POSITIVE CONJUGACY CLASSES IN WEYL GROUPS

GEORGE LUSZTIG

Department of Mathematics, M.I.T., Cambridge, MA 02139, USA.
E-mail: gyuri@math.mit.edu

$\|\|\|\|$

1. Let W be a Weyl group. In this paper we introduce the notion of positive conjugacy class of W. This generalizes the notion of elliptic regular conjugacy class in the sense of Springer [9].

Let $w \mapsto|w|$ be the length function on W. Let $S=\{s \in W ;|s|=1\}$.
Let v be an indeterminate. Recall that the Iwahori-Hecke algebra of W is the associative $\mathbf{Q}(v)$-algebra H which, as a $\mathbf{Q}(v)$-vector space has basis $\left\{T_{w} ; w \in W\right\}$ and has multiplication given by $T_{w} T_{w^{\prime}}=T_{w w^{\prime}}$ if $\left|w w^{\prime}\right|=$ $|w|+\left|w^{\prime}\right|$ and $\left(T_{s}+1\right)\left(T_{s}-v^{2}\right)=0$ if $s \in S$; note that T_{1} is the unit element of H. This is a split semisimple algebra. Let $\mathbf{q}=v^{2}$.

For w, w^{\prime} in W let $N^{w, w^{\prime}}$ be the trace of the $\mathbf{Q}(v)$-linear map $H \rightarrow H$, $h \mapsto T_{w} h T_{w^{\prime-1}}$. We have $N^{w, w^{\prime}} \in \mathbf{Z}[\mathbf{q}]$ and

$$
\begin{equation*}
N^{w, w^{\prime}}=\sum_{E \in \operatorname{Irr} W} \operatorname{tr}\left(T_{w}, E_{v}\right) \operatorname{tr}\left(T_{w^{\prime}}, E_{v}\right) \tag{a}
\end{equation*}
$$

where $\operatorname{Irr} W$ is the set of irreducible $\mathbf{Q}[W]$-modules up to isomorphism and for $E \in \operatorname{Irr} W, E_{v}$ denotes the corresponding simple H-module (which in [8, 3.3] is denoted by $\left.E\left(v^{2}\right)\right)$. Note that when v is specialized to $1, H$ becomes the group algebra $\mathbf{Q}[W]$ of W and $N^{w, w^{\prime}}$ specializes to $N^{w, w^{\prime}}(1)$, the number of elements $y \in W$ such that $w y=y w^{\prime}$. In particular, if $w \in W$, $N^{w, w}$ specializes to n^{w}, the order of the centralizer of w in W; thus the polynomial $N^{w, w}$ can be viewed as a \mathbf{q}-analogue of the number n^{w}.

Received October 5, 2020 and in revised form December 22, 2020.
AMS Subject Classification: 20G99.
Key words and phrases: Weyl group, Hecke algebra, conjugacy class.
Supported by NSF grant DMS-1566618.

