THE FLAG MANIFOLD OVER THE SEMIFIELD Z

G. LUSZTIG

Department of Mathematics, M.I.T., Cambridge, MA 02139.
E-mail: gyuri@math.mit.edu
IIIII

Abstract

Let G be a semisimple group over the complex numbers. We show that the flag manifold \mathcal{B} of G has a version $\mathcal{B}(Z)$ over the tropical semifield Z on which the monoid $G(Z)$ attached to G and Z acts naturally.

0. Introduction

0.1. Let G be a connected semisimple simply connected algebraic group over \mathbf{C} with a fixed pinning (as in [5, 1.1]). In this paper we assume that G is of simply laced type. Let \mathcal{B} be the variety of Borel subgroups of G. In [5, 2.2, 8.8] a submonoid $G_{\geq 0}$ of G and a subset $\mathcal{B}_{\geq 0}$ of \mathcal{B} with an action of $G_{\geq 0}$ (see [5, 8.12]) was defined. (When $G=S L_{n}, G_{\geq 0}$ is the submonoid consisting of the real, totally positive matrices in G.) More generally, for any semifield K, a monoid $\mathfrak{G}(K)$ was defined in [8], so that when $K=\mathbf{R}_{>0}$ we have $\mathfrak{G}(K)=G_{\geq 0}$. (In the case where K is $\mathbf{R}_{\succ 0}$ or the semifield in (i) or (ii) below, a monoid $G(K)$ already appeared in [5, 2.2, 9.10]; it was identified with $\mathfrak{G}(K)$ in [9].)

This paper is concerned with the question of defining the flag manifold $\mathcal{B}(K)$ over a semifield K with an action of the monoid $\mathfrak{G}(K)$ so that in the case where $K=\mathbf{R}_{>0}$ we recover $\mathcal{B}_{\geq 0}$ with its $G_{\geq 0}$-action.

In [9, 4.9], for any semifield K, a definition of the flag manifold $\mathcal{B}(K)$ over K was given (based on ideas of Marsh and Rietsch [10]); but in that definition the lower and upper triangular part of G play an asymmetric role

[^0]and as a consequence only a part of $\mathfrak{G}(K)$ acts on $\mathcal{B}(K)$ (unlike the case $K=\mathbf{R}_{>0}$ when the entire $\mathfrak{G}(K)$ acts). To get the entire $\mathfrak{G}(K)$ act one needs a conjecture stated in [9, 4.9] which is still open.

In this paper we get around that conjecture and provide an unconditional definition of the flag manifold (denoted by $\mathcal{B}(K)$) over a semifield K with an action of $\mathfrak{G}(K)$ assuming that K is either
(i) the semifield consisting of all rational functions in $\mathbf{R}(x)$ (with x an indeterminate) of the form $x^{e} f_{1} / f_{2}$ where $e \in \mathbf{Z}$ and $f_{1} \in \mathbf{R}[x], f_{2} \in \mathbf{R}[x]$ have constant term in $\mathbf{R}_{>0}$ (standard sum and product); or
(ii) the semifield \mathbf{Z} in which the sum of a, b is $\min (a, b)$ and the product of a, b is $a+b$.

For K as in (i) we give two definitions of $\mathcal{B}(K)$; one of them is elementary and the other is less so, being based on the theory of canonical bases (the two definitions are shown to be equivalent). For K as in (ii) we only give a definition based on the theory of canonical bases.

A part of our argument involves a construction of an analogue of the finite dimensional irreducible representations of G when G is replaced by the monoid $\mathfrak{G}(K)$ where K is any semifield.

Let W be the Weyl group of G. Now W is naturally a Coxeter group with generators $\left\{s_{i} ; i \in I\right\}$ and length function $w \mapsto|w|$. Let \leq be the Chevalley partial order on W.

In $\S 3$ we prove the following result which is a \mathbf{Z}-analogue of a result (for $\mathbf{R}_{>0}$) in [10].

Theorem 0.2 The set $\mathcal{B}(\mathbf{Z})$ has a canonical partition into pieces $P_{v, w}(\mathbf{Z})$ indexed by the pairs $v \leq w$ in W. Each such piece $P_{v, w}(\mathbf{Z})$ is in bijection with $\mathbf{Z}^{|w|-|v|}$; in fact, there is an explicit bijection $\mathbf{Z}^{|w|-|v|} \xrightarrow{\sim} P_{v, w}(\mathbf{Z})$ for any reduced expression of w.

In $\S 3$ we also prove a part of a conjecture in $[9,2.4]$ which attaches to any $v \leq w$ in W a certain subset of a canonical basis, see 3.10.

In $\S 4$ we show that our definitions do not depend on the choice of a (very dominant) weight λ.

In $\S 5$ we show how some of our results extend to the non-simply laced case.

1. Definition of $\mathcal{B}(\mathbf{Z})$

1.1. In this section we will give the definition of the flag manifold $\mathcal{B}(K)$ when K is as in 0.1(i), (ii).
1.2. We fix some notation on G. Let w_{I} be the longest element of W. For $w \in W$ let \mathcal{I}_{w} be the set of all sequences $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ in I such that $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}, m=|w|$.

The pinning of G consists of two opposed Borel subgroups B^{+}, B^{-}with unipotent radicals U^{+}, U^{-}and root homomorphisms $x_{i}: \mathbf{C} \rightarrow U^{+}, y_{i}$: $\mathbf{C} \rightarrow U^{-}$indexed by $i \in I$. Let $T=B^{+} \cap B^{-}$, a maximal torus. Let \mathcal{Y} be the group of one parameter subgroups $\mathbf{C}^{*} \rightarrow T$; let \mathcal{X} be the group of characters $T \rightarrow \mathbf{C}^{*}$. Let $\langle\rangle:, \mathcal{Y} \times \mathcal{X} \rightarrow \mathbf{Z}$ be the canonical pairing. The simple coroot corresponding to $i \in I$ is denoted again by $i \in \mathcal{Y}$; let $i^{\prime} \in \mathcal{X}$ be the corresponding simple root. Let $\mathcal{X}^{+}=\{\lambda \in \mathcal{X} ;\langle i, \lambda\rangle \geq 0 \quad \forall i \in I\}$, $\mathcal{X}^{++}=\{\lambda \in \mathcal{X} ;\langle i, \lambda\rangle \geq 1 \quad \forall i \in I\}$. Let $G(\mathbf{R})$ be the subgroup of G generated by $x_{i}(t), y_{i}(t)$ with $i \in I, t \in \mathbf{R}$. Let $\mathcal{B}(\mathbf{R})$ be the subset of \mathcal{B} consisting of all $B \in \mathcal{B}$ such that $B=g B^{+} g^{-1}$ for some $g \in G(\mathbf{R})$. We have $G_{\geq 0} \subset G(\mathbf{R}), \mathcal{B}_{\geq 0} \subset \mathcal{B}(\mathbf{R})$. For $i \in I$ we set $\dot{s}_{i}=y_{i}(1) x_{i}(-1) y_{i}(1) \in G(\mathbf{R})$, an element normalizing T. For $\left(B, B^{\prime}\right) \in \mathcal{B} \times \mathcal{B}$ we write $\operatorname{pos}\left(B, B^{\prime}\right)$ for the relative position of B, B^{\prime} (an element of W).
1.3. Let K be a semifield. Let $K^{!}=K \sqcup\{\circ\}$ where \circ is a symbol. We extend the sum and product on K to a sum and product on $K^{!}$by defining $\circ+a=a$, $a+\circ=a, \circ \times a=\circ, a \times \circ=\circ$ for $a \in K$ and $\circ+\circ=\circ, \circ \times \circ=\circ$. Thus $K^{!}$becomes a monoid under addition and a monoid under multiplication. Moreover the distributivity law holds on $K^{!}$. When K is $\mathbf{R}_{>0}$ we have $K^{!}=\mathbf{R}_{\geq 0}$ with $\circ=0$ and the usual sum and product. When K is as in $0.1(\mathrm{i}), K^{!}$can be viewed as the subset of $\mathbf{R}(x)$ given by $K \cup\{0\}$ with $\circ=0$ and the usual sum and product. When K is as in 0.1 (ii) we have $0 \in K$ and $0 \neq 0$.
1.4. Let $V={ }^{\lambda} V$ be the finite dimensional simple G-module over \mathbf{C} with highest weight $\lambda \in \mathcal{X}^{+}$. For $\nu \in \mathcal{X}$ let V_{ν} be the ν-weight space of V with respect to T. Thus V_{λ} is a line. We fix $\xi^{+}={ }^{\lambda} \xi^{+}$in $V_{\lambda}-0$. For each $i \in I$ there are well defined linear maps $e_{i}: V \rightarrow V, f_{i}: V \rightarrow V$ such that $x_{i}(t) \xi=\sum_{n \geq 0} t^{n} e_{i}^{(n)} \xi, y_{i}(t) \xi=\sum_{n \geq 0} t^{n} f_{i}^{(n)} \xi$ for $\xi \in V, t \in \mathbf{C}$. Here
$e_{i}^{(n)}=(n!)^{-1} e_{i}^{n}: V \rightarrow V, f_{i}^{(n)}=(n!)^{-1} f_{i}^{n}: V \rightarrow V$ are zero for $n \gg 0$. For an integer $n<0$ we set $e_{i}^{(n)}=0, f_{i}^{(n)}=0$.

Let $\beta={ }^{\lambda} \beta$ be the canonical basis of V (containing ξ^{+}) defined in [1]. Let ξ^{-}be the lowest weight vector in $V-0$ contained in β. For $b \in \beta$ we have $b \in V_{\nu_{b}}$ for a well defined $\nu_{b} \in \mathcal{X}$, said to be the weight of b. By a known property of β (see [1, 10.11] and [2, §3], or alternatively [3, 22.1.7]), for $i \in I, b \in \beta, n \in \mathbf{Z}$ we have

$$
e_{i}^{(n)} b=\sum_{b^{\prime} \in \beta} c_{b, b^{\prime}, i, n} b^{\prime}, \quad f_{i}^{(n)} b=\sum_{b^{\prime} \in \beta} d_{b, b^{\prime}, i, n} b^{\prime}
$$

where

$$
c_{b, b^{\prime}, i, n} \in \mathbf{N}, \quad d_{b, b^{\prime}, i, n} \in \mathbf{N}
$$

Hence for $i \in I, b \in \beta, t \in \mathbf{C}$ we have

$$
x_{i}(t) b=\sum_{b^{\prime} \in \beta, n \in \mathbf{N}} c_{b, b^{\prime}, i, n} t^{n} b^{\prime}, \quad y_{i}(t) b=\sum_{b^{\prime} \in \beta, n \in \mathbf{N}} d_{b, b^{\prime}, i, n} t^{n} b^{\prime}
$$

For any $i \in I$ there is a well defined function $z_{i}: \beta \rightarrow \mathbf{Z}$ such that for $b \in \beta$, $t \in \mathbf{C}^{*}$ we have $i(t) b=t^{z_{i}(b)} b$.

Let $P={ }^{\lambda} P$ be the variety of \mathbf{C}-lines in V. Let $P^{\bullet}={ }^{\lambda} P^{\bullet}$ be the set of all $L \in P$ such that for some $g \in G$ we have $L=g V_{\lambda}$. Now P^{\bullet} is a closed subvariety of P. For any $L \in P^{\bullet}$ let $G_{L}=\{g \in G ; g L=L\}$; this is a parabolic subgroup of G.

Let $V^{\bullet}={ }^{\lambda} V^{\bullet}=\cup_{L \in P} \bullet L$, a closed subset of V. For any $\xi \in V, b \in \beta$ we define $\xi_{b} \in \mathbf{C}$ by $\xi=\sum_{b \in \beta} \xi_{b} b$. Let $V_{\geq 0}={ }^{\lambda} V_{\geq 0}$ (resp. $V_{\mathbf{R}}$) be the set of all $\xi \in V$ such that $\xi_{b} \in \mathbf{R}_{\geq 0}$ (resp. $\xi_{b} \in \mathbf{R}$) for any $b \in \beta$. We have $V_{\geq 0} \subset V_{\mathbf{R}}$. Note that $V_{\mathbf{R}}$ is stable under the action of $G(\mathbf{R})$ on V. Let $P_{\geq 0}={ }^{\lambda} P_{\geq 0}$ (resp. $P_{\mathbf{R}}$) be the set of lines $L \in P$ such that $L \cap V_{\geq 0} \neq 0$ (resp. $L \cap V_{\mathbf{R}} \neq 0$.) We have $P_{\geq 0} \subset P_{\mathbf{R}}$.

Let $V_{\geq 0}^{\bullet}={ }^{\lambda} V_{\geq 0}^{\bullet}=V^{\bullet} \cap V_{\geq 0}, P_{\geq 0}^{\bullet}={ }^{\lambda} P_{\geq 0}^{\bullet}=P^{\bullet} \cap P_{\geq 0}$.
Now let K be a semifield. Let $V(K)={ }^{\lambda} V(K)$ be the set of formal sums $\xi=\sum_{b \in \beta} \xi_{b} b, \xi_{b} \in K^{!}$. This is a monoid under addition $\left(\sum_{b \in \beta} \xi_{b} b\right)+$ $\left(\sum_{b \in \beta} \xi_{b}^{\prime} b\right)=\sum_{b \in \beta}\left(\xi_{b}+\xi_{b}^{\prime}\right) b$ and we define scalar multiplication $K^{!} \times V(K) \rightarrow$ $V(K)$ by $\left(k, \sum_{b \in \beta} \xi_{b} b\right) \mapsto \sum_{b \in \beta}\left(k \xi_{b}\right) b$.

For $\xi=\sum_{b \in \beta} \xi_{b} b \in V(K)$ we define $\operatorname{supp}(\xi)=\left\{b \in \beta ; \xi_{b} \in K\right\}$.
Let $\operatorname{End}(V(K))$ be the set of maps $\zeta: V(K) \rightarrow V(K)$ such that $\zeta(\xi+$ $\left.\xi^{\prime}\right)=\zeta(\xi)+\zeta\left(\xi^{\prime}\right)$ for ξ, ξ^{\prime} in $V(K)$ and $\zeta(k \xi)=k \zeta(\xi)$ for $\xi \in V(K), k \in K^{!}$. This is a monoid under composition of maps. Define $\propto \in V(K)$ by $\underline{\varrho}_{b}=\circ$ for all $b \in \beta$. The group K (for multiplication in the semifield structure) acts freely (by scalar multiplication) on $V(K)-\underline{o}$; let $P(K)={ }^{\lambda} P(K)$ be the set of orbits of this action.

