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Abstract

For system of hyperbolic conservation laws with genuinely nonlinear characteristic

fields, it has been shown that a solution with compact supported perturbation of constant

state tends to the superposition of N-waves, with two time invariants for each charac-

teristic field. The aim of the present article is to generalize the result to systems with

both genuinely nonlinear and linearly degenerate characteristic fields, so that the result

applies to the Euler equations in gas dynamics, magnetohydrodynamics equations, and

full nonlinear elasticity equations.

1. Introduction

Consider system of hyperbolic conservation laws

ut + f(u)x = 0, u ∈ R
n. (1.1)

The system is assumed to be strictly hyperbolic, with the eigenvectors nor-

malized:

f ′(u)ri(u) = λi(u)ri(u), li(u)f
′(u) = λi(u)li(u),

li(u)rj(u) = δij , i, j = 1, 2, . . . , n,

λ1(u) < λ2(u) < · · · < λn(u). (1.2)
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Each i-characteristic field is either genuinely nonlinear in that the i-th char-

acteristic value λi is strictly monotone in its characteristic direction ri, [7]:

∇λi(u) · ri(u) 6= 0, for i ∈ I, genuinely nonlinear; (1.3)

or linearly degenerate in that the i-th characteristic value λi is constant in

its characteristic direction ri:

∇λi(u) · ri(u) = 0, for i ∈ II, linearly degenerate, (1.4)

for all states u under consideration. We have I ∪ II = {1, 2, . . . , n}.

Our aim is to study the time-asymptotic shape of the solution when the

initial datum is a compactly supported perturbation of a constant state u0:

ut + f(u)x = 0,

u(x, 0) = u0 for |x| > M, TV ≡ var(u(·, 0)) small.
(1.5)

For the inviscid Burgers equation ut + (u2/2)x = 0, such a solution

tends to the centered N -waves u(x, t) = Np,q(x, t), each depending on two

parameters p ≤ 0 ≤ q, Figure 1:

Np,q(x, t) =















0, x < −√−2pt,

x
t , −√−2pt < x <

√
2qt,

0, x >
√
2qt.

(1.6)

Here, for simplicity, we have taken the base state u0 = 0. The N -wave

consists of centered rarefaction wave sandwiched by the shock waves at x =

−√−2pt on the left and at x =
√
2qt on the right. The two time invariants

p and q, p ≤ 0 ≤ q, are determined from the initial data

p = min
x

∫ x

−∞

u(y, 0)dy = min
x

∫ x

−∞

u(y, t)dy,

q = max
x

∫

∞

x
u(y, 0)dy = max

x

∫

∞

x
u(y, t)dy, t ≥ 0.

(1.7)

The corresponding notion of N -waves can be defined approximately as

simple waves pertaining to a genuinely nonlinear i-characteristic field, i ∈ I
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Figure 1: N -wave N
−1/2,1.

as follows. Consider the i-th characteristic curve Ri(u0), which is the in-

tegral curve of ri(u) through a given state u0. It is easily shown that for

u(x, t) ∈ Ri(u0) to be a smooth solution of the system (1.1), its character-

istic speed λi(u) must satisfies the inviscid Burgers equation, see Section 2.

Thus the i-th N -wave Npi,qi(x, t) = Npi,qi(u0)(x, t) for the system through a

state u0 with parameters pi and qi, pi ≤ 0 ≤ qi is defined by its characteristic

speed λi(u), Figure 2:

λi(Npi,qi)(x, t) ≡















λi(u0), x− λi(u0)t < −√−2pt,

x
t , −√−2pt < x <

√
2qt,

λi(u0), x− λi(u0)t >
√
2qt;

Npi,qi(x, t) ∈ Ri(u0).

(1.8)

Divide the (x, t) space into regions

Ω̃1 ≡ {(x, t) : x < λ̃1t}, Ω̃n ≡ {(x, t) : x > λ̃n−1t},
Ω̃i ≡ {(x, t) : λ̃i−1t < x < λ̃it}, i = 2, . . . , n− 1, (1.9)
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Figure 2: N -wave for i-th characteristic field.

where λ̃i, i = 1, . . . , n − 1 are constants chosen such that λi(u) < λ̃i <

λi+1(u) for all states u under consideration. The i-th N -wave Npi,qi(x, t)

is an exact solution to the system (1.1) except for the two shock waves.

Nevertheless, we will see that it is an accurate time-asymptotic state.

Theorem 1.1. Suppose the total variation TV of the initial data is suf-

ficiently small. Then the initial value problem (1.5) has a solution global

in time and tends to the superposition of N -waves and linear waves in the

following sense:

(1) For each i ∈ I, there exist two time invariants pi and qi, such that the

solution u(x, t), (x, t) ∈ Ω̃i, tends to N -wave Npi,qi(x, t) as t → ∞.

(2) For each i ∈ II, the solution u(x, t), (x, t) ∈ Ω̃i, tends to a linear wave

with speed λi(u0) and taking values on Ri(u0) as t → ∞.

(3) The time-asymptotic convergence rate in the L1(x) norm to linear waves

is t−1/2 and to N -waves is t−1/4.

The study of N -waves for scalar laws was initiated in Friedrichs [3] in the

study of flow pattern around a supersonic airfoil, and subsequently by Hopf

[6], through the inviscid limit of Burgers equation. For two conservation

laws, n = 2, there exists a coordinates of Riemann invariants and the wave

coupling measured in that coordinates is third order. Decay of solutions to

the genuinely nonlinear two conservation laws was shown in an unpublished
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note related to Glimm-Lax [5]. This allows for the generalization of the

N -wave theory for scalar laws to the 2 × 2 genuinely nonlinear systems

by DiPerna[1]. In [9], it was recognized that, the characteristic speed λi

for the i-th simple waves satisfies the inviscid Burgers equation and the

third order coupling can be attained for general genuinely nonlinear systems,

n ≥ 2. Decay and convergence to N -waves are also shown for genuinely

nonlinear systems in [9]. The optimal convergence rate is attained in [12]

after some pointwise analysis. In the present article, the system is allowed

to have linearly degenerate fields, and third order coupling in terms of the

decaying modes does not hold in finite time. Waves pertaining to linear

degenerate fields interact among themselves and with waves pertaining to

genuinely nonlinear fields, as in the case of magnetohydrodynamics, [10].

Because waves pertaining to linear degenerate fields do not decay, third order

coupling in terms of the decaying modes does not hold. A careful analysis

of repeated wave couplings is applied in place of the third order coupling

used perviously. In Section 1, we briefly review the notion of simple waves

in order to understand the time asymptotic states Np,q, (1.8). Our analysis

is based on the existence theory of Glimm [4] through the wave tracing

technique of [8], which is reviewed in Section 3. In Section 4, we carry out

the analysis of wave coupling aforementioned, see also Remark 5.3 there.

