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Abstract

In this partially expository article we revisit the construction of the Dieudonné de-

terminant and structure of general linear groups over division rings. Our main motivation

is to understand the underlying theoretic background and the proof of the simplicity of

the projective special linear groups PSLn(K) over a division ring K. The latter gives an

important family of simple groups of Lie type. The method of proving simplicity here is

based on Iwasawa’s argument which proves the simplicity of PSLn(F ), where F is a field.

This is simpler than the proof given in E. Artin’s exposition [Geometric Algebra, Inter-

science Publishers, 1957]. We also fix the relation on the determinants of the transposes

of matrices in some literature.

1. Introduction

Let n be a positive integer and K be a division ring whose center is

denoted by Z. Let GLn(K) denote the group of invertible elements in the

matrix algebra Matn(K) with entries in K, called the general linear group

over K of degree n. Let

∆ : GLn(K) → K×/[K×,K×]
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be the Dieudonné determinant (see [7] or Section 2 for the construction).

The map ∆ is a surjective group homomorphism which coincides with the

usual determinant map when K is commutative. The kernel of ∆ is de-

noted by SLn(K), called the special linear group over K of degree n. By

definition, SLn(K) is a normal subgroup of GLn(K) whose factor group

GLn(K)/SLn(K) is isomorphic to K×/[K×,K×]. For any group G, we

denote by G′ := [G,G] the commutator group of G and Z(G) the cen-

ter of G. Since GLn(K)/SLn(K) is abelian, GLn(K)′ ⊂ SLn(K). Let

Zn(K) := Z(GLn(K)); one easily shows that Zn(K) = Z× · In for all n ≥ 1.

We then have the inclusions:

SLn(K)′ ⊂ GLn(K)′ ⊂ SLn(K) ⊂ GLn(K) ⊃ Zn(K). (1.1)

When n = 1, the Dieudonné determinant ∆ : K× → K×/[K×,K×] is

given by the canonical projection, and one has [K×,K×] = SL1(K). Then

(1.1) becomes as follows:

[K×,K×]′ ⊂ GL1(K)′ = SL1(K) = [K×,K×] ⊂ K× ⊃ Z×.

For n ≥ 2, we define a subgroup En(K) as follows. Let eij ∈ Matn(K)

be the matrix whose (i, j)-entry is 1 and all other entries are zero. For

1 ≤ i 6= j ≤ n and λ ∈ K, put Tij(λ) = In + λeij ∈ GLn(K), called a

transvection, and let En(K) denote the subgroup of GLn(K) generated by

Tij(λ) for all i 6= j and all λ ∈ K. One property of ∆ satisfies ∆(Tij(λ)) = 1

for all transvections Tij(λ). Thus, En(K) ⊂ SLn(K).

The following result gives the precise relations of the subgroups SLn(K),

En(K), GLn(K)′ and SLn(K)′.

Theorem 1.1. Assume that n ≥ 2. Then

(a) En(K) = SLn(K).

(b) The proper inclusion GLn(K)′ ( SLn(K) occurs exactly when n = 2 and

|K| = 2.

(c) The proper inclusion SLn(K)′ ( SLn(K) occurs exactly when n = 2 and

|K| = 2, 3.
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When n = 2 and K = F3, one has

F×
3 = Z2(F3) ( SL2(F3)

′ · F×
3 ( GL2(F3)

′ = SL2(F3) ( GL2(F3)

whose factor groups modulo F×
3 are

V4 ⊂ A4 ⊂ S4.

Note that SL2(F3)
′ = (SL2(F3)/F

×
3 )

′ ≃ (A4)
′ = V4 has 4 elements and

SL2(F3)
′ ·F×

3 has 8 elements. Therefore, SL2(F3)
′ does not contain the center

F×
3 . Notice SL2(F3)

′ · F×
3 = SL2(F3)

′ × F×
3 .

When n = 2 and K = F2, one has

SL2(F2)
′ = GL2(F2)

′ ( SL2(F2) = GL2(F2),

GL2(F2) ≃ S3 and GL2(F2)
′ ≃ S′

3 = A3.

Theorem 1.2. Assume that n ≥ 2. Let PSLn(K) be the factor group

SLn(K)/Z(SLn(K)).

(a) The center Z(SLn(K)) = Z× · In ∩ SLn(K).

(b) The group PSLn(K) is simple if and only if n ≥ 3, or n = 2 and |K| > 3.

(c) If n ≥ 3, or n = 2 and |K| > 3, then every normal subgroup G of

GLn(K) that is not contained in Zn(K) contains SLn(K).

When K is commutative, Theorems 1.1 and 1.2 are classical results; see

[11] and [12, Section 6.7]. When K is non-commutative, these results are

also known; see below explanations. However, we could not find a single

reference which includes all of them with detailed proofs.