For $i \in I, n \in \mathbf{Z}$ we define $e_{i}^{(n)}, f_{i}^{(n)}$ in $\operatorname{End}(V(K))$ by

$$
e_{i}^{(n)}(b)=\sum_{b^{\prime} \in \beta} c_{b, b^{\prime}, i, n} b^{\prime}, \quad f_{i}^{(n)}(b)=\sum_{b^{\prime} \in \beta} d_{b, b^{\prime}, i, n} b^{\prime}
$$

with $b \in \beta$. Here a natural number N (such as $c_{b, b^{\prime}, i, n}$ or $d_{b, b^{\prime}, i, n}$) is viewed as an element of $K^{!}$given by $1+1+\cdots+1(N$ terms, where 1 is the neutral element for the product in K, if $N>0$) or by $\circ \in K^{!}$(if $N=0$).

For $i \in I, k \in K$ we define $i^{k} \in \operatorname{End}(V(K)),(-i)^{k} \in \operatorname{End}(V(K))$ by

$$
i^{k}(b)=\sum_{n \in \mathbf{N}} k^{n} e_{i}^{(n)} b, \quad(-i)^{k}(b)=\sum_{n \in \mathbf{N}} k^{n} f_{i}^{(n)} b,
$$

for any $b \in \beta$. We show:
(a) The map $i^{k}: V(K) \rightarrow V(K)$ is injective. The map $(-i)^{k}: V(K) \rightarrow$ $V(K)$ is injective.

Using a partial order of the weights of V, we can write $V(K)$ as a direct sum of monoids $V(K)_{s}, s \in \mathbf{Z}$ where $V(K)_{s}=\{\underline{\varrho}\}$ for all but finitely many s and $(-i)^{k}$ maps any $\xi \in V(K)_{s}$ to ξ plus an element in the direct sum of $V(K)_{s^{\prime}}$ with $s^{\prime}<s$. Then (a) for $(-i)^{k}$ follows immediatly. A similar proof applies to i^{k}.

For $i \in I, k \in K$ we define $\underline{i}^{k} \in \operatorname{End}(V(K))$ by $\underline{i}^{k}(b)=k^{z_{i}(b)} b$ for any $b \in \beta$. Let $\mathfrak{G}(K)$ be the monoid associated to G, K by generators and relations in [8, 2.10(i)-(vii)]. (In loc.cit. it is assumed that K is as in 0.1(i) or 0.1 (ii) but the same definition makes sense for any K.) We have the following result.

Proposition 1.5. The elements $i^{k},(-i)^{k}, \underline{i}^{k}$ (with $\left.i \in I, k \in K\right)$ in $\operatorname{End}(V(K))$ satisfy the relations in [8, 2.10(i)-(vii)] defining the monoid $\mathfrak{G}(K)$ hence they define a monoid homomorphism $\mathfrak{G}(K) \rightarrow \operatorname{End}(V(K))$.

We write the relations in loc.cit. (for the semifield $\mathbf{R}_{>0}$) for the endomorphisms $x_{i}(t), y_{i}(t), i(t)$ of V with $t \in R_{>0}$. These relations can be expressed as a set of identities satisfied by $c_{b, b^{\prime}, i, n}, d_{b, b^{\prime}, i, n}, z_{i}(b)$ and these identities show that the endomorphisms $i^{k},(-i)^{k}, \underline{i}^{k}$ of $V(K)$ satisfy the relations in loc.cit. (for the semifield K). The result follows.
1.6. Consider a homomorphism of semifields $r: K_{1} \rightarrow K_{2}$. Now r induces a homomorphism of monoids $\mathfrak{G}_{r}: \mathfrak{G}\left(K_{1}\right) \rightarrow \mathfrak{G}\left(K_{2}\right)$. It also induces a homomorphism of monoids $V_{r}: V\left(K_{1}\right) \rightarrow V\left(K_{2}\right)$ given by $\sum_{b \in \beta} \xi_{b} b \mapsto$ $\sum_{b \in \beta} r\left(\xi_{b}\right) b$. From the definitions, for $g \in \mathfrak{G}\left(K_{1}\right), \xi \in V\left(K_{1}\right)$, we have $V_{r}(g \xi)=\mathfrak{G}_{r}(g)\left(V_{r}(\xi)\right)$ where $g \xi$ is given by the $\mathfrak{G}\left(K_{1}\right)$-action on $V\left(K_{1}\right)$ and $\mathfrak{G}_{r}(g)\left(V_{r}(\xi)\right)$ is given by the $\mathfrak{G}\left(K_{2}\right)$-action on $V\left(K_{2}\right)$. Assuming that $r: K_{1} \rightarrow K_{2}$ is surjective (so that $\mathfrak{G}_{r}: \mathfrak{G}\left(K_{1}\right) \rightarrow \mathfrak{G}\left(K_{2}\right)$ is surjective) we deduce:
(a) If E is a subset of $V\left(K_{1}\right)$ which is stable under the $\mathfrak{G}\left(K_{1}\right)$-action on $V\left(K_{1}\right)$, then the subset $V_{r}(E)$ of $V\left(K_{2}\right)$ is stable under the $\mathfrak{G}\left(K_{2}\right)$-action on $V\left(K_{2}\right)$.
1.7. In the remainder of this section we assume that $\lambda \in \mathcal{X}^{++}$. Then $L \mapsto G_{L}$ is an isomorphism $\pi: P^{\bullet} \xrightarrow{\sim} \mathcal{B}$ and
(a) π restricts to a bijection $\pi_{\geq 0}: P_{\geq 0}^{\bullet} \xrightarrow{\sim} \mathcal{B}_{\geq 0}$.

See [5, 8.17].
1.8. Let Ω be the set of all open nonempty subsets of \mathbf{C}. Let X be an algebraic variety over \mathbf{C}. Let X_{1} be the set of pairs $\left(U, f_{U}\right)$ where $U \in \Omega$ and $f_{U}: U \rightarrow X$ is a morphism of algebraic varieties. We define an equivalence relation on X_{1} in which $\left(U, f_{U}\right),\left(U^{\prime}, f_{U^{\prime}}\right)$ are equivalent if $\left.f_{U}\right|_{U \cap U^{\prime}}=\left.f_{U^{\prime}}\right|_{U \cap U^{\prime}}$. Let \tilde{X} be the set of equivalence classes. An element of \tilde{X} is said to be a rational map $f: \mathbf{C} \triangleright X$. For $f \in \tilde{X}$ let Ω_{f} be the set of all $U \in \Omega$ such that f contains $\left(U, f_{U}\right) \in X_{1}$ for some f_{U}; we shall then write $f(t)=f_{U}(t)$ for $t \in U$. We shall identify any $x \in X$ with the constant map $f_{x}: \mathbf{C} \rightarrow X$ with image $\{x\}$; thus X can be identified with a subset of
\tilde{X}. If X^{\prime} is another algebraic variety over \mathbf{C} then we have $\widetilde{X \times X^{\prime}}=\tilde{X} \times \tilde{X}^{\prime}$ canonically. If $F: X \rightarrow X^{\prime}$ is a morphism then there is an induced map $\tilde{F}: \tilde{X} \rightarrow \tilde{X}^{\prime}$; to $f: \mathbf{C} \triangleright X$ it attaches $f^{\prime}: \mathbf{C} \triangleright X^{\prime}$ where for some $U \in \Omega_{f}$ we have $f^{\prime}(t)=F(f(t))$ for all $t \in U$. If H is an algebraic group over \mathbf{C} then \tilde{H} is a group with multiplication $\tilde{H} \times \tilde{H}=\widetilde{H \times H} \rightarrow \tilde{H}$ induced by the multiplication map $H \times H \rightarrow H$. Note that H is a subgroup of \tilde{H}. In particular, the group \tilde{G} is defined. Also, the additive group $\tilde{\mathbf{C}}$ and the multiplicative group $\widetilde{\mathbf{C}^{*}}$ are defined. Also $\tilde{\mathcal{B}}$ is defined.
1.9. Let X be an algebraic variety over \mathbf{C} with a given subset $X_{\geq 0}$. We define a subset $\tilde{X}_{\geq 0}$ of \tilde{X} as follows: $\tilde{X}_{\geq 0}$ is the set of all $f \in \tilde{X}$ such that for some $U \in \Omega_{f}$ and some $\epsilon \in \mathbf{R}_{>0}$ we have $(0, \epsilon) \subset U$ and $f(t) \in X_{\geq 0}$ for all $t \in(0, \epsilon)$. (In particular, $\tilde{G}_{\geq 0}$ is defined in terms of $G, G_{\geq 0}$ and $\overline{\mathcal{B}}_{\geq 0}$ is defined in terms of $\mathcal{B}, \mathcal{B}_{\geq 0}$.) If X^{\prime} is another algebraic variety over \mathbf{C} with a given subset $X_{\geq 0}^{\prime}$, then $X \times X^{\prime}$ with its subset $\left(X \times X^{\prime}\right)_{\geq 0}=X_{\geq 0} \times X_{\geq 0}^{\prime}$ gives rise as above to the set $\widetilde{X \times X^{\prime} \geq 0}$ which can be identified with $\tilde{X}_{\geq 0} \times \tilde{X}_{\geq 0}^{\prime}$. If $F: X \rightarrow X^{\prime}$ is a morphism such that $F\left(X_{\geq 0}\right) \subset X_{\geq 0}^{\prime}$, then the induced $\operatorname{map} \tilde{F}: \tilde{X} \rightarrow \tilde{X}^{\prime}$ carries $\tilde{X}_{\geq 0}$ into $\tilde{X}_{\geq 0}^{\prime}$ hence it restricts to a map $\tilde{F}_{\geq 0}$: $\tilde{X}_{\geq 0} \rightarrow \tilde{X}_{\geq 0}^{\prime}$. From the definitions we see that:
(a) if \tilde{F} is an isomorphism of \tilde{X} onto an open subset of \tilde{X}^{\prime} and F carries $\tilde{X}_{\geq 0}$ bijectively onto $\tilde{X}_{\geq 0}^{\prime}$, then the map $\tilde{F}_{\geq 0}$ is a bijection.

Now the multiplication $G \times G \rightarrow G$ carries $G_{\geq 0} \times G_{\geq 0}$ to $G_{\geq 0}$ hence it induces a map $\tilde{G}_{\geq 0} \times \tilde{G}_{\geq 0} \rightarrow \tilde{G}_{\geq 0}$ which makes $\tilde{G}_{\geq 0}$ into a monoid; the conjugation action $G \times \mathcal{B} \rightarrow \mathcal{B}$ carries $G_{\geq 0} \times \mathcal{B}_{\geq 0}$ to $\mathcal{B}_{\geq 0}$ hence it induces a map $\tilde{G}_{\geq 0} \times \tilde{\mathcal{B}}_{\geq 0} \rightarrow \tilde{\mathcal{B}}_{\geq 0}$ which define an action of the monoid $\tilde{G}_{\geq 0}$ on $\tilde{\mathcal{B}}_{\geq 0}$. We define $\tilde{\mathbf{C}}^{*} \geq 0$ in terms of \mathbf{C}^{*} and its subset $\mathbf{C}_{\geq 0}^{*}:=\mathbf{R}_{>0}$. The multiplication on \mathbf{C}^{*} preserves $\mathbf{C}_{\geq 0}^{*}$ hence it induces a map $\tilde{\mathbf{C}}^{*} \geq 0 \times \tilde{\mathbf{C}}^{*} \geq 0 \rightarrow$ $\tilde{\mathbf{C}}^{*} \geq 0$ which makes $\tilde{\mathbf{C}}^{*} \geq 0$ into an abelian group. We define $\tilde{\mathbf{C}}_{\geq 0}$ in terms of \mathbf{C} and its subset $\mathbf{C}_{\geq 0}:=\mathbf{R}_{\geq 0}$. The addition on \mathbf{C} preserves $\mathbf{C}_{\geq 0}$ hence it induces a map $\tilde{\mathbf{C}}_{\geq 0} \times \tilde{\mathbf{C}}_{\geq 0} \rightarrow \tilde{\mathbf{C}}_{\geq 0}$ which makes $\tilde{\mathbf{C}}_{\geq 0}$ into an abelian monoid. The imbedding $\mathbf{C}^{*} \subset \mathbf{C}$ induces an imbedding $\tilde{\mathbf{C}}^{*} \geq 0 \rightarrow \tilde{\mathbf{C}}_{\geq 0}$; the monoid operation on $\tilde{\mathbf{C}}_{\geq 0}$ preserves the subset $\tilde{\mathbf{C}}^{*} \geq 0$ and makes $\tilde{\mathbf{C}}^{*} \geq 0$ into an abelian monoid. This, together with the multiplication on $\tilde{\mathbf{C}}^{*} \geq 0$ makes $\tilde{\mathbf{C}}^{*} \geq 0$ into a semifield. From the definitions we see that this semifield is the same as K in $0.1(\mathrm{i})$ and that $\tilde{G}_{\geq 0}$ is the monoid associated to G and K in [5, 2.2] (which is the same as $\mathfrak{G}(K)$). We define $\mathcal{B}(K)$ to be $\tilde{\mathcal{B}}_{\geq 0}$ with the
action of $\tilde{G}_{\geq 0}=\mathfrak{G}(K)$ described above. This achieves what was stated in 0.1 for K as in 0.1(i).
1.10. In the remainder of this section K will denote the semifield in $0.1(\mathrm{i})$ and we assume that $\lambda \in \mathcal{X}^{++}$. We associate $\tilde{P}_{\geq 0}={ }^{\lambda} \tilde{P}_{\geq 0}$ to P and its subset $P_{\geq 0}$ as in 1.9. We associate $\tilde{P}_{\geq 0}^{\bullet}={ }^{\lambda} \tilde{P}_{\geq 0}^{\bullet}$ to P^{\bullet} and its subset $P_{\geq 0}^{\bullet}$ as in 1.9. We write $P^{\bullet}(K)={ }^{\lambda} P^{\bullet}(K)=\tilde{P}_{\geq 0}^{\bullet}$.

We associate $\tilde{V}_{\geq 0}={ }^{\lambda} \tilde{V}_{\geq 0}$ to V and its subset $V_{\geq 0}$ as in 1.9. We can identify $\tilde{V}_{\geq 0}=V(K)$ (see 1.4). We associate $\tilde{V}_{\geq 0}^{\bullet}={ }^{\lambda} \tilde{V}_{\geq 0}^{\bullet}$ to V^{\bullet} and its subset $V_{\geq 0}^{\bullet}$ as in 1.9. We write $V^{\bullet}(K)={ }^{\lambda} V^{\bullet}(K)=\tilde{\tilde{V}}_{\geq 0}^{\bullet}$. We have $V^{\bullet}(K) \subset \tilde{V}_{\geq 0}$.