In Section 5, we study the decay of solutions, combining the decay analysis

of the unpublished note related to Glimm-Lax [5] and the wave coupling

analysis in Section 4. The convergence to N -waves is shown in Section 6,

using the coupling estimate in Section 5 and generalizing the analysis in [1],

[9] and [12]. Finally the convergence to linear waves is shown in Section 7.

2. Simple Waves

An i-th simple wave takes values along an i-th characteristic curve

Ri(u0), Figure 2. Parametrize the curve by a non-singular parameter τ

so that, for some positive scalar factor α(u),

du

dτ
= α(u)ri(u), u ∈ Ri(u0), i− characteritstic curve. (2.1)
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By the chain rule,

∂

∂x
u(x, t) =

∂τ

∂x

du

dτ
=

(∂τ

∂x
α(u)

)

ri(u(x, t)),

∂

∂t
u(x, t) =

∂τ

∂t

du

dτ
=

(∂τ

∂t
α(u)

)

ri(u(x, t)),

ut + f(u)x =
(∂τ

∂t
+ λi

∂τ

∂x
α(u)

)

ri(u(x, t)).

(2.2)

Thus for u(x, t) to be a solution of the conservation laws ut + f(u)x = 0,

we need to require τ(u(x, t)) to satisfy, as u moves along Ri(u0),

∂

∂t
τ(u) + λi(u)

∂

∂x
τ(u) = 0. (2.3)

When the i-th characteristic field is genuinely nonlinear, (1.3), we may

take the parameter τ = λi(u) and normalize the right eigenvector ri(u) so

that

∇λi(u) · ri(u) = 1. (2.4)

Equation (2.3) becomes the inviscid Burgers equation

λt + λλx = 0, λ ≡ λi(u). (2.5)

The above procedure yields an explicit way of constructing i-simple waves

by first taking the initial values to satisfy u(x, 0) ∈ Ri(u0) and then set

λi(u(x, 0)) ≡ λ(x, 0), λt + λλx = 0, λi(u)(x, t) ≡ λ(x, t), u(x, t) ∈ Ri(u0).

(2.6)

The inviscid Burgers equation has the centered rarefaction wave solution

connecting two states λ0 and λ1 with λ0 < λ1:

λ(x, t) =















λ0, for x < λ0t,
x
t , for λ0t < x < λ1t,

λ1, for x > λ1t.

(2.7)

From (2.6) and (2.7), we can construct the i-th centered rarefaction waves
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(u0,u1) for the system (1.1):

λi(u)(x, t) ≡















λi(u0), x < λi(u0)t,

x
t , λi(u0)t < x < λi(u1)t,

λi(u1), x > λi(u1)t;

u1, u(x, t) ∈ Ri(u0), λi(u0) < λi(u1).

(2.8)

The above analysis applies only for smooth solutions of the inviscid Burgers

equation and explains the rarefaction waves between the two shocks in the

N -wave Npi,qi(x, t) in (1.8). The analysis of the two shocks in Npi,qi(x, t)

will be done in the next section on the general consideration of shock waves.

The construction in (2.8) yields solutions global in time; but that of (2.6)

may form compression waves at later time and the construction fails.

For linear degenerate i-th field, there is a construction of global in time

simple waves along an i-characteristic curve by free transporting along the

characteristic dx/dt = λi(u0) = λi(u(x, 0), −∞ < x < ∞:

u(x, t) ≡ u(x− λi(u0)t, 0), u(x, 0) ∈ Ri(u0). (2.9)

3. Riemann Problem

A jump discontinuity (u−,u+) with speed s for the system (1.1) satisfies

s(u+ − u−) = f(u+)− f(u−), Rankine-Hugoniot condition. (3.1)

It says that the two states are connected by a Hugoniot curve, u+ ∈ H(u−).

Definition 3.1. For a given state u0, the Hugoniot set H(u0) consists of

all states u with the property that the two vectors u−u0 and f(u)−f(u0)

are parallel:

H(u0) ≡ {u : σ(u−u0) = f(u)−f(u0),

for some scalar σ = σ(u0,u)}, Hugoniot set.
(3.2)

The following theorem is proved by the implicit function theorem, [7].
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Theorem 3.2. In a small neighborhood around a given state u0 the Hugoniot

set H(u0) consists of n Hugoniot curves Hj(u0), j = 1, 2, . . . , n, with the

following properties:

(i) Hj(u0) is tangent to the characteristic curve Rj(u0) at u = u0 and the

shock speed σ(u,u0) tends to λj(u0) as u approaches u0 along Hj(u0).

(ii) The characteristic curve Rj(u0) and the Hugoniot curve Hj(u0) have

second order tangency at u = u0. For a given state u on Hj(u0), there

exists another state ū on Rj(u0) such that |u − ū| = O(1)|u − u0|3,
Figure 3.

(iii) The shock speed is approximated by the arithmetic mean of the charac-

teristic speed of its end states:

σ(u,u0) =
λj(u) + λj(u0)

2
+O(1)|u − u0|2, u ∈ Hj(u0). (3.3)

Figure 3: Wave curve for genuinely nonlinear field.

From Theorem 3.2, the two shock waves in the N -wave Npi,qi(x, t) vio-

lates the Rankine-Hugoniot condition by an amount of O(1)t−3/2 as t → ∞.

We will see that this is of sufficient accuracy for our time-asymptotic anal-

ysis.
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For a genuinely nonlinear i-field, the i-characteristic curve Ri(u0) and

i-th Hugoniot curve Hi(u0) are divided according to the parameter λi:

Ri(u0) = R+
i (u0) ∪R−

i (u0),

λi(u) > λi(u0), for u ∈ R+
i (u0); λi(u) ≤ λi(u0), for u ∈ R−

i (u0),

Hi(u0)− {u0} = H+
i (u0) ∪H−

i (u0),

λi(u) > σ(u0,u) > λi(u0), for u ∈ H+
i (u0);

λi(u) < σ(u0,u) < λi(u0), for u ∈ H−

i (u0). (3.4)

Definition 3.3. Suppose that the i-characteristic field is genuinely nonlin-

ear. An i-shock wave u+ ∈ Hi(u−), is admissible if it satisfies















λi(u+) < σ(u−,u+) < λi(u−),

λj(u) < σ(u−,u+), for j < i,

σ(u0,u) < λj(u0), for i < j.