If C is a conjugacy class in W we denote by $C_{\min }$ the set of all $y \in C$ such that $C \rightarrow \mathbf{N}, w \mapsto|w|$, reaches its minimum at y. By a result of Geck and Pfeiffer [4, 3.2.9], for any $E \in \operatorname{Irr} W, w \mapsto \operatorname{tr}\left(T_{w}, E_{v}\right)$ is constant on $C_{\text {min }}$. Using this and (a) we see that $w \mapsto N^{w, w}$ is constant on $C_{\text {min }}$. We say that C is positive if $C \neq\{1\}$ and for some/any $w \in C_{\text {min }}$ we have $N^{w, w} \in \mathbf{N}[\mathbf{q}]$. (We then also say that any element $w \in C_{\text {min }}$ is positive.)
2. For any $f \in \mathbf{Z}[\mathbf{q}]$ we write $f=\sum_{i \geq 0} f_{i} \mathbf{q}^{i}$ where $f_{i} \in \mathbf{Z}$. For $w \in W$ let S_{w} be the set of all $s \in S$ such that s appears in some/any reduced expression for w. Let $\mathcal{L}_{w}=\{s \in S ;|s w|<|w|\}, \mathcal{R}_{w}=\{s \in S ;|w s|<|w|\}$. For a, a^{\prime} in W we write $T_{a} T_{a^{\prime}}=\sum_{b \in W} \phi\left(a, a^{\prime}, b\right) T_{b}$ where $\phi\left(a, a^{\prime}, b\right) \in \mathbf{Z}[\mathbf{q}]$. We show:
(a) $\phi\left(a, a^{\prime}, b\right)_{|a|} \geq 0, \phi\left(a, a^{\prime}, b\right)_{i}=0$ for $i>|a|$. If $\phi\left(a, a^{\prime}, b\right)_{|a|} \neq 0$ then either $a^{\prime}=b, S_{a} \subset \mathcal{L}_{a^{\prime}}$ or $|b|<\left|a^{\prime}\right|$. If $a^{\prime}=b, S_{a} \subset \mathcal{L}_{a^{\prime}}$ then $\phi\left(a, a^{\prime}, b\right)_{|a|}=1$.
We argue by induction on $|a|$. When $|a|=0$ the result is obvious. Assume now that $|a| \geq 1$. We write $a=a_{1} s$ where $s \in S,\left|a_{1}\right|=|a|-1$. If $\left|s a^{\prime}\right|=\left|a^{\prime}\right|+1$ then $\phi\left(a, a^{\prime}, b\right)=\phi\left(a_{1}, s a^{\prime}, b\right)$ and the induction hypothesis shows that $\phi\left(a, a^{\prime}, b\right)_{i}=0$ for $i \geq|a|$. Since $s \in S_{a}, s \notin \mathcal{L}_{a^{\prime}}$, we see that the desired result holds. Next we assume that $\left|s a^{\prime}\right|=\left|a^{\prime}\right|-1$. Then $\phi\left(a, a^{\prime}, b\right)=\mathbf{q} \phi\left(a_{1}, s a^{\prime}, b\right)+(\mathbf{q}-1) \phi\left(a_{1}, a^{\prime}, b\right)$. From the induction hypothesis we see that $\phi\left(a, a^{\prime}, b\right)_{i}=0$ if $i>|a|$, that $\phi\left(a, a^{\prime}, b\right)_{|a|}=\phi\left(a_{1}, s a^{\prime}, b\right)_{\left|a_{1}\right|}+$ $\phi\left(a_{1}, a^{\prime}, b\right)_{\left|a_{1}\right|} \geq 0$ and that if $\phi\left(a, a^{\prime}, b\right)_{|a|} \neq 0$ then either $\phi\left(a_{1}, s a^{\prime}, b\right)_{\left|a_{1}\right|} \neq 0$ or $\phi\left(a_{1}, a^{\prime}, b\right)_{\left|a_{1}\right|} \neq 0$, so that we are in one of the cases (i)-(iv) below.
(i) $s a^{\prime}=b$,
(ii) $|b|<\left|s a^{\prime}\right|$;
(iii) $a^{\prime}=b, S_{a_{1}} \subset \mathcal{L}_{a^{\prime}}$;
(iv) $|b|<\left|a^{\prime}\right|$.

In case (i), (ii), (iii) we have $|b|<\left|a^{\prime}\right|$; in case (iii) have $a^{\prime}=b$ and $S_{a} \subset \mathcal{L}_{a^{\prime}}\left(\right.$ since $\left.S_{a}=S_{a_{1}} \cup\{s\}\right)$, as desired. Now assume that $a^{\prime}=b$, $S_{a} \subset \mathcal{L}_{a^{\prime}}$. It remains to show that $\phi\left(a_{1}, s a^{\prime}, b\right)_{\left|a_{1}\right|}+\phi\left(a_{1}, a^{\prime}, b\right)_{\left|a_{1}\right|}=1$. By the induction hypothesis we have $\phi\left(a_{1}, a^{\prime}, b\right)_{\left|a_{1}\right|}=1$ (since $\left.S_{a_{1}} \subset \mathcal{L}_{a^{\prime}}\right)$ $\phi\left(a_{1}, s a^{\prime}, b\right)_{\left|a_{1}\right|}=0$ (since $s a^{\prime} \neq b$ and $\left.|b| \nless\left|s a^{\prime}\right|\right)$. This completes the proof.