The obvious map $a^{\prime}: V-0 \rightarrow P$ restricts to a (surjective) map $a_{\geq 0}^{\prime}$: $V_{\geq 0}-0 \rightarrow P_{\geq 0}$ and defines a map $\tilde{a}_{\geq 0}^{\prime}: \tilde{V}_{\geq 0}-0 \rightarrow \tilde{P}_{\geq 0}$. The scalar multiplication $\mathbf{C}^{*} \times(V-0) \rightarrow V-0$ carries $\mathbf{C}_{\geq 0}^{*} \times\left(V_{\geq 0}-0\right)$ to $V_{\geq 0}-0$ hence it induces a map $\widetilde{\mathbf{C}^{*} \geq 0} \times\left(\tilde{V}_{\geq 0}-0\right) \rightarrow \tilde{V}_{\geq 0}-0$ which is a (free) action of the group $K=\widetilde{\mathbf{C}}^{*} \geq 0$ on $\tilde{V}_{\geq 0}-0=V(K)-0$. From the definitions we see that $\tilde{a}_{\geq 0}^{\prime}$ is surjective and it induces a bijection $(V(K)-0) / K \xrightarrow{\sim} \tilde{P}_{\geq 0}$. Thus we have $\tilde{P}_{\geq 0}=P(K)$ (notation of 1.4). Note that $P^{\bullet}(K) \subset P(K)$.

The obvious map $a: V^{\bullet}-0 \rightarrow P^{\bullet}$ restricts to a (surjective) map $a_{\geq 0}: V_{\geq 0}^{\bullet}-0 \rightarrow P_{\geq 0}^{\bullet}$ and it defines a map $\tilde{a}_{\geq 0}: V^{\bullet}(K)=\tilde{V}_{\geq 0}^{\bullet}-0 \rightarrow \tilde{P}_{\geq 0}^{\bullet}=$ $P^{\bullet}(K)$. The (free) K-action on $\tilde{V}_{\geq 0}-0$ considered above restricts to a (free) K-action on $V^{\bullet}(K)-0=\tilde{V}_{\geq 0}^{\bullet}-0$. From the definitions we see that $\tilde{a}_{\geq 0}$ is constant on any orbit of this action. We show:
(a) The map $\tilde{a}_{\geq 0}$ is surjective. It induces a bijection $\left(V^{\bullet}(K)-0\right) / K \xrightarrow{\sim} P^{\bullet}(K)$.

Let $f \in \tilde{P}_{\geq 0}^{\bullet}$. We can find $U \in \Omega_{f}, \epsilon \in \mathbf{R}_{>0}$ such that $(0, \epsilon) \subset U$ and $f(t) \in$ $P_{\geq 0}^{\bullet}$ for $t \in(0, \epsilon)$. Using the surjectivity of $a_{\geq 0}$ we see that for $t \in(0, \epsilon)$ we have $f(t)=a\left(x_{t}\right)$ where $t \mapsto x_{t}$ is a function $(0, \epsilon) \rightarrow V_{\geq 0}^{\bullet}-0$. We can assume that there exists $B \in \mathcal{B}(\mathbf{R})$ such that $\pi(f(t))$ is opposed to B for all $t \in U$. Let $\mathcal{O}=\left\{B_{1} \in \mathcal{B} ; B_{1}\right.$ opposed to $\left.B\right\}$; thus we have $\pi(f(t)) \in \mathcal{O}$ for all $t \in U$. Let $B^{\prime} \in \mathcal{O} \cap \mathcal{B}(\mathbf{R})$ and let $\xi^{\prime} \in V_{\mathbf{R}}-0$ be such that $\pi\left(\mathbf{C} \xi^{\prime}\right)=B^{\prime}$. Let U_{B} be the unipotent radical of B. Then $U_{B} \rightarrow \mathcal{O}, u \mapsto u B^{\prime} u^{-1}$ is an isomorphism. Hence there is a unique morphism $\zeta: \mathcal{O} \rightarrow V^{\bullet}-0$ such that $\zeta\left(u B^{\prime} u^{-1}\right)=u \xi^{\prime}$ for any $u \in U_{B}$. From the definitions we have $\zeta(\mathcal{O} \cap \mathcal{B}(\mathbf{R})) \subset\left(V_{\mathbf{R}} \cap V^{\bullet}\right)-0$. We define $f^{\prime}: U \rightarrow V^{\bullet}-0$ by $f^{\prime}(t)=\zeta(\pi(f(t)))$. We can view f^{\prime} as an element of $\tilde{V}^{\bullet}-0$ such that $\tilde{a}\left(f^{\prime}\right)=f$. Since $\pi(f(t)) \in \mathcal{B}(\mathbf{R})$, we have
$f^{\prime}(t) \in\left(V_{\mathbf{R}} \cap V^{\bullet}\right)-0$ for $t \in(0, \epsilon)$. For such t we have $a\left(f^{\prime}(t)\right)=f(t)=$ $a\left(x_{t}\right)$ hence $f^{\prime}(t)=z_{t} x_{t}$ where $t \mapsto z_{t}$ is a (possibly discontinuous) function $(0, \epsilon) \rightarrow \mathbf{R}-0$. Since $x_{t} \in V_{\geq 0}-0$ and $\mathbf{R}_{>0}\left(V_{\geq 0}-0\right)=V_{\geq 0}-0$, we see that for $t \in(0, \epsilon)$ we have $f^{\prime}(t) \in\left(V_{\geq 0}-0\right) \cup(-1)\left(V_{\geq 0}-0\right)$. Since $(0, \epsilon)$ is connected and f^{\prime} is continuous (in the standard topology) we see that $f^{\prime}(0, \epsilon)$ is contained in one of the connected components of $\left(V_{\geq 0}-0\right) \cup(-1)\left(V_{\geq 0}-0\right)$ that is, in either $V_{\geq 0}-0$ or in $(-1)\left(V_{\geq 0}-0\right)$. Thus there exists $s \in\{1,-1\}$ such that $s f^{\prime}(0, \epsilon) \subset V_{\geq 0}-0$ hence also $s f^{\prime}(0, \epsilon) \subset V_{\geq 0}^{\bullet}-0$. We define $f^{\prime \prime}: U \rightarrow V^{\bullet}-0$ by $f^{\prime \prime}(t)=s f^{\prime}(t)$. We can view $f^{\prime \prime}$ as an element of $\tilde{V}_{\geq 0}^{\bullet}-0$ such that $\tilde{a}_{\geq 0}\left(f^{\prime}\right)=f$. This proves that $\tilde{a}_{\geq 0}$ is surjective. The remaining statement of (a) is immediate.

Since P^{\bullet} and its subset $P_{\geq 0}^{\bullet}$ can be identified with \mathcal{B} and its subset $\mathcal{B}_{\geq 0}$ (see $1.7(\mathrm{a})$), we see that we may identify $P^{\bullet}(K)=\mathcal{B}(K)$. The action of $\mathfrak{G}(K)$ on $P^{\bullet}(K)$ induced from that on $V^{\bullet}(K)-0$ is the same as the previous action of $\mathfrak{G}(K)$, see $[8,2.13(\mathrm{~d})]$. This gives a second incarnation of $\mathcal{B}(K)$.
1.11. Let \mathbf{Z} be the semifield in 0.1 (ii). Following [5], we define a (surjective) semifield homomorphism $r: K \rightarrow \mathbf{Z}$ by $r\left(x^{e} f_{1} / f_{2}\right)=e($ notation of 0.1$)$. Now r induces a surjective map $V_{r}: V(K) \rightarrow V(\mathbf{Z})$ as in 1.6. Let $V^{\bullet}(\mathbf{Z})=$ ${ }^{\lambda} V^{\bullet}(\mathbf{Z}) \subset V(\mathbf{Z})$ be the image under V_{r} of the subset $V^{\bullet}(K)$ of $V(K)$. Then $V^{\bullet}(\mathbf{Z})-\underline{\circ}=V_{r}\left(V^{\bullet}(K)-0\right)$.

The \mathbf{Z}-action on $V(\mathbf{Z})-\underline{\circ}$ in 1.4 leaves $V^{\bullet}(\mathbf{Z})-\underline{o}$ stable. (We use the K-action on $V^{\bullet}(K)-0$.) Let $P^{\bullet}(\mathbf{Z})={ }^{\lambda} P^{\bullet}(\mathbf{Z})$ be the set of orbits of this action. We have $P^{\bullet}(\mathbf{Z}) \subset P(\mathbf{Z})$ (notation of 1.4). From 1.6(a) we see that $V^{\bullet}(\mathbf{Z})$ - ○ is stable under the $\mathfrak{G}(\mathbf{Z})$-action on $V(\mathbf{Z})$ in 1.6. Since the $\mathfrak{G}(\mathbf{Z})$-action commutes with scalar multiplication by \mathbf{Z} it follows that the $\mathfrak{G}(\mathbf{Z})$-action on $V(\mathbf{Z})$ - $\underline{\text { o }}$ and $V^{\bullet}(\mathbf{Z})$ - o induces a $\mathfrak{G}(\mathbf{Z})$-action on $P(\mathbf{Z})$ and $P^{\bullet}(\mathbf{Z})$.
1.12. We set $\mathcal{B}(\mathbf{Z})={ }^{\lambda} P^{\bullet}(\mathbf{Z})$. This achieves what was stated in 0.1 for the semifield \mathbf{Z}. This definition of $\mathcal{B}(\mathbf{Z})$ depends on the choice of $\lambda \in \mathcal{X}^{++}$. In $\S 4$ we will show that $\mathcal{B}(\mathbf{Z})$ is independent of this choice up to a canonical bijection. (Alternatively, if one wants a definition without such a choice one could take λ such that $\langle i, \lambda\rangle=1$ for all $i \in I$.)

2. Preparatory Results

2.1. We preserve the setup of 1.4. As shown in [4, 5.3, 4.2], for $w \in W$ and $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathcal{I}_{w}$, the subspace of V generated by the vectors

$$
f_{i_{1}}^{\left(c_{1}\right)} f_{i_{2}}^{\left(c_{2}\right)} \ldots f_{i_{m}}^{\left(c_{m}\right)} \xi^{+}
$$

for various $c_{1}, c_{2}, \ldots, c_{m}$ in \mathbf{N} is independent of \mathbf{i} (we denote it by V^{w}) and $\beta^{w}:=\beta \cap V^{w}$ is a basis of it. Let $V^{\prime i}$ be the subspace of V generated by the vectors

$$
e_{i_{m}}^{\left(d_{m}\right)} e_{i_{m-1}}^{\left(d_{m-1}\right)} \ldots e_{i_{1}}^{\left(d_{1}\right)} b_{w}
$$

for various $d_{1}, d_{2}, \ldots, d_{m}$ in \mathbf{N}, where

$$
\begin{aligned}
b_{w} & =\dot{w} \xi^{+} \\
\dot{w} & =\dot{s}_{i_{1}} \dot{s}_{i_{2}} \ldots \dot{s}_{i_{m}} .
\end{aligned}
$$

We show:
(a)

$$
V^{w}=V^{\prime \mathrm{i}}
$$

We show that $V^{w} \subset V^{\prime i}$. We argue by induction on $m=|w|$. If $m=0$, the result is obvious. Assume now that $m \geq 1$. Let $c_{1}, c_{2}, \ldots, c_{m}$ be in \mathbf{N}. By the induction hypothesis,

$$
\begin{equation*}
f_{i_{1}}^{\left(c_{1}\right)} f_{i_{2}}^{\left(c_{2}\right)} \ldots f_{i_{m}}^{\left(c_{m}\right)} \xi^{+} \tag{b}
\end{equation*}
$$

is a linear combination of vectors of form

$$
f_{i_{1}}^{\left(c_{1}\right)} e_{i_{m}}^{\left(d_{m}\right)} e_{i_{m-1}}^{\left(d_{m-1}\right)} \ldots e_{i_{2}}^{\left(d_{2}\right)} b_{s_{i_{1}} w}
$$

for various d_{2}, \ldots, d_{m} in \mathbf{N}. Using the known commutation relations between $f_{i_{1}}$ and e_{j} we see that (b) is a linear combination of vectors of form

$$
e_{i_{m}}^{\left(d_{m}\right)} e_{i_{m-1}}^{\left(d_{m-1}\right)} \ldots e_{i_{2}}^{\left(d_{2}\right)} f_{i_{1}}^{\left(c_{1}\right)} b_{s_{i_{1}} w}
$$

for various d_{2}, \ldots, d_{m} in \mathbf{N}. It is then enough to show that

$$
f_{i_{1}}^{\left(c_{1}\right)} b_{s_{i_{1}} w}=e_{i_{1}}^{\left(d_{1}\right)} \dot{s}_{i_{1}} b_{s_{i_{1}} w}
$$

for some $d_{1} \in \mathbf{N}$. This follows from the fact that

$$
\begin{equation*}
e_{i_{1}} b_{s_{i_{1}} w}=0 \text { and } b_{s_{i_{1}} w} \text { is in a weight space of } V . \tag{c}
\end{equation*}
$$

Next we show that $V^{\prime \mathbf{i}} \subset V^{w}$. We argue by induction on $m=|w|$. If $m=0$ the result is obvious. Assume now that $m \geq 1$. Since V^{w} is stable under the action of $e_{i}(i \in I)$, it is enough to show that $b_{w} \in V^{w}$. By the induction hypothesis, $b_{s_{i_{1}} w} \in V^{s_{i_{1} w}}$. Using (c), we see that for some $c_{1} \in \mathbf{N}$ we have

$$
b_{w}=\dot{s}_{i_{1}} b_{s_{i_{1}} w}=f_{i_{1}}^{\left(c_{1}\right)} b_{s_{i_{1}} w} \in f_{i_{1}}^{\left(c_{1}\right)} V^{s_{i_{1}} w} \subset V^{w}
$$

This completes the proof of (a).
From [3, 28.1.4] one can deduce that $b_{w} \in \beta$. From (a) we see that $b_{w} \in V^{w}$. It follows that

$$
\begin{equation*}
b_{w} \in \beta^{w} \tag{d}
\end{equation*}
$$

2.2. For $v \leq w$ in W we set

$$
\mathcal{B}_{v, w}=\left\{B \in \mathcal{B}, \operatorname{pos}\left(B^{+}, B\right)=w, \operatorname{pos}\left(B^{-}, B\right)=w_{I} v\right\}
$$

(a locally closed subvariety of \mathcal{B}) and

$$
\left(\mathcal{B}_{v, w}\right)_{\geq 0}=\mathcal{B}_{\geq 0} \cap \mathcal{B}_{v, w}
$$

We have $\mathcal{B}=\sqcup_{v \leq w \text { in } W} \mathcal{B}_{v, w}, \mathcal{B}_{\geq 0}=\sqcup_{v \leq w}$ in $W\left(\mathcal{B}_{v, w}\right)_{\geq 0}$.
2.3. Recall that there is a unique isomorphism $\phi: G \rightarrow G$ such that $\phi\left(x_{i}(t)\right)=y_{i}(t), \phi\left(y_{i}(t)\right)=x_{i}(t)$ for all $i \in I, t \in \mathbf{C}$ and $\phi(g)=g^{-1}$ for all $g \in T$. This carries Borel subgroups to Borel subgroups hence induces an isomorphism $\phi: \mathcal{B} \rightarrow \mathcal{B}$ such that $\phi\left(B^{+}\right)=B^{-}, \phi\left(B^{-}\right)=B^{+}$. For $i \in I$ we have $\phi\left(\dot{s}_{i}\right)=\dot{s}_{i}^{-1}$. Hence ϕ induces the identity map on W. For $v \leq w$ in W we have $w w_{I} \leq v w_{I}$; moreover,
(a) ϕ defines an isomorphism $\mathcal{B}_{w w_{I}, v w_{I}} \xrightarrow{\sim} \mathcal{B}_{v, w}$.
(See [9, 1.4(a)] From the definition we have
(b) $\phi\left(G_{\geq 0}\right)=G_{\geq 0}$.

