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Abstract

We show that the mod 2 cohomology of bu ∧BSO(2n) is isomorphic to a direct sum

of E-modules, E = Z/2〈Q0, Q1〉, n ≥ 2. This would give the algebraic splitting of the

complex connective K-theory of BSO(2n).

1. Motivation

The stable splitting of complex connective K-theory started with E.

Ossa’s computation of bu ∧ Σ−2BZ/2 ∧ BZ/2(see [8]), with Bruner and

Greenlees giving more results on bu ∧BG in [5], where BG is the classifying

space of some finite group G. For infinite Lie groups, bu ∧ BO(n) has a

splitting derived by Wilson and Yan in [17], and from their results Tsung

Hsuan Wu proved that bu ∧ BSO(2n+ 1) also has a stable splitting for

the classifying space of odd dimensional special orthogonal groups[15]. The

method he used in his paper only applies to the odd case, whereas leaving the

even case unresolved. Based on these results I show that there is indeed an

explicit algebraic splitting of bu ∧BSO(2n), and hopefully in the future use

it to find the topological splitting of bu∧BSO(2n) to complete the question.

First we introduce some of the background material that is essential for my

results.
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2. Introduction

We operate our cohomology in Z/2 coefficients, so for example H̃∗(X)

would always stand for H̃∗(X,Z/2). A will denote the mod 2 Steenrod Alge-

bra, bu is the spectrum of the complex connective K-theory, with H∗(bu) ∼=
A//A(Q0, Q1) ∼= A⊗E Z/2, with E = Z/2〈Q0, Q1〉 the exterior algebra over

Q0 and Q1, Q0 = Sq1, Q1 = Sq3 +Sq2Sq1 are the Milnor primitives. HZ/2

is the Z/2 Eilenberg -MacLane spectrum. If Y is a spectrum, then ΣmY is

the suspended spectrum with (ΣmY )n = Ym+n. The tensor product ⊗ will

stand for ⊗Z/2, so all the spectra and its homotopy equivalences in this paper

are 2-localised. It is a standard fact that H∗(BO(n)) ∼= Z/2[ω1, ω2, . . . , ωn],

ωi ∈ H i(BO(n)) is the i-th Stiefel-Whitney class. For H∗(BSO(n)), one

uses the 2-fold covering hn : BSO(n) → BO(n) to show it is equivalent to

Z/2[ω̂2, ω̂3, . . . , ω̂n], where h∗n(ωi) = ω̂i, 2 ≤ i ≤ n. First we state the main

result of this paper.

Theorem 1. For every n ≥ 2, the cohomology ring H̃∗(BSO(2n)) as an

E-module, is isomorphic to B2n ⊕ D2n ⊕ M2n, where M2n is a free E-

module with a basis T2n. D2n is a trivial E-module with trivial genera-

tors ω̂2
2m1 ω̂4

2m2 · · · ω̂2n
2mn ,

∑n
i=1mi > 0, mi ≥ 0. B2n is an E-module

with generators of the form 〈tj ω̂2n
2k+1|tj ∈ S∗

1 , k ≥ 0〉 with S∗
1 ( T2n−1,

where T2n−1 is the basis of the free E-module of H̃∗(BSO(2n − 1)), and

ω̂2
2m1 ω̂4

2m2 · · · ω̂2n
2mn+1,

∑n
i=1mi ≥ 0, mi ≥ 0. The generators of B2n are

subject to the relations

Q0Q1(tj ω̂2n
2k+1) = Q0Q1(ω̂2

2m1 ω̂4
2m2 · · · ω̂2n

2mn+1) = 0.

Remark 1. For n = 1, H̃∗(BSO(2)) is just the cohomology ring Z/2[ω̂2],

which is of course trivial under the E-actions since Qi(ω̂2) = 0.

Next we give the previously related theorems:

Theorem 2 (Theorem 1.1 of [17]). As an E-module, H̃∗(BO(n)) is isomor-

phic to D∗
1 ⊕D∗

2⊕M , where M is a free E-module, D∗
1 is a trivial E-module

with E-generators ω2
2m1ω4

2m2 · · ·ω2k
2mk such that

∑k
i=1 mi > 0, 2k ≤ n,

D∗
2 is an E-module free over the exterior algebra on Q0 with E-generators
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ω1
2j+1ω2

2m1ω4
2m2 · · ·ω2l

2ml such that
∑l

i=1mi ≥ 0, j ≥ 0, 2l ≤ n− 1.