The following result is proved in the same way as (a).
(b) $\phi\left(a, a^{\prime}, b\right)_{\left|a^{\prime}\right|} \geq 0, \phi\left(a, a^{\prime}, b\right)_{i}=0$ for $i>\left|a^{\prime}\right|$. If $\phi\left(a, a^{\prime}, b\right)_{\left|a^{\prime}\right|} \neq 0$ then either $a=b, S_{a^{\prime}} \subset \mathcal{R}_{a^{\prime}}$ or $|b|<|a|$. If $a=b, S_{a^{\prime}} \subset \mathcal{R}_{a^{\prime}}$ then $\phi\left(a, a^{\prime}, b\right)_{\left|a^{\prime}\right|}=1$. For $a, a^{\prime}, a^{\prime \prime}$ in W we have $T_{a} T_{a^{\prime}} T_{a^{\prime \prime}}=\sum_{b \in W} f\left(a, a^{\prime}, a^{\prime \prime}, b\right) T_{b}$ where $f\left(a, a^{\prime}, a^{\prime \prime}, b\right) \in \mathbf{Z}[\mathbf{q}]$. Let $n=|a|+\left|a^{\prime \prime}\right|$. We show:
(c) $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{n} \geq 0, f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{i}=0$ for $i>n$. If $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{n} \neq 0$ then $S_{a} \subset \mathcal{L}_{a^{\prime}}$ and $S_{a^{\prime \prime}} \subset \mathcal{R}_{a^{\prime}}$. Conversely, if $S_{a} \subset \mathcal{L}_{a^{\prime}}$ and $S_{a^{\prime \prime}} \subset \mathcal{R}_{a^{\prime}}$ then $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{n}=1$.
We have $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)=\sum_{c \in W} \phi\left(a, a^{\prime}, c\right) \phi\left(c, a^{\prime \prime}, a^{\prime}\right)$. Hence for $i \geq 0$ we have $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{i}=\sum_{c \in W ; j \geq 0, j^{\prime} \geq 0, j+j^{\prime}=i} \phi\left(a, a^{\prime}, c\right)_{j} \phi\left(c, a^{\prime \prime}, a^{\prime}\right)_{j^{\prime}}$. Using (a) and (b) in the last sum we can take $j \geq|a|, j^{\prime} \geq\left|a^{\prime \prime}\right|$. Hence if $i>n=$ $|a|+\left|a^{\prime \prime}\right|$ then $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{i}=0$ and
$f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{n}=\sum_{c \in W} \phi\left(a, a^{\prime}, c\right)_{|a|} \phi\left(c, a^{\prime \prime}, a^{\prime}\right)_{\left|a^{\prime \prime}\right|} \geq 0$. Assume now that $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{n} \neq 0$. Then in the last sum we can assume that
$c=a^{\prime}, S_{a} \subset \mathcal{L}_{a^{\prime}}$ or $|c|<\left|a^{\prime}\right|$ and $a^{\prime}=c, S_{a^{\prime \prime}} \subset \mathcal{R}_{c}$ or $\left|a^{\prime}\right|<|c|$
Thus we can assume that $c=a^{\prime}, S_{a} \subset \mathcal{L}_{a^{\prime}}$ and $S_{a^{\prime \prime}} \subset \mathcal{R}_{a^{\prime}}$ and using again (a), (b) we have $f\left(a, a^{\prime}, a^{\prime \prime}, a^{\prime}\right)_{n}=1$.

For w, w^{\prime} in W we set $n=|w|+\left|w^{\prime}\right|$; we show:
(d) $N_{n}^{w, w^{\prime}}=\sharp\left(a^{\prime} \in W ; S_{w} \subset \mathcal{L}_{a^{\prime}}, S_{w^{\prime}} \subset \mathcal{R}_{a^{\prime}}\right)>0, N_{i}^{w, w^{\prime}}=0$ for $i>n$.

We have $N^{w, w^{\prime}}=\sum_{a^{\prime} \in W} f\left(w, a^{\prime}, w^{\prime}, a^{\prime}\right)$ and the result follows from (c). (We use that if $a^{\prime}=w_{0}$, the longest element of W then $S_{w} \subset \mathcal{L}_{a^{\prime}}=S$, $S_{w^{\prime}} \subset \mathcal{R}_{a^{\prime}}=S$.)

