 0. Then [i,a] = i1j1i1 = j1i1j1 =

[i′,a′].

(II) a = b = 0, c > 0 so that a′ > 0, b′ = c′ = 0. Then [i,a] = i1j1 = [i′,a′].

(III) a > 0, b = c = 0 so that a′ = b′ = 0, c′ > 0. Then [i,a] = j1i1 = [i′,a′].

(IV) a = 0, b > 0, c = 0 so that a′ > 0, b′ = 0, c′ > 0. Then [i,a] = i1i1 =

i1 = [i′,a′].

(V) a = 0, b > 0, c > 0 so that a′ > 0, b′ = 0, c′ > 0. Then [i,a] = i1 =

[i′,a′].

(VI) a > 0, b > 0, c = 0 so that a′ > 0, b′ = 0, c′ > 0. Then [i,a] = i1 =

[i′,a′].

(VII) c > a > 0, b = 0 so that a′ > 0, b′ > 0, c′ = 0. Then [i,a] = j1 = [i′,a′].

(VIII) a > c > 0, b = 0 so that a′ = 0, b′ > 0, c′ > 0. Then [i,a] = j1 = [i′,a′].

(IX) a = c > 0, b = 0 so that a′ = 0, b′ > 0, c′ = 0. Then [i,a] = j1 = j1j1 =

[i′,a′].

(X) a > 0, b > 0, c > 0 so that a′ > 0, b′ > 0, c′ > 0. Then [i,a] = 1 = [i′,a′].
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In each case, (a) is proved.

We show:

(b) Assume that i, i′ in Ow, a,a
′ in Zm are such that i, i′ are equal except at

the indices l, l+1 where they are respectively i, j and j, i with i : j = 0 and

that a,a′ are equal except at the indices l, l+1 where they are respectively

a, b and a′, b′ with a′ = b, b′ = a. Assume also that a ∈ Nm. Then

a′ ∈ Nm and [i,a] = [i′,a′] (equality in U({1})).

As in the proof of (a) we can assume that i = (i, j), i′ = (j, i), a = (a, b),a′ =

(a′, b′). We consider a number of cases.

(I) a = b = 0 so that a′ = b′ = 0. Then [i,a] = i1j1 = j1i1 = [i′,a′].

(II) a = 0, b > 0 so that a′ > 0, b′ = 0. Then [i,a] = i1 = [i′,a′].

(III) a > 0, b = 0 so that a′ = 0, b′ > 0. Then [i,a] = j1 = [i′,a′].

(IV) a > 0, b > 0 so that a′ > 0, b′ > 0. Then [i,a] = 1 = [i′,a′].

In each case, (b) is proved.

We show:

(c) Assume that i, i′ in Ow, a,a
′ in Nm satisfy ei(a) = ei′(a

′) (equality in

U(Z), ei, ei′ as in 2.9). Then [i,a] = [i′,a′] (equality in U({1})).

Assume first that G is simply laced. By the Iwahori-Matsumoto lemma

we can find a sequence i = i0, i1, . . . , is = i′ in Ow such that for any u ∈

{0, 1, . . . , s − 1}, iu, iu+1 are like i, i′ in (a) or (b). We define a sequence

a = a0,a1, . . . ,as = a′ in Zm such that for any u ∈ {0, 1, . . . , s − 1}, iu,au

and iu+1,au+1 are like i,a and i′,a′ in (a) or (b). Note that each at with

0 ≤ t ≤ s is automatically in Nm (this follows by induction on t from (a),

(b)). From the definition we have eiu(a
u) = eiu+1(au+1). From (a), (b), we

see that [iu,au] = [iu+1,au+1] for any u ∈ {0, 1, . . . , s − 1}. It follows that

ei(a) = ei′(a
s) and [i,a] = [i′,as]. Hence we have ei′(a

s) = ei′(a
′). Since

ei′ : Z
m → Uw(Z) is a bijection it follows that as = a′, so that [i,a] = [i′,a′]

and (c) is proved. If G is not simply laced the proof is similar or it can be

reduced to the simply laced by descent as in [8].

We show:
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(d) Let i = (i1, i2, . . . , im) ∈ Ow and let j1 < j2 < · · · < jk be a subsequence

of 1, 2, . . . ,m. Let z = i1j1i
1
j2
· · · i1jk (product in U({1})); let z be the

corresponding element of W . We have z ≤ w for the standard partial

order on W .

We argue by induction on k. If k = 0 the result is obvious. We now

assume that k > 0. We can assume that j1 = 1. We set i = i1. Let

w′ = si2 · · · sim. Let z′ = i1j2 · · · i
1
jk

(product in U({1})) and let z′ be the

corresponding element of W . By the induction hypothesis we have z′ ≤ w′.

Hence z′ ≤ w. If siz
′ < z′ then z = z′ and z = z′; the inequality z ≤ w

follows. If siz
′ > z′ then z = siz

′ and z = siz
′. Note that siw < w. By

a standard property of ≤ we have siw < w, z′ ≤ w =⇒ siz
′ ≤ w. Thus

z ≤ w. This proves (d).

Let U({1})≤w be the set of elements z of U({1}) such that the corre-

sponding element z of W satisfies z ≤ w. From (c), (d), we see that there is

a well defined map

χw : Uw(N ) → U({1})≤w

such that for any i = (i1, i2, . . . , im) ∈ Ow and any a = (a1, a2, . . . , am) ∈

Nm we have χw(i
a1
1 i

a2
2 · · · iamm ) = i1j1i

1
j2
· · · i1jk (product in U+({1})) where

j1 < j2 < · · · < jk is the sequence consisting of all j ∈ [1,m] such that

aj = 0.

10.2. The fibres of χw form a partition of Uw(N ) indexed by U({1})≤w.

Taking w = wI we obtain a partition of UwI
(N ) indexed by W . This can be

viewed as a partition of B (see 0.2) indexed by W .
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