Furthermore, the generators satisfy the relations

Q0(ω1
2j+1ω2

2m1ω4
2m2 · · ·ω2l

2ml) = Q1(ω1
2j−1ω2

2m1ω4
2m2 · · ·ω2l

2ml).

The finding of the E-module structure of H∗(BO(n)) has its roots in

Wilson’s earlier paper[14], when he was trying to determine the complex

cobordism of BO(n), which gave H∗(BO(n)) as a sum of Ej-modules with

generators, Ej = Z/2〈Q0, Q1, . . . , Qj−1〉 is the exterior algebra of Qi, 0 ≤
i ≤ j ≤ n.

Theorem 3 (Theorem 1.2 of [17]). For ∀n ≥ 1, there is a stable splitting

bu ∧BO(n) ≃
[∨

α

ΣαHZ/2
]
∨
[∨

β

Σβbu
]
∨
[∨

γ

Σγbu ∧ RP∞
]
,

where α = degdj , dj are the free E-generators of M . β and their degrees

corresponds to trivial generators of D∗
1. γ and their degrees corresponds to

the monomials ω2
2m1ω4

2m2 · · ·ω2l
2ml described in the theorem above.

Once they have computed the exact E-module structure of H∗(BO(n)),

they went on to build a stable map by analyzing each monomial generator to

see if there is a topological map that realises them. Details will be omitted

here. The next 2 theorems are attributed to [15]:

Theorem 4 (Theorem A of [15]). For each n ≥ 1, H̃∗(BSO(2n + 1))

is isomorphic to D2n+1 ⊕ M2n+1 as an E-module, where D2n+1 is a triv-

ial E-module with generators ω̂2
2m1 ω̂4

2m2 · · · , ω̂2n
2mn ,

∑n
i=1mi > 0, mi ≥

0, and M2n+1 is a free E-module with a basis of E-generators T2n+1 =

〈ti|i ∈ Λ2n+1〉.

Theorem 5 (Theorem B of [15]). For each n ≥ 1, there is a stable splitting

bu ∧BSO(2n+ 1) ≃
[∨

α

ΣαHZ/2
]
∨
[∨

β

Σβbu
]
,

where α = degtj are the degrees of the generators of M2n+1, and β are the

degrees of the trivial generators of D2n+1.
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The proof of the splitting of bu ∧ BSO(2n+ 1) is partially based on

the result of the splitting of bu ∧ BO(n), first one uses the Adams spec-

tral sequence [1] to calculate the E1,∗
2 term of b̃u∗(BO(n)), which is in

fact the group Ext1,∗E (H̃∗(BO(n)),Z/2) ∼= Ext1,∗E∗

(Z/2, H̃∗(BO(n))), where

E∗ = Z/2〈ξ1, ξ2〉 is the exterior algebra over the Milnor generators ξ1 and ξ2
of the dual Steenrod algebra A∗ = Z/2[ξ1, ξ2, . . .]. The E-module structure

has already been determined in [17], so calculating the Ext groups from the

bar and cobar resolutions is just standard routine. Wu’s paper [15] states

that there is an epimorphism

Ext1,∗E∗

(Z/2, H̃∗(BO(2n))) → Ext1,∗E∗

(Z/2, H̃∗(BSO(2n+ 1))),

so he was able to use this property to track the generators in

Ext1,∗E∗

(Z/2, H̃∗(BSO(2n+ 1))) ∼= Ext1,∗E (H̃∗(BSO(2n+ 1)),Z/2).

With Ext1,∗E (H̃∗(BSO(2n+1)),Z/2) determined, the E-module structure of

H̃∗(BSO(2n+1)) can then come to light, and with it the topological splitting

of bu ∧BSO(2n+ 1). When investigating the even case, the homomorphism

of the Ext groups

Ext1,∗E∗

(Z/2, H̃∗(BO(2n− 1))) → Ext1,∗E∗

(Z/2, H̃∗(BSO(2n)))

is not surjective because there is no stable Becker-Gottlieb transfer of the

kind BSO(2n) → BO(2n− 1) (see [4]), so other approaches have to be

made.