From (d) we deduce:
(e) Let w, w^{\prime}, n be as in (d). Assume that either $S_{w}=S$ or $S_{w^{\prime}}=S$. then $N_{n}^{w, w^{\prime}}=1$.
Indeed, if $a^{\prime} \in W$ satisfies $S \subset \mathcal{L}_{a^{\prime}}$ or $S \subset \mathcal{R}_{a^{\prime}}$ then $a^{\prime}=w_{0}$.
We state the following result.
(f) Let w, w^{\prime}, n be as in (d). For $i=0,1, \ldots, n$ we have $N_{i}^{w, w^{\prime}}=(-1)^{n} N_{n-i}^{w, w^{\prime}}$. Let $^{-}: \mathbf{Q}(v) \rightarrow \mathbf{Q}(v)$ be the field automorphism such that $\bar{v}=v^{-1}$. For $E \in$ $\operatorname{Irr} W$ let $E^{\dagger} \in \operatorname{Irr} W$ be the tensor product of E with the sign representation of W. It is known that for $w \in W$ we have

$$
\operatorname{tr}\left(T_{w}, E_{v}^{\dagger}\right)=\left(-v^{2}\right)^{|w|} \operatorname{tr}\left(T_{w^{-1}}^{-1}, E_{v}\right)=\left(-v^{2}\right)^{|w|} \overline{\operatorname{tr}\left(T_{w}, E_{v}\right)} .
$$

It follows that

$$
\begin{aligned}
N^{w, w^{\prime}} & =\sum_{E \in \operatorname{Irr} W} \operatorname{tr}\left(T_{w}, E_{v}^{\dagger}\right) \operatorname{tr}\left(T_{w^{\prime}}, E_{v}^{\dagger}\right) \\
& =\sum_{E \in \operatorname{Irr} W}\left(-v^{2}\right)^{|w|} \overline{\operatorname{tr}\left(T_{w}, E_{v}\right)}\left(-v^{2}\right)^{\left|w^{\prime}\right|} \overline{\operatorname{tr}\left(T_{w^{\prime}}, E_{v}\right)} \\
& =\sum_{E \in \operatorname{Irr} W}\left(-v^{2}\right)^{n} \overline{\operatorname{tr}\left(T_{w}, E_{v}\right) \operatorname{tr}\left(T_{w^{\prime}}, E_{v}\right)} .
\end{aligned}
$$

We see that

$$
N^{w, w^{\prime}}=(-\mathbf{q})^{n} \overline{N^{w, w^{\prime}}}
$$

and (f) follows.
3. We now assume that W is irreducible. Let $\nu=\left|w_{0}\right|$ where w_{0} is the longest element of W. An element $w \in W$ (or its conjugacy class) is said to be elliptic if its eigenvalues in the reflection representation of W are all $\neq 1$. For any $d \in\{2,3,4, \ldots\}$ let C^{d} be the set of all elliptic elements $w \in W$ which have order d and are regular in the sense of Springer [9]. It is known [9] that C^{d} is either empty or a single conjugacy class in W. Let $\mathcal{D}=\left\{d \in\{2,3, \ldots\} ; C^{d} \neq \emptyset\right\}$. It is known [9] that if $d \in \mathcal{D}$ and $w \in C_{\text {min }}^{d}$ then $|w|=2 \nu / d$. Let h be the Coxeter number of W. We have $h \in \mathcal{D}$.

According to [9], the set \mathcal{D} is as follows:
Type $A_{n}(n \geq 1)$: $\mathcal{D}=\{n+1\}$.
Type $B_{n}(n \geq 2): \mathcal{D}=\{d \in\{2,4,6, \ldots\} ; 2 n / d=$ integer $\}$.
Type $D_{n}(n$ even, $n \geq 4)$:
$\mathcal{D}=\{d \in\{2,4,6, \ldots\} ;(2 n-2) / d=$ odd integer or $2 n / d=$ integer $\}$.
Type $D_{n}(n$ odd, $n \geq 5): \mathcal{D}=\{d \in\{2,4,6, \ldots\} ;(2 n-2) / d=$ odd integer $\}$.
Type $E_{6}: \mathcal{D}=\{3,6,9,12\}$.
Type $E_{7}: \mathcal{D}=\{2,6,14,18\}$.
Type $E_{8}: \mathcal{D}=\{2,3,4,5,6,8,10,12,15,20,24,30\}$.
Type $F_{4}: \mathcal{D}=\{2,3,4,6,8,12\}$.
Type $G_{2}: \mathcal{D}=\{2,3,6\}$.