Lax entropy condition. (3.5)

By (3.3) and strict hyperbolicity, Lax entropy condition holds locally

for half of the Hugoniot curve:

λi(u+) < σ(u−,u+) < λi(u−), for u+ ∈ H−

i (u−).

For the construction of rarefaction wave (u0,u1) in (2.8), we need u1 ∈
R+

i (u0). When the i-characteristic field is genuinely nonlinear, a state u1 is

on the wave curve W (u0) form either a shock or rarefaction wave (u0,u1),

Figure 3:

Wi(u0) ≡ R+
i (u0) ∪H−

i (u0), wave curve for genuinely nonlinear i-field.

(3.6)

For linearly degenerate field, the wave curve is identical to the charac-

teristic curve, Wi(u0) ≡ Ri(u0) and linear waves with speed λi(u0) can be

constructed to take values on Ri(u0), (2.9).

The Riemann problem

ut + f(u)x = 0, u(x, 0) =

{

ul, x < 0,

ur, x > 0,
(3.7)
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is solved by i waves (ui−1,ui), i = 1, . . . , n, satisfying

u0 = ul, un = ur, ui ∈ Wi(ui−1), i = 1, 2, . . . , n. (3.8)

The existence of these states follows from the implicit function theorem using

Theorem 3.2.

4. Glimm Estimates

The Glimm scheme constructs the approximate solutions using the so-

lutions of Riemann problem as building blocks. The Glimm functional F (t)

measures the potential of wave interactions after time t. It consists of sev-

eral components. The total amount of waves at time t is denoted by the

linear term L(t). There is the quadratic Qij
d (t) denoting the potential of

interaction of waves of the i-th characteristic family and waves of the j-th

characteristic family, i 6= j. A third order term Qi
s(t) denotes the potential

of interaction of waves of the genuinely nonlinear i-th characteristic family,

i ∈ I. The functional is defined for a space-like curve J :

L(J) ≡
∑

{α : α strength of waves crossing J};

Qij
d (J) ≡ {αiβj : αi strength of i-wave to the left, βj strength of j

waves to the right crossing J, i > j, i, j = 1, . . . , n};
Qi

s(J) ≡ {αβ(α + β) : α, β i-waves crossing J and

at least one of them a shock};
Qd(J) ≡

∑

i>j

Qij
d (J),

Qs(t) ≡
∑

i∈I

Qi
s(J); F (J) ≡ L(J) +AQd(J) +AQs(J).

(4.1)

By analysis of local wave interaction, it is shown that the functional F (J)

decreases as the space-like curve pushes in forward time direction. Let J

be the curve around time t, then the above functionals are denoted by

L(t), Qs(t), Qd(t), etc. Given a region Ω in the (x, t) space. Set

Dd(Ω), Ds(Ω), D(Ω) ≡ Dd(Ω) +Ds(Ω) :

the amount of wave interaction occurs in Ω.
(4.2)
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For Ω = {(x, t) : t > t0}, write Dd(Ω) = Dd(t0), Ds(Ω) = Ds(t0). The

Glimm’s estimate yields

D(t) = O(1)
(

Qd(t) +Qs(t)
)

. (4.3)

Thus we often use Qd(t), Qs(t) when Dd(t), Ds(t) can be used for more

accurate estimate, e.g., (5.6).

5. Coupling of Waves

The solutions for system of hyperbolic conservation laws are constructed

by the Glimm scheme, [4], when the total variation TV , (1.5), of the initial

data is small. It is shown by using the Glimm functional that the total

variation of the solution u(·, t) at any time t ≥ 0 is O(1)TV . The i-waves

pertaining to the genuinely nonlinear fields, i ∈ I, decay; while the i-waves

pertaining to linearly degenerate fields i ∈ II behave like linear waves and do

not decay. Thus the total amount of waves pertaining to linear degenerate

fields is O(1)TV. Therefore we differentiate the strength of these two type

of waves and set

Xi(t) : amount of i-waves at time t, i = 1, 2, . . . , n,

X(t) ≡
∑

i∈I

Xi(t)
amount of waves pertaining to genuinely

nonlinear fields at time t,

n
∑

i=1

Xi(t) = O(1)TV : amount of waves at time t.

(5.1)

Waves are altered by interactions. There are two types of interactions,

interaction among i-waves has third order effects, and interaction between

waves of distinct characteristic fields has the second order effects. We moni-

tor the amount of interactions for different regions in the (x, t) space. There

is the notion of i-th generalized characteristic curve, which propagates with

either shock or characteristic speed. For scalar laws, this is defined first for

piecewise continuous solutions and then approximate the general solutions

by piecewise continuous solutions. For systems, it is defined through the

wave tracing technique of [8]. i-waves do not cross an i-th generalized char-

acteristic curve. For compactly supported initial data, (1.5), the solution at
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later time is also compactly supported,

u(x, t) = u0, for |x|>M+C1t, C1 ≡ sup{λi(u), i = 1, 2, . . . , n, }
for all u under consideration.

(5.2)

Choose the fixed time t0 ≥ M . Through (±(C1 + 1)M, t0) draw generalized

characteristics Γ±

i . These curves meet before time t1, Figure 4. The region

after time t1 and between Γ−

i (t0) and Γ+
i (t0) is denoted by Ωi; and the region

between Γ+
i and Γ−

i+1 is denoted by Ω̄i(t0). By strict hyperbolicity,

[λ] ≡ min{|λj(u1)− λk(u2)|, j 6= k, for all u1 and u2 under consideration}

is positive. Thus these generalized characteristic curves of distinct families

intersect before time t1, Figure 4, and

t1 − t0 ≤
M + C1t0

[λ]
. (5.3)

From the choice of t0 ≥ M and (5.3), we may set

t1 ≡ C2t0, C2 ≡ 1 +
1 + C1

[λ]
(5.4)

By the Glimm estimate, the amount of waves at any time t is O(1)TV .

Waves pertaining to the linear degenerate fields behave essentially as linear

waves and do not decay in time. Waves pertaining to genuinely nonlinear

fields are expected to decay in total variation and tends to N -waves in the

Figure 4: Regions for wave coupling, first step.
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L1(x) norm. Thus we distinguished these nonlinear waves and will monitor

their total strength X(t) at time t. Although there are complex wave in-

teractions, it is possible to quantify the concentration of i-waves in primary

region Ωi, and the degree of lacuna of waves in the wake region Ω̄j. Thus

we set

Xi(t) : amount of i-waves at time t, i = 1, 2, . . . , n;

X̄i(t1) : amount of i-waves at time t1 outside of Ωi, X̄(t1) ≡
n
∑

i=1

X̄i(t1);

X(t) =
∑

i∈I

Xi(t) :
amount of wave pertaining to genuinely nonlinear fields

at time t.