The paper will use results from the previous papers to determine the

E-module structure of H̃∗(BSO(2n)) directly, which is actually related to

E-module structure of H̃∗(BSO(2n− 1)). First we introduce some material

needed for our work.

3. Basic Notions

Before we prove our results some basic machinery must be quoted. As a

cohomology operation, the Steenrod Squares Sqi satisfy the Cartan relation

Sqi(xy) =
∑i

j=0 Sq
j(x)Sqi−j(y), x, y ∈ H∗(X) for a space or spectrum

X [12]. As elements of A, the multiplication satifies the Adem relations:

SqaSqb =
∑[a/2]

j=0

(
b−i−j
a−2j

)
Sqa+b−jSqj, 0 < a < 2b. The Milnor primitives
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Qn [10] can be defined inductively as Qn+1 = QnSq
2n+1

+ Sq2
n+1

Qn, Q0 =

Sq1, n ≥ 0. Using these relations we can see that Q1 = Sq3+Sq2Sq1, higher

primitives won’t be needed since we are dealing with E = Z/2〈Q0, Q1〉. Note
that the Qn has the special property Qn(xy) = Qn(x)y + xQn(y), which is

quite helpful in our calculations. To use calculate the values of the Stifel-

Whitney classes with E-actions applied to it, one more formula must be

mentioned.

Proposition 1 (Wu formula [16]). For the Stiefel-Whitney classes ωm,

Sqk(ωm) =

k∑

t=0

(
m− k + t− 1

t

)
ωk−tωm+t,m ≥ k.

Now we can start the calculations. For H∗(BSO(n)), if 2m ≤ n, then

Q0(ω̂2m) = ω̂2m+1, and Q1(ω̂2m) = ω̂3ω̂2m + ω̂2m+3. While for 2m+ 1 ≤ n,

Q0(ω̂2m+1) = 0, Q1(ω̂2m+1) = ω̂3ω̂2m+1. Q0Q1(ω̂k) can be deduced from

these equations. If k > n, then we let ω̂k = 0. So in H∗(BSO(2n)),

Q0(ω̂2n) = 0, Q1(ω̂2n) = ω̂3ω̂2n, and Q1(ω̂2n−2) = ω̂3ω̂2n−2. We now know

ow Qi acts on ω̂k, so finding out the value for a monomial composed of ω̂k’s

is just pure calculation, using the derivation property given above. For a

general monomial ω̂2
m2 ω̂3

m3 · · · ω̂2n
m2n , we give its explicit form for all the

E-actions:

Q0(ω̂2
m2 ω̂3

m3 · · · ω̂m2n

2n )

=

n−1∑

k=1

m2kω̂2
m2 ω̂3

m3 · · · ω̂2k
m2k−1ω̂2k+1

m2k+1+1 · · · ω̂2n
m2n

Q1(ω̂2
m2 ω̂3

m3 · · · ω̂m2n

2n ) =
( 2n∑

i=2

mi

)
ω̂2

m2 ω̂3
m3+1 · · · ω̂m2n

2n

+
n−2∑

k=1

m2kω̂2
m2 ω̂3

m3 · · · ω̂2k
m2k−1 · · · ω̂2k+3

m2k+3+1 · · · ω̂2n
m2n

Q0Q1(ω̂2
m2 ω̂3

m3 · · · ω̂m2n

2n )

=(

2n∑

i=2

mi)

n−1∑

j=1

m2j ω̂2
m2 ω̂3

m3+1 · · · ω̂m2j−1
2j ω̂

m2j+1+1
2j+1 · · · ω̂m2n

2n

+

n−2∑

i=1

n−1∑

j=1

m2im
(2i)
2j ω̂2

m
(2i)

2 · · · ω̂m
(2i)

2j −1

2j ω̂
m

(2i)

2j+1
+1

2j+1 · · · ω̂m
(2i)

2n

2n
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where (m
(2i)
2 ,m

(2i)
3 , . . . ,m

(2i)
2n ) = (m2, . . . ,m2i − 1, . . . ,m2i+3 + 1, . . . ,m2n).

