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1. Let W be a Weyl group. In this paper we introduce the notion of

positive conjugacy class of W . This generalizes the notion of elliptic regular

conjugacy class in the sense of Springer [9].

Let w 7→ |w| be the length function on W . Let S = {s ∈ W ; |s| = 1}.

Let v be an indeterminate. Recall that the Iwahori-Hecke algebra of W

is the associative Q(v)-algebra H which, as a Q(v)-vector space has basis

{Tw;w ∈ W} and has multiplication given by TwTw′ = Tww′ if |ww′| =

|w|+ |w′| and (Ts+1)(Ts− v2) = 0 if s ∈ S; note that T1 is the unit element

of H. This is a split semisimple algebra. Let q = v2.

For w,w′ in W let Nw,w′
be the trace of the Q(v)-linear map H → H,

h 7→ TwhTw′−1 . We have Nw,w′
∈ Z[q] and

(a) Nw,w′

=
∑

E∈IrrW

tr(Tw, Ev)tr(Tw′ , Ev)

where IrrW is the set of irreducible Q[W ]-modules up to isomorphism and

for E ∈ IrrW , Ev denotes the corresponding simple H-module (which in

[8, 3.3] is denoted by E(v2)). Note that when v is specialized to 1, H

becomes the group algebra Q[W ] of W and Nw,w′
specializes to Nw,w′

(1),

the number of elements y ∈ W such that wy = yw′. In particular, if w ∈ W ,

Nw,w specializes to nw, the order of the centralizer of w in W ; thus the

polynomial Nw,w can be viewed as a q-analogue of the number nw.
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If C is a conjugacy class in W we denote by Cmin the set of all y ∈ C

such that C → N, w 7→ |w|, reaches its minimum at y. By a result of

Geck and Pfeiffer [4, 3.2.9], for any E ∈ IrrW , w 7→ tr(Tw, Ev) is constant

on Cmin. Using this and (a) we see that w 7→ Nw,w is constant on Cmin.

We say that C is positive if C 6= {1} and for some/any w ∈ Cmin we have

Nw,w ∈ N[q]. (We then also say that any element w ∈ Cmin is positive.)

2. For any f ∈ Z[q] we write f =
∑

i≥0 fiq
i where fi ∈ Z. For w ∈ W let Sw

be the set of all s ∈ S such that s appears in some/any reduced expression

for w. Let Lw = {s ∈ S; |sw| < |w|}, Rw = {s ∈ S; |ws| < |w|}. For a, a′ in

W we write TaTa′ =
∑

b∈W φ(a, a′, b)Tb where φ(a, a′, b) ∈ Z[q]. We show:

(a) φ(a, a′, b)|a| ≥ 0, φ(a, a′, b)i = 0 for i > |a|. If φ(a, a′, b)|a| 6= 0 then either

a′ = b, Sa ⊂ La′ or |b| < |a′|. If a′ = b, Sa ⊂ La′ then φ(a, a′, b)|a| = 1.

We argue by induction on |a|. When |a| = 0 the result is obvious. Assume

now that |a| ≥ 1. We write a = a1s where s ∈ S, |a1| = |a| − 1. If

|sa′| = |a′| + 1 then φ(a, a′, b) = φ(a1, sa
′, b) and the induction hypothesis

shows that φ(a, a′, b)i = 0 for i ≥ |a|. Since s ∈ Sa, s /∈ La′ , we see

that the desired result holds. Next we assume that |sa′| = |a′| − 1. Then

φ(a, a′, b) = qφ(a1, sa
′, b)+(q−1)φ(a1 , a

′, b). From the induction hypothesis

we see that φ(a, a′, b)i = 0 if i > |a|, that φ(a, a′, b)|a| = φ(a1, sa
′, b)|a1| +

φ(a1, a
′, b)|a1| ≥ 0 and that if φ(a, a′, b)|a| 6= 0 then either φ(a1, sa

′, b)|a1| 6= 0

or φ(a1, a
′, b)|a1| 6= 0, so that we are in one of the cases (i)-(iv) below.

(i) sa′ = b,

(ii) |b| < |sa′|;

(iii) a′ = b, Sa1 ⊂ La′ ;

(iv) |b| < |a′|.

In case (i), (ii), (iii) we have |b| < |a′|; in case (iii) have a′ = b and

Sa ⊂ La′ (since Sa = Sa1 ∪ {s}), as desired. Now assume that a′ = b,

Sa ⊂ La′ . It remains to show that φ(a1, sa
′, b)|a1| + φ(a1, a

′, b)|a1| = 1.

