Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. **15** (2020), No. 4, pp. 277-285 DOI: 10.21915/BIMAS.2020401

POSITIVE CONJUGACY CLASSES IN WEYL GROUPS

GEORGE LUSZTIG

Department of Mathematics, M.I.T., Cambridge, MA 02139, USA. E-mail: gyuri@math.mit.edu

1. Let W be a Weyl group. In this paper we introduce the notion of positive conjugacy class of W. This generalizes the notion of elliptic regular conjugacy class in the sense of Springer [9].

Let $w \mapsto |w|$ be the length function on W. Let $S = \{s \in W; |s| = 1\}$.

Let v be an indeterminate. Recall that the Iwahori-Hecke algebra of W is the associative $\mathbf{Q}(v)$ -algebra H which, as a $\mathbf{Q}(v)$ -vector space has basis $\{T_w; w \in W\}$ and has multiplication given by $T_w T_{w'} = T_{ww'}$ if |ww'| = |w| + |w'| and $(T_s + 1)(T_s - v^2) = 0$ if $s \in S$; note that T_1 is the unit element of H. This is a split semisimple algebra. Let $\mathbf{q} = v^2$.

For w, w' in W let $N^{w,w'}$ be the trace of the $\mathbf{Q}(v)$ -linear map $H \to H$, $h \mapsto T_w h T_{w'^{-1}}$. We have $N^{w,w'} \in \mathbf{Z}[\mathbf{q}]$ and

(a)
$$N^{w,w'} = \sum_{E \in \operatorname{Irr} W} \operatorname{tr}(T_w, E_v) \operatorname{tr}(T_{w'}, E_v)$$

where IrrW is the set of irreducible $\mathbf{Q}[W]$ -modules up to isomorphism and for $E \in \text{IrrW}$, E_v denotes the corresponding simple H-module (which in [8, 3.3] is denoted by $E(v^2)$). Note that when v is specialized to 1, H becomes the group algebra $\mathbf{Q}[W]$ of W and $N^{w,w'}$ specializes to $N^{w,w'}(1)$, the number of elements $y \in W$ such that wy = yw'. In particular, if $w \in W$, $N^{w,w}$ specializes to n^w , the order of the centralizer of w in W; thus the polynomial $N^{w,w}$ can be viewed as a **q**-analogue of the number n^w .

Received October 5, 2020 and in revised form December 22, 2020.

AMS Subject Classification: 20G99.

Key words and phrases: Weyl group, Hecke algebra, conjugacy class. Supported by NSF grant DMS-1566618.

GEORGE LUSZTIG

If C is a conjugacy class in W we denote by C_{min} the set of all $y \in C$ such that $C \to \mathbf{N}, w \mapsto |w|$, reaches its minimum at y. By a result of Geck and Pfeiffer [4, 3.2.9], for any $E \in \operatorname{Irr} W, w \mapsto \operatorname{tr}(T_w, E_v)$ is constant on C_{min} . Using this and (a) we see that $w \mapsto N^{w,w}$ is constant on C_{min} . We say that C is *positive* if $C \neq \{1\}$ and for some/any $w \in C_{min}$ we have $N^{w,w} \in \mathbf{N}[\mathbf{q}]$. (We then also say that any element $w \in C_{min}$ is positive.)

2. For any $f \in \mathbf{Z}[\mathbf{q}]$ we write $f = \sum_{i\geq 0} f_i \mathbf{q}^i$ where $f_i \in \mathbf{Z}$. For $w \in W$ let S_w be the set of all $s \in S$ such that s appears in some/any reduced expression for w. Let $\mathcal{L}_w = \{s \in S; |sw| < |w|\}, \mathcal{R}_w = \{s \in S; |ws| < |w|\}$. For a, a' in W we write $T_a T_{a'} = \sum_{b \in W} \phi(a, a', b) T_b$ where $\phi(a, a', b) \in \mathbf{Z}[\mathbf{q}]$. We show:

(a) $\phi(a, a', b)_{|a|} \ge 0$, $\phi(a, a', b)_i = 0$ for i > |a|. If $\phi(a, a', b)_{|a|} \ne 0$ then either a' = b, $S_a \subset \mathcal{L}_{a'}$ or |b| < |a'|. If a' = b, $S_a \subset \mathcal{L}_{a'}$ then $\phi(a, a', b)_{|a|} = 1$.