We note the following properties:
(a) If $2 \in \mathcal{D}, d \in \mathcal{D}$ is even and $w \in C_{\text {min }}^{d}$ then $w^{d / 2}=w_{0},(d / 2)|w|=\left|w_{0}\right|$ hence $T_{w}^{d / 2}=T_{w_{0}}$.
(b) If $d=h, w \in C_{\text {min }}^{d}$ then $T_{w}^{d}=T_{w_{0}}^{2}$.
(c) If $d \in \mathcal{D}, h / d \in \mathbf{N}$ and $y \in C_{\text {min }}^{h}$ then $y^{h / d} \in C_{\text {min }}^{d}$ and $(h / 2)|y|=\left|y^{h / d}\right|$ hence $T_{y}^{h / d}=T_{y^{h / d}}$.

The equation $w^{d / 2}=w_{0}$ in (a) holds by examining the characteristic polynomial of w and $w^{d / 2}$ in the reflection representation of W; then (a) follows. The equality in (b) can be deduced from [1, Ch.V, $\S 6$, Ex.2]. The equation $w^{h / d} \in C_{\text {min }}^{d}$ in (c) holds by examining the characteristic polynomial of w and $w^{h / d}$ in the reflection representation of W; then (c) follows.

For any $E \in \operatorname{Irr} W$ we define $a_{E} \in \mathbf{N}$ as in [8, 4.1]. Let $\tilde{a}_{E}=\nu-a_{E}+a_{E^{\dagger}}$. (d) $T_{w_{0}}^{2}=v^{2 \tilde{a}_{E}} 1: E_{v} \rightarrow E_{v}$.

This can be deduced from [8, (5.12.2)]; a closely related statement was first proved by Springer, see [4, 9.2.2].

We show:
(e) Let $E \in \operatorname{Irr} W$ and let $d \in \mathcal{D}, w \in C_{m i n}^{d}$. Then all eigenvalues of T_{w} : $E_{v} \rightarrow E_{v}$ (in an algebraic closure of $\mathbf{Q}(v)$) are roots of 1 times $v^{2 \tilde{a}_{E} / d}$.
If d is as in (a) then the result follows from (a) and (d). If $d=h$ then the result follows from (b) and (d). If d, y are as in (c) then the result follows from (c) and the previous sentence. From the description of \mathcal{D} for various types we see that if $d \in \mathcal{D}$ is not as in (a) then it is as in (c). This proves (e). (A closely related result can be found in [4, 9.2.5].)

From (e) we deduce:
(f) In the setup of $(\mathrm{e}), \operatorname{tr}\left(T_{w}, E_{v}\right)$ equals $v^{2 \tilde{a}_{E} / d} \operatorname{tr}(w, E)$; this is 0 if $2 \tilde{a}_{E} / d \notin \mathbf{Z}$. (The idea of the proof leading to (f) appeared in [8, p.320].) Using (f) and 1(a) we deduce:
(g) If $d \in \mathcal{D}, w \in C_{\text {min }}^{d}$, then

$$
N^{w, w}=\sum_{E \in \operatorname{Irr} W} \mathbf{q}^{2 \tilde{a}_{E} / d} \operatorname{tr}(w, E)^{2} .
$$

In particular, we have $N^{w, w} \in \mathbf{N}[\mathbf{q}]$ and w is positive.
4. Using 1(a) and the CHEVIE package [5] one can find a list of positive conjugacy classes in W (assumed to be irreducible of low rank). I thank Gongqin Li for help with programming in GAP. The list of positive conjugacy classes in W which are not regular elliptic for W of type $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}, B_{5}, B_{6}$ is as follows. (We specify a conjugacy class by the characteristic polynomial of one of its elements in the reflection representation. We denote by Φ_{k} the k-th cyclotomic polynomial; thus $\Phi_{2}=\mathbf{q}+1, \Phi_{3}=\mathbf{q}^{2}+\mathbf{q}+1$, etc.)

Type E_{6} : none.
Type $E_{7}: \Phi_{12} \Phi_{6} \Phi_{2}, \Phi_{10} \Phi_{6} \Phi_{2}, \Phi_{10} \Phi_{2}^{3}, \Phi_{8} \Phi_{4} \Phi_{2}, \Phi_{4}^{2} \Phi_{2}^{3}$.
Type $E_{8}: \Phi_{18} \Phi_{6}, \Phi_{18} \Phi_{2}^{2}, \Phi_{9} \Phi_{3}, \Phi_{14} \Phi_{2}^{2}$.
Type F_{4} : none.
Type G_{2} : none.
Type $B_{5}: \Phi_{8} \Phi_{2}, \Phi_{6} \Phi_{2}^{2}, \Phi_{4}^{2} \Phi_{2}, \Phi_{2} \Phi_{4} \Phi_{6}$.
Type $B_{6}: \Phi_{10} \Phi_{2}^{2}, \Phi_{8} \Phi_{4}, \Phi_{8} \Phi_{2}^{2}, \Phi_{6} \Phi_{2}^{3}$.
In each of these examples any positive element of W is elliptic; we expect this to be true in general. The example of B_{6} suggests that if W is of type B_{n} with $2 n=4+8+\cdots+4 k$, then an element of W with cycle type (4)(8) \ldots ($4 k$) might be positive.