By the induction hypothesis we have φ(a1, a
′, b)|a1| = 1 (since Sa1 ⊂ La′)

φ(a1, sa
′, b)|a1| = 0 (since sa′ 6= b and |b| 6< |sa′|). This completes the proof.
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The following result is proved in the same way as (a).

(b) φ(a, a′, b)|a′| ≥ 0, φ(a, a′, b)i = 0 for i > |a′|. If φ(a, a′, b)|a′| 6= 0 then

either a=b, Sa′ ⊂ Ra′ or |b|< |a|. If a=b, Sa′ ⊂ Ra′ then φ(a, a′, b)|a′| = 1.

For a, a′, a′′ in W we have TaTa′Ta′′ =
∑

b∈W f(a, a′, a′′, b)Tb where

f(a, a′, a′′, b) ∈ Z[q]. Let n = |a|+ |a′′|. We show:

(c) f(a, a′, a′′, a′)n ≥ 0, f(a, a′, a′′, a′)i = 0 for i > n. If f(a, a′, a′′, a′)n 6= 0

then Sa ⊂ La′ and Sa′′ ⊂ Ra′ . Conversely, if Sa ⊂ La′ and Sa′′ ⊂ Ra′ then

f(a, a′, a′′, a′)n = 1.

We have f(a, a′, a′′, a′) =
∑

c∈W φ(a, a′, c)φ(c, a′′, a′). Hence for i ≥ 0 we

have f(a, a′, a′′, a′)i =
∑

c∈W ;j≥0,j′≥0,j+j′=i φ(a, a
′, c)jφ(c, a

′′, a′)j′ . Using (a)

and (b) in the last sum we can take j ≥ |a|, j′ ≥ |a′′|. Hence if i > n =

|a|+ |a′′| then f(a, a′, a′′, a′)i = 0 and

f(a, a′, a′′, a′)n =
∑

c∈W φ(a, a′, c)|a|φ(c, a
′′, a′)|a′′| ≥ 0. Assume now that

f(a, a′, a′′, a′)n 6= 0. Then in the last sum we can assume that

c = a′, Sa ⊂ La′ or |c| < |a′| and a′ = c, Sa′′ ⊂ Rc or |a
′| < |c|

Thus we can assume that c = a′, Sa ⊂ La′ and Sa′′ ⊂ Ra′ and using

again (a), (b) we have f(a, a′, a′′, a′)n = 1.

For w,w′ in W we set n = |w| + |w′|; we show:

(d) Nw,w′

n = ♯(a′ ∈ W ;Sw ⊂ La′ , Sw′ ⊂ Ra′) > 0, Nw,w′

i = 0 for i > n.

We have Nw,w′
=

∑
a′∈W f(w, a′, w′, a′) and the result follows from (c).

(We use that if a′ = w0, the longest element of W then Sw ⊂ La′ = S,

Sw′ ⊂ Ra′ = S.)

From (d) we deduce:

(e) Let w,w′, n be as in (d). Assume that either Sw = S or Sw′ = S. then

Nw,w′

n = 1.

Indeed, if a′ ∈ W satisfies S ⊂ La′ or S ⊂ Ra′ then a′ = w0.

We state the following result.

(f) Let w,w′, n be as in (d). For i=0, 1, . . . , n we have Nw,w′

i =(−1)nNw,w′

n−i .

Let¯: Q(v) → Q(v) be the field automorphism such that v̄ = v−1. For E ∈

IrrW let E† ∈ IrrW be the tensor product of E with the sign representation

of W . It is known that for w ∈ W we have

tr(Tw, E
†
v) = (−v2)|w|tr(T−1

w−1 , Ev) = (−v2)|w|tr(Tw, Ev).
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It follows that

Nw,w′

=
∑

E∈IrrW

tr(Tw, E
†
v)tr(Tw′ , E†

v)

=
∑

E∈IrrW

(−v2)|w|tr(Tw, Ev)(−v2)|w
′|tr(Tw′ , Ev)

=
∑

E∈IrrW

(−v2)ntr(Tw, Ev)tr(Tw′ , Ev).

We see that

Nw,w′

= (−q)nNw,w′

and (f) follows.

3. We now assume that W is irreducible. Let ν = |w0| where w0 is the

longest element of W . An element w ∈ W (or its conjugacy class) is said

to be elliptic if its eigenvalues in the reflection representation of W are all

6= 1. For any d ∈ {2, 3, 4, . . . } let Cd be the set of all elliptic elements

w ∈ W which have order d and are regular in the sense of Springer [9]. It

is known [9] that Cd is either empty or a single conjugacy class in W . Let

D = {d ∈ {2, 3, . . . };Cd 6= ∅}. It is known [9] that if d ∈ D and w ∈ Cd
min

then |w| = 2ν/d. Let h be the Coxeter number of W . We have h ∈ D.