(5.5)

Lemma 5.1.

X̄(t1) = O(1)
(

(TV )2 + (X(t0))
3
)

; (5.6)

Qd(t1) = O(1)(TV )3; (5.7)

Qs(t1) = O(1)
(

(X(t0))
3 + (TV )6

)

. (5.8)

Proof. Note that i-waves, i ∈ II, do not interact among themselves,

and the interaction by wave of the same characteristic families are con-

centrated on i-waves for i ∈ I. Therefore Qs(t0) = O(1)(X(t0))
3. Clearly,

Qd(t0) = O(1)(TV )2. Since points in the region Ω̄i are not related by char-

acteristics directly to the support at time t0, those waves in Ω̄i are produced

by interaction, and so

X̄i(t1) = O(1)
(

Qd(t0) +Qs(t0)
)

= O(1)
(

(TV )2 + (X(t0))
3
)

. (5.9)

This proves the estimate (5.6).

At time t1, i-waves in Ωi do not interact with j-waves in Ωj for i 6=
j, i, j = 1, . . . , n, because they scatter away from each other. Thus there is

no contribution to Qd(t0) this way, see the definition of Qd(J) in (4.1). The

contribution to Qd(t1) therefore comes from waves counted in X̄i(t1) with

other waves and so from (5.6)

Qd(t1) = O(1)

n
∑

i=1

X̄i(t1)TV = O(1)
(

(TV )2 + (X(t0))
3
)

TV.
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Note that X(t0) = O(1)TV and so the above yields the estimate (5.7). Total

amount of i-waves at time t1 is less that at time t0 plus the interaction and

is of the amount of X(t0) +O(1)(TV )2. The potential interaction of waves

of the same genuinely nonlinear characteristic family at time t1 is therefore

of the amount of

Qs(t1) =
(

X(t0) +O(1)(TV )2
)3
,

which yields the estimate (5.8). This completes the proof of the lemma. ���

Repeat the above process and draw generalized characteristics from x =

±(M + C1t1) at time t1 which intersect before time t2 and form regions

Ωi(t1), Ω̄i(t1), etc, Figure 5. Denote by X̄i(t1) the amount of i-waves outside

of Ω(t1), etc. Inductively, we then obtain a sequence of increasing times

tm ≡ (C2)
mt0, m = 1, 2, . . . .

Figure 5: Regions for wave coupling, m-th step.

Proposition 5.2. For sufficiently small TV ,

X̄(tm)=O(1)
(

m−1
∑

i=0

(TV )m−i−1(X(ti))
3+(TV )m+1

)

,m=1, 2, . . . ; (5.10)

Qd(tm) +Qs(tm)=O(1)
(

m
∑

i=0

(TV )m−i(X(ti))
3+(TV )m+2

)

,m=0, 1, 2, . . . .

(5.11)

Moreover,

u(x, t) = u0 +O(1)
(

Qd(tm) +Qs(tm)
)

+O(1)(X(tm))3,

for (x, t) ∈ Ω̄i(tm), i = 1, 2, . . . , n− 1. (5.12)
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Proof. By the same reasoning as in Lemma 5.1,

Qd(tm) = O(1)TV · X̄(tm), Qs(tm) = O(1)(X(tm))3, (5.13)

and

X̄(tm) = O(1)
(

Qd(tm−1) +Qs(tm−1)
)

. (5.14)

With (5.13) and (5.14), the estimates (5.11) and (5.11) are easily proved by

induction in m, with the initial case of m = 1 done in Lemma 5.1.

The solution variation in Ω̄i(tm) is of the order of

X̄i(tm) = O(1)
(

Qd(tm−1) +Qs(tm−1)
)

and so

u(x1, t1)− u(x2, t2) =O(1)
(

Qd(tm−1) +Qs(tm−1)
)

,

for any (x1, t1), (x2, t2) ∈ Ω̄i(tm).

For (x, t) ∈ Ωi(tm), i ∈ I, besides the amount X(tm) of i-waves, there are

other waves of the amount of X̄(tm). By Theorem 3.2, the i-waves lie on the

i-characteristic curve Ri except for a third order error. Thus, for any fixed

(x, t) ∈ Ωi(tm),

u(x1, t1) ∈Ri(u(x, t)) +O(1)
(

((X(tm))3 +Qd(tm−1) +Qs(tm−1)
)

,

for any (x1, t1) ∈ Ωi(tm), i ∈ I.

For i ∈ II, the wave curve Wi(u0) = Ri(u0) and their is no third order

error as for the genuinely nonlinear case above:

u(x1, t1) ∈Ri(u(x, t)) +O(1)
(

Qd(tm−1) +Qs(tm−1)
)

,

for any (x1, t1) ∈ Ωi(tm), i ∈ II.

These two estimates and that u(x, t) = u0 for (x, t) in Ω̄0 and in Ω̄n imply

the estimate (5.12). This completes the proof of the proposition. ���

Remark 5.3. For 2× 2 conservation laws, there exist the Riemann invari-

ant coordinates and when the strength of waves is measured in the Riemann

invariant coordinates, the wave interaction measure Qd is also third order,

same order as for Qs. This is sufficient for the analysis of decay and conver-

gence to N -waves. The decay of solutions were done in an unpublished note

related to Glimm-Lax [5], and convergence to N -waves done in DiPerna

[1]. The analysis of N -waves using the Riemann invariant coordinates is
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replaced by the derivation of the inviscid Burgers equation for the charac-

teristic speed in [9], (2.5), which is the natural setting for general systems.

For systems with more than two equations, Qd is second order in general.

Neverthelss, if the system is genuinely nonlinear, the estimates in Lemma

5.1, when repeated to time t2, are simplified to

X̄(t2) +Qd(t2) +Qs(t2) = O(1)(X(t0))
3. (5.15)

For any given t0, we have t2 = (C2)
2t0, and so t2 and t0 are of the same

order. This is sufficient for the decay and convergence to N -wave analysis

in [9]. The analysis in [12] is to obtain pointwise estimate and to improve

the convergence rate, under the same setting as [9].

The above analysis do not apply to systems with linearly degenerate

modes. The Euler equations in gas dynamics consist of two genuinely non-

linear acoustic modes and one linearly degenerate thermal mode. For magne-

tohydrodynamics equations, there is an additional linearly degenerate Alfv́en

mode. Linear degenerate modes also occur in elastic models. Our present

aim is to study the N -waves for the genuinely nonlinear modes within the

system containing also linearly degenerate modes. For this, we carry out the

repeated decoupling analysis in Proposition 5.2 to gain decay for the wave

interaction potential, see also Proposition 5.4 below.