Remark. In a first version of this paper, the fourth conjugacy class listed above for type B_{5} was omitted by mistake. I thank Jean Michel for pointing this out.
5. Let \mathbf{k} be an algebraic closure of the finite field F_{q} with q elements. Let G be a connected reductive group over \mathbf{k} with a fixed F_{q}-split rational structure and whose Weyl group is W. Let $F: G \rightarrow G$ be the corresponding Frobenius map. For $w \in W$ let X_{w} be the variety of Borel subgroups B of G such that B and $F(B)$ are in relative position w, see [2, 1.3]. The finite group $G^{F}=\{g \in G ; F(g)=g\}$ acts on X_{w} by conjugation. For w, w^{\prime} in W we denote by $X_{w, w^{\prime}}=G^{F} \backslash\left(X_{w} \times X_{w^{\prime}}\right)$ the space of G^{F}-orbits for the
diagonal action of G^{F} on $X_{w} \times X_{w^{\prime}}$. Now $\left(B, B^{\prime}\right) \mapsto\left(F(B), F\left(B^{\prime}\right)\right)$ induces a map $X_{w, w^{\prime}} \rightarrow X_{w, w^{\prime}}$ (denoted again by F) which is the Frobenius map for an F_{q}-rational structure on $X_{w, w^{\prime}}$. By [7, 3.8] for any integer $e \geq 1$ we have
(a)

$$
\sharp\left(\xi \in X_{w, w^{\prime}} ; F^{e}(\xi)=\xi\right)=N^{w, w^{\prime}}\left(q^{e}\right) .
$$

6. In the remainder of this paper we assume that G in no. 5 is simply connected and W is irreducible. In the case where w is a Coxeter element of minimal length of W, the left hand side of 5(a) (with $w=w^{\prime}$) has been computed in [6, p.158]. This gives the following formulas for $N^{w, w}$.

Type $A_{n}(n \geq 1): \mathbf{q}^{2 n}+\mathbf{q}^{2 n-2}+\cdots+\mathbf{q}^{2}+1$.
Type $B_{n}(n \geq 2): \mathbf{q}^{2 n}+2 \mathbf{q}^{2 n-2}+2 \mathbf{q}^{2 n-4}+\cdots+2 \mathbf{q}^{2}+1$.
Type $D_{n}(n \geq 4): \mathbf{q}^{2 n}+\mathbf{q}^{2 n-2}+2 \mathbf{q}^{2 n-4}+2 \mathbf{q}^{n-6}+\cdots+2 \mathbf{q}^{4}+\mathbf{q}^{2}+1$.
Type $E_{6}: \mathbf{q}^{12}+\mathbf{q}^{10}+2 \mathbf{q}^{8}+4 \mathbf{q}^{6}+2 \mathbf{q}^{4}+\mathbf{q}^{2}+1$.
Type $E_{7}: \mathbf{q}^{14}+\mathbf{q}^{12}+2 \mathbf{q}^{10}+4 \mathbf{q}^{8}+2 \mathbf{q}^{7}+4 \mathbf{q}^{6}+2 \mathbf{q}^{4}+\mathbf{q}^{2}+1$.
Type $E_{8}: \mathbf{q}^{16}+\mathbf{q}^{14}+2 \mathbf{q}^{12}+4 \mathbf{q}^{10}+2 \mathbf{q}^{9}+10 \mathbf{q}^{8}+2 \mathbf{q}^{7}+4 \mathbf{q}^{6}+2 \mathbf{q}^{4}+\mathbf{q}^{2}+1$.
Type $F_{4}: \mathbf{q}^{8}+2 \mathbf{q}^{6}+6 \mathbf{q}^{4}+2 \mathbf{q}^{2}+1$.
Type $G_{2}: \mathbf{q}^{4}+4 \mathbf{q}^{2}+1$.
Let \mathcal{N}_{G} be the variety consisting of all pairs $\left(g, g^{\prime}\right)$ where g runs through the standard Steinberg cross section of the set of regular elements of G and g^{\prime} is an element in the centralizer of g in G modulo the centre of G. (This variety, introduced in [6, p.158], makes sense even if \mathbf{k} is replaced by the complex numbers. It plays a role in [3] where it is called the universal centralizer.) According to [6, p.158], the number of F_{q}-rational points of \mathcal{N}_{G} is equal to $N^{w, w}(q)$ hence it is given by the formulas above with $\mathbf{q}=q$.
7. Let C be a conjugacy class of W. For $w \in C$, the part of weight j of the i-th l-adic cohomology space with compact support $H_{c}^{i}\left(X_{w}, \overline{\mathbf{Q}}_{l}\right)$ is a direct sum $\oplus_{\rho} V_{\rho, j}^{i} \otimes \rho$ where ρ runs over the unipotent representations of G^{F} (up to isomorphism) and $V_{\rho, j}^{i}$ are finite dimensional $\overline{\mathbf{Q}}_{l}$-vector spaces in such a way that the G^{F}-action is only through the action on ρ and the Frobenius action is only through an action on $V_{\rho, j}^{i}$ (where it is multiplication by $q^{j / 2} \lambda_{\rho}$ with
λ_{ρ} a root of 1 independent of w, i, j, and the parity of j is independent of w, i, see [7, 3.9], [8]). Using the Grothendieck-Lefschetz fixed point formula, from 5(a) we deduce for any $e \geq 1$:

$$
N^{w, w}\left(q^{e}\right)=\sum_{i, i^{\prime}, j, j^{\prime}, \rho}(-1)^{i+i^{\prime}} \operatorname{dim}\left(V_{\rho, j}^{i}\right) \operatorname{dim}\left(V_{\rho^{*}, j^{\prime}}^{i^{\prime}}\right) q^{j e / 2} q^{j^{\prime} e / 2}
$$

where ρ^{*} is the dual of ρ and we have used that $\lambda_{\rho^{*}}=\lambda_{\rho}^{-1}$. This implies

$$
\begin{equation*}
N^{w, w}=\sum_{i, i^{\prime}, j, j^{\prime}, \rho}(-1)^{i+i^{\prime}} \operatorname{dim}\left(V_{\rho, j}^{i}\right) \operatorname{dim}\left(V_{\rho^{*}, j^{\prime}}^{i^{\prime}}\right) v^{j+j^{\prime}} \tag{a}
\end{equation*}
$$

If we assume that
(b) the G^{F}-modules $H_{c}^{i}\left(X_{w}, \overline{\mathbf{Q}}_{l}\right)$, dual of $H_{c}^{i^{\prime}}\left(X_{w}, \overline{\mathbf{Q}}_{l}\right)$ are disjoint for any i, i^{\prime} such that $i \neq i^{\prime} \bmod 2$
then from (a) we could deduce that $N^{w, w} \in \mathbf{N}[\mathbf{q}]$. Hence if we assume further that $w \in C_{\min }, C \neq\{1\}$ it would follow that C is positive.

We conjecture that, conversely, if C is positive and $w \in C_{\text {min }}$ then (b) holds. It is also likely that in this case,
(c) the G^{F}-modules $H_{c}^{i}\left(X_{w}, \overline{\mathbf{Q}}_{l}\right), H_{c}^{i^{\prime}}\left(X_{w}, \overline{\mathbf{Q}}_{l}\right)$ are disjoint for any i, i^{\prime} such that $i \neq i^{\prime} \bmod 2$.
This disjointness property holds when w is as in $\S 6$, see [6].

References

1. N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1968.
2. P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math., 103 (1976), 103-161.
3. M. Finkelberg and A. Tsymbaliuk, Multiplicative slices, relativistic Toda lattice and shifted quantum affine algebras, arxiv:1708.01795.
4. M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, Clarendon Pres, Oxford, 2000.
5. M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 115-1210.
6. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 38 (1976), 101-159.
7. G. Lusztig, Representations of finite Chevalley groups, Regional Conf. Ser. in Math., 39, Amer. Math. Soc. 1978.
8. G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Studies, 107, Princeton Univ. Press, 1984.
9. T. A. Springer, Regular elements of finite reflection groups, Invent. Math., $2 \boldsymbol{5}$ (1974), 159-193.