From [5, 8.7] it follows that
(c) $\phi\left(\mathcal{B}_{\geq 0}\right)=\mathcal{B}_{\geq 0}$.

From (a), (c) we deduce:
(d) ϕ defines a bijection $\left(\mathcal{B}_{w w_{I}, v w_{I}}\right)_{\geq 0} \xrightarrow{\sim}\left(\mathcal{B}_{v, w}\right)_{\geq 0}$.

By [2, §3] there is a unique linear isomorphism $\phi: V \rightarrow V$ such that $\phi(g \xi)=\phi(g) \phi(\xi)$ for all $g \in G, \xi \in V$ and such that $\phi\left(\xi^{+}\right)=\xi^{-}$; we have $\phi(\beta)=\beta$ and $\phi^{2}(\xi)=\xi$ for all $\xi \in V$.
2.4. Assume now that $\lambda \in \mathcal{X}^{++}$. Let $B \in \mathcal{B}_{v, w}$ and let $L \in P^{\bullet}$ be such that $\pi(L)=B$. Let $\xi \in L-0, b \in \beta$. We show:
(a) $\xi_{b} \neq 0 \Longrightarrow b \in \beta^{w} \cap \phi\left(\beta^{v w_{I}}\right)$.

We have $B=g B^{+} g^{-1}$ for some $g \in B^{+} \dot{w} B^{+}$. Then $\xi=c g \xi^{+}$for some $c \in \mathbf{C}^{*}$. We write $g=g^{\prime} \dot{w} g^{\prime \prime}$ with $g^{\prime} \in U^{+}, g^{\prime \prime} \in B^{+}$. We have $\xi=c^{\prime} g^{\prime} \dot{w} \xi^{+}=$ $c^{\prime} g^{\prime} b_{w}$ where $c^{\prime} \in \mathbf{C}^{*}$. By 2.1(d) we have $b_{w} \in \beta^{w}$. Moreover, V^{w} is stable by the action of U^{+}; we see that $\xi \in V^{w}$. Since $\xi_{b} \neq 0$ we have $b \in \beta^{w}$. Let $B^{\prime}=\phi(B)$. We have $B^{\prime} \in \mathcal{B}_{w w_{I}, v w_{I}}$ (see 2.3(a)). Let $L^{\prime}=\phi(L) \in P^{\bullet}$ and let $\xi^{\prime}=\phi(\xi) \in L^{\prime}-0, b^{\prime}=\phi(b) \in \beta$. We have $\xi_{b^{\prime}}^{\prime} \neq 0$. Applying the first part of the proof with B, L, ξ, v, w, b replaced by $B^{\prime}, L^{\prime}, \xi^{\prime}, v^{\prime}, w^{\prime}, b^{\prime}$ we obtain $b^{\prime} \in \beta^{v w_{I}}$. Hence $b \in \phi\left(\beta^{v w_{I}}\right)$. Thus, $b \in \beta^{w} \cap \phi\left(\beta^{v w_{I}}\right)$, as required.
2.5. We return to the setup of 1.4. For $i \in I$ we set

$$
\begin{aligned}
& V^{e_{i}}=\left\{\xi \in V ; e_{i}(\xi)=0\right\}=\left\{\xi \in V ; \sum_{b \in \beta} \xi_{b} c_{b, b^{\prime}, i, 1}=0 \text { for all } b^{\prime} \in \beta\right\}, \\
& V^{f_{i}}=\left\{\xi \in V ; f_{i}(\xi)=0\right\}=\left\{\xi \in V ; \sum_{b \in \beta} \xi_{b} d_{b, b^{\prime}, i, 1}=0 \text { for all } b^{\prime} \in \beta\right\} .
\end{aligned}
$$

If $\xi \in V_{\geq 0}$, the condition that $\sum_{b \in \beta} \xi_{b} c_{b, b^{\prime}, i, 1}=0$ is equivalent to the condition that $\xi_{b} c_{b, b^{\prime}, i, 1}=0$ for any b, b^{\prime} in β. Thus we have

$$
V_{\geq 0} \cap V^{e_{i}}=\left\{\xi \in V_{\geq 0} ; \xi=\sum_{b \in \beta^{e_{i}}} \xi_{b} b\right\}
$$

where $\beta^{e_{i}}=\left\{b \in \beta ; c_{b, b^{\prime}, i, 1}=0\right.$ for any $\left.b^{\prime} \in \beta\right\}$. Similarly, we have

$$
V_{\geq 0} \cap V^{f_{i}}=\left\{\xi \in V_{\geq 0} ; \xi=\sum_{b \in \beta^{f_{i}}} \xi_{b} b\right\}
$$

where $\beta^{f_{i}}=\left\{b \in \beta ; d_{b, b^{\prime}, i, 1}=0\right.$ for any $\left.b^{\prime} \in \beta\right\}$.
Now the action of \dot{s}_{i} on V defines an isomorphism $\mathcal{T}_{i}: V^{e_{i}} \rightarrow V^{f_{i}}$. If $b \in \beta^{e_{i}}$ we have $\mathcal{T}_{i}(b)=f_{i}^{\left(\left\langle i, \nu_{b}\right\rangle\right)} b=\sum_{b^{\prime} \in \beta} d_{b, b^{\prime}, i,\left\langle i, \nu_{b}\right\rangle} b^{\prime}$; in particular, we have $\mathcal{T}_{i}(b) \in V_{\geq 0} \cap V^{f_{i}}$. Thus \mathcal{T}_{i} restricts to a map $\mathcal{T}_{i}^{\prime}: V_{\geq 0} \cap V^{e_{i}} \rightarrow V_{\geq 0} \cap V^{f_{i}}$. Similarly the action of \dot{s}_{i}^{-1} restricts to a map $\mathcal{T}_{i}^{\prime \prime}: V_{\geq 0} \cap V^{f_{i}} \rightarrow V_{\geq 0} \cap V^{e_{i}}$. This is clearly the inverse of \mathcal{T}_{i}^{\prime}.
2.6. Now let K be a semifield. Let

$$
\begin{aligned}
& V(K)^{e_{i}}=\left\{\sum_{b \in \beta} \xi_{b} b ; \xi_{b} \in K^{!} \text {if } b \in \beta^{e_{i}}, \xi_{b}=\circ \text { if } b \in \beta-\beta^{e_{i}}\right\} \\
& V(K)^{f_{i}}=\left\{\sum_{b \in \beta} \xi_{b} b ; \xi_{b} \in K^{!} \text {if } b \in \beta^{f_{i}}, \xi_{b}=\circ \text { if } b \in \beta-\beta^{f_{i}}\right\}
\end{aligned}
$$

We define $\mathcal{T}_{i, K}: V(K) \rightarrow V(K)$ by

$$
\sum_{b \in \beta} \xi_{b} b \mapsto \sum_{b^{\prime} \in \beta}\left(\sum_{b \in \beta} d_{b, b^{\prime}, i,\left\langle i, \nu_{b}\right\rangle} \xi_{b}\right) b^{\prime}
$$

(notation of 1.4). From the results in 2.5 one can deduce that
(a) $\mathcal{T}_{i, K}$ restricts to a bijection $\mathcal{T}_{i, K}^{\prime}: V(K)^{e_{i}} \xrightarrow{\sim} V(K)^{f_{i}}$.
2.7. Let K be a semifield. We define an involution $\phi: V(K) \rightarrow V(K)$ by $\phi\left(\sum_{b \in \beta} \xi_{b} b\right)=\sum_{b \in \beta} \xi_{\phi(b)} b$. (Here $\xi_{b} \in K^{!}$; we use that $\phi(\beta)=\beta$.) This restricts to an involution $V(K)-\underline{\circ} \rightarrow V(K)-\underline{\circ}$ which induces an involution $P(K) \rightarrow P(K)$ denoted again by ϕ.

3. Parametrizations

3.1. In this section K denotes the semifield in 0.1(i). For $v \leq w$ in W we define $\mathcal{B}_{v, w}(K)=\widetilde{\mathcal{B}_{v, w} \geq 0}$ as in 1.9 in terms of $\mathcal{B}_{v, w}$ and its subset $\left(\mathcal{B}_{v, w}\right)_{\geq 0}$. We have

$$
\mathcal{B}(K)=\sqcup_{v \leq w \text { in } W} \mathcal{B}_{v, w}(K)
$$

3.2. We preserve the setup of 1.4. We now fix $v \leq w$ in W and $\mathbf{i}=$ $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathcal{I}_{w}$. According to [10], there is a unique sequence q_{1}, q_{2}, \ldots,
q_{m} with $q_{k} \in\left\{s_{i_{k}}, 1\right\}$ for $k \in[1, m], q_{1} q_{2} \ldots q_{m}=v$ and such that $q_{1} \leq$ $q_{1} q_{2} \leq \cdots \leq q_{1} q_{2} \ldots q_{m}$ and $q_{1} \leq q_{1} s_{i_{2}}, q_{1} q_{2} \leq q_{1} q_{2} s_{i_{3}}, \ldots, q_{1} q_{2} \ldots q_{m-1} \leq$ $q_{1} q_{2} \ldots q_{m-1} s_{i_{m}}$. Let $[1, m]^{\prime}=\left\{k \in[1, m] ; q_{k}=1\right\},[1, m]^{\prime \prime}=\{k \in[1, m]$; $\left.q_{k}=s_{i_{k}}\right\}$. Let A be the set of maps $h:[1, m]^{\prime} \rightarrow \mathbf{C}^{*}$; this is naturally an algebraic variety over \mathbf{C}. Let $A_{\geq 0}$ be the subset of A consisting of maps $h:[1, m]^{\prime} \rightarrow \mathbf{R}_{>0}$. Following [10], we define a morphism $\sigma: A \rightarrow G$ by $h \mapsto g(h)_{1} g(h)_{2} \ldots g(h)_{m}$ where
(a) $g(h)_{k}=y_{i_{k}}(h(k))$ if $k \in[1, m]^{\prime}$ and $g(h)_{k}=\dot{s}_{i_{k}}$ if $k \in[1, m]^{\prime \prime}$.

We show:
(b) If $h \in A_{\geq 0}$, then $\sigma(h) \xi^{+} \in V^{w}$, so that $\sigma(h)$ is a linear combination of vectors $b \in \beta^{w}$. Moreover, $\left(\sigma(h) \xi^{+}\right)_{b_{w}} \neq 0$.

From the properties of Bruhat decomposition, for any $h \in A_{\geq 0}$ we have $\sigma(h) \in B^{+} \dot{w} B^{+}$, so that $\sigma(h) \xi^{+}=c u \dot{w} \xi^{+}=c u b_{w}$ where $c \in \mathbf{C}^{+}, u \in U^{+}$. Since $b_{w} \in V^{w}$ and V^{w} is stable under the action of U^{+}, it follows that $c u \dot{w} \xi^{+} \in V^{w}$. More precisely, $u b_{w}=b_{w}$ plus a linear combination of elements $b \in \beta$ of weight other than that of b_{w}. This proves (b).

We show:
(c) Let $h \in A_{\geq 0}$. Assume that $i \in I$ is such that $\left|s_{i} w\right|>|w|$ and that $b \in \beta$ is such that $\left(\sigma(h) \xi^{+}\right)_{b} \neq 0$. Then $\nu_{b} \neq \nu_{b_{w}}+i^{\prime}$.

Since $\left|s_{i} w\right|>|w|$ we have $e_{i} b_{w}=0$. We write $\sigma(h) x^{+}=c u b_{w}$ with c, u as in the proof of (b). Now $u b_{w}$ is a linear combination of vectors of the form $e_{j_{1}} e_{j_{2}} \ldots e_{j_{k}} b_{w}$ with $j_{t} \in I$. Such a vector is in a weight space $V(\nu)$ with $\nu=\nu_{b_{w}}+j_{1}^{\prime}+j_{2}^{\prime}+\cdots+j_{k}^{\prime}$. If $j_{1}^{\prime}+j_{2}^{\prime}+\cdots+j_{k}^{\prime}=i^{\prime}$ then $k=1$ and $j_{1}=i$. But in this case we have $e_{j_{1}} e_{j_{2}} \ldots e_{j_{k}} b_{w}=e_{i} b_{w}=0$. The result follows.
3.3. Let $h \in A_{\geq 0}$. Let $k \in[1, m]^{\prime \prime}$. The following result appears in the proof of [10, 11.9].
(a) We have $\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m}\right)^{-1} x_{i_{k}}(a) g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \in$ U^{+}.

From (a) it follows that for $\xi \in V$ we have

$$
e_{i_{k}}\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi\right)=g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m}\left(e^{\prime} \xi\right)
$$

where $e^{\prime}: V \rightarrow V$ is a linear combination of products of one or more factors $e_{j}, j \in I$. When $\xi=\xi^{+}$we have $e^{\prime} \xi=0$ hence $e_{i_{k}}\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)$ $=0$. We can write uniquely

$$
g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}=\sum_{\nu \in \mathcal{X}}\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu}
$$

with $\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu} \in V_{\nu}$. We have

$$
\sum_{\nu \in \mathcal{X}} e_{i_{k}}\left(\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu}\right)=0 .
$$

Since the elements $e_{i_{k}}\left(\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu}\right)$ (for various $\nu \in \mathcal{X}$) are in distinct weight spaces, it follows that $e_{i_{k}}\left(\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu}\right)$ $=0$ for any $\nu \in \mathcal{X}$. If $\xi \in V_{\nu}$ satisfies $e_{i_{k}} \xi=0$, then
(b) $\dot{s}_{i_{k}} \xi=f_{i_{k}}^{\left(\left\langle i_{k}, \nu\right\rangle\right)} \xi$.
(If $\left\langle i_{k}, \nu\right\rangle<0$ then $\xi=0$ so that both sides of (b) are 0 .) We deduce

$$
\begin{align*}
& g(h)_{k}\left(\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu}\right) \tag{c}\\
& \quad=f_{i_{k}}^{\left(\left\langle i_{k}, \nu\right\rangle\right)}\left(\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu}\right)
\end{align*}
$$

for any $\nu \in \mathcal{X}$.
3.4. Let $h \in A_{\geq 0}$. For any $k \in[1, m]$ we set $[k, m]^{\prime}=[k, m] \cap[1, m]^{\prime}$, $[k, m]^{\prime \prime}=[k, m] \cap[1, m]^{\prime \prime}$. Let $\mathcal{E}_{\geq k}$ be the set of all maps $\chi:[k, m]^{\prime} \rightarrow \mathbf{N}$. (If $[k, m]^{\prime}=\emptyset, \mathcal{E}_{\geq k}$ consists of a single element.) For $\chi \in \mathcal{E}_{\geq k}$ and $k^{\prime} \in[k, m]$ let $\chi \geq k^{\prime}$ be the restriction of χ to $\left[k^{\prime}, m\right]^{\prime}$.