Proposition 5.4. Suppose the total strength of waves pertaining to gen-

uinely nonlinear fields decays at the same rate as for the N -waves:

X(t) = O(1)TV · t−1/2, t ≥ 1. (5.16)

Then the wave interaction potentials decay at the same rate as (X(t))3:

Qd(t) +Qs(t) = O(1)(TV )3t−
3

2 , t ≥ (C2)
2M. (5.17)

Proof. From (5.11),

Qd((C2)
mt0)+Qs((C2)

mt0) = O(1)
(

m
∑

i=0

(TV )m−i+3
(

(C2)
it0

)−
3

2+(TV )m+2
)

.

(5.18)
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For any given t ≥ (C2)
2M , there exists m such that

(C2)
m ≤ t

M
≤ (C2)

m+1, for some integer m ≥ 2,

and set

t0 ≡
t

(C2)m
, so that t = (C2)

mt0, and M ≤ t0 ≤ C2M.

Then (5.18) becomes

Qd(t) +Qs(t) = O(1)(TV )3t−
3

2

(

m
∑

i=0

(

TV · (C2)
3

2

)m−i
+ (TV )m−1(C2)

3m
2 t

3

2

0

)

= O(1)(TV )3t−
3

2 .

This proves (5.17). ���

6. Expansion of Rarefaction Waves

Waves pertaining to a genuinely nonlinear i-characteristic field, i ∈ I,

decay because of cancellation of shock and rarefaction waves. This is due to

the expansion of rarefaction waves and the compression of shock waves. This

basic mechanism is quantitatively expressed in the following proposition on

the expansion rate of the rarefaction waves, [5], [11].

Figure 6: Expansion of rarefaction waves.

Consider a genuinely nonlinear i-characteristic field, i ∈ I. Draw two

generalized i-th characteristics C− to the left and C+ to the right from the

initial time T . Let I(t) be the interval between them at time t, and Ω the
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region between C1, C2, time T , and time t. Denote by X+(t) the total

amount of i-rarefaction waves on the interval I(t) at time t between C− and

C+, and X̃(T, t) the total amount of j-waves, j 6= i crossing I(T ) or C−, C+

between time T and time t. Denote by Ω the region between C1, C2, time

t0 and time t, Figure 6.

Proposition 6.1.

X+(t) ≤
I(t)

t− T

(

1 +O(1)X̃(T, t) +O(1)D(Ω)
)

+O(1)D(Ω). (6.1)

The estimate (6.1) registers the linear expansion rate of the rarefaction

waves, with the coupling effects of D(Ω) and X̃(T, t).

7. Decay of Solution

Before studying the time-asymptotic behavior of solutions in the next

two sections, we first study the decay of total strength X(t) of waves for

genuinely nonlinear fields and the wave interaction potential Qd(t) +Qs(t).

Theorem 7.1. Consider the solution of system of conservation laws with

small initial total variation TV constructed by Glimm scheme. Then, as

t → ∞, the total strength X(t) of waves pertaining to genuinely nonlinear

fields decays at the rate of t−1/2:

X(t) = O(1)TV (t+ 1)−
1

2 (7.1)

and the amount of potential wave interactions decays at the rate of t−3/2:

Qd(t) +Qs(t) = O(1)(TV )3(t+ 1)−
3

2 . (7.2)

Morevoer,

u(x, t) = u0 +O(1)(TV )3(t+ 1)−
3

2 for (x, t) ∈ Ω̃i, i = 1, 2, . . . . (7.3)

Proof. It follows from Proposition 5.4 that estimate (7.1) implies estimate

(7.2). Thus we may set up the induction process for verifying (7.1). The main

step in the induction process is using the estimate (6.1) on the expansion

waves to establish estimate (7.1) from estimate (7.2). This general approach

is carried out as follows:
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Consider the process (5.2)-(5.4), Figure 4, and let t0 be any given time

and set t1 = T . Let i ∈ I be a genuinely nonlinear field. Through the edge

of support at time t0 draw i-characteristics C± = Γ±

i and denote by Ω = Ωi

the region between time t = T and C±. We have from (6.1)

X+(t) ≤
I(t)

t− T

(

1 +O(1)X̃(T, t) +O(1)D(Ω)
)

+O(1)D(Ω). (7.4)

Here I(t) is the distance between C− and C+ at time t, Figure 7, X+(t) is

the amount of i-th rarefaction waves in Ω at time t, and X̃(T, t) the amount

of j-waves, j 6= i, crossing I(T ) and C± between times T and t.

Figure 7: Wave expansion and decay.

By (4.3), the amount of wave interactions D(Ω) in Ω is bounded by

Qd(T ) +Qs(T ):

D(Ω) = O(1)
(

Qd(T ) +Qs(T )
)

= O(1)
(

Qd(t0) +Qs(t0)
)

. (7.5)

The amount X̃(T, t) of j-waves, j 6= i, crossing the boundary of Ω belong to

those produced by interaction after time t0:

X̃(T, t) = O(1)D(t0) = O(1)
(

Qd(t0) +Qs(t0)
)

. (7.6)

By (7.5) and (7.6), (7.4) becomes

X+(t) ≤
I(t)

t− T

(

1 +O(1)
(

Qd(t0) +Qs(t0)
))

+O(1)
(

Qd(t0) +Qs(t0)
)

. (7.7)



206 TAI-PING LIU [September

Following the proof of (5.12) in Proposition 5.2, we have

u(x, t) = u0 +O(1)
(

Qd(t0) +Qs(t0) + (X(T ))3
)

,

for (x, t) ∈ Ω̄j, j = 1, 2, . . . , n− 1. (7.8)

Denote by ul (or ur ) the solution evaluated at the right side of C− (or left

side of C+) at time t and write

λ0 ≡ λi(u0), λl ≡ λi(ul), λr ≡ λi(ur).

The distance I(t) is governed by the Rankine-Hugoniot condition. From

Theorem 3.2, the speed of C− (or C+) is approximated by the arithmetic

mean of the characteristic speeds λl, (orλr) and λ0 with perturbation of the

order of O(1)(Qd(t0) +Qs(t0) + (X(T ))3). Thus we have from the estimate

(7.8),

d

dt
I(t)

= O(1)
(

Qd(t0)+Qs(t0)+(X(T ))3
)

+
λr−λl

2
+O(1)

(

(λr−λ0)
2−(λl−λ0)

2
)

=
(1

2
+O(1)Xi(T )

)

(λr − λl) +O(1)
(

Qd(t0) +Qs(t0) + (X(T ))3
)

. (7.9)

The difference λr−λl isX+(t) minus the amount of i-th shock waves between

C− and C+, with the perturbation of waves of other families. The latter is

of the amount of O(1)(Qd(t0) + Qs(t0)). Moreover, from (7.8), X+(t) =

Xi(t)/2 +O(1)(Qd(t0) +Qs(t0)). Thus we have

λr − λl ≤ X+(t) +O(1)(Qd(t0) +Qs(t0)) =
Xi(t)

2
+O(1)(Qd(t0) +Qs(t0)).