We argue by induction on |a|. When |a| = 0 the result is obvious. Assume now that $|a| \ge 1$. We write $a = a_1s$ where $s \in S$, $|a_1| = |a| - 1$. If |sa'| = |a'| + 1 then $\phi(a, a', b) = \phi(a_1, sa', b)$ and the induction hypothesis shows that $\phi(a, a', b)_i = 0$ for $i \ge |a|$. Since $s \in S_a$, $s \notin \mathcal{L}_{a'}$, we see that the desired result holds. Next we assume that |sa'| = |a'| - 1. Then $\phi(a, a', b) = \mathbf{q}\phi(a_1, sa', b) + (\mathbf{q} - 1)\phi(a_1, a', b)$. From the induction hypothesis we see that $\phi(a, a', b)_i = 0$ if i > |a|, that $\phi(a, a', b)_{|a|} = \phi(a_1, sa', b)_{|a_1|} + \phi(a_1, a', b)_{|a_1|} \ge 0$ and that if $\phi(a, a', b)_{|a|} \ne 0$ then either $\phi(a_1, sa', b)_{|a_1|} \ne 0$ or $\phi(a_1, a', b)_{|a_1|} \ne 0$, so that we are in one of the cases (i)-(iv) below.

- (i) sa' = b, (ii) |b| < |sa'|;
- (iii) $a' = b, S_{a_1} \subset \mathcal{L}_{a'};$
- (iv) |b| < |a'|.

In case (i), (ii), (iii) we have |b| < |a'|; in case (iii) have a' = b and $S_a \subset \mathcal{L}_{a'}$ (since $S_a = S_{a_1} \cup \{s\}$), as desired. Now assume that a' = b, $S_a \subset \mathcal{L}_{a'}$. It remains to show that $\phi(a_1, sa', b)_{|a_1|} + \phi(a_1, a', b)_{|a_1|} = 1$. By the induction hypothesis we have $\phi(a_1, a', b)_{|a_1|} = 1$ (since $S_{a_1} \subset \mathcal{L}_{a'}$) $\phi(a_1, sa', b)_{|a_1|} = 0$ (since $sa' \neq b$ and $|b| \not\leq |sa'|$). This completes the proof. The following result is proved in the same way as (a).

(b) $\phi(a, a', b)_{|a'|} \geq 0$, $\phi(a, a', b)_i = 0$ for i > |a'|. If $\phi(a, a', b)_{|a'|} \neq 0$ then either a = b, $S_{a'} \subset \mathcal{R}_{a'}$ or |b| < |a|. If a = b, $S_{a'} \subset \mathcal{R}_{a'}$ then $\phi(a, a', b)_{|a'|} = 1$. For a, a', a'' in W we have $T_a T_{a'} T_{a''} = \sum_{b \in W} f(a, a', a'', b) T_b$ where $f(a, a', a'', b) \in \mathbf{Z}[\mathbf{q}]$. Let n = |a| + |a''|. We show:

(c) $f(a, a', a'', a')_n \geq 0$, $f(a, a', a'', a')_i = 0$ for i > n. If $f(a, a', a'', a')_n \neq 0$ then $S_a \subset \mathcal{L}_{a'}$ and $S_{a''} \subset \mathcal{R}_{a'}$. Conversely, if $S_a \subset \mathcal{L}_{a'}$ and $S_{a''} \subset \mathcal{R}_{a'}$ then $f(a, a', a'', a')_n = 1$.

We have $f(a, a', a'', a') = \sum_{c \in W} \phi(a, a', c) \phi(c, a'', a')$. Hence for $i \ge 0$ we have $f(a, a', a'', a')_i = \sum_{c \in W; j \ge 0, j' \ge 0, j+j'=i} \phi(a, a', c)_j \phi(c, a'', a')_{j'}$. Using (a) and (b) in the last sum we can take $j \ge |a|, j' \ge |a''|$. Hence if i > n = |a| + |a''| then $f(a, a', a'', a')_i = 0$ and

 $f(a, a', a'', a')_n = \sum_{c \in W} \phi(a, a', c)_{|a|} \phi(c, a'', a')_{|a''|} \ge 0$. Assume now that $f(a, a', a'', a')_n \neq 0$. Then in the last sum we can assume that

 $c = a', S_a \subset \mathcal{L}_{a'}$ or |c| < |a'| and $a' = c, S_{a''} \subset \mathcal{R}_c$ or |a'| < |c|

Thus we can assume that c = a', $S_a \subset \mathcal{L}_{a'}$ and $S_{a''} \subset \mathcal{R}_{a'}$ and using again (a), (b) we have $f(a, a', a'', a')_n = 1$.