Theorem 1.2(c) was proved in [7, Theorem 2] under a stronger assump-

tion n ≥ 3, or n = 2 and |Z| > 3. Theorem 1.2(b) was proved in [7,

Theorem 3] under a stronger assumption n ≥ 3, or n = 2 and |Z| > 5.

Except when n = 2 and charK = 2, the statement GLn(K)′ = En(K) was

proved in [13, Theorem 7]; this type of result is useful; see [6]. Litoff also

proved En(R) = SLn(R) when R is an Euclidean ring, but failed to discuss

the question of the equality En(K) = SLn(K) (he explained in the footnote

of page 466 how the argument does not work in the non-commutative di-

vision ring case.) On the other hand, the statement En(K) = SLn(K) is
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regarded a basic fact in this area; see [10, 2.2.2]. With this basic fact, The-

orem 1.1(b)(c) then follows immediately from [10, 2.2.3] and [13, Theorem

7]. Theorem 1.2(b) was proved in [10, Theorem 2.2.13] also under this basic

fact1 . Note that though Theorem 1.2(c) is [3, IV, Theorem 4.9, p. 165],

the proof given here, following from Theorem 1.2(b), is different from that

of loc. cit. Thus, it should be clear that Theorems 1.1 and 1.2 are known

from the literature. Here we provide detailed proofs of them as a convenient

reference for the reader. The proof of Theorem 1.2(b) is close to Iwasawa’s

argument [11] in the case K is a (commutative) field; we also refer to Ja-

cobson’s exposition [12, Chap. 6]. That is also similar as the proof given in

[10].

It is worth mentioning that a proof of En(K) = SLn(K) may have been

included in the construction of the Dieudonné non-commutative determinant

map. In [7] Dieudonné used the notation Cn for two different meanings:

the commutator group GLn(K)′ of GLn(K) and En(K) in our notation.

He clarified that these two subgroups are the same except when n = 2

and |K| = 2 (which is a consequence of Theorem 1.1(a) and (b)); see page

32 of [7]. The group Cn in [7, Theorem 1] is En(K) but not GLn(K)′ as

stated in the Introduction of [7]. In other words, Theorem 1 of [7] reads

in our notation that ∆ induces an isomorphism ∆ : GLn(K)/En(K)
∼

−→

K×/[K×,K×]. Therefore, En(K) = SLn(K). In order to clarify this, we

revisit the construction of the Dieudonné determinant; see Section 2.

For each matrix A = (aij) ∈ Matn(K), the transpose At of A is the

matrix in Matn(K) whose (i, j)-entry is aji for all 1 ≤ i, j ≤ n. The opposite

ring of K is (Kop, ◦), where K = Kop as an abelian group and a ◦ b = ba for

a, b ∈ K.

Theorem 1.3.

(1) There exist a division ring K and a matrix A ∈ GL2(K) such that

∆(A) 6= ∆(At).

(2) Let V be a finite right vector space over K, and f ∈ EndK(V) an en-

domorphism of V with representing matrix A with respect to a fixed

K-basis B. Then the representing matrix of the dual endomorphism

1In the proof of 2-fold transitivity of En(K) acting on the projective space in loc. cit., the
argument relies on 2.2.5, which is simply a reformulation of 2.2.2 via the geometric interpretation
of En(K) in [7, no. 4].
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f∗ ∈ EndK(V
∗) with respect to the dual basis B∗ is equal to At in

Matn(K).

Moreover, if we regard V ∗ as a right vector space over Kop and identify

it as (Kop)n using B∗, then the element f∗ ∈ EndKop(V∗) corresponds to

the element At ∈ Matn(K
op).

(3) We have (AB)t = Bt ◦ At for A,B ∈ Matn(K). That is, the map

ϕ : Matn(K) → Matn(K
op), A 7→ At is an anti-isomorphism.

(4) We have ∆(A)=∆op(At) for every A∈Matn(K), where ∆op : Matn(K
op)

→ Kop is the Dieudonné determinant. That is, the following diagram

(1.2)

commutes.

(5) Let D be a quaternion division algebra over a field F with canonical

involution ∗. Then for A,B ∈ Matn(D), we have (AB)∗ = B∗A∗ and

∆(A) = ∆(A∗), where A∗ denotes the conjugate of A = (aij) whose

(i, j)-entry is a∗ji.

Theorem 1.3(1)-(4) corrects an error on the Dieudonné determinant of

the transpose At of a matrix A ∈ Matn(A) in [2, Theorem 1.1.4 (ii)], [1,

Theorem 1.2.4 (iii)] and [4, Theorem 3.9]. We refer to [5] for further studies

on skew fields and to [1] for more references discussing the Dieudonné de-

terminant. In [18, Lemmas 8 and 9], using the Dieudonné determinant, the

second author shows the connectedness of the Lie group GLn(H), where H

is the real Hamilton quaternion algebra.

This article is organized as follows. Section 2 gives the construction of

the non-commutative determinant due to Diedudonné. Section 3 gives the

proofs of Theorems 1.1 and 1.2. Section 4 discusses the meaning of the

transpose of a matrix and its relation with the Dieudonné determinant. The

proof of Theorem 1.3 is given here.
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2. Construction of Dieudonné’s Determinants and Their Properties

In this section following [7] we shall give the construction of Dieudonn’s

determinants for matrices over a non-commutative division ring. Our refer-

ences are [3] and [7].

Let K be a division ring. For any integer n ≥ 1, let Matn(K) denote the

ring of square matrices of size n with entries in K. A matrix A ∈ Matn(K)

is invertible if there exists a matrix B ∈ Matn(K) such that BA = AB = In,

where In is the identity matrix. The set of all invertible matrices in Matn(K)

forms a group, which is denoted by GLn(K), called the general linear group

of degree n over K.

Let

K := K/[K×,K×] = K×/[K×,K×] ∪ {0},

where [K×,K×] is the commutator group of K×. The multiplication gives a

structure of monoids (not every element has the inverse) on K. Our goal is

to construct a function ∆ : Matn(K) → K that shares the similar properties

as the usual determinant function. Namely, the following properties are

satisfied:

(∆1) ∆(In) = 1̄.

(∆2) If A′ is obtained from a matrix A ∈ Matn(K) by multiplying one row

on the left by µ, then ∆(A′) = µ ·∆(A).

(∆3) If A′ is obtained from a matrix A ∈ Matn(K) by adding one row to

another, then ∆(A′) = ∆(A).

(∆3)′ If A′ is obtained from a matrix A ∈ Matn(K) with one row, say the

ith row Ai, replaced by Ai+µAj for some µ ∈ K and different row Aj,

then ∆(A′) = ∆(A).

(∆4) If A′ is obtained from a matrix A ∈ Matn(K) by exchanging two rows,

then ∆(A′) = −1 ·∆(A).

Note that the condition (∆3), (∆3)′ or (∆4) is empty if n = 1.

Lemma 2.1. Every function ∆ : Matn(K) → K which satisfies the condi-

tions (∆1), (∆2) and (∆3) also satisfies the conditions (∆3)′ and (∆4).
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Proof. Let A ∈ Matn(k), let Ai denote the ith row of A, and let A′ be the

matrix obtained from A with Ai replaced by Ai + µAj, where µ ∈ K. We

have

∆(A) = ∆(



















...

Ai
...

Aj
...



















) = µ−1∆(



















...

Ai
...

µAj
...



















)

= µ−1∆(



















...

Ai + µAj
...

µAj
...



















) = µ−1µ∆(



















...

Ai + µAj
...

Aj
...



















) = ∆(A′).

Thus, ∆ satisfies the condition (∆3)′.

Similarly, let A′′ be the matrix obtained from A by exchanging Ai and

Aj. Then

∆(A) = ∆(



















...

Ai
...

Aj
...



















) = ∆(



















...

Ai +Aj
...

Aj
...



















) = ∆(



















...

Ai +Aj
...

−Ai
...



















)

= ∆(



















...

Aj
...

−Ai
...



















) = −1 ·∆(



















...

Aj
...

Ai
...



















) = −1 ·∆(A′′).

Thus, ∆ satisfies the condition (∆4). This proves the lemma. ���

For 1 ≤ i 6= j ≤ n and λ ∈ K, let Tij(λ) be the matrix with the

(k, k) entry 1 for all 1 ≤ k ≤ n, the (i, j)-entry λ, and other entries 0. For



28 CHUN-YI LIN AND CHIA-FU YU [March

any µ ∈ K and any integer 1 ≤ i ≤ n, let Di(µ) be the matrix with the

(k, k) entry 1 for all k 6= i, the (i, i) entry µ, and other entries 0, that is,

Di(µ) = diag(1, . . . , µ, . . . , 1) with µ at the ith position. PutD(µ) := Dn(µ).

One has

Tij(λ)Tij(λ
′) = Tij(λ+ λ′), and Di(µ)Di(µ

′) = Di(µµ
′)

for λ, λ′, µ, µ′ ∈ K. Thus, Tij(λ) and Di(µ) with µ ∈ K× are invertible

matrices. For n ≥ 2, let En(K) be the subgroup of GLn(K) generated by

the invertible matrices Tij(λ) for all i 6= j and all λ ∈ K. When n = 1, set

E1(K) := {1}, the trivial subgroup.

To construct such a function ∆, we give the following definition first.

Definition 2.2. A matrix A ∈ Matn(K) is said to be nonsingular if there

exists a matrix B ∈ Matn(K) such that BA = In, and singular otherwise.

Note that A is nonsingular if and only if the row vectors of A are left linearly

independent over K.

Lemma 2.3. Every nonsingular matrix A can be written in the form E·D(µ)

with E ∈ En(K) and some µ 6= 0.

Proof. There is nothing to show if n = 1 and we assume n ≥ 2. Since A is

nonsingular, not all ai1 are zero, and we can do a sequence of row reductions

such that a11 = 1 and ai1 = 0 for all i > 1. Since the rows A2,. . . ,An are

linearly independent, similarly we can do row reductions such that a22 = 1,

and ai2 = 0 for all i 6= 2. Do this inductively and then one gets ann = µ for

some µ 6= 0. ���

Proposition 2.4. If A ∈ Matn(K) is a nonsingular matrix with BA = In.

Then AB = In. That is, A is an invertible matrix.

Proof. By Lemma 2.3, A = E ·D(µ) is a product of two invertible matrices

and hence A is invertible. Therefore, BA = AB = In. ���

Proposition 2.4 says that if the row vectors of A are left linearly inde-

pendent then the column vectors of A are right linearly independent. The

similar argument using column reductions shows that the converse also holds.
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Example 2.5. Let V be a vector space over a field F with an infinite

countable basis x1, x2, . . . . Let R be the algebra of all linear transformations

from V to V . Let T, S be elements in R defined by

T (xi) = xi+1 for all i ≥ 1, and

S(x1) = x1, S(xi) = xi−1 for all i > 1.

Then ST = 1 but TS 6= 1. This shows that T has a left inverse but does

not have a right inverse.

Now we can construct the Dieudonn determinant ∆n : Matn(K) → K

by induction on n:

When n = 1, for each A = (a), set ∆1(A) := a. Note that the map ∆1

is the unique map form K to K which satisfies the conditions (∆1), (∆2)

and (∆3).

When A is singular, set ∆n(A) := 0. Note that this agrees with the

definition when n = 1. Let A1,. . . ,An be the row vectors of A, then A1,. . . ,An

are left linearly dependent. Therefore, if A′ is the matrix obtained from A

as in (∆2) or as in (∆3), then its row vectors A′
1, . . . , A

′
n are also left linearly

dependent and hence A′ is singular. Therefore ∆n(A
′) = ∆n(A) = 0 and

both (∆2) and (∆3) are satisfied.

When A is nonsingular, the row vectors Aν (1 ≤ ν ≤ n) are left linearly

independent. So there exist elements λν ∈ K such that Σn
ν=1λνAν = e1,

where {e1, . . . , en} is the standard basis for the row vector space Kn. Write

Ai = (ai1, Bi), where ai1 ∈ K and Bi ∈ Kn−1, then Σn
ν=1λνaν1 = 1 and

Σn
ν=1λνBν = 0. Let B be the n× (n− 1) matrix with rows B1,. . . ,Bn, and

Ci the (n− 1)× (n− 1) matrix obtained from B by crossing out the row Bi.

Define

∆n(A) := (−1)i+1λ−1
i ∆n−1(Ci), if λi 6= 0. (2.1)

We have to check that this is well-defined and the conditions (∆1), (∆2) and

(∆3) are satisfied.

(i) Suppose λi 6= 0 and λj 6= 0 with i 6= j. Let D be the matrix obtained

from Ci with the row Bj replaced by λjBj, and E the matrix obtained
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from Ci with the row Bj replaced by Bi.

By the induction hypothesis, ∆n−1(Ci) = λ−1
j ∆n−1(D), and

∆n−1(D) = ∆n−1(
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λjBj
...

Bn



















) = ∆n−1(
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−Σν 6=iλνBν
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)

= ∆n−1(



















B1
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−λiBi
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) = −λi∆n−1(



















B1
...

Bi
...

Bn



















) = −λi∆n−1(E).

Thus, ∆n−1(Ci) = −λ−1
j λi∆n−1(E). On the other hand, by inter-

changing adjacent rows | i − j | −1 times, we obtain another relation

∆n−1(Cj) = (−1)i−j−1∆n−1(E). Combining these two relations we get

(−1)i+1λ−1
i ∆n−1(Ci) = (−1)j+1λ−1

j ∆n−1(Cj),

which shows that (2.1) is independent of the choice of i with λi 6= 0.

(ii) Suppose A′ is obtained from a nonsingular matrix A with the ith row

Ai replaced by µAi for some µ ∈ K. If µ = 0, (∆2) holds trivially. If

µ 6= 0, then λ′
ν = λν for ν 6= i and λ′

i = λiµ
−1.

(a) If λi 6= 0, then

∆n(A
′)=(−1)i+1λ′−1

i ∆n−1(C
′
i)=(−1)i+1µλ−1

i ∆n−1(Ci) = µ∆n(A).

(b) If λi = 0 and λj 6= 0 for some i 6= j, then

∆n(A
′)=(−1)j+1λ−1

j ∆n−1(C
′
j)=(−1)j+1λ−1

j µ∆n−1(Cj)=µ∆n(A).

(iii) Suppose A′ is obtained from a nonsingular matrix A with the ith row

Ai replaced by Ai+Aj . Since λi(Ai+Aj)+ (λj −λi)Aj = λiAi+λjAj,

one has λ′
j = λj − λi and λ′

ν = λν for ν 6= j.
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(a) If λν 6= 0 for some ν 6= i, j, then

∆n(A
′)=(−1)ν+1λ′−1

ν ∆n−1(C
′
ν)=(−1)ν+1λ−1

ν ∆n−1(Cν)=∆n(A).

(b) If λi 6= 0, then

∆n(A
′) = (−1)i+1λ′−1

i ∆n−1(C
′
i) = (−1)i+1λ−1

i ∆n−1(Ci) = ∆n(A).

(c) If λj 6= 0 and λν = 0 for all ν 6= j, then Bj = 0, B′
i = Bi+Bj = Bi,

and C ′
j = Cj. Together with λ′

j = λj−λi = λj, we obtain ∆n(A
′) =

∆n(A).

(iv) If A = In, then λ1 = 1 and λν = 0 for ν 6= 1. Then ∆n(A) =

(−1)21−1∆n−1(C1) = 1 by the induction hypothesis.

Theorem 2.6. Let ∆ = ∆n : Matn(K) → K be the map constructed as

above.

(1) The map ∆ is multiplicative, that is, one has ∆(AB) = ∆(A)∆(B) for

all A,B ∈ Matn(K). It is the unique map from Matn(K) to K which

satisfies the conditions (∆1), (∆2) and (∆3).

(2) When n ≥ 2, the kernel of the group homomorphism ∆ : GLn(K) → K×

is equal to En(K).

Proof. (1) We already showed that ∆ satisfies the conditions (∆1), (∆2) and

(∆3), and hence it satisfies (∆3)′ and (∆4) by Lemma 2.1. It follows from the

condition (∆3)′ that ∆(AB) = ∆(B) for every A ∈ En(K). By Lemma 2.3,

every nonsingular matrix A is equal to E · D(µ) for some E ∈ En(K),

and hence ∆(A) = ∆(E · D(µ)) = µ, by (∆3)′ and (∆2). Therefore, ∆ is

uniquely determined by (∆1), (∆2) and (∆3). It remains to show that ∆ is

multiplicative.

(i) IfA is singular, then we must show that AB is also singular. Suppose not,

then by Proposition 2.4 there exists C ∈ Matn(K) such that (AB)C =

In = A(BC); this shows that A is nonsingular, a contradiction.

(ii) Suppose A is nonsingular. By Lemma 2.3 we can write A = E · D(µ)

with E ∈ En(K). Now ∆(A) = µ by (∆2) and (∆3)′, and

∆(AB) = ∆(ED(µ)B) = ∆(D(µ)B) = µ∆(B) = ∆(A)∆(B).
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This proves (1).

(2) It follows from the condition (∆3)′ that En(K) is contained in the kernel.

We now show the other inclusion. Let A = E · D(µ) ∈ ker(∆) with E ∈

En(K), then µ ∈ [K×,K×]. Thus, it suffices to show D(µ) ∈ En(K). Since

µ is a product of commutators, we may assume that µ = aba−1b−1 for some

a, b ∈ K×. For n = 2, we can do the following row operations

(

1 0

0 1

)

→

(

1 0

a−1 1

)

→

(

0 −a

a−1 1

)

→

(

0 −a

a−1 b−1

)

→

(

aba−1 0

a−1 b−1

)

→

(

aba−1 0

1 b−1

)

→

(

0 −µ

1 b−1

)

→

(

0 −µ

1 µ

)

→

(

1 0

1 µ

)

→

(

1 0

0 µ

)

This shows that D(µ) ∈ En(K). For n > 2, the same row reductions for the

last two rows shows that D(µ) ∈ En(K). This completes the proof. ���

It follows from Theorem 2.6(2) that En(K) is a normal subgroup of

GLn(K). We will give an elementary proof of this fact in Lemma 3.1, which

does not rely on the construction of the Dieudonné determinant. In fact,

using this lemma, we shall give another independent proof of Theorem 2.6(2);

see the proof of Theorem 1.1(a).

Lemma 2.7. Let ι : K1 → K2 be a ring homomorphism of division rings.

Then the following diagram

Matn(K1)
ι

−−−−→ Matn(K2)

∆
K1
n



y ∆
K2
n



y

K1
ι

−−−−→ K2

(2.2)

commutes.

Proof. Since K1 is a division ring, the map ι is injective. We prove the

lemma by induction on n. Let A ∈ Matn(K1). If A is singular, then ι(A)

is singular and the diagram (2.2) for A commutes. Clearly, when n = 1,

the diagram (2.2) commutes. Suppose n > 1 and A is nonsingular. As our

construction (2.1), we have

ι(∆n(A)) = (−1)i+1ι(λi)−1 · ι(∆n−1(Ci)) = (−1)i+1ι(λi)−1 ·∆n−1(ι(Ci))

=∆n(ι(A))
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if λi 6= 0, where λν are elements in K1 such that
∑n

ν=1 λνAν = e1. This

proves the compatibility. ���

Lemma 2.7 shows the functorial property of the Dieudonné determinant

with respect to ring homomorphisms.

3. Structure of General Linear Groups

3.1. Subgroup relations

Lemma 3.1. The subgroup En(K) is normal in GLn(K).

Proof. The proof is taken from [7] and is given for the sake of completeness.

For every g ∈ GLn(K), using the row reduction, there exist an element

τ ∈ En(K) and a diagonal matrix D(µ) = diag(1, . . . , 1, µ) with entries

1, . . . , 1, µ and µ ∈ K× such that g = τ ·D(µ). Thus, it suffices to show that

every D(µ) normalizes En(K). One computes

D(µ)Tij(λ)D(µ)−1 = Tij(λ) (i 6= n, j 6= n),

D(µ)Tin(λ)D(µ)−1 = Tij(λµ
−1),

D(µ)Tnj(λ)D(µ)−1 = Tij(µλ).

Therefore, En(K) is normal in GLn(K). ���

Lemma 3.2. Let K be a division ring. The map K× ×K → K, (a, c) 7→

aca− c, is surjective if and only if |K| > 3.

Proof. If |K| = 2, 3, then the map is (a, c) 7→ (a2 − 1)c. Since a2 − 1 = 0

for every a ∈ K×, this is the zero map and is not surjective.

Now assume |K| > 3. For any element b ∈ K, we claim that there is

a subfield F of K containing b such that |F | > 3. Then we are reduced

to the commutative case and the map is surjective. We first let F be the

subfield of K generated by its center Z and b. Then |F | = 2, 3 occurs only

when Z = F2 or Z = F3, and b ∈ Z. In the latter cases we replace F by

the subfield generated over Z by an element d ∈ K not in Z. Then we have

b ∈ F and |F | > 3, and we are done. ���

Proof of Theorem 1.1. (a) This is proved in Theorem 2.6(2). Here we

give another independent proof using Lemma 3.1. Let g ∈ SLn(K). There
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exist an element τ ∈ En(K) and D(µ) with µ ∈ K× such that g = τ ·D(µ).

Since g ∈ SLn(K) and ∆(τ) = 1, one has µ ∈ [K×,K×]. Observe from the

computation

[

1 µ

0 1

][

u1
u2

]

=

[

u1 + µu2
u2

]

, [v1, v2]

[

1 µ

0 1

]

= [v1, v2 + v1µ],

where u1, u2 are row vectors and v1, v2 are column vectors, that for a row

(resp. column) reduction the scalar multiplication is on the left (resp. right).

For any elements a, d ∈ K×, consider the matrix A =
[

a 0
0 d

]

. Do a sequence

of row reductions:
[

a 0

0 d

]

→

[

a 0

1 d

]

→

[

1 (1− a)d

1 d

]

→

[

1 (1− a)d

0 ad

]

→

[

1 0

0 ad

]

.

Now we do a sequence of column reductions:

[

a 0

0 d

]

→

[

a 1

0 d

]

→

[

1 1

d(1− a) d

]

→

[

1 0

d(1− a) da

]

→

[

1 0

0 da

]

.

So there are elements τ1, τ2 ∈ E2(K) such that τ1A = diag(1, ad) and

Aτ2 = diag(1, da). This implies diag(1, ada−1d−1) = τ1Aτ
−1
2 A−1 ∈ E2(K)

by the normality (Lemma 3.1). It follows that D(µ) ∈ E2(K) for all

µ ∈ [K×,K×]. This proves the case n = 2. Now replacing A and τi

by
[

In−2 0
0 A

]

and
[

In−2 0
0 τi

]

, respectively, the same calculation shows that

D(µ) ∈ En(K) for every µ ∈ [K×,K×]. Thus, SLn(K) = En(K).

(b) When n = 2 and K = F2, GL2(F2) = SL2(F2) ≃ S3 and GL2(F2)
′ ≃

[S3, S3] = A3 which is properly contained in S3. Now we prove GLn(K)′ =

En(K) when n ≥ 3 or when n = 2 and K 6= F2 and use (a) to conclude (b).

If n ≥ 3, the statement then follows from

Tij(λ) = Tik(λ)Tkj(1)Tik(λ)
−1Tkj(1)

−1 (3.1)

for i, j, k all distinct. Observe this shows En(K)′ = En(K) when n ≥ 3 and

by (a), SLn(K) = SLn(K)′. Now let n = 2 and K 6= F2. We compute

[

a 0

0 d

][

1 c

0 1

][

a−1 0

0 d−1

][

1 −c

0 1

]

=

[

1 −c+ acd−1

0 1

]

. (3.2)
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For any b ∈ K, we can choose c ∈ K,a, d ∈ K× such that −c + acd−1 = b.

For example d = 1, a ∈ K − {1, 0} and c = (a− 1)−1b. Thus, the subgroup

GL2(K)′ contains all transvections and hence GL2(K)′ = SL2(K). This

completes the proof of (b).

(c) Case n ≥ 3. By (3.1) every transvection is contained in SLn(K)′ and

hence En(K) ⊂ SLn(K)′. By (a), one has SLn(K) ⊂ SLn(K)′ and then

SLn(K) = SLn(K)′.

Case n = 2. If |K| = 2, 3, then SL2(K)′ ( SL2(K). Indeed, if K =

F2, then SL2(K) ≃ S3 and [S3, S3] = A3. If K = F3, then PSL2(K) :=

SL2(K)/{±1} ≃ A4 and [A4, A4] = V4 (the Klein four group).

Now assume that |K| > 3. By (3.2),

[

a 0

0 a−1

][

1 c

0 1

][

a−1 0

0 a

][

1 −c

0 1

]

=

[

1 −c+ aca

0 1

]

. (3.3)

For any element b ∈ K, there exists (a, c) ∈ K× ×K such that aca− c = b

by Lemma 3.2. Thus, T12(b) ∈ SL2(F )′ for all b ∈ K. Similarly, we also have

T21(b) ∈ SL2(K)′ for all b ∈ K. This shows E2(K) ⊂ SL2(K)′ and hence

SL2(K)′ = SL2(K) by (a).

This completes the proof of Theorem 1.1. ���

3.2. Simplicity of PSLn(K)

For n ≥ 1, let PSLn(K) := SLn(K)/Z(SLn(K)), called the projective

special linear group over K of degree n.

If n = 1, then SL1(K) = [K×,K×], Z(SL1(K)) = Z([K×,K×]) and

Z1(K) ∩ SL1(K) = Z× ∩ [K×,K×]. It is not clear whether there is an

inclusion relation between Z([K×,K×]) and Z× ∩ [K×,K×] in general.

Lemma 3.3. For n ≥ 2, we have

Z(SLn(K)) = Zn(K) ∩ SLn(K) = {z · In ∈ Z× | zn ∈ [K×,K×]}.

In other words, the inclusion SLn(K) ⊂ GLn(K) induces a monomorphism

PSLn(K) →֒ PGLn(K).



36 CHUN-YI LIN AND CHIA-FU YU [March

Proof. Let A = (aij) ∈ Matn(K) be an element which commutes with all

elements in SLn(K). For each pair 1 ≤ i 6= j ≤ n and λ ∈ K, the relation

A · Tij(λ) = Tij(λ) · A gives aijλ = 0 and aiiλ = λajj. This implies that

aii = ajj ∈ Z and aij = 0 for each pair 1 ≤ i 6= j ≤ n. Thus A = a11In. ���

Definition 3.4. Let ρ : G → Aut(S) be an action of a group G on a set

S.

(1) If k is a positive integer then the action of G on S is called k-fold tran-

sitive if for any two ordered k-tuples of distinct elements (x1, x2, . . . , xk)

and (y1, y2, . . . , yk) of elements of S, there exists an element g ∈ G such

that yi = gxi for i = 1, . . . , k.

(2) A partition Σ = {Si}i∈I of S is a collection of disjoint non-empty subsets

Si of S such that S = ∪i∈ISi. We call a partition Σ stable under the

action of G if for any i ∈ I and g ∈ G, the subset gSi is again a member

of Σ.

(3) The action ρ is said to be primitive if all the stable partitions of S are

{S} and {{s}}s∈S . In other words, it satisfies the property that if Si is

a member of a stable partition Σ of S and |Si| > 1, then Si must be S.

Clearly, 1-fold transitivity is the same thing as transitivity. If the action

ρ is 2-fold transitive, then it is primitive; see [12, Section 6.7, Lemma 3,

p. 378].The following lemma is due to Iwasawa [11].

Lemma 3.5. Let ρ : G → Aut(S) be an action of a group G on a set S.

Then the factor group G/ ker ρ is simple if the following conditions hold

(a) G = G′, the commutator group of G;

(b) G acts primitively on S;

(c) There exist an element s ∈ S and a normal abelian subgroup As of the

stabilizer Stab s such that G is generated by the conjugates gAsg
−1 for

all g ∈ G.

Proof. Let H ⊳ G be a normal subgroup of G and suppose H ) ker ρ.

Consider the orbits of H on S, then g(Hs) = H(gs) for any g ∈ G, s ∈ S by

normality. Hence G stabilizes the partition of S into the orbits of H. Since

G acts on S primitively and H is not contained in ker ρ, there is just one

H-orbit and hence H acts transitively on S.
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Let g ∈ G and let s be the element in condition (c). Then there exists

an element h ∈ H such that hs = gs by transitivity. Thus, h−1g ∈ Stab s

and G = HStab s. Now HAs is normal in G = HStab s and contains every

gAsg
−1, so G = HAs by condition (c). By isomorphism theorem G/H ∼=

As/(H∩As), which is abelian. Therefore, H contains the commutator group

G′ of G and hence H = G by condition (a). This implies that G/ ker ρ is

simple. ���

Let V = Kn be the right K-vector space of column vectors with the

standard basis e1, . . . , en. The left multiplication of Matn(K) on V identi-

fies Matn(K) with EndK(V). Let P(V ) = Pn−1(K) denote the set of one-

dimensional K-subspaces in V , and let ρ be the natural group action of

GLn(K) on Pn−1(K). We consider its restriction to the subgroup SLn(K)

acting on Pn−1(K).

Lemma 3.6. Let n ≥ 2 ∈ N and ρ be the natural action of SLn(K) on

Pn−1(K).

(1) The kernel of ρ is Z(SLn(K)).

(2) The action ρ is 2-fold transitive. In particularly, SLn(K) acts primitively

on Pn−1(K).

(3) The stabilizer Stab (e1K) contains a normal abelian subgroup Ae1 whose

conjugates gAe1g
−1 for all g ∈ SLn(K) generate the group SLn(K).

Proof. (1) Let η ∈ ker ρ. Then for every u ∈ V , η(u) = uau for some au ∈

K. It follows from η(ei+ej) = eiaei +ejaej = (ei+ej)aei+ej that η(ei) = eia

for some a ∈ K. Put u = e1λ+ e2. Then η(u) = (e1λ+ e2)au = e1aλ+ e2a

and au = a and λa = λa. It follows that a ∈ Z and ker ρ = Z× ∩ SLn(K).

(2) Let x1K 6= x2K and y1K 6= y2K be two pairs of distinct elements in

Pn−1. Since x1 and x2 (resp. y1 and y2) are linearly independent, we extend

them to a basis x1, . . . , xn (resp. y1, . . . , yn). Then there exists an element

g ∈ SLn(K) such that gxi = yi for i = 1, . . . , n − 1 and gxn = yna for some

a ∈ K. Therefore, ρ is 2-fold transitive.
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(3) The stabilizer Stab (e1K) consists of matrices of the form

A =













a11 a12 . . . a1n
0
... An−1

0













in SLn(K). The map sending A to (a11, An−1) defines a group homomor-

phism f : Stab (e1K) → K× ×GLn−1(K) with kernel

Ae1 =



































1 a12 . . . a1n
0
... In−1

0



































.

So Ae1 is isomorphic to the additive group (Kn−1,+) and is an abelian

normal subgroup of Stab (e1K). It remains to show that G := 〈gAe1g
−1; g ∈

SLn(K)〉 is SLn(K). First, the group Ae1 is generated by T1j(b) for j =

2, . . . n and all b ∈ K. Put Pij = In − eii − ejj + eji − eij ; one has P12 =
[

0 −1
1 0

]

∈ SL2(K). A simple calculation

[

0 −1

1 0

]

T12(b)

[

0 1

−1 0

]

= T21(−b),

shows that PijTij(b)P
−1
ij = Tji(−b). When n = 2, the group G contains

T12(b) and T21(b
′) for all b, b′ ∈ K and hence is equal to SL2(K). For n ≥ 3,

the above calculation shows that G contains Tj1(b) for j = 2, . . . , n and for

all b ∈ K. For any distinct pair i, j ≥ 2, one calculates

Ti1(b)T1j(1)Ti1(b)
−1T1j(1)

−1 = Tij(b).

It follows that G contains all Tij(b). By Theorem 1.1 (a), G = SLn(K). This

completes the proof of the lemma. ���

Proof of Theorem 1.2. Theorem 1.2(a) is Lemma 3.3. Theorem 1.2(b)

follows immediately from Theorem 1.1 and Lemmas 3.5 and 3.6. We now

prove Theorem 1.2(c).
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Put G := GmodZn(K) = Z(GLn(K)), which is a nontrivial normal

subgroup of PGLn(K) by the assumption. Then G ∩ PSLn(K) is a nor-

mal subgroup of PSLn(K). Suppose G ∩ PSLn(K) = {1}. Since G and

PSLn(K) are two normal subgroups of PGLn(K) with trivial intersection,

G · PSLn(