These, (7.7) and (7.9) yield:

d

dt
I(t) ≤

(1

2
+O(1)X(T )

) I(t)

t−T
+O(1)(Qd(t0)+Qs(t0)+(X(T ))3

)

; (7.10)

d

dt
I(t) ≤

(1

4
+O(1)X(T )

)

Xi(t)+O(1)(Qd(t0)+Qs(t0)+(X(T ))3
)

. (7.11)

We now start the induction process. To goal is to show

Xi(t) ≤ Hnt
−

1

2 , for t < Tm ≡ 2mT0, m = 0, 1, 2, . . . , (7.12)
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where

T0 = ε−
11

5 M, H0 ≡ ε−
1

10M
1

2 , ε ≡ 2TV. (7.13)

Since γ0 ≡ H0(T0)
−

1

2 = ε, we see that (7.12) holds for m = 0. Assume that

(7.12) holds for m ≤ p with the coefficients Hm, m = 0, 1 · · · , p, satisfying

H0 ≤ H1 ≤ · · · ≤ Hp ≤ 2H0.

As mentioned at the beginning of this proof, it follows from Proposition 5.4

that estimate (7.1) implies estimate (7.2). Thus the induction hypothesis

implies

Xi(t) ≤ Hpt
−

1

2 , Qd(t)+Qs(t)+(X(t))3 = O(1)(Hp)
3t−

3

2 , for t < Tp. (7.14)

We now apply the set up above with

t0 = (HpTp)
2

5 , γp ≡ Hp(t0)
−

1

2 .

From the induction hypothesis,

X(t0) ≤ γp.

Integrate (7.10) from t = T to t = Tp, making use of (7.14),

I(Tp) ≤
1

2
(1 +O(1)γp)Hp((Tp)

1

2 − T
1

2 ) +O(1)(γp)
3(Tp − T ) + I(T ).

Next integrate (7.11) for t ∈ (Tp, Tp+1):

I(t) ≤ (
t− T

Tp − T
)
1

2
+O(1)γpI(Tp) +O(1)(γp)

3(t− T ).

Noting that I(T ) = O(1)T = O(1)t0, we have from the above two estimates

I(t) ≤ (
t− T

Tp − T
)
1

2
+O(1)γp

(1

2
(1 +O(1)γp)Hp((Tp)

1

2 − T
1

2 )

+O(1)(γp)
3(Tp − T ) +O(1)t0

)

+O(1)(γp)
3(t− T ). (7.15)

We conclude from (7.7), (7.8), and (7.15) that
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Xi(t) ≤ (
t− Ct0
Tp − T

)O(1)γp(t− Ct0)
−

1

2

·
(

(1 +O(1)γp)Hp
(Tp)

1

2T
1

2

(Tp − T )
1

2

+O(1)
T

(Tp − T )
1

2

)

+O(1)(γp)
3. (7.16)

The induction is complete if Hp+1 is found to satisfy

(
t− T

Tp − T
)O(1)γp(t− T )−

1

2 [(1 +O(1)γp)Hp
(Tp)

1

2 (Ct0)
1

2

(Tp − T )
1

2

+O(1)
T

(Tp − T )
1

2

] +O(1)(γp)
3 ≤ Hp+1t

−
1

2 , for t ∈ (Tp, Tp+1).

This is so if

Hp+1 ≥ (
2Tp − T

Tp − T
)O(1)γp(

Tp

Tp − T
)
1

2 [(1 +O(1)γp)Hp
(Tp)

1

2T
1

2

(Tp − T )
1

2

+O(1)
T

(Tp − T )
1

2

] +O(1)(γp)
3. (7.17)

We assert that this can be satisfied with a choice ofHp+1 having the property

H0 = ε−
1

10M ≤ Hp ≤ Hp+1 ≤ Hp3
O(1)γp(1 +O(1)γp) +O(1)2−

p

10 ε
1

5 ≤ 2H0.

(7.18)

This is the consequence of the following simple estimates. From the definition

T0 ≡ ε−
11

5 M, H0 = ε−
1

10M
1

2 , Tp ≡ 2pT0, t0 ≡ (HpTp)
2

5 , γp = Hp(t0)
−

1

2

we deduce that

γp
γp−1

= 2−
1

5 (
Hp

Hp−1
)
4

5 ≤ 2−
1

10

where the last inequality comes from the estimate in (7.18) that we have

assumed. Thus

γp ≤ 2−
p

10 γ0 = ε2−
p

10 ,

which is small and decaying exponentially in p. With this it is easy to see

that (7.18) should hold if the terms not related to γp on the right hand side

of (7.17) can be satisfied for the small ε. The basic estimate for this is the
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ratio

t0
Tp

= (Tp)
−

3

5 (Hp)
2

5 ≤ 22−
3p

5 T0H0 = 2
3p

5 (ε
11

5 M)−
3

5 (ε−
1

10M
1

2 )
2

5

= M−
2

5 2−
3p

5 ε
31

25 ,

which is small and tends to zero exponentially in p. For instance, it implies

the first ratio on the right hand side of (7.18)

2Tp − T

Tp − T
≤ 3.

The other terms on the right hand side of (7.18) are estimated similarly.

This completes the proof of the theorem. ���

8. N-waves

With the decay of the total variation of the solution, one can study in

more detail the wave distribution and in particular the convergence to N -

waves and linear waves. This section studies the convergence to N -waves.

Recall from (1.9) that the (x, t) space is divided into regions

Ω̃1 ≡ {(x, t) : x < λ̃1t}, Ω̃n ≡ {(x, t) : x > λ̃n−1t},
Ω̃i ≡ {(x, t) : λ̃i−1t < x < λ̃it}, i = 2, . . . , n − 1,

with the constants λ̃i, i = 1, . . . , n− 1 chosen such that

λi(u) < λ̃i < λi+1(u) for all states u under consideration.

Theorem 8.1. For each i-th genuinely nonlinear characteristic field, i ∈ I,

there exist two time invariants pi, qi so that the solution of (1.5) converges

to the N -wave Ni(x, t) = Npi,qi(x − λi(u0)t, t)ri(u0) in Ω̃i. There is an

explicit description of the solution, (8.9), which yields that the convergence

rate of the solution in Ω̃i to the Ni(x, t) is of the rate of t−1/4 in L1(x).