Keep in mind all the coefficients are in mod 2, and if one tries to calculate

kerQ0, kerQ1 and kerQ0Q1, set all the coefficients of the Qi-polynomial to

zero and solve the system of equations. For the sake of simplicity, we denote

ω̂2
s2ω̂3

s3 · · · ω̂s2n
2n = W (s2, s3, . . . , s2n) if necessary. Finally let’s introduce

some concepts related to the E-modules:

Definition 1. E is the exterior algebra of the generators Q0, Q1, then an

E-module M is a Z/2-module equipped with the module homomorphism

ϕ : E ⊗M → M , defined by Qi-actions on the elements of M , ϕ(Qi ⊗m) =

Qi(m). A generating set S is a subset of M such that every element in

M is an E-linear combination of the elements in S, and the multiplication

is defined as e · m = ϕ(e ⊗ m) = e(m). The elements of S are called E-

generators. An E-submodule N is a Z/2-submodule of M which is closed

under the E-actions.

Definition 2. A free E-module M is an E-module with a basis of E-

generators {ri|i ∈ I}, such that every element a in M can be represented

uniquely by a linear combination of ri with coefficients in E. ri are the free

E-generators of M .

Definition 3. A trivial E-module D is an E-module generated by a set of

E-generators {gj |j ∈ J}, such that for every gj , e · gj = 0,∀e ∈ E\{1}. gj

are the trivial E-generators of D.

Note that there are generators that are neither free or trivial, so they

should satisfy some E-relations, which will be explained later. With all the

materials introduced, we can move on to show our results.

4. Algebraic Splitting of the Spectra

We now enter the main problem. As described in the previous chapter,

if one has to know the behaviour of the stable splitting of bu ∧ BSO(2n),

first we must find out what the E-module structure looks like. Recall that

H∗(BSO(n)) ∼= Z/2[ω̂2, ω̂3, . . . , ω̂n], since this is a polynomial ring and the

Stiefel Whitney classes are algebraically independent, then it can be viewed
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as Z/2[ω̂2, ω̂3, . . . , ω̂n] = Z/2[ω̂2, ω̂3, . . . , ω̂n−1][ω̂n], then the cohomology of

BSO(2n− 1) and BSO(2n) are related as polynomial rings

H∗(BSO(2n)) ∼=
⊕

k≥0

H∗(BSO(2n− 1))ω̂2n
k.

Since H0 ∼= H̃0 ⊕ Z/2, so H̃∗(BSO(2n)) can be viewed as

H̃∗(BSO(2n − 1)) ⊕⊕
k≥1H

∗(BSO(2n − 1)ω̂k
2n. The generators of the E-

modules D2n−1 and M2n−1 have been described, but the monomial gen-

erators in H̃∗(BSO(2n − 1)) might not behave the same way when ap-

plied to the E-action in H̃∗(BSO(2n)), owing to the fact that it has an

extra variable ω̂2n. Luckily Proposition 1 tells us that all the E-actions of

ω̂i, 2 ≤ i ≤ 2n− 1 in H̃∗(BSO(2n−1)) remain the same as in H̃∗(BSO(2n)),

so it’s an E-submodule of H̃∗(BSO(2n)). We only need to worry about

ω̂2n. Q0(ω̂2n) = 0, Q1(ω̂2n) = ω̂3ω̂2n, so the E-action of all elements in

H̃∗(BSO(2n)) can be determined. Now for any monomial W (s2, s3, . . . , s2n),

Q0W (s2, s3, . . . , s2n) = (Q0W (s2, s3, . . . , s2n−1))ω̂2n
s2n ,

Q1W (s2, s3, . . . , s2n)

=(Q1W (s2, s3, . . . , s2n−1) + s2nW (s2, s3 + 1, . . . , s2n−1))ω̂2n
s2n ,

so from this one can actually see that every E-action on the monomial

W (s2, s3, . . . , s2n) preserves the degree of ω̂2n, and no ω̂i can map to ω̂2n

through the E-actions, hence we’ve just proved that every H∗(BSO(2n −
1))ω̂2n

k is in fact an E-submodule of H̃∗(BSO(2n)):

Lemma 1. For every k ≥ 1,H∗(BSO(2n − 1))ω̂2n
k
is an E-submodule of

H̃∗(BSO(2n)), and H̃∗(BSO(2n−1)) is an E-submodule of H̃∗(BSO(2n)).

So from above we can see that H̃∗(BSO(2n)) is actually an infinite di-

rect sum of E-submodules H∗(BSO(2n − 1))ω̂2n
k and H̃∗(BSO(2n − 1)),

what is left is the need to determine the exact module structure of each one.