We now define an integer $c(k, \chi)$ for any $k \in[1, m]^{\prime \prime}$ and any $\chi \in \mathcal{E}_{\geq k}$ by descending induction on k. We can assume that $c\left(k^{\prime}, \chi^{\prime}\right)$ is defined for any $k^{\prime} \in[k+1, m]^{\prime \prime}$ and any $\chi^{\prime} \in \mathcal{E}_{\geq k^{\prime}}$. We set $c_{k, \chi}=\left\langle i_{k}, \nu\right\rangle$ where
(a) $\quad \nu=\lambda-\sum_{\kappa \in[k+1, m]^{\prime}} \chi(\kappa) i_{\kappa}^{\prime}-\sum_{\kappa \in[k+1, m]^{\prime \prime} ; c(\kappa, \chi \geq \kappa) \geq 0} c(\kappa, \chi \geq \kappa) i_{k}^{\prime} \in \mathcal{X}$.

This completes the inductive definition of the integers $c(k, \chi)$.

Next we define for any $k \in[1, m]$ and any $\chi \in \mathcal{E}_{\geq k}$ an element $\mathcal{J}_{k, \chi} \in V$ by

$$
\mathcal{J}_{k, \chi}=g(h)_{k}^{\chi} g(h)_{k+1}^{\chi} \ldots g(h)_{m}^{\chi} \xi^{+}
$$

where

$$
\begin{array}{ll}
g(h)_{\kappa}^{\chi}=h(\kappa)^{\chi(\kappa)} f_{i_{\kappa}}^{(\chi(\kappa))} & \text { if } \kappa \in[k, m]^{\prime} \\
g(h)_{\kappa}^{\chi}=f_{i_{\kappa}}^{(c(\kappa, \chi \mid \geq \kappa)} & \text { if } \kappa \in[k, m]^{\prime \prime}
\end{array}
$$

For $k \in[1, m]$ we show:

$$
\begin{equation*}
g(h)_{k} g(h)_{k+1} \ldots g(h)_{m} \xi^{+}=\sum_{\chi \in \mathcal{E}_{\geq k}} \mathcal{J}_{k, \chi} \tag{b}
\end{equation*}
$$

We argue by descending induction on k. Assume first that $k=m$. If $k \in[1, m]^{\prime}$ then

$$
g(h)_{k} \xi^{+}=\sum_{n \geq 0} h(k)^{n} f_{i_{\kappa}}^{(n)} \xi^{+}=\sum_{\chi \in \mathcal{E}_{\geq k}} \mathcal{J}_{k, \chi},
$$

as required. If $k \in[1, m]^{\prime \prime}$, then $g(h)_{k} \xi^{+}=\dot{s}_{i_{k}} \xi^{+}=f_{i_{k}}^{\left(\left\langle i_{k}, \lambda\right\rangle\right)} \xi^{+}$, see 3.3(b).
Next we assume that $k<m$ and that (b) holds for k replaced by $k+1$. Let $\chi^{\prime}=\chi_{\geq k+1}$. By the induction hypothesis, the left hand side of (b) is equal to

$$
\begin{equation*}
g(h)_{k} \sum_{\chi \in \mathcal{E} \geq k+1} \mathcal{J}_{k+1, \chi} \tag{c}
\end{equation*}
$$

If $k \in[1, m]^{\prime}$, then clearly (c) is equal to the right hand side of (b). If $k \in[1, m]^{\prime \prime}$, then from the induction hypothesis we see that for any $\nu \in \mathcal{X}$ we have

$$
\left(g(h)_{k+1} \ldots g(h)_{m} \xi^{+}\right)_{\nu}=\sum_{\chi \in \mathcal{E}_{\geq k+1}}\left(\mathcal{J}_{k+1, \chi}\right)_{\nu}=\sum_{\chi \in \mathcal{E}_{\geq k+1 ; \nu}} \mathcal{J}_{k+1, \chi}
$$

where $\mathcal{E}_{\geq k+1 ; \nu}$ is the set of all $\chi \in \mathcal{E}_{\geq k+1}$ such that

$$
\nu=\lambda-\sum_{\kappa \in[k+1, m]^{\prime}} \chi(\kappa) i_{\kappa}^{\prime}-\sum_{\kappa \in[k+1, m]^{\prime \prime}, c(\kappa, \chi \geq \kappa) \geq 0} c(\kappa, \chi \geq \kappa) i_{k}^{\prime}
$$

Using this and 3.3(c) we see that

$$
\begin{aligned}
& g(h)_{k} g(h)_{k+1} \ldots g(h)_{m} \xi^{+}=\sum_{\nu \in \mathcal{X}} f_{i_{k}}^{\left(\left\langle i_{k}, \nu\right\rangle\right)}\left(\left(g(h)_{k+1} g(h)_{k+2} \ldots g(h)_{m} \xi^{+}\right)_{\nu}\right) \\
& =\sum_{\nu \in \mathcal{X}} f_{i_{k}}^{\left(\left\langle i_{k}, \nu\right\rangle\right)} \sum_{\chi \in \mathcal{E}_{\geq k+1 ; \nu}} \mathcal{J}_{k+1, \chi}=\sum_{\chi \in \mathcal{E}_{\geq k}} f_{i_{k}}^{(c(k, \chi))} \mathcal{J}_{k+1, \chi \mid \geq k+1}=\sum_{\chi \in \mathcal{E}_{\geq k}} \mathcal{J}_{k, \chi} .
\end{aligned}
$$

This completes the inductive proof of (b).
In particular, we have

$$
\begin{equation*}
g(h)_{1} g(h)_{2} \ldots g(h)_{m} \xi^{+}=\sum_{\chi \in \mathcal{E}} \mathcal{J}_{1, \chi}, \tag{d}
\end{equation*}
$$

where \mathcal{E} is the set of all maps $\chi:[1, m]^{\prime} \rightarrow \mathbf{N}$. This shows that for any $b \in \beta$ there exists a polynomial P_{b} in the variables $x_{k}, k \in[1, m]^{\prime}$ with coefficients in \mathbf{N} such that the coefficient of b in $g(h)_{1} g(h)_{2} \ldots g(h)_{m} \xi^{+}$is obtained by substituting in P_{b} the variables x_{k} by $h(k) \in \mathbf{R}_{>0}$ for $k \in[1, m]^{\prime}, h \in A_{\geq 0}$. Each coefficient of this polynomial is a sum of products of expressions of the form $d_{b_{1}, b_{2}, i, n} \in \mathbf{N}$ (see 1.4); if one of these coefficients is $\neq 0$ then after the substitution $x_{k} \mapsto h(k) \in \mathbf{R}_{>0}$ we obtain an element in $\mathbf{R}_{>0}$ while if all these coefficients are 0 then the same substitution gives 0 . Thus, there is a well defined subset $\beta_{v, \mathbf{i}}$ of β such that $\left.P_{b}\right|_{x_{k}=h(k)}$ is in $\mathbf{R}_{>0}$ if $b \in \beta_{v, \mathbf{i}}$ and is 0 if $b \in \beta-\beta_{v, \mathbf{i}}$.

For a semifield K_{1} we denote by $A\left(K_{1}\right)$ the set of maps $h:[1, m]^{\prime} \rightarrow K_{1}$. For any $h \in K_{1}$ we can substitute in P_{b} the variables x_{k} by $h(k) \in K_{1}$ for $k \in[1, m]^{\prime} ;$ the result is an element $P_{b, h, K_{1}} \in K_{1}^{1}$. Clearly, we have $P_{b, h, K_{1}} \in K_{1}$ if $b \in \beta_{v, \mathbf{i}}$ and $P_{b, h, K_{1}}=\circ$ if $b \in \beta-\beta_{v, \mathbf{i}}$.

From 3.2(b) we see that $b_{w} \in \beta_{v, \mathbf{i}}$.
We see that for a semifield $K_{1}, h \mapsto \sum_{b \in \beta} P_{b, h, K_{1}} b$ is a map $\theta_{K_{1}}$: $A\left(K_{1}\right) \rightarrow V\left(K_{1}\right)-\underline{\circ}$ and

$$
\begin{equation*}
\theta_{K_{1}}\left(A\left(K_{1}\right)\right) \subset\left\{\xi \in V\left(K_{1}\right) ; \operatorname{supp}(\xi)=\beta_{v, \mathbf{i}}\right\} \tag{d}
\end{equation*}
$$

$\left(\operatorname{supp}(\xi)\right.$ as in 1.4.) Let $\omega_{K_{1}}: A\left(K_{1}\right) \rightarrow P\left(K_{1}\right)$ be the composition of $\theta_{K_{1}}$ with the obvious map $V\left(K_{1}\right)-\underline{\circ} \rightarrow P\left(K_{1}\right)$. From the definitions, if $K_{1} \rightarrow K_{2}$ is a homomorphism of semifields, then we have a commutative
diagram

where the vertical maps are induced by $K_{1} \rightarrow K_{2}$.
3.5. In this subsection we assume that $m \geq 1$. We will consider two cases:
(I) $t_{1}=s_{i_{1}}$,
(II) $t_{1}=1$.

In case (I) we set $\left(v^{\prime}, w^{\prime}\right)=\left(s_{i_{1}} v, s_{i_{1}} w\right), \mathbf{i}^{\prime}=\left(i_{2}, i_{3}, \ldots, i_{m}\right) \in \mathcal{I}_{w^{\prime}}$. We have $v^{\prime} \leq w^{\prime}$ and the analogue of the sequence $q_{1}, q_{2}, \ldots, q_{m}$ in 3.2 for $\left(v^{\prime}, w^{\prime}, \mathbf{i}^{\prime}\right)$ is $q_{2}, q_{3}, \ldots, q_{m}$.

In case (II) we set $\left(v^{\prime}, w^{\prime}\right)=\left(v, s_{i_{1}} w\right), \mathbf{i}^{\prime}=\mathbf{i}$. We have $v^{\prime} \leq w^{\prime}$ and the analogue of the sequence $q_{1}, q_{2}, \ldots, q_{m}$ in 3.2 for $\left(v^{\prime}, w^{\prime}, \mathbf{i}^{\prime}\right)$ is $q_{2}, q_{3}, \ldots, q_{m}$. For a semifield K_{1} let $A^{\prime}\left(K_{1}\right)$ be the set of maps $[2, m]^{\prime} \rightarrow K_{1}$ (notation of 3.4) and let $\theta_{K_{1}}^{\prime}: A^{\prime}\left(K_{1}\right) \rightarrow V\left(K_{1}\right)-\underline{\circ}, \omega_{K_{1}}^{\prime}: A^{\prime}\left(K_{1}\right) \rightarrow P\left(K_{1}\right)$ be the analogues of $\theta_{K_{1}}, \omega_{K_{1}}$ in 3.4 when v, w is replaced by v^{\prime}, w^{\prime}. From the definitions, in case (I), for $h \in A\left(K_{1}\right)$ we have
(a) $\theta_{K_{1}}(h)=\mathcal{T}_{i_{1}, K_{1}}\left(\theta_{K_{1}}^{\prime}\left(\left.h\right|_{[2, m]^{\prime}}\right)\right.$
(notation of 2.6(a); in this case we have $\theta_{K_{1}}^{\prime}\left(\left.h\right|_{[2, m]^{\prime}}\right) \in V\left(K_{1}\right)^{e_{i_{1}}}$ by $3.3(\mathrm{a})$ and the arguments following it); hence
(b) $\omega_{K_{1}}(h)=\left[\mathcal{T}_{i_{1}, K_{1}}\right]\left(\omega_{K_{1}}^{\prime}\left(\left.h\right|_{[2, m]^{\prime}}\right)\right.$
where $\left[\mathcal{T}_{i_{1}, K_{1}}\right]$ is the bijection $\left(V\left(K_{1}\right)^{e_{i_{1}}}-\underline{o}\right) / K_{1} \rightarrow\left(V\left(K_{1}\right)^{f_{i_{1}}}-\underline{o}\right) / K_{1}$ induced by $\mathcal{T}_{i_{1}, K_{1}}: V\left(K_{1}\right)^{e_{i_{1}}} \rightarrow V\left(K_{1}\right)^{f_{i_{1}}}$ (the image of $\omega_{K_{1}}^{\prime}\left(\left.h\right|_{[2, m]^{\prime}}\right)$ is contained in $\left.\left(V\left(K_{1}\right)^{e_{i_{1}}}-\underline{o}\right) / K_{1}\right)$.

From the definitions, in case (II), for $h \in A\left(K_{1}\right)$ we have
(c) $\theta_{K_{1}}(h)=\left(-i_{1}\right)^{h\left(i_{1}\right)}\left(\theta_{K_{1}}^{\prime}\left(\left.h\right|_{[2, m]^{\prime}}\right)\right.$
(notation of 1.4).
3.6. In the remainder of this section we assume that $\lambda \in \mathcal{X}^{++}$. In the setup of 3.5 , let h, \tilde{h} be elements of $A\left(K_{1}\right)$. Let $\xi=\theta_{K_{1}}^{\prime}\left(\left.h\right|_{[2, m]^{\prime}}\right), \tilde{\xi}=\theta_{K_{1}}^{\prime}\left(\left.\tilde{h}\right|_{[2, m]^{\prime}}\right)$ be such that $\left(-i_{1}\right)^{h\left(i_{1}\right)}(\xi),\left(-i_{1}\right)^{\tilde{h}\left(i_{1}\right)}(\tilde{\xi})$ have the same image in $P(K)$. We show:
(a) $h\left(i_{1}\right)=\tilde{h}\left(i_{1}\right)$ and $\xi, \tilde{\xi}$ have the same image in $P(K)$.

By 3.2(a), (b) (for w^{\prime} instead of w),
(b) $b_{w^{\prime}}$ appears in ξ with coefficient $c \in K_{1}$; if $b \in \beta$ appears in ξ with coefficient $\neq \circ$ then $\nu_{b} \neq \nu_{b_{w^{\prime}}}+i_{1}^{\prime}$.

Similarly,
(c) $b_{w^{\prime}}$ appears in $\tilde{\xi}$ with coefficient $\tilde{c} \in K_{1}$; if $b \in \beta$ appears in $\tilde{\xi}$ with coefficient $\neq \circ$ then $\nu_{b} \neq \nu_{b_{w^{\prime}}}+i_{1}^{\prime}$.