Proof. For a given time t, set t0 = t
2

5 , t2 = (C2)
2t0 < t and follow the set-up

of Proposition 5.2. Consider generalized characteristics Γ̄−

i : x = xl(t), and

Γ̄+
i : x = xr(t), Figure 7. Consider the lines separating the characteristics:
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Γj ≡ {(x, t) : x = µjt, µj ≡
λj(u0) + λj+1(u0)

2
}, j = 1, . . . , n− 1;

Γ0 ≡ {(x, t) : x = (λ1(u0)− 1)t}, Γn ≡ {(x, t) : x = (λn(u0) + 1)t}.

After finite time O(1)M , the support of the solution is contained in the

region between Γ0 and Γn.

In the region between Γi−1 and Γi, µi−1t < x < µit, we have from

Theorem 7.1 that the amount of i-waves decays at the rate of t−1/2, and the

amount of j-waves, j 6= i, decays at the rate of t−3/2. Moreover, by Theorem

7.1 and (7.8), along Γi−1 and Γi, u = u0 +O(1)t−3/2. This implies that, in

the weak sense, the solution is governed accurately by the Hopf equation:

λt + (
λ2

2
)x = νi(x, t), λ ≡ λi(u)− λ0t, λ0 ≡ λi(u0).

The measure
∫

νi(x, t)dx comes from two sources, the first is the amount of

j-waves, j 6= i, which is of the order t−3/2 as just noted, and the second is

due to the fact that i-shock waves do not exactly satisfy the inviscid Burgers

equation, there is a third order error (t−1/2)3 = t−3/2, Section 3. Thus we

have
∫

∞

t

∫ µit

µi−1t
νi(x, s)dxds = O(1)(TV )2t−

1

2 .

The inviscid Burgers equation has two time invariants, [6], so the above

approximate inviscid Burgers equation yields two time invariants

time-asymptotically, e.g. (1.7):

pi = inf
x

∫ x

µi−1t
[λ(x, t)− λ0]dx+O(1)(TV )2t−

1

2 ,

qi = max
x

∫ µit

x
[λ(x, t) − λ0]dx+O(1)(TV )2t−

1

2 , λ0 ≡ λi(u0).

(8.1)

Draw generalized i-characteristics x = xl(t) and x = xr(t) starting at

time t2/5, Figure 8. Draw a backward characteristic through a location

(x, t), xl(t) < x < xr(t), to reach the time t2/5 at x0. The change of speed

of the backward characteristic after time s due to waves crossing it is of the
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Figure 8: Wave distribution for a genuinely nonlinear field.

order of O(1)(TV )2(s+ 1)−3/2, and so its location at time t is

x = x0 +

∫ t

t
2
5

(

λi(x, t) +O(1)(TV )2(s + 1)−
3

2

)

ds

= λi(x, t)(t− t
2

5 ) +O(1)(TV )2(t+ 1)−
1

5 = x0 + λi(x, t)t+O(1)t
2

5 .

Since x0 = λ0t+O(1)t
2

5 , this implies that the solution is close to the centered

i-rarefaction wave for xl(t) < x < xr(t), see (7.5),

λi(x, t) =
x− λ0t

t
+O(1)t−

3

5 , u(x, t) = u0 +O(1)t−
3

2 . (8.2)

Next consider the region left of the generalized characteristic, µi−1t <

x < xl(t), and draw a backward i-characteristic to meet the boundary at

time tβ for some β, 2/5 < β < 1, Figure 8. The speed of the backward

characteristic changes due to waves crossing it, which is of the order of

(TV )3(tβ)−3/2 = t−3β/2. The end speed λi(x, t) = λ0+O(1)(TV )3t−3β/2, by

(7.8). Thus

x = µi−1t
β + (t− tβ)

(

λ0 +O(1)(TV )3t−
3β

2

)

; or

λ0t− x = (λ0 − µi−1)t
β +O(1)(TV )3t1−

3β

2 .

Since λ0 − µi−1 is positive and of order one and since β ≥ 2/5 and TV is
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small, we have β > 1− 3β/2. Thus the above shows that

C1t
β ≤ λ0t− x ≤ C2t

β,

for some positive constant C1<C2. In particular, there exist 5/2≤βl, βr≤1,

C1t
βl ≤ λ0t− xl(t) ≤ C2t

βl , C1t
βr ≤ xr(t)− λ0t ≤ C2t

βr . (8.3)

The waves for the interval (µi−1t, x) are those produced after time tβ and so

have total strengthO(1)(TV )3t−3β/2, which is of the order ofO(1)(TV )3(λ0t−
x)−3/2. Similar estimate holds for the region xr(t) < x < µit and we have

thus shown that

u(x, t) = u0 +O(1)(TV )3|x− λ0t|−
3

2 ,

for µi−1t < x < xl(t), xr(t) < x < µit.
(8.4)

From (8.2) and (8.4),

λi(x, t) = λ0 +















O(1)(TV )3|x− λ0t|−
3

2 , for µi−1t < x < xl(t),
x−λ0t

t +O(1)(TV )3t−
3

5 , , for xl(t) < x < xr(t),

O(1)(TV )3|x− λ0t|−
3

2 , for xr(t) < x < µit.

(8.5)

We use this and (8.3) to relate the location of the two generalized charac-

teristics x = xl(t) and x = xr(t) to the time invariants pi, qi given in (8.1).

In view of the decay property u(x, t)−u0 = O(1)TV (1+ t)−1/2 in Theorem

7.1, the second equation in (8.5) implies that

|xl(t)− λ0t|+ |xr(t)− λ0t| = O(1)TV (t+ 1)
1

2 . (8.6)

The integrations outside the generalized characteristics are time-decaying

and do not contribute to time invariants pi, qi:

∫ xl(t)

µi−1t
(λi(x, t)− λ0)dx = O(1)(TV )3|xl(t)− λ0t|−

1

2 = O(1)(TV )3t−βl/2,

∫ µit

xr(t)
(λi(x, t)− λ0)dx = O(1)(TV )3|xr(t)− λ0t|−

1

2 = O(1)(TV )3t−βr/2.
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The integrations between the generalized characteristics are:

∫ λ0t

xl(t)
(λi(x, t)− λ0)dx = − 1

2t

(

λ0t− xl(t)
)2

+O(1)(TV )3t−
3

5

(

λ0t− µi−1t
)

,

∫ λ0t

xl(t)
(λi(x, t)− λ0)dx =

1

2t

(

λ0t− xr(t)t
)2

+O(1)(TV )3t−
3

5

(

λ0t− µi−1t
)

.