From Theorem 4, H̃∗(BSO(2n−1)) ∼= D2n−1 ⊕M2n−1, so for this reason we

choose to divide H∗(BSO(2n−1))ω̂2n
k ∼= H̃∗(BSO(2n−1))ω̂2n

k⊕Z/2ω̂2n
k

into a sum of two modules, with H̃∗(BSO(2n− 1))ω̂2n
k the elements can be

represented as E-generators related toD2n−1,M2n−1. While for the elements

ω̂2n
k, from calculations above it is straightforward that when k is even ω̂2n

k is

trivial, for k odd it satisfies the relation Q0Q1 = 0. We divide H̃∗(BSO(2n−
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1))ω̂2n
k into two cases: the first case is when k is even. For any e ∈ E,

e·(W (s2, s3, . . . , s2n−1)ω̂2n
2r) = (e·W (s2, s3, . . . , s2n−1))ω̂2n

2r by direct com-

putation. So ω̂2n
2r can be looked as a coefficient independent of E multiplied

to the monomial W (s2, s3, . . . , s2n−1) ∈ H̃∗(BSO(2n− 1)), from this we can

tell that the E-generators ti ∈ M2n−1, ω̂2
2m1 ω̂4

2m2 · · · ω̂2n−2
2mn−1 ∈ D2n−1

of H̃∗(BSO(2n−1)) when multiplied by ω̂2n
2r they still retain their property

in H̃∗(BSO(2n)): tiω̂2n
2r is a free E-generator and

ω̂2
2m1 ω̂4

2m2 · · · ω̂2n−2
2mn−1 ω̂2n

2r is a trivial E-generator. We summarize this

into the following lemma.

Lemma 2. The direct sum of E-modules
⊕

r≥0 H̃
∗(BSO(2n− 1))ω̂2n

2r
can

be further splitted into direct sums of free E-submodules M2n−1ω̂2n
2r

with free

E-generators tjω̂2n
2r
, ∀tj ∈ M2n−1, and a direct sum of E-trivial submodules

D2n−1ω̂2n
2r
, with trivial generators ω̂2

2m1 ω̂4
2m2 · · · ω̂2n−2

2mn−1 ω̂2n
2r
,

∀ ω̂2
2m1 ω̂4

2m2 · · · ω̂2n−2
2mn−1 ∈ D2n−1.

Proof. The verification of trivial generators is easy check since the ω̂2j ’s

all have even indices and they cannot be generated by other monomials for

they are even dimensional Stifel-Whitney classes. For the monomials tiω̂2n
2r,

suppose there exist coefficients e
(r)
i ∈ E such that

∑
j,r e

(r)
i · tiω̂2n

2r = 0, the

E action on them turns out to act on just ti and multiplied by ω̂2n
2r, which

gives us
∑

i,r

e
(r)
i · (tiω̂2r

2n) =
∑

i,r

(e
(r)
i · ti)ω̂2n

2r = 0.

We rearrange the relation into a polynomial of ω̂2n
2r with coefficients in

H̃∗(BSO(2n − 1)), hence they are also a polynomial sum of ti with E-

coefficients. The relation states that the sum is zero, by standard fact on

Stiefel-Whitney classes of BSO(2n), they satisfy no polynomial relations

whatsoever, which leaves us only the possibility that every coefficient of

ω̂2n
2r must be zero. This means for every fixed r,

∑
i e

(r)
i · ti = 0. But ti are

free E-generators in H̃∗(BSO(2n−1)) and H̃∗(BSO(2n)), hence e
(r)
i =0 for

all i and r, showing that tiω̂2n
2r is a generator and free at the same time. ���

This concludes the algebraic splitting of the submodules H̃∗(BSO(2n−
1))ω̂2n

k with k even, now we have to deal with the case for k odd, which is a
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bit more complicated. As stated before when the Qi-actions applied to the

monomials, in particular for i = 1 we find that

Q1(W (s2, s3, . . . , s2n−1)ω̂2n
2r+1)

=Q1(W (s2, s3, . . . , s2n−1))ω̂2n
2r+1 +W (s2, s3 + 1, . . . , s2n−1)ω̂2n

2r+1,

this is the main complication. Again replicating the methods above, any

monomial element W (s2, s3, . . . , s2n−1) ∈ H̃∗(BSO(2n − 1)) is representable

as a finite sum of generators in D2n−1,M2n−1 with E-coefficients, when mul-

tiplied by ω̂2n
2r+1 it can be rearranged as the following:

W (s2, s3, . . . , s2n−1)ω̂2n
2r+1 =

(∑

i,r

e
(r)
i · ti +

∑

J,r

e
(r)
J · dJ

)
ω̂2n

2r+1,

where dJ abbreviates for the trivial generators ω̂2
2m1 ω̂4

2m2 · · · ω̂2n−2
2mn−1 .