From our assumption on λ we have $b_{w^{\prime}} \neq b_{w}=f_{i_{0}}^{(n)} b_{w^{\prime}}$ and $f_{i_{0}}^{(1)} b_{w^{\prime}} \neq \underline{\circ}$. By (b), (c) we have
$\left(-i_{1}\right)^{h\left(i_{1}\right)}(\xi)=c \beta_{w^{\prime}}+h\left(i_{1}\right) c f_{i_{0}}^{(1)} b_{w^{\prime}}+K_{1}^{\prime}$-comb. of $b \in \beta$ of other weights, $\left(-i_{1}\right)^{\tilde{h}\left(i_{1}\right)}(\tilde{\xi})=\tilde{c} \beta_{w^{\prime}}+\tilde{c} \tilde{h}\left(i_{1}\right) f_{i_{0}}^{(1)} b_{w^{\prime}}+K_{1}^{\prime}$-comb. of $b \in \beta$ of other weights. We deduce that for some $k \in K_{1}$ we have $\tilde{c}=k c, \tilde{c} \tilde{h}\left(i_{1}\right)=k c h\left(i_{1}\right)$. It follows that $h\left(i_{1}\right)=\tilde{h}\left(i_{1}\right)$. Using this and our assumption, we see that for some $k \in K_{1}$ we have $\left(-i_{1}\right)^{h\left(i_{1}\right)}(\xi)=\left(-i_{1}\right)^{h\left(i_{1}\right)}(c \tilde{\xi})$. Using 1.4(a) we deduce $\xi=c \tilde{\xi}$. This proves (a).
3.7. In the setup of 3.4 we show:
(a) $\omega_{K_{1}}: A\left(K_{1}\right) \rightarrow P\left(K_{1}\right)$ is injective.

We argue by induction on m. If $m=0$ there is nothing to prove. We now assume that $m \geq 1$. Let $\omega_{K_{1}}^{\prime}: A^{\prime}\left(K_{1}\right) \rightarrow P\left(K_{1}\right)$ be as in 3.5 . By the induction hypothesis, $\omega_{K_{1}}^{\prime}$ is injective. In case I (in 3.5), we use 3.5(b) and the bijectivity of $\left[\mathcal{T}_{i_{1}, K_{1}}\right]$ to deduce that $\omega_{K_{1}}$ is injective. In case II (in 3.5), we use 3.5 (c) and $3.6(\mathrm{a})$ to deduce that $\omega_{K_{1}}$ is injective. This proves (a).
3.8. According to 10],
(a) $h \mapsto \sigma(h) B^{+} \sigma(h)^{-1}$ defines an isomorphism τ from A to an open subvariety of $\mathcal{B}_{v, w}$ containing $\left(\mathcal{B}_{v, w}\right)_{\geq 0}$ and τ restricts to a bijection $A_{\geq 0} \xrightarrow{\sim}\left(\mathcal{B}_{v, w}\right)_{\geq 0}$.
(The existence of a homeomorphism $\mathbf{R}_{>0}^{|w|-|v|} \xrightarrow{\sim}\left(\mathcal{B}_{v, w}\right) \geq 0$ was conjectured in [5].)

We define $\tilde{A}_{\geq 0}$ in terms A and its subset $A_{\geq 0}$ as in 1.9. Note that $\tilde{A}_{\geq 0}$ can be identified with the set of maps $h:[1, m]^{\prime} \rightarrow K$ that is, with $A(K)$ (notation of 3.4). Now $\tau: A \rightarrow \mathcal{B}_{v, w}$ (see (a)) carries $A_{\geq 0}$ onto the subset $\left(\mathcal{B}_{v, w}\right)_{\geq 0}$ of $\mathcal{B}_{v, w}$ hence it induces a map
(b) $A(K)=\tilde{A}_{\geq 0} \rightarrow \widetilde{\mathcal{B}_{v, w}}$, which is a bijection.
(We use (a) and 1.9(a)).
3.9. From the definition we deduce that we have canonically
(a) $\tilde{\mathcal{B}}_{\geq 0}=\sqcup_{v, w}$ in $W, v \leq w \widetilde{\mathcal{B}_{v, w}} \geq 0$.

The left hand side is identified in 1.10 with $P^{\bullet}(K)$, a subspace of $P(K)$. Hence the subset $\widetilde{\mathcal{B}_{v, w} \geq 0}$ of $\tilde{\mathcal{B}}_{\geq 0}$ can be viewed as a subset $P_{v, w}(K)$ of $P(K)$ and 3.8(b) defines a bijection of $A(K)$ onto $P_{v, w}(K)$. The composition of this bijection with the imbedding $P_{v, w}(K) \subset P(K)$ coincides with the map $\omega_{K}: A \rightarrow P(K)$ in 3.4. (This follows from definitions.)

Similarly, the composition of the imbeddings

$$
\left(\mathcal{B}_{v, w}\right)_{\geq 0} \subset \mathcal{B}_{\geq 0}=P_{\geq 0}^{\bullet} \subset P_{\geq 0}=P\left(\mathbf{R}_{>0}\right)
$$

(see $1.7(\mathrm{a})$) can be identified via $3.8(\mathrm{a})$ with the imbedding $\omega_{\mathbf{R}_{>0}}: A_{\geq 0} \rightarrow$ $P\left(\mathbf{R}_{>0}\right)$ whose image is denoted by $P_{v, w}\left(\mathbf{R}_{>0}\right)$.

Recall that $P^{\bullet}(\mathbf{Z})$ is the image of $P^{\bullet}(K)$ under the map $P(K) \rightarrow P(\mathbf{Z})$ induced by $r: K \rightarrow \mathbf{Z}$ (see 1.11). For $v \leq w$ in W let $P_{v, w}(\mathbf{Z})$ be the image of $P_{v, w}(K)$ under the map $P(K) \rightarrow P(\mathbf{Z})$. We have clearly $P^{\bullet}(\mathbf{Z})=$ $\cup_{v \leq w} P_{v, w}(\mathbf{Z})$. From the commutative diagram in 3.4 attached to $r: K \rightarrow \mathbf{Z}$
we deduce a commutative diagram

in which the vertical maps are surjective and the upper horizontal map is a bijection. It follows that the lower horizontal map is surjective; but it is also injective (see 3.7(a)) hence bijective.
3.10. We return to the setup of 3.4. If K_{1} is one of the semifields $\mathbf{R}_{>0}, K, \mathbf{Z}$, then the elements of $P_{v, w}\left(K_{1}\right)$ are represented by elements of $\xi \in V\left(K_{1}\right)$ with $\operatorname{supp}(\xi)=\beta_{v, \mathbf{i}}$. In the case where $K_{1}=\mathbf{R}_{>0}, P_{v, w}\left(K_{1}\right)$ depends only on v, w and not on \mathbf{i}. It follows that $\beta_{v, \mathbf{i}}$ depends only on v, w not on \mathbf{i} hence we can write $\beta_{v, w}$ instead of $\beta_{v, \mathbf{i}}$.

Note that in [9, 2.4] it was conjectured (for $\mathbf{R}_{>0}$) that the set $[[v, w]]$ defined in [9, 2.3(a)] in type A_{2} should make sense in general. This conjecture is now established for $\mathbf{R}_{>0}$ by taking $[[v, w]]=\beta_{v, w}$ (and the analogue of the conjecture for K_{1} as above is also established).

Using 2.4(a) and the definitions we see that
(a)

$$
\beta_{v, w} \subset \beta^{w} \cap \phi\left(\beta^{v w_{I}}\right)
$$

We expect that this is an equality (a variant of a conjecture in [9, 2.4], see also [9, 2.3(a)]). From 3.4 we see that

$$
\begin{equation*}
b_{w} \in \beta_{v, w} \tag{b}
\end{equation*}
$$

From 2.3(d) we deduce:
(c)

$$
\phi\left(\beta_{w w_{I}, v w_{I}}\right)=\beta_{v, w}
$$

Using (b), (c) we deduce:

$$
\begin{equation*}
\phi\left(b_{v w_{I}}\right) \in \beta_{v, w} . \tag{d}
\end{equation*}
$$

3.11. For K_{1} as in 3.10 and for $v \leq w$ in $W, v^{\prime} \leq w^{\prime}$ in W, we show:
(a) If $P_{v, w}\left(K_{1}\right) \cap P_{v^{\prime}, w^{\prime}}\left(K_{1}\right) \neq \emptyset$, then $v=v^{\prime}, w=w^{\prime}$.

If K_{1} is $\mathbf{R}_{>0}$ or K this is already known. We will give a proof of (a) which applies also when $K_{1}=\mathbf{Z}$. From the results in 3.10 we see that it is enough to show:
(b) If $\beta_{v, w}=\beta_{v^{\prime}, w^{\prime}}$, then $v=v^{\prime}, w=w^{\prime}$.

From 3.10(b) we have $b_{w^{\prime}} \in \beta_{v^{\prime}, w^{\prime}}$ hence $b_{w^{\prime}} \in \beta_{v, w}$ so that (using 3.10(a)) we have $b_{w^{\prime}} \in \beta^{w}$. Using 2.1(a) we deduce that $b_{w^{\prime}} \in V^{\prime \mathbf{i}}$ (with \mathbf{i} as in 2.1). It follows that either $b_{w^{\prime}}=b_{w}$ or $\nu_{b_{w^{\prime}}}-\nu_{b_{w}}$ is of the form $j_{1}^{\prime}+j_{2}^{\prime}+\cdots+j_{k}^{\prime}$ with $j_{t} \in I$ and $k \geq 1$. Interchanging the roles of w, w^{\prime} we see that either $b_{w}=b_{w^{\prime}}$ or $\nu_{b_{w}}-\nu_{b_{w^{\prime}}}$ is of the form $\tilde{j}_{1}^{\prime}+\tilde{j}_{2}^{\prime}+\cdots+\tilde{j}_{k^{\prime}}^{\prime}$ with $\tilde{j}_{t} \in I$ and $k^{\prime} \geq 1$. If $b_{w} \neq b_{w^{\prime}}$ then we must have $j_{1}^{\prime}+j_{2}^{\prime}+\cdots+j_{k}^{\prime}+\tilde{j}_{1}^{\prime}+\tilde{j}_{2}^{\prime}+\cdots+\tilde{j}_{k^{\prime}}^{\prime}=0$, which is absurd. Thus we have $b_{w}=b_{w^{\prime}}$. Since $\lambda \in \mathcal{X}^{++}$this implies $w=w^{\prime}$.

Now applying ϕ to the first equality in (a) and using 3.10(c) we see that $\beta_{w w_{I}, v w_{I}}=\beta_{w^{\prime} w_{I}, v^{\prime} w_{I}}$. Using the first part of the argument with $v, w, v^{\prime}, w^{\prime}$ replaced by $w w_{I}, v w_{I}, w^{\prime} w_{I}, v^{\prime} w_{I}$, we see that $v w_{I}=v^{\prime} w_{I}$ hence $v=v^{\prime}$. This completes the proof of (b) hence that of (a).

Now the proof of Theorem 0.2 is complete.
3.12. Now $\phi: \mathcal{B} \rightarrow \mathcal{B}$ (see 2.3) induces an involution $\tilde{\mathcal{B}} \rightarrow \tilde{\mathcal{B}}$ and an involution $\tilde{\mathcal{B}}_{\geq 0} \rightarrow \tilde{\mathcal{B}}_{\geq 0}$ denoted again by ϕ. From 2.3(a), (d) we deduce that this involution restricts to a bijection $\widetilde{\mathcal{B}_{w w_{I}, v w_{I} \geq 0}} \rightarrow \widetilde{\mathcal{B}_{v, w \geq 0}}$ for any $v \leq w$ in W. The involution $\phi: \tilde{\mathcal{B}}_{\geq 0} \rightarrow \tilde{\mathcal{B}}_{\geq 0}$ can be viewed as an involution of $P^{\bullet}(K)$ which coincides with the restriction of the involution $\phi: P(K) \rightarrow P(K)$ in 2.7. The last involution is compatible with the involution $\phi: P(\mathbf{Z}) \rightarrow P(\mathbf{Z})$ in 2.7 under the map $P(K) \rightarrow P(\mathbf{Z})$ induced by $r: K \rightarrow \mathbf{Z}$. It follows the image $P^{\bullet}(\mathbf{Z})$ of $P^{\bullet}(K)$ under $P(K) \rightarrow P(\mathbf{Z})$ is stable under $\phi: P(\mathbf{Z}) \rightarrow$ $P(\mathbf{Z})$. Thus there is an induced involution ϕ on $\mathcal{B}(\mathbf{Z})=P^{\bullet}(\mathbf{Z})$ which carries $P_{w w_{I}, v w_{I}}(\mathbf{Z})$ onto $P_{v, w}(\mathbf{Z})$ for any $v \leq w$ in W.

4. Independence on λ

4.1. For $\lambda, \lambda^{\prime}$ in \mathcal{X}^{+}let ${ }^{\lambda, \lambda^{\prime}} P$ be the set of lines in ${ }^{\lambda} V \otimes{ }^{\lambda^{\prime}} V$. We define a linear map $E:{ }^{\lambda} V \times{ }^{\lambda^{\prime}} V \rightarrow{ }^{\lambda} V \otimes \lambda^{\lambda^{\prime}} V$ by $\left(\xi, \xi^{\prime}\right) \mapsto \xi \otimes \xi^{\prime}$. This induces a map $\bar{E}:{ }^{\lambda} P \times{ }^{\lambda^{\prime}} P \rightarrow{ }^{\lambda, \lambda^{\prime}} P$.

Let K_{1} be a semifield. Let $\mathcal{S}={ }^{\lambda} \beta \times{ }^{\lambda^{\prime}} \beta$. Let ${ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)$ be the set of formal sums $u=\sum_{s \in \mathcal{S}} u_{s} s$ where $u_{s} \in K_{1}^{!}$. This is a monoid under addition (component by component) and we define scalar multiplication

$$
K_{1}^{\prime} \times^{\lambda, \lambda^{\prime}} V\left(K_{1}\right) \rightarrow^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)
$$

by $\left(k, \sum_{s \in \mathcal{S}} u_{s} s\right) \mapsto \sum_{s \in \mathcal{S}}\left(k u_{s}\right) s$. Let $\operatorname{End}\left({ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)\right)$ be the set of maps $\zeta:{ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right) \rightarrow{ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)$ such that $\zeta\left(\xi+\xi^{\prime}\right)=\zeta(\xi)+\zeta\left(\xi^{\prime}\right)$ for ξ, ξ^{\prime} in ${ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)$ and $\zeta(k \xi)=k \zeta(\xi)$ for $\xi \in{ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right), k \in K_{1}^{\prime}$. This is a monoid under composition of maps.