For w, w' in W we set n = |w| + |w'|; we show:

(d) $N_n^{w,w'} = \sharp(a' \in W; S_w \subset \mathcal{L}_{a'}, S_{w'} \subset \mathcal{R}_{a'}) > 0, \ N_i^{w,w'} = 0 \text{ for } i > n.$ We have $N^{w,w'} = \sum_{a' \in W} f(w,a',w',a')$ and the result follows from (c). (We use that if $a' = w_0$, the longest element of W then $S_w \subset \mathcal{L}_{a'} = S$, $S_{w'} \subset \mathcal{R}_{a'} = S$.)

From (d) we deduce:

2020]

(e) Let w, w', n be as in (d). Assume that either $S_w = S$ or $S_{w'} = S$. then $N_n^{w,w'} = 1$.

Indeed, if $a' \in W$ satisfies $S \subset \mathcal{L}_{a'}$ or $S \subset \mathcal{R}_{a'}$ then $a' = w_0$.

We state the following result.

(f) Let w, w', n be as in (d). For i = 0, 1, ..., n we have $N_i^{w,w'} = (-1)^n N_{n-i}^{w,w'}$. Let⁻: $\mathbf{Q}(v) \to \mathbf{Q}(v)$ be the field automorphism such that $\bar{v} = v^{-1}$. For $E \in$ IrrW let $E^{\dagger} \in$ IrrW be the tensor product of E with the sign representation of W. It is known that for $w \in W$ we have

$$\operatorname{tr}(T_w, E_v^{\dagger}) = (-v^2)^{|w|} \operatorname{tr}(T_{w^{-1}}^{-1}, E_v) = (-v^2)^{|w|} \overline{\operatorname{tr}(T_w, E_v)}.$$

It follows that

$$N^{w,w'} = \sum_{E \in \operatorname{Irr}W} \operatorname{tr}(T_w, E_v^{\dagger}) \operatorname{tr}(T_{w'}, E_v^{\dagger})$$
$$= \sum_{E \in \operatorname{Irr}W} (-v^2)^{|w|} \overline{\operatorname{tr}(T_w, E_v)} (-v^2)^{|w'|} \overline{\operatorname{tr}(T_{w'}, E_v)}$$
$$= \sum_{E \in \operatorname{Irr}W} (-v^2)^n \overline{\operatorname{tr}(T_w, E_v) \operatorname{tr}(T_{w'}, E_v)}.$$

We see that

$$N^{w,w'} = (-\mathbf{q})^n \overline{N^{w,w'}}$$

and (f) follows.

3. We now assume that W is irreducible. Let $\nu = |w_0|$ where w_0 is the longest element of W. An element $w \in W$ (or its conjugacy class) is said to be *elliptic* if its eigenvalues in the reflection representation of W are all $\neq 1$. For any $d \in \{2, 3, 4, ...\}$ let C^d be the set of all elliptic elements $w \in W$ which have order d and are regular in the sense of Springer [9]. It is known [9] that C^d is either empty or a single conjugacy class in W. Let $\mathcal{D} = \{d \in \{2, 3, ...\}; C^d \neq \emptyset\}$. It is known [9] that if $d \in \mathcal{D}$ and $w \in C^d_{min}$ then $|w| = 2\nu/d$. Let h be the Coxeter number of W. We have $h \in \mathcal{D}$.

According to [9], the set \mathcal{D} is as follows:

Type $A_n (n \ge 1)$: $\mathcal{D} = \{n + 1\}$. Type $B_n (n \ge 2)$: $\mathcal{D} = \{d \in \{2, 4, 6, \dots\}; 2n/d = \text{integer}\}$. Type D_n (*n* even, $n \ge 4$): $\mathcal{D} = \{d \in \{2, 4, 6, \dots\}; (2n - 2)/d = \text{odd integer or } 2n/d = \text{integer}\}$. Type D_n (*n* odd, $n \ge 5$): $\mathcal{D} = \{d \in \{2, 4, 6, \dots\}; (2n - 2)/d = \text{odd integer}\}$. Type E_6 : $\mathcal{D} = \{3, 6, 9, 12\}$. Type E_7 : $\mathcal{D} = \{2, 6, 14, 18\}$. Type E_8 : $\mathcal{D} = \{2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30\}$. Type F_4 : $\mathcal{D} = \{2, 3, 4, 6, 8, 12\}$. Type G_2 : $\mathcal{D} = \{2, 3, 6\}$.

280

We note the following properties:

2020]

- (a) If $2 \in \mathcal{D}$, $d \in \mathcal{D}$ is even and $w \in C_{min}^d$ then $w^{d/2} = w_0$, $(d/2)|w| = |w_0|$ hence $T_w^{d/2} = T_{w_0}$.
- (b) If d = h, $w \in C_{min}^d$ then $T_w^d = T_{w_0}^2$.
- (c) If $d \in \mathcal{D}$, $h/d \in \mathbb{N}$ and $y \in C_{min}^{h}$ then $y^{h/d} \in C_{min}^{d}$ and $(h/2)|y| = |y^{h/d}|$ hence $T_y^{h/d} = T_{y^{h/d}}$.

The equation $w^{d/2} = w_0$ in (a) holds by examining the characteristic polynomial of w and $w^{d/2}$ in the reflection representation of W; then (a) follows. The equality in (b) can be deduced from [1, Ch.V,§6, Ex.2]. The equation $w^{h/d} \in C^d_{min}$ in (c) holds by examining the characteristic polynomial of w and $w^{h/d}$ in the reflection representation of W; then (c) follows.

For any $E \in \operatorname{Irr} W$ we define $a_E \in \mathbb{N}$ as in [8, 4.1]. Let $\tilde{a}_E = \nu - a_E + a_{E^{\dagger}}$.

(d)
$$T_{w_0}^2 = v^{2\tilde{a}_E} 1 : E_v \to E_v.$$

This can be deduced from [8, (5.12.2)]; a closely related statement was first proved by Springer, see [4, 9.2.2].

We show:

(e) Let $E \in \operatorname{Irr} W$ and let $d \in \mathcal{D}, w \in C_{\min}^d$. Then all eigenvalues of $T_w : E_v \to E_v$ (in an algebraic closure of $\mathbf{Q}(v)$) are roots of 1 times $v^{2\tilde{a}_E/d}$. If d is as in (a) then the result follows from (a) and (d). If d = h then the result follows from (b) and (d). If d, y are as in (c) then the result follows from (c) and the previous sentence. From the description of \mathcal{D} for various types we see that if $d \in \mathcal{D}$ is not as in (a) then it is as in (c). This proves (e). (A closely related result can be found in [4, 9.2.5].)

From (e) we deduce:

(f) In the setup of (e), $\operatorname{tr}(T_w, E_v)$ equals $v^{2\tilde{a}_E/d}\operatorname{tr}(w, E)$; this is 0 if $2\tilde{a}_E/d \notin \mathbb{Z}$. (The idea of the proof leading to (f) appeared in [8, p.320].) Using (f) and 1(a) we deduce:

(g) If $d \in \mathcal{D}$, $w \in C^d_{min}$, then

$$N^{w,w} = \sum_{E \in \operatorname{Irr} W} \mathbf{q}^{2\tilde{a}_E/d} \operatorname{tr}(w, E)^2.$$

In particular, we have $N^{w,w} \in \mathbf{N}[\mathbf{q}]$ and w is positive.

4. Using 1(a) and the CHEVIE package [5] one can find a list of positive conjugacy classes in W (assumed to be irreducible of low rank). I thank Gongqin Li for help with programming in GAP. The list of positive conjugacy classes in W which are not regular elliptic for W of type $E_6, E_7, E_8, F_4, G_2, B_5, B_6$ is as follows. (We specify a conjugacy class by the characteristic polynomial of one of its elements in the reflection representation. We denote by Φ_k the k-th cyclotomic polynomial; thus $\Phi_2 = \mathbf{q} + 1, \Phi_3 = \mathbf{q}^2 + \mathbf{q} + 1$, etc.)

Type E_6 : none.

Type E_7 : $\Phi_{12}\Phi_6\Phi_2, \Phi_{10}\Phi_6\Phi_2, \Phi_{10}\Phi_2^3, \Phi_8\Phi_4\Phi_2, \Phi_4^2\Phi_2^3$.

Type E_8 : $\Phi_{18}\Phi_6, \Phi_{18}\Phi_2^2, \Phi_9\Phi_3, \Phi_{14}\Phi_2^2$.

Type F_4 : none.

Type G_2 : none.

Type B_5 : $\Phi_8\Phi_2, \Phi_6\Phi_2^2, \Phi_4^2\Phi_2, \Phi_2\Phi_4\Phi_6$.

Type $B_6: \Phi_{10}\Phi_2^2, \Phi_8\Phi_4, \Phi_8\Phi_2^2, \Phi_6\Phi_2^3$.

In each of these examples any positive element of W is elliptic; we expect this to be true in general. The example of B_6 suggests that if W is of type B_n with $2n = 4 + 8 + \cdots + 4k$, then an element of W with cycle type $(4)(8) \dots (4k)$ might be positive.

Remark. In a first version of this paper, the fourth conjugacy class listed above for type B_5 was omitted by mistake. I thank Jean Michel for pointing this out.

5. Let **k** be an algebraic closure of the finite field F_q with q elements. Let G be a connected reductive group over **k** with a fixed F_q -split rational structure and whose Weyl group is W. Let $F: G \to G$ be the corresponding Frobenius map. For $w \in W$ let X_w be the variety of Borel subgroups B of G such that B and F(B) are in relative position w, see [2, 1.3]. The finite group $G^F = \{g \in G; F(g) = g\}$ acts on X_w by conjugation. For w, w' in W we denote by $X_{w,w'} = G^F \setminus (X_w \times X_{w'})$ the space of G^F -orbits for the diagonal action of G^F on $X_w \times X_{w'}$. Now $(B, B') \mapsto (F(B), F(B'))$ induces a map $X_{w,w'} \to X_{w,w'}$ (denoted again by F) which is the Frobenius map for an F_q -rational structure on $X_{w,w'}$. By [7, 3.8] for any integer $e \ge 1$ we have

(a)
$$\sharp(\xi \in X_{w,w'}; F^e(\xi) = \xi) = N^{w,w'}(q^e).$$

2020]

6. In the remainder of this paper we assume that G in no.5 is simply connected and W is irreducible. In the case where w is a Coxeter element of minimal length of W, the left hand side of 5(a) (with w = w') has been computed in [6, p.158]. This gives the following formulas for $N^{w,w}$.

Type
$$A_n (n \ge 1)$$
: $\mathbf{q}^{2n} + \mathbf{q}^{2n-2} + \dots + \mathbf{q}^2 + 1$.
Type $B_n (n \ge 2)$: $\mathbf{q}^{2n} + 2\mathbf{q}^{2n-2} + 2\mathbf{q}^{2n-4} + \dots + 2\mathbf{q}^2 + 1$.
Type $D_n (n \ge 4)$: $\mathbf{q}^{2n} + \mathbf{q}^{2n-2} + 2\mathbf{q}^{2n-4} + 2\mathbf{q}^{n-6} + \dots + 2\mathbf{q}^4 + \mathbf{q}^2 + 1$.
Type E_6 : $\mathbf{q}^{12} + \mathbf{q}^{10} + 2\mathbf{q}^8 + 4\mathbf{q}^6 + 2\mathbf{q}^4 + \mathbf{q}^2 + 1$.
Type E_7 : $\mathbf{q}^{14} + \mathbf{q}^{12} + 2\mathbf{q}^{10} + 4\mathbf{q}^8 + 2\mathbf{q}^7 + 4\mathbf{q}^6 + 2\mathbf{q}^4 + \mathbf{q}^2 + 1$.
Type E_8 : $\mathbf{q}^{16} + \mathbf{q}^{14} + 2\mathbf{q}^{12} + 4\mathbf{q}^{10} + 2\mathbf{q}^9 + 10\mathbf{q}^8 + 2\mathbf{q}^7 + 4\mathbf{q}^6 + 2\mathbf{q}^4 + \mathbf{q}^2 + 1$.
Type F_4 : $\mathbf{q}^8 + 2\mathbf{q}^6 + 6\mathbf{q}^4 + 2\mathbf{q}^2 + 1$.
Type G_2 : $\mathbf{q}^4 + 4\mathbf{q}^2 + 1$.

Let \mathcal{N}_G be the variety consisting of all pairs (g, g') where g runs through the standard Steinberg cross section of the set of regular elements of G and g' is an element in the centralizer of g in G modulo the centre of G. (This variety, introduced in [6, p.158], makes sense even if **k** is replaced by the complex numbers. It plays a role in [3] where it is called the *universal centralizer*.) According to [6, p.158], the number of F_q -rational points of \mathcal{N}_G is equal to $N^{w,w}(q)$ hence it is given by the formulas above with $\mathbf{q} = q$.

7. Let C be a conjugacy class of W. For $w \in C$, the part of weight j of the *i*-th *l*-adic cohomology space with compact support $H_c^i(X_w, \bar{\mathbf{Q}}_l)$ is a direct sum $\bigoplus_{\rho} V_{\rho,j}^i \otimes \rho$ where ρ runs over the unipotent representations of G^F (up to isomorphism) and $V_{\rho,j}^i$ are finite dimensional $\bar{\mathbf{Q}}_l$ -vector spaces in such a way that the G^F -action is only through the action on ρ and the Frobenius action is only through an action on $V_{\rho,j}^i$ (where it is multiplication by $q^{j/2}\lambda_\rho$ with

 λ_{ρ} a root of 1 independent of w, i, j, and the parity of j is independent of w, i, see [7, 3.9], [8]). Using the Grothendieck-Lefschetz fixed point formula, from 5(a) we deduce for any $e \geq 1$:

$$N^{w,w}(q^e) = \sum_{i,i',j,j',\rho} (-1)^{i+i'} \dim(V^i_{\rho,j}) \dim(V^{i'}_{\rho^*,j'}) q^{je/2} q^{j'e/2}$$

where ρ^* is the dual of ρ and we have used that $\lambda_{\rho^*} = \lambda_{\rho}^{-1}$. This implies

(a)
$$N^{w,w} = \sum_{i,i',j,j',\rho} (-1)^{i+i'} \dim(V^i_{\rho,j}) \dim(V^{i'}_{\rho^*,j'}) v^{j+j'}.$$

If we assume that

(b) the G^F -modules $H^i_c(X_w, \bar{\mathbf{Q}}_l)$, dual of $H^{i'}_c(X_w, \bar{\mathbf{Q}}_l)$ are disjoint for any i, i' such that $i \neq i' \mod 2$

then from (a) we could deduce that $N^{w,w} \in \mathbf{N}[\mathbf{q}]$. Hence if we assume further that $w \in C_{min}, C \neq \{1\}$ it would follow that C is positive.

We conjecture that, conversely, if C is positive and $w \in C_{min}$ then (b) holds. It is also likely that in this case,

(c) the G^F -modules $H^i_c(X_w, \bar{\mathbf{Q}}_l)$, $H^{i'}_c(X_w, \bar{\mathbf{Q}}_l)$ are disjoint for any i, i' such that $i \neq i' \mod 2$.

This disjointness property holds when w is as in §6, see [6].

References

- 1. N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1968.
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math., 103 (1976), 103-161.
- 3. M. Finkelberg and A. Tsymbaliuk, Multiplicative slices, relativistic Toda lattice and shifted quantum affine algebras, arxiv:1708.01795.
- M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, Clarendon Pres, Oxford, 2000.
- M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 115-1210.
- G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 38 (1976), 101-159.

- G. Lusztig, Representations of finite Chevalley groups, Regional Conf. Ser. in Math., 39, Amer. Math. Soc. 1978.
- 8. G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies, 107, Princeton Univ. Press, 1984.
- T. A. Springer, Regular elements of finite reflection groups, *Invent. Math.*, 25 (1974), 159-193.