This form has yet to be presented in a sum of E-generators with E-coefficients.

So (e
(r)
i · ti)ω̂2n

2r+1 and (e
(k)
J · dJ)ω̂2n

2r+1 has to be rearranged to a sum of

monomials with E-coefficients. ForQ0 we have Q0(ti)ω̂2n
2r+1=Q0(tiω̂2n

2r+1),

whilst Q1 we get Q1(ti)ω̂2n
2r+1 = Q1(tiω̂2n

2r+1)+ ω̂3tiω̂2n
2r+1. On the right

side of the relation, we have the anomaly ω̂3tiω̂2n
2r+1 which we are not

quite sure how to classify it at first glance. But if we look at ω̂3ti alone

we can tell it actually lies in H̃∗(BSO(2n − 1)), moreover in M2n−1 since

D2n−1 consists of trivial generators and cannot generate monomials contain-

ing odd Stifel-Whitney classes through E-actions. So either ω̂3ti = tj is

itself another free E-generator, or a E-linear combination of free generators∑
j e

(k)
j · tj. For the first case Q1(ti)ω̂2n

2r+1 = Q1(tiω̂2n
2r+1) + tjω̂2n

2r+1

is now a formal sum of monomials with E-coefficients, for the second case

when we place
∑

j e
(r)
j · tj inside the equation the sum is again multiplied by

ω̂2n
2r+1, by decomposing the e

(r)
j ’s we might encounter Q1 or Q0Q1 acting on

tj again, we go back to the previous process to determine the status of ω̂3tj,

eventually we will get a finite sum of monomials tiω̂2n
2r+1 with coefficients

in E (Partially owing to the fact that the Qi-actions raises the degrees of

monomials, so any polynomial must be a finite sum of other monomials in

E-coefficients). For Q0Q1(ti)ω̂
2r+1
2n , it is just Q0Q1(tiω̂

2r+1
2n )+Q0(ω̂3ti)ω̂

2r+1
2n ,

Q0(ω̂3ti) ∈ M2n−1 is dealt in the same way above. Summarizing the facts,

for r ≥ 0 every W (s2, s3, . . . , s2n−1)ω̂2n
2r+1 can be written as a sum of mono-

mials tiω̂2n
2r+1, dJ ω̂2n

2r+1 with E-coefficients, but we still have to check if

they qualify as E-generators. For dJ ω̂2n
2r+1, it is simply a generator since
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it’s a product of even Stiefel-Whitney classes ω̂2i, which can’t be gener-

ated by E-actions through other monomials (Qi(W ) 6= 0 contains a term

which has ω̂2p+1 as its factor for some p). The monomial tiω̂2n
2r+1 is what

we need to investigate in the whole problem. Once we have determined

its properties we then can claim to know the entire E-module structure of

H̃∗(BSO(2n)), concluding our question. We now bring the result on the

odd case of H̃∗(BSO(2n − 1))ω̂2n
k:

Lemma 3. For ∀r ≥ 0, we have the E-module isomorphism H̃∗(BSO(2n−
1))ω̂2n

2r+1 ∼= B
(r)
2n ⊕ M

(r)
2n , where M

(r)
2n is a free E-submodule with a basis

of free generators of the form 〈tiω̂2n
2r+1|ti ∈ S∗

0〉 for some set S∗
0 ( T2n−1,

where T2n−1 is the basis for the free E-module M2n−1 of H̃∗(BSO(2n− 1)).