We define a map

$$
E\left(K_{1}\right):{ }^{\lambda} V\left(K_{1}\right) \times{ }^{\lambda^{\prime}} V\left(K_{1}\right) \rightarrow^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)
$$

by

$$
\left(\sum_{b_{1} \in^{\lambda} \beta} \xi_{b_{1}} b_{1}\right),\left(\sum_{b_{1}^{\prime} \in^{\lambda^{\prime} \beta}} \xi_{b_{1}^{\prime}}^{\prime} b_{1}^{\prime}\right) \mapsto \sum_{\left(b_{1}, b_{1}^{\prime}\right) \in \mathcal{S}} \xi_{b_{1}} \xi_{b_{1}^{\prime}}^{\prime}\left(b_{1}, b_{1}^{\prime}\right) .
$$

We define a map

$$
\operatorname{End}\left({ }^{\lambda} V\left(K_{1}\right)\right) \times \operatorname{End}\left({ }^{\lambda^{\prime}} V\left(K_{1}\right)\right) \rightarrow \operatorname{End}\left({ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)\right)
$$

by $\left(\tau, \tau^{\prime}\right) \mapsto\left[\left(b_{1}, b_{1}^{\prime}\right) \mapsto E\left(K_{1}\right)\left(\tau\left(b_{1}\right), \tau^{\prime}\left(b_{1}^{\prime}\right)\right)\right]$. Composing this map with the map

$$
\mathfrak{G}\left(K_{1}\right) \rightarrow \operatorname{End}\left({ }^{\lambda} V\left(K_{1}\right)\right) \times \operatorname{End}\left({ }^{\lambda^{\prime}} V\left(K_{1}\right)\right)
$$

whose components are the maps

$$
\mathfrak{G}\left(K_{1}\right) \rightarrow \operatorname{End}\left({ }^{\lambda} V\left(K_{1}\right)\right), \quad \mathfrak{G}\left(K_{1}\right) \rightarrow \operatorname{End}\left(\lambda^{\prime} V\left(K_{1}\right)\right)
$$

in 1.5 we obtain a map $\mathfrak{G}\left(K_{1}\right) \rightarrow \operatorname{End}\left({ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)\right)$ which is a monoid homomorphism. Thus $\mathfrak{G}\left(K_{1}\right)$ acts on ${ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)$; it also acts on ${ }^{\lambda} V\left(K_{1}\right) \times{ }^{\lambda^{\prime}} V\left(K_{1}\right)$ (by 1.5) and the two actions are compatible with $E\left(K_{1}\right)$.

Let \propto be the element $u \in^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)$ such that $u_{s}=\circ$ for all $s \in \mathcal{S}$. Let ${ }^{\lambda, \lambda^{\prime}} P\left(K_{1}\right)$ be the set of orbits of the free K_{1} action (scalar multiplication) on ${ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)$ - o. Now $E\left(K_{1}\right)$ restricts to a map

$$
\left.\left({ }^{\lambda} V\left(K_{1}\right)\right)-\underline{\circ}\right) \times\left({ }^{\lambda^{\prime}} V\left(K_{1}\right)-\underline{\circ}\right) \rightarrow^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)-\underline{\circ}
$$

and induces an (injective) map

$$
\bar{E}\left(K_{1}\right):{ }^{\lambda} P\left(K_{1}\right) \times{ }^{\lambda^{\prime}} P\left(K_{1}\right) \rightarrow^{\lambda, \lambda^{\prime}} P\left(K_{1}\right)
$$

Now $\mathfrak{G}\left(K_{1}\right)$ acts naturally on ${ }^{\lambda} P\left(K_{1}\right) \times{ }^{\lambda^{\prime}} P\left(K_{1}\right)$ and on ${ }^{\lambda, \lambda^{\prime}} P\left(K_{1}\right)$; these $\mathfrak{G}\left(K_{1}\right)$-actions are compatible with $\bar{E}\left(K_{1}\right)$.
4.2. For $\lambda, \lambda^{\prime}$ in \mathcal{X}^{+}there is a unique linear map

$$
\Gamma:^{\lambda+\lambda^{\prime}} V \rightarrow^{\lambda} V \otimes^{\lambda^{\prime}} V
$$

which is compatible with the G-actions and takes ${ }^{\lambda+\lambda^{\prime}} \xi^{+}$to ${ }^{\lambda} \xi^{+} \otimes^{\lambda^{\prime}} \xi^{+}$. This induces a map $\bar{\Gamma}:{ }^{\lambda+\lambda^{\prime}} P \rightarrow{ }^{\lambda, \lambda^{\prime}} P$.

For $b \in^{\lambda+\lambda^{\prime}} \beta$ we have

$$
\Gamma(b)=\sum_{\left(b_{1}, b_{1}^{\prime}\right) \in \mathcal{S}} e_{b, b_{1}, b_{1}^{\prime}} b_{1} \otimes b_{1}^{\prime}
$$

where $e_{b, b_{1}, b_{1}^{\prime}} \in \mathbf{N}$. (This can be deduced from the positivity property 3 , 14.4.13(b)] of the homomorphism r in [3, 1.2.12].) There is a unique map

$$
\Gamma\left(K_{1}\right):^{\lambda+\lambda^{\prime}} V\left(K_{1}\right) \rightarrow^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)
$$

compatible with addition and scalar multiplication and such that for $b \in$ $\lambda+\lambda^{\prime} \beta$ we have

$$
\Gamma\left(K_{1}\right)(b)=\sum_{\left(b_{1}, b_{1}^{\prime}\right) \in \mathcal{S}} e_{b, b_{1}, b_{1}^{\prime}}\left(b_{1}, b_{1}^{\prime}\right)
$$

where $e_{b, b_{1}, b_{1}^{\prime}}$ are viewed as elements of $K_{1}^{!}$. Since Γ is injective, for any $b \in^{\lambda+\lambda^{\prime}} \beta$ we have $e_{b, b_{1}, b_{1}^{\prime}} \in \mathbf{N}-\{0\}$ for some b_{1}, b_{1}^{\prime}, hence $e_{b, b_{1}, b_{1}^{\prime}} \in K_{1}$, when viewed as an element of K_{1}^{1}. It follows that $\Gamma\left(K_{1}\right)$ maps ${ }^{\lambda+\lambda^{\prime}} V\left(K_{1}\right)-\underline{o}$ into
${ }^{\lambda, \lambda^{\prime}} V\left(K_{1}\right)$ - o. Hence $\Gamma\left(K_{1}\right)$ defines an (injective) map

$$
\bar{\Gamma}\left(K_{1}\right):^{\lambda+\lambda^{\prime}} P\left(K_{1}\right) \rightarrow^{\lambda, \lambda^{\prime}} P\left(K_{1}\right)
$$

which is compatible with the action of $\mathfrak{G}\left(K_{1}\right)$ on the two sides.
4.3. We now assume that K_{1} is either K as in 0.1 (i) or \mathbf{Z} as in 0.1 (ii) and that $\lambda \in \mathcal{X}^{++}, \lambda^{\prime} \in \mathcal{X}^{+}$so that $\lambda+\lambda^{\prime} \in \mathcal{X}^{++}$. We have the following result.
(a) Let $\mathcal{L} \in{ }^{\lambda+\lambda^{\prime}} P^{\bullet}\left(K_{1}\right)$. Then $\bar{\Gamma}\left(K_{1}\right)(\mathcal{L})=\bar{E}\left(K_{1}\right)\left(\mathcal{L}_{1}, \mathcal{L}_{1}^{\prime}\right)$ for some $\left(\mathcal{L}_{1}, \mathcal{L}_{1}^{\prime}\right)$ $\in{ }^{\lambda} P^{\bullet}\left(K_{1}\right) \times{ }^{\lambda^{\prime}} P\left(K_{1}\right)$ (which is unique, by the injectivity of $\left.\bar{E}\left(K_{1}\right)\right)$. Thus, $\mathcal{L} \mapsto \mathcal{L}_{1}$ is a well defined map $H\left(K_{1}\right):{ }^{\lambda+\lambda^{\prime}} P^{\bullet}\left(K_{1}\right) \rightarrow{ }^{\lambda} P^{\bullet}\left(K_{1}\right)$.

We shall prove (a) for $K_{1}=\mathbf{Z}$ assuming that it is true for $K_{1}=K$. We can find $\tilde{\mathcal{L}} \in{ }^{\lambda+\lambda^{\prime}} P^{\bullet}(K)$ such that $\mathcal{L} \in{ }^{\lambda+\lambda^{\prime}} P^{\bullet}(\mathbf{Z})$ is the image of $\tilde{\mathcal{L}}$ under the map ${ }^{\lambda+\lambda^{\prime}} P^{\bullet}(K) \rightarrow^{\lambda+\lambda^{\prime}} P^{\bullet}(\mathbf{Z})$ induced by $r: K \rightarrow \mathbf{Z}$. By our assumption we have $\bar{\Gamma}(K)(\tilde{\mathcal{L}})=\bar{E}(K)\left(\tilde{\mathcal{L}}_{1}, \tilde{\mathcal{L}}_{1}^{\prime}\right)$ with $\left(\tilde{\mathcal{L}}_{1}, \tilde{\mathcal{L}}_{1}^{\prime}\right) \in{ }^{\lambda} P^{\bullet}(K) \times{ }^{\lambda^{\prime}} P(K)$. Let \mathcal{L}_{1} (resp. \mathcal{L}_{1}^{\prime}) be the image of $\tilde{\mathcal{L}}_{1}$ (resp. $\tilde{\mathcal{L}}_{1}^{\prime}$) under the map ${ }^{\lambda} P^{\bullet}(K) \rightarrow{ }^{\lambda} P^{\bullet}(\mathbf{Z})$ (resp. ${ }^{\lambda^{\prime}} P(K) \rightarrow{ }^{\lambda^{\prime}} P(\mathbf{Z})$) induced by $r: K \rightarrow \mathbf{Z}$. From the definitions we see that $\bar{\Gamma}(\mathbf{Z})(\mathcal{L})=\bar{E}(\mathbf{Z})\left(\mathcal{L}_{1}, \mathcal{L}_{1}^{\prime}\right)$. This proves the existence of $\left(\mathcal{L}_{1}, \mathcal{L}_{1}^{\prime}\right)$. The proof of (a) in the case where $K_{1}=K$ will be given in 4.6.

Assuming that (a) holds, we have a commutative diagram

in which the vertical maps are induced by $r: K \rightarrow \mathbf{Z}$.
4.4. We preserve the setup of 4.3. For each $w \in W$ we assume that a sequence $\mathbf{i}_{w}=\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathcal{I}_{w}$ has been chosen (here $\left.m=|w|\right)$. Let $\mathcal{Z}\left(K_{1}\right)=\sqcup_{v \leq w}$ in ${ }_{W} A_{v, w}\left(K_{1}\right)$ where $A_{v, w}\left(K_{1}\right)$ is the set of all maps $[1, m]^{\prime} \rightarrow$ K_{1} (with $[1, m]^{\prime}$ defined as in 3.2 in terms of v, w and $\mathbf{i}=\mathbf{i}_{w}$). From the results in 3.9 we have a bijection

$$
{ }^{\lambda} D\left(K_{1}\right): \mathcal{Z}\left(K_{1}\right) \xrightarrow{\sim}{ }^{\lambda} P^{\bullet}\left(K_{1}\right)
$$

whose restriction to $A_{v, w}\left(K_{1}\right)$ is as in the last commutative diagram in 3.9 (with $\mathbf{i}=\mathbf{i}_{w}$). Replacing here λ by $\lambda+\lambda^{\prime}$ we obtain an analogous bijection

$$
{ }^{\lambda+\lambda^{\prime}} D\left(K_{1}\right): \mathcal{Z}\left(K_{1}\right) \xrightarrow{\sim}{ }^{\lambda+\lambda^{\prime}} P^{\bullet}\left(K_{1}\right) .
$$

From the commutative diagram in 3.4 we deduce a commutative diagram

and a commutative diagram

in which the vertical maps are induced by $r: K \rightarrow \mathbf{Z}$.
4.5. We preserve the setup of 4.3 . We assume that 4.3 (a) holds. From the commutative diagrams in $4.3,4.4$ we deduce a commutative diagram

in which the vertical maps are induced by $r: K \rightarrow \mathbf{Z}$. Recall that K_{1} is K or \mathbf{Z}. We have the following result.
(a) $\left({ }^{\lambda} D\left(K_{1}\right)\right)^{-1} H\left(K_{1}\right)^{\lambda+\lambda^{\prime}} D\left(K_{1}\right)$ is the identity map $\mathcal{Z}\left(K_{1}\right) \rightarrow \mathcal{Z}\left(K_{1}\right)$.

If (a) holds for $K_{1}=K$ then it also holds for $K_{1}=\mathbf{Z}$, in view of the commutative diagram above in which the vertical maps are surjective. The proof of (a) in the case $K_{1}=K$ will be given in 4.7.

From (a) we deduce:
(b) $H\left(K_{1}\right)$ is a bijection.
4.6. In this subsection we assume that $K_{1}=K$. Let $\mathbf{k}=\mathbf{C}(x)$ where x is an indeterminate. We have $K^{!} \subset \mathbf{k}$. For any $\lambda \in \mathcal{X}^{+}$we set ${ }^{\lambda} V_{\mathbf{k}}=\mathbf{k} \otimes{ }^{\lambda} V$. This is naturally a module over the group $G(\mathbf{k})$ of \mathbf{k} points of G. Let $\mathcal{B}(\mathbf{k})$ be the set of subgroups of $G(\mathbf{k})$ that are $G(\mathbf{k})$-conjugate to $B^{+}(\mathbf{k})$, the group of \mathbf{k}-points of B^{+}. We identify ${ }^{\lambda} V(K)$ with the set of vectors in ${ }^{\lambda} V_{\mathbf{k}}$ whose coordinates in the \mathbf{k}-basis ${ }^{\lambda} \beta$ are in $K^{!}$. In the case where $\lambda \in \mathcal{X}^{++}$, we identify ${ }^{\lambda} V^{\bullet}(K)-0$ with the set of all $\xi \in{ }^{\lambda} V(K)-0$ such that the stabilizer in $G(\mathbf{k})$ of the line [$\xi]$ belongs to $\mathcal{B}(\mathbf{k})$. (For a nonzero vector ξ in a \mathbf{k}-vector space we denote by $[\xi]$ the \mathbf{k}-line in that vector space that contains ξ.)

Now let $\lambda \in \mathcal{X}^{++}, \lambda^{\prime} \in \mathcal{X}^{+}$. We show that 4.3(a) holds for $\lambda, \lambda^{\prime}$. We identify ${ }^{\lambda, \lambda^{\prime}} V(K)$ with the set of vectors in ${ }^{\lambda} V_{\mathbf{k}} \otimes_{\mathbf{k}}{ }^{\lambda^{\prime}} V_{\mathbf{k}}$ whose coordinates in the \mathbf{k}-basis ${ }^{\lambda} \beta \otimes{ }^{\lambda^{\prime}} \beta$ are in $K^{!}$.

Then $E(K)$ becomes the restriction of the homomorphism of $G(\mathbf{k})$ modules $E^{\prime}:{ }^{\lambda} V_{\mathbf{k}} \times{ }^{\lambda^{\prime}} V_{\mathbf{k}} \rightarrow{ }^{\lambda} V_{\mathbf{k}} \otimes_{\mathbf{k}}{ }^{\lambda} V_{\mathbf{k}}$ given by $\left(\xi, \xi^{\prime}\right) \mapsto \xi \otimes_{\mathbf{k}} \xi^{\prime}$ and $\Gamma(K)$ becomes the restriction of the homomorphism of $G(\mathbf{k})$-modules Γ^{\prime} : ${ }^{\lambda+\lambda^{\prime}} V_{\mathbf{k}} \rightarrow{ }^{\lambda} V_{\mathbf{k}} \otimes_{\mathbf{k}}{ }^{\lambda^{\prime}} V_{\mathbf{k}}$ obtained from Γ by extension of scalars.