This and (8.6) yields

∫ λ0t

xl(t)
(λi(x, t)− λ0)dx = − 1

2t

(

λ0t− xl(t)
)2

+O(1)(TV )3t−
1

10 ,

∫ λ0t

xl(t)
(λi(x, t)− λ0)dx =

1

2t

(

λ0t− xr(t)
)2

+O(1)(TV )3t−
1

10 .

The above analysis also shows that

inf
x

∫ x

µi−1t
[λ(x, t)− λ0]dx = − 1

2t

(

λ0t− xl(t)
)2

+O(1)(TV )3t−
1

10 ,

max
x

∫ µit

x
[λ(x, t)− λ0]dx =

1

2t

(

λ0t− xr(t)
)2

+O(1)(TV )3t−
1

10 .

This and (8.1) for the time invariants pi, qi gives the estimate of the location

of the generalized characteristics:

λ0t− xl(t) =
√

−2pit+O(1)(TV )3t−
1

10 ,

xr(t)− λ0t =
√

2qit+O(1)(TV )3t−
1

10 .
(8.7)

Consider the generic case of p < 0 < q. From (8.5) and (8.7), we see

that two relatively strong shock waves eventually emerge on the generalized

characteristics

λi(xl(t)− 0, t)− λi(xl(t) + 0, t) =

√

−2p

t
+O(1)(TV )3t−

3

5 ,

λi(xr(t)− 0, t)− λi(xr(t) + 0, t) =

√

2q

t
+O(1)(TV )3t−

3

5 .

(8.8)

After the emergence of the two relatively strong shocks, say after time T ,

we may redo the above analysis as follows: Let Cl and Cr be the generalized

characteristics through (µi−1T, T ) and (µiT, T ) which eventually coincide

with the two relatively strong shock curves after some finite time T1 > T .
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For (x, t), t > T1, between Cl and Cr draw backward characteristic to meet

time T1 at (x0, T1) between Cl and Cr. The backward characteristic has

speed λi(x, t) +O(1)(TV )3(s+ 1)−3/2, T1 < s < t, and so

x = x0 +

∫ t

T1

(

λi(x, t) +O(1)(TV )3(s+ 1)−3/2
)

ds = λi(x, t)t+O(1).

This improves the second estimate of (8.5). For (x, t) between Γi−1 and Γi,

but outside of Cl and Cr, we also repeat the process before, and we conclude

from the above, (8.5) and (8.7) that

λi(x, t)− λ0

=



















O(1)(TV )3|λ0t− x|− 3

2 , for µi−1t < x− λ0t < −
√

−2pi
t ,

x−λ0t
t +O(1)(TV )3t−1, for −

√

−2pi
t < x− λ0t <

√

2qi
t ,

O(1)(TV )3|x− λ0t|−
3

2 , for
√

2qi
t < x− λ0t < µit.

(8.9)

This completes the description of the solution between Γi−1 and Γi. By

direct calculations using (8.9),

∫ µit

µi−1t
|λi(x, t) − λ0 −N(x− λ0t, t; p, q)(x, t)|Dx = O(1)(t+ 1)−

1

4 . (8.10)

This completes the proof of the theorem. ���

9. Linear Waves

For a linearly degenerate i-th field, i ∈ II, the solution u(x, t), (x, t) ∈
Ω̃i, tends, time-asymptotically, to a linear i-the simple wave, (2.9). The

asymptotic profile depends on the initial data u(x, 0). The convergence rate

is better than that for the N -waves in Theorem 8.1. To describe the linear

wave which dominates the solution in Ω̃i, consider a stationary wave φ(x) and

the corresponding i-th simple wave φ(x, t) is constructed by parametrizing

the i-th characteristic curve Ri(u0) by a non-singular parameter τ with

τ(u0) = 0 and set, (2.9),

φ(x, t) ∈ Ri(u0), τ(φ(x, t)) = φ(x− λi(u0t). (9.1)
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Theorem 9.1. For each i-th linearly degenerate characteristic field, i ∈ II,

there exists φ(x) such that:

(1) φ(x) = O(1)|x|− 3

2 as |x| → ∞;

(2) the solution u(x, t), (x.t) ∈ Ω̃i, tends to the corresponding simple wave

φ(x, t), (9.1), as t → ∞ and the convergence rate is t−1/2 in L1(x).

Proof. In the region Ω̃i, the amount of j-waves, j 6= i, is of the order of

Qd(t) +Qs(t), which decays at the rate of (TV )3t−3/2, (7.2). This and (7.8)

imply that

u(x, t) ∈ Ri(u0) +O(1)(TV )3t−
3

2 , λi(u)(x, t) = λi(u0) +O(1)(TV )3t−
3

2 ,

for (x, t) ∈ Ω̃i and as t → ∞.

(9.2)

The i-waves in Ω̃i do not decay because of linear degeneracy. The i-

waves do not interact among themselves, and change in time of the order

of Qd(t) + Qs(t), and so the change in time is of the rate t−3/2. Thus the

solution in Ω̃i tends to a limiting function ũ(x, t) satisfying

u(x, t)− ũ(x, t) = O(1)t−
3

2 , for (x, t) ∈ Ω̃i.

This implies that

∫ λ̃it

λ̃i−1t
|u(x, t)− ũ|(x, t)|dx = O(1)t · (1)t− 3

2 = O(1)t−
1

2 .

This proves the second statement of (2).

By (9.2), the limiting function ũ(x, t) satisfies ũ(x, t) ∈ Ri(u0) and

λi(ũ)(x, t) = λi(u0). In other words, the limiting function ũ(x, t) is an i-th

simple wave solution of the conservation laws, (2.9). Therefore it is of the

form of (9.1) for some stationary wave φ(x).

From (7.8), the u(x, t) = u0 + O(1)t−3/2 for (x, t) on the edges x =

λ̃i−1t, x = λ̃it of the region Ω̃i. By varying x − λi(u0t > 0, and with

(x, t) on the right edge of Ω̃i, we have x− λi(u0)t is of the same order as t.

Therefore u(x, t)− u0 decays at the rate t−3/2. In other words,

u(x, t)− u0 = O(1)t−
3

2 = O(1)(x − λi(u0t)
−

3

2 ,
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and for the limiting function

ũ(x, t)− u0 = O(1)(x− λi(u0t)
−

3

2 .

Similar estimate holds for x < λi(u0)t. This implies the tail behavior of

φ(x) in (1). ���

The main theorem, Theorem 1.1, follows from Theorem 8.1 and Theorem

9.1.
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