B
(r)
2n is a E-submodule with a generating set 〈tjω̂2n

2r+1|tj ∈ S∗
1〉∪〈dJ ω̂2n

2r+1|
dJ ∈ D2n−1〉 for some set S∗

1 ( T2n−1, S
∗
0∩S∗

1 = ∅. In B
(r)
2n , every generator

is subject to the E-relation

Q0Q1(tj ω̂2n
2r+1) = Q0Q1(dJ ω̂2n

2r+1) = 0.

Proof. First look at dJ ω̂2n
2r+1 which is fairly easy to verify. Its status as

an E-generator has been verified above, so we check the relation it satisfies.

Q1(dJ ω̂2n
2r+1) = ω̂3dJ ω̂2n

2r+1, now if we apply the Q0-action to it, the result

is zero because Q0(ω̂3) = Q0(dJ ω̂2n
2r+1) = 0, and the fact that Q0(xy) =

Q0(x)y + xQ0(y). For tiω̂2n
2r+1, the entire collection of these monomials

with dJ ω̂2n
k altogether would of course generate H̃∗(BSO(2n− 1))ω̂2n

2r+1,

but they need to be classified. To do this we select all the tiω̂2n
2r+1 from the

set T
(r)
2n = 〈tiω̂2n

2r+1|ti ∈ T2n−1〉 such that they qualify as E-generators, i.e.,

they themselves are not generated by other tlω̂2n
2r+1’s, and will also generate

M2n−1ω̂2n
2r+1. Such selection exists, for we can rearrange T

(r)
2n into an infi-

nite pairwise disjoint union of sets W
(r)
2n,η = 〈tiω̂2n

2r+1|deg(ti) = η〉. W (r)
2n,η is

obviously finite, so we use induction on η. Take the union
⋃

u≤η W
(r)
2n,u, this

set spans to some finite E-module, what we do is pick mechanically all the

suitable tiω̂2n
2r+1 ∈ ⋃

u≤η W
(r)
2n,u such that it is not generated by elements

inside this E-module other than itself, and at the same time check that the

span of these generators is of equal to the span of
⋃

u≤η W
(r)
2n,u. When there

are no generators left to pick, move on to search generators of
⋃

u≤η+1 W
(r)
2n,u

by looking at the newly included set W
(r)
2n,η+1. When η → ∞, the span of the

selected generators will be the same as the span of the set T
(r)
2n . In this way we
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will eventually obtain the generating set of M2n−1ω̂2n
2r+1 as required. Call

that set U
(r)
2n . The free E-submodule of H̃∗(BSO(2n − 1))ω̂2n

2r+1 must of

course have generators of the form tiω̂2n
2r+1 because dJ ω̂2n

2r+1 is relational,

so every free generator would lie in U
(r)
2n . We collect all these free generators

so they form a basis V
(r)
2n = 〈tj ω̂2n

2r+1|tj ∈ S∗
0〉 for the free submodule M

(r)
2n ,

with S∗
0 ( T2n−1. Now for the set U

(r)
2n \V (r)

2n = 〈tj ω̂2n
2r+1|tj ∈ S∗

1〉, the

remaining generators tjω̂2n
2r+1 should all satisfy some E-relation. Note

that S∗
0 , S

∗
1 can select to be the same for every r. Here U

(r)
2n \V (r)

2n and

〈dJ ω̂2n
2r+1|dJ ∈ D2n−1〉 altogether forms the generating set for the mod-

ule B
(r)
2n . Now pick any generator in U

(r)
2n \V (r)

2n , say tlω̂2n
2r+1. (tlω̂2n

2r+1)

is a cyclic E-submodule. Since it’s not free, then by definition there should

exist some el ∈ E\{1} such that el ·tlω̂2n
2r+1 = 0. Owing to E as an exterior

algebra, we can definitely find some e′l ∈ E that e′lel = Q0Q1, so in the end

for every generator tlω̂2n
2r+1 not free, the common E-relation they satisfy

is Q0Q1(tlω̂2n
2r+1) = 0. ���

Remark 2. The existence of both free and non-free E-generators can be

further verified by actually computing Q0Q1(W (s2, s3, . . . , s2n)).