Let $L_{\lambda}=\left[{ }^{\lambda} \xi^{+}\right] \subset{ }^{\lambda} V_{\mathbf{k}}, L_{\lambda^{\prime}}=\left[\lambda^{\prime} \xi^{+}\right] \subset{ }^{\lambda^{\prime}} V_{\mathbf{k}}, L_{\lambda+\lambda^{\prime}}=\left[{ }^{\lambda+\lambda^{\prime}} \xi^{+}\right] \subset{ }^{\lambda+\lambda^{\prime}} V_{\mathbf{k}}$. Now let $\xi \in^{\lambda+\lambda^{\prime}} V^{\bullet}(K)-0$. Then $[\xi]=g L_{\lambda+\lambda^{\prime}}$ for some $g \in G(\mathbf{k})$ hence

$$
\begin{aligned}
\Gamma^{\prime}([\xi]) & =g\left(L_{\lambda} \otimes L_{\lambda^{\prime}}\right)=\left(g L_{\lambda}\right) \otimes\left(g\left(L_{\lambda^{\prime}}\right)=E^{\prime}\left(g L_{\lambda}, g\left(L_{\lambda^{\prime}}\right)\right.\right. \\
& =E^{\prime}\left(\left[g\left({ }^{\lambda} \xi^{+}\right)\right],\left[g\left({ }^{\lambda^{\prime}} \xi^{+}\right)\right]\right)
\end{aligned}
$$

To prove 4.3(a) in our case it is enough to prove that for some c, c^{\prime} in \mathbf{k}^{*} we have $c g\left({ }^{\lambda} \xi^{+}\right) \in{ }^{\lambda} V(K), c^{\prime} g\left(\lambda^{\prime} \xi^{+}\right) \in{ }^{\lambda^{\prime}} V(K)$. We have $\xi=c_{0} g\left({ }^{\lambda+\lambda^{\prime}} \xi^{+}\right)$for some $c_{0} \in \mathbf{k}^{*}$ and $\Gamma^{\prime}(\xi)=\Gamma(\xi) \in{ }^{\lambda, \lambda^{\prime}} V(K)$. Thus, $c_{0} \Gamma^{\prime}\left(g\left({ }^{\lambda+\lambda^{\prime}} \xi\right) \in{ }^{\lambda, \lambda^{\prime}} V(K)\right.$ that is, $c_{0}\left(g^{\lambda} \xi^{+}\right) \otimes\left(g^{\lambda^{\prime}} \xi^{+}\right) \in{ }^{\lambda, \lambda^{\prime}} V(K)$. It is enough to show:
(a) If $z \in{ }^{\lambda} V_{\mathbf{k}}, z^{\prime} \in{ }^{\lambda^{\prime}} V_{\mathbf{k}}, c_{0} \in \mathbf{k}^{*}$ satisfy $c_{0} z \otimes z^{\prime} \in{ }^{\lambda, \lambda^{\prime}} V(K)-0$, then $c z \in{ }^{\lambda} V(K)-0, c^{\prime} z^{\prime} \in \lambda^{\prime} V(K)-0$ for some c, c^{\prime} in \mathbf{k}^{*}.

We write $z=\sum_{b \in^{\lambda} \beta} z_{b} b, z^{\prime}=\sum_{b^{\prime} \in \lambda^{\prime} \beta} z_{b^{\prime}}^{\prime} b^{\prime}$ with $z_{b}, z_{b^{\prime}}^{\prime}$ in \mathbf{k}. We have $c_{0} z_{b} z_{b^{\prime}}^{\prime} \in K^{!}$for all b, b^{\prime}. Replacing z by $c_{0} z$ we can assume that $c_{0}=1$ so that $z_{b} z_{b^{\prime}}^{\prime} \in K^{!}$for all b, b^{\prime} and $z_{b} z_{b^{\prime}}^{\prime} \neq 0$ for some b, b^{\prime}. Thus we can find $b_{0}^{\prime} \in \lambda^{\prime} \beta$ such that $z_{b_{0}^{\prime}}^{\prime} \in K$. We have $z_{b} z_{b_{0}^{\prime}}^{\prime} \in K^{!}$for all b. Replacing z by $z_{b_{0}^{\prime}}^{\prime} z$ we can assume that $z_{b} \in K^{!}$for all b. We can find $b_{0} \in{ }^{\lambda} \beta$ such that
$z_{b_{0}} \in K$. We have $z_{b_{0}} z_{b^{\prime}}^{\prime} \in K^{!}$for all b^{\prime}. It follows that $z_{b^{\prime}}^{\prime} \in K^{!}$for all b^{\prime}. This proves (a) and completes the proof of 4.3(a).
4.7. We preserve the setup of 4.3 and assume that $K_{1}=K$. We show that 4.5(a) holds in this case. Let $v \leq w, \mathbf{i}$ be as in 3.2 and let $A\left(K_{1}\right)$ be as in 3.4. Let $h \in A\left(K_{1}\right)$. We have ${ }^{\lambda+\lambda^{\prime}} D\left(K_{1}\right)(h)=\left[\sigma_{K_{1}}(h)^{\lambda+\lambda^{\prime}} \xi^{+}\right]$where $\sigma_{K_{1}}: A\left(K_{1}\right) \rightarrow G(\mathbf{k})$ is defined by the same formula as σ in 3.2. (Note that for $i \in I, y_{i}(t) \in G(\mathbf{k})$ is defined for any $t \in \mathbf{k}$.) Hence

$$
\begin{aligned}
\bar{\Gamma}\left(K_{1}\right)^{\lambda+\lambda^{\prime}} D\left(K_{1}\right)(h) & =\left[\left(\sigma_{K_{1}}(h)^{\lambda} \xi^{+}\right) \otimes\left(\sigma_{K_{1}}(h)^{\lambda^{\prime}} \xi^{+}\right)\right] \\
& =\bar{E}\left(K_{1}\right)\left(\left[\sigma_{K_{1}}(h)^{\lambda} \xi^{+}\right],\left[\sigma_{K_{1}}(h)^{\lambda^{\prime}} \xi^{+}\right]\right)
\end{aligned}
$$

so that

$$
H\left(K_{1}\right)^{\lambda+\lambda^{\prime}} D\left(K_{1}\right)(h)=\left[\sigma_{K_{1}}(h)^{\lambda} \xi^{+}\right]={ }^{\lambda} D\left(K_{1}\right)(h)
$$

This shows that the map in $4.5(\mathrm{a})$ takes h to h for any $h \in A\left(K_{1}\right)$. This proves 4.5(a).
4.8. We now assume that K_{1} is either K as in 0.1 (i) or \mathbf{Z} as in 0.1 (ii) and that $\lambda \in \mathcal{X}^{++}, \lambda^{\prime} \in \mathcal{X}^{++}$. From 4.3(a),4.5(a) we have a well defined bijection $H\left(K_{1}\right):{ }^{\lambda+\lambda^{\prime}} P^{\bullet}\left(K_{1}\right) \xrightarrow{\sim}{ }^{\lambda} P^{\bullet}\left(K_{1}\right)$. Interchanging $\lambda, \lambda^{\prime}$ we obtain a bijection $H^{\prime}\left(K_{1}\right):{ }^{\lambda+\lambda^{\prime}} P^{\bullet}\left(K_{1}\right) \xrightarrow{\sim}{ }^{\lambda^{\prime}} P^{\bullet}\left(K_{1}\right)$. Hence we have a bijection

$$
\gamma_{\lambda, \lambda^{\prime}}=H^{\prime}\left(K_{1}\right) H\left(K_{1}\right)^{-1}:{ }^{\lambda} P^{\bullet}\left(K_{1}\right) \xrightarrow{\sim}{ }^{\lambda^{\prime}} P^{\bullet}\left(K_{1}\right) .
$$

From the definitions we see that $H\left(K_{1}\right)$ is compatible with the $\mathfrak{G}\left(K_{1}\right)$ actions. Similarly, $H^{\prime}\left(K_{1}\right)$ is compatible with the $\mathfrak{G}\left(K_{1}\right)$-actions. It follows that $\gamma_{\lambda, \lambda^{\prime}}$ is compatible with the $\mathfrak{G}\left(K_{1}\right)$-actions. From the definitions we see that if $\lambda^{\prime \prime}$ is third element of \mathcal{X}^{++}, we have

$$
\gamma_{\lambda, \lambda^{\prime \prime}}=\gamma_{\lambda^{\prime}, \lambda^{\prime \prime}} \gamma_{\lambda, \lambda^{\prime}}
$$

This shows that our definition of $\mathcal{B}\left(K_{1}\right)$ is independent of the choice of λ.

5. The Non-simply Laced Case

5.1. Let $\delta: G \rightarrow G$ be an automorphism of G such that $\delta\left(B^{+}\right)=$ $B^{+}, \delta\left(B^{-}\right)=B^{-}$and $\delta\left(x_{i}(t)\right)=x_{i^{\prime}}(t), \delta\left(y_{i}(t)\right)=y_{i^{\prime}}(t)$ for all $i \in I, t \in \mathbf{C}$ where $i \mapsto i^{\prime}$ is a permutation of I denoted again by δ. We define an automorphism of W by $s_{i} \mapsto s_{\delta(i)}$ for all $i \in I$; we denote this automorphism again by δ. We assume further that $s_{i} s_{\delta(i)}=s_{\delta(i)} s_{i}$ for any $i \in I$. The fixed point set G^{δ} of $\delta: G \rightarrow G$ is a connected simply connected semisimple group over \mathbf{C}. The fixed point set W^{δ} of $\delta: W \rightarrow W$ is the Weyl group of G^{δ} and as such it has a length function $w \mapsto|w|_{\delta}$.

Now δ takes any Borel subgroup of G to a Borel subgroup of G hence it defines an automorphism of \mathcal{B} denoted by δ, with fixed point set denoted by \mathcal{B}^{δ}. This automorphism restricts to a bijection $\mathcal{B}_{\geq 0} \rightarrow \mathcal{B}_{\geq 0}$. We can identify \mathcal{B}^{δ} with the flag manifold of G^{δ} by $B \mapsto B \cap G^{\delta}$. Under this identification, the totally positive part of the flag manifold of G^{δ} (defined in [5]) becomes $\mathcal{B}^{\delta}{ }_{00}=\mathcal{B}_{\geq 0} \cap \mathcal{B}^{\delta}$. For $\lambda \in \mathcal{X}$ we define $\delta(\lambda) \in \mathcal{X}$ by $\langle\delta(i), \delta(\lambda)\rangle=\langle i, \lambda\rangle$ for all $i \in I$. In the setup of 1.4 assume that $\lambda \in \mathcal{X}^{++}$satisfies $\delta(\lambda)=\lambda$. There is a unique linear isomorphism $\delta: V \rightarrow V$ such that $\delta(g \xi)=\delta(g) \delta(\xi)$ for any $g \in G, \xi \in V$ and such that $\delta\left(\xi^{+}\right)=\xi^{+}$. This restricts to a bijection $\beta \rightarrow \beta$ denoted again by δ. For any semifield K_{1} we define a bijection $V\left(K_{1}\right) \rightarrow V\left(K_{1}\right)$ by $\sum_{b \in \beta} \xi_{b} b \mapsto \sum_{b \in \beta} \xi_{\delta^{-1}(b)} b$ where $\xi_{b} \in K_{1}^{!}$. This induces a bijection $P\left(K_{1}\right) \rightarrow P\left(K_{1}\right)$ denoted by δ. We now assume that K_{1} is as in 0.1(i), (ii). Then the subset $P^{\bullet}\left(K_{1}\right)$ of $P\left(K_{1}\right)$ is defined and is stable under δ; let $P^{\bullet}\left(K_{1}\right)^{\delta}$ be the fixed point set of $\delta: P^{\bullet}\left(K_{1}\right) \rightarrow P^{\bullet}\left(K_{1}\right)$. Recall that $\mathfrak{G}\left(K_{1}\right)$ acts naturally on $P\left(K_{1}\right)$. This restricts to an action on $P^{\bullet}\left(K_{1}\right)^{\delta}$ of the monoid $\mathfrak{G}\left(K_{1}\right)^{\delta}$ (the fixed point set of the isomorphism $\mathfrak{G}\left(K_{1}\right) \rightarrow \mathfrak{G}\left(K_{1}\right)$ induced by δ) which is the same as the monoid associated in [8] to G^{δ} and K_{1}. We set $\mathcal{B}^{\delta}\left(K_{1}\right)=P^{\bullet}\left(K_{1}\right)^{\delta}$.

The following generalization of Theorem 0.2 can be deduced from Theorem 0.2.
(a) The set $\mathcal{B}^{\delta}(\mathbf{Z})$ has a canonical partition into pieces $P_{v, w ; \delta}(\mathbf{Z})$ indexed by the pairs $v \leq w$ in W^{δ}. Each such piece $P_{v, w ; \delta}(\mathbf{Z})$ is in bijection with $\mathbf{Z}^{|w|_{\delta}-|v|_{\delta}}$; in fact, there is an explicit bijection $\mathbf{Z}^{|w|_{\delta}-|v|_{\delta} \xrightarrow{\sim} P_{v, w ; \delta}(\mathbf{Z}) \text { for } . ~}$ any reduced expression of w in W^{δ}.

References

1. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (1990), 447-498
2. G. Lusztig, Canonical bases arising from quantized enveloping algebras, II, Progr. of Theor. Phys. Suppl., 102 (1990), 175-201.
3. G. Lusztig, Introduction to Quantum Groups, Progr. in Math. 110, Birkhäuser, Boston, 1993.
4. G. Lusztig, Problems on canonical bases, Algebraic groups and their generalizations: quantum and infinite dimensionalmethods, Proc. Symp. Pure Math. 56(2), Amer. Math. Soc., (1994), 169-176.
5. G. Lusztig, Total positivity in reductive groups, Lie Theory and Geometry, Progr. in Math. 123, Birkhäuser, Boston, (1994), 531-568.
6. G. Lusztig, Total positivity in partial flag manifolds, Represent. Th., 2 (1998), 70-78.
7. G. Lusztig, Positive structures in Lie theory, arxiv:1812.09313.
8. G. Lusztig, Total positivity in reductive groups, II, Bull. Inst. Math. Acad. Sin. (N.S.), 14 (2019), 403-460.
9. G. Lusztig, Total positivity in Springer fibres, arxiv:1909.00896.
10. R. Marsh and K. Rietsch, Parametrizations of flag varieties, Represent. Th., 8 (2004), 212-242.

[^0]: Received January 18, 2020.
 AMS Subject Classification: 20G99.
 Key words and phrases: Flag manifold, canonical basis, semifield.
 Supported by NSF grant DMS-1855773.