According to [9], the set D is as follows:

Type An(n ≥ 1): D = {n + 1}.

Type Bn(n ≥ 2): D = {d ∈ {2, 4, 6, . . . }; 2n/d = integer}.

Type Dn (n even, n ≥ 4):

D = {d ∈ {2, 4, 6, . . . }; (2n − 2)/d = odd integer or 2n/d = integer}.

Type Dn (n odd, n≥5): D={d∈{2, 4, 6, . . . }; (2n−2)/d=odd integer}.

Type E6: D = {3, 6, 9, 12}.

Type E7: D = {2, 6, 14, 18}.

Type E8: D = {2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30}.

Type F4: D = {2, 3, 4, 6, 8, 12}.

Type G2: D = {2, 3, 6}.
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We note the following properties:

(a) If 2 ∈ D, d ∈ D is even and w ∈ Cd
min then wd/2 = w0, (d/2)|w| = |w0|

hence T
d/2
w = Tw0

.

(b) If d = h, w ∈ Cd
min then T d

w = T 2
w0
.

(c) If d ∈ D, h/d ∈ N and y ∈ Ch
min then yh/d ∈ Cd

min and (h/2)|y| = |yh/d|

hence T
h/d
y = Tyh/d .

The equation wd/2 = w0 in (a) holds by examining the characteristic poly-

nomial of w and wd/2 in the reflection representation of W ; then (a) follows.

The equality in (b) can be deduced from [1, Ch.V,§6, Ex.2]. The equation

wh/d ∈ Cd
min in (c) holds by examining the characteristic polynomial of w

and wh/d in the reflection representation of W ; then (c) follows.

For any E ∈ IrrW we define aE ∈ N as in [8, 4.1]. Let ãE = ν−aE+aE†.

(d) T 2
w0

= v2ãE1 : Ev → Ev.

This can be deduced from [8, (5.12.2)]; a closely related statement was first

proved by Springer, see [4, 9.2.2].

We show:

(e) Let E ∈ IrrW and let d ∈ D, w ∈ Cd
min. Then all eigenvalues of Tw :

Ev → Ev (in an algebraic closure of Q(v)) are roots of 1 times v2ãE/d.

If d is as in (a) then the result follows from (a) and (d). If d = h then the

result follows from (b) and (d). If d, y are as in (c) then the result follows

from (c) and the previous sentence. From the description of D for various

types we see that if d ∈ D is not as in (a) then it is as in (c). This proves

(e). (A closely related result can be found in [4, 9.2.5].)

From (e) we deduce:

(f) In the setup of (e), tr(Tw, Ev) equals v
2ãE/dtr(w,E); this is 0 if 2ãE/d /∈Z.

(The idea of the proof leading to (f) appeared in [8, p.320].) Using (f) and

1(a) we deduce:

(g) If d ∈ D, w ∈ Cd
min, then

Nw,w =
∑

E∈IrrW

q2ãE/dtr(w,E)2.
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In particular, we have Nw,w ∈ N[q] and w is positive.

4. Using 1(a) and the CHEVIE package [5] one can find a list of positive con-

jugacy classes inW (assumed to be irreducible of low rank). I thank Gongqin

Li for help with programming in GAP. The list of positive conjugacy classes

in W which are not regular elliptic for W of type E6, E7, E8, F4, G2, B5, B6

is as follows. (We specify a conjugacy class by the characteristic polynomial

of one of its elements in the reflection representation. We denote by Φk the

k-th cyclotomic polynomial; thus Φ2 = q+ 1, Φ3 = q2 + q+ 1, etc.)

Type E6: none.

Type E7: Φ12Φ6Φ2,Φ10Φ6Φ2,Φ10Φ
3
2,Φ8Φ4Φ2, Φ

2
4Φ

3
2.

Type E8: Φ18Φ6,Φ18Φ
2
2,Φ9Φ3,Φ14Φ

2
2.

Type F4: none.

Type G2: none.

Type B5: Φ8Φ2,Φ6Φ
2
2,Φ

2
4Φ2,Φ2Φ4Φ6.

Type B6: Φ10Φ
2
2,Φ8Φ4,Φ8Φ

2
2,Φ6Φ

3
2.

In each of these examples any positive element of W is elliptic; we expect

this to be true in general. The example of B6 suggests that if W is of

type Bn with 2n = 4 + 8 + · · · + 4k, then an element of W with cycle type

(4)(8) . . . (4k) might be positive.

Remark. In a first version of this paper, the fourth conjugacy class listed

above for type B5 was omitted by mistake. I thank Jean Michel for pointing

this out.