If W (s2, s3, . . . , s2n) is free then Q0Q1(W ) cannot be zero. For generators

belonging to B
(r)
2n , Q0Q1(W (s2, s3, . . . , s2n)) = 0. From chapter 3 the exact

solution of Q0Q1(W ) = 0 is solved by setting all its Z/2-coefficients to zero,

so W ∈ B
(r)
2n should be monomials of the form

ω̂2kω̂2n
2r+1

n−1∏

i=1

ω̂2i
2si

n−1∏

j=1

ω̂2j+1
pj ,

with 0 ≤ k ≤ n− 1,
∑n−1

i=1 si ≥ 0, si ≥ 0 and
∑n−1

j=1 pj even, pj ≥ 0

(For k = 0, we let ω̂0 = 1 for convenience). Then tj would of course

be ω̂2k
∏n−1

i=1 ω̂2i
2si

∏n−1
j=1 ω̂2j+1

pj . Finally for the special cases k = 0 and

pj = 0 for all j, the monomial is just the generator dJ ω̂2n
2r+1, while for

1 ≤ k ≤ n− 1 and pj = 0 for all j, the monomial ω̂2kω̂2n
2r+1∏n−1

i=1 ω̂2i
2si is

easily verified as a relational E-generator since it has no odd Stiefel-Whitney

classes, and the same can be said of the generator tj = ω̂2k
∏n−1

i=1 ω̂2i
2si which

is free over E.

Remark 3. From [17], when the author describes their E-module decom-

postion of H̃∗(BO(n)), for the module D∗
2, he gives the E-relations as

Q0(W0) = Q1(W1), this is in fact equivalent to Q0Q1(W0) = Q0Q1(W1) = 0,
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which is done by just applying the actions Q0 and Q1 respectively to the

whole relation. He chose to write it in that fashion partly because he can

compute the exact monomial, whilst for the free generators they can only

show the existence of a basis. Note from Remark 2 we also have the similar

relation

Q0

(
ω̂2k+2ω̂2n

2r+1
n−1∏

i=1

ω̂2i
2si

n−1∏

j=1

ω̂2j+1
pj
)
=Q1

(
ω̂2kω̂2n

2r+1
n−1∏

i=1

ω̂2i
2si

n−1∏

j=1

ω̂2j+1
pj
)
.

So if one must describe the generators of B
(r)
2n in full, more information about

ti ∈ M2n−1 must then be given, which is not a very big concern since we are

just trying to determine what H̃∗(BSO(2n)) looks like as an E-module.

Proof of Theorem 1. We already know from Lemma 1 that H̃∗(BSO(2n))
∼= H̃∗(BSO(2n− 1)) ⊕⊕

k≥1H
∗(BSO(2n− 1))ω̂k

2n, each is an E-submodule

of H̃∗(BSO(2n)). By the previous Lemmas 2 and 3, the respective E-module

decomposition of each H̃∗(BSO(2n − 1))ω̂2n
k is given, so we sum them up

and the module
⊕

k≥1 Z/2ω̂2n
k to get the result. The direct sum of all the

free submodules in H̃∗(BSO(2n− 1))ω̂2n
k for all k ≥ 0 is the free E-module

M2n of H̃∗(BSO(2n)) with basis T2n, while the direct sum of the modules⊕
r≥0D2n−1ω̂2n

2r and
⊕

r≥1 Z/2ω̂2n
2r is the entire trivial E-module D2n,

and the sum of all the submodules B
(r)
2n in H̃∗(BSO(2n − 1))ω̂2n

2r+1 and⊕
r≥0 Z/2ω̂2n

2r+1 gives our anomaly E-module B2n, every generator belong-

ing to it satisfies the relation Q0Q1 = 0. The elements of B2n⊕D2n⊕M2n of

course belongs to H̃∗(BSO(2n)), and since every element of H̃∗(BSO(2n)) is

a polynomial P (ω̂2, ω̂3, . . . , ω̂2n) =
∑q

k=0 Pk(ω̂2, ω̂3, . . . , ω̂2n−1)ω̂2n
k, we sort

each Pk(ω̂2, ω̂3, . . . , ω̂2n−1)ω̂2n
k out as a sum of monomial generators with E-

coefficients shown in Lemma 2 and Lemma 3, with each generator belonging

to one of the modules B2n,D2n,M2n, and so we are done.

5. Addendum

Although the E-module structure of bu ∧BSO(2n) has been given, the

generators of B2n does not have a suitable spectra representing them, this

is because the structures of the generators themselves do not correspond to

any known space or spectra. If such a space exists, then we can go on and
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obtain the stable topological splitting. Hopefully positive results will turn

out.
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