5. Let k be an algebraic closure of the finite field Fq with q elements.

Let G be a connected reductive group over k with a fixed Fq-split rational

structure and whose Weyl group is W . Let F : G → G be the corresponding

Frobenius map. For w ∈ W let Xw be the variety of Borel subgroups B of

G such that B and F (B) are in relative position w, see [2, 1.3]. The finite

group GF = {g ∈ G;F (g) = g} acts on Xw by conjugation. For w,w′ in

W we denote by Xw,w′ = GF \(Xw × Xw′) the space of GF -orbits for the
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diagonal action of GF on Xw ×Xw′ . Now (B,B′) 7→ (F (B), F (B′)) induces

a map Xw,w′ → Xw,w′ (denoted again by F ) which is the Frobenius map for

an Fq-rational structure on Xw,w′. By [7, 3.8] for any integer e ≥ 1 we have

(a) ♯(ξ ∈ Xw,w′;F e(ξ) = ξ) = Nw,w′

(qe).

6. In the remainder of this paper we assume that G in no.5 is simply

connected and W is irreducible. In the case where w is a Coxeter element

of minimal length of W , the left hand side of 5(a) (with w = w′) has been

computed in [6, p.158]. This gives the following formulas for Nw,w.

Type An(n ≥ 1): q2n + q2n−2 + · · ·+ q2 + 1.

Type Bn(n ≥ 2): q2n + 2q2n−2 + 2q2n−4 + · · ·+ 2q2 + 1.

Type Dn(n ≥ 4): q2n + q2n−2 + 2q2n−4 + 2qn−6 + · · ·+ 2q4 + q2 + 1.

Type E6: q
12 + q10 + 2q8 + 4q6 + 2q4 + q2 + 1.

Type E7: q
14 + q12 + 2q10 + 4q8 + 2q7 + 4q6 + 2q4 + q2 + 1.

Type E8: q
16+q14+2q12+4q10+2q9+10q8+2q7+4q6+2q4+q2+1.

Type F4: q
8 + 2q6 + 6q4 + 2q2 + 1.

Type G2: q
4 + 4q2 + 1.

Let NG be the variety consisting of all pairs (g, g′) where g runs through the

standard Steinberg cross section of the set of regular elements of G and g′ is

an element in the centralizer of g in G modulo the centre of G. (This variety,

introduced in [6, p.158], makes sense even if k is replaced by the complex

numbers. It plays a role in [3] where it is called the universal centralizer.)

According to [6, p.158], the number of Fq-rational points of NG is equal to

Nw,w(q) hence it is given by the formulas above with q = q.

7. Let C be a conjugacy class of W . For w ∈ C, the part of weight j of the

i-th l-adic cohomology space with compact support H i
c(Xw, Q̄l) is a direct

sum ⊕ρV
i
ρ,j⊗ρ where ρ runs over the unipotent representations of GF (up to

isomorphism) and V i
ρ,j are finite dimensional Q̄l-vector spaces in such a way

that the GF -action is only through the action on ρ and the Frobenius action

is only through an action on V i
ρ,j (where it is multiplication by qj/2λρ with



✐

“BN15N41” — 2020/12/31 — 17:05 — page 284 — #8
✐

✐

✐

✐

✐

284 GEORGE LUSZTIG [December

λρ a root of 1 independent of w, i, j, and the parity of j is independent of

w, i, see [7, 3.9], [8]). Using the Grothendieck-Lefschetz fixed point formula,

from 5(a) we deduce for any e ≥ 1:

Nw,w(qe) =
∑

i,i′,j,j′,ρ

(−1)i+i′ dim(V i
ρ,j) dim(V i′

ρ∗,j′)q
je/2qj

′e/2

where ρ∗ is the dual of ρ and we have used that λρ∗ = λ−1
ρ . This implies

(a) Nw,w =
∑

i,i′,j,j′,ρ

(−1)i+i′ dim(V i
ρ,j) dim(V i′

ρ∗,j′)v
j+j′ .

If we assume that

(b) the GF -modules H i
c(Xw, Q̄l), dual of H i′

c (Xw, Q̄l) are disjoint for any

i, i′ such that i 6= i′ mod2

then from (a) we could deduce that Nw,w ∈ N[q]. Hence if we assume

further that w ∈ Cmin, C 6= {1} it would follow that C is positive.

We conjecture that, conversely, if C is positive and w ∈ Cmin then (b)

holds. It is also likely that in this case,

(c) the GF -modules H i
c(Xw, Q̄l), H

i′
c (Xw, Q̄l) are disjoint for any i, i′ such

that i 6= i′ mod2.

This disjointness property holds when w is as in §6, see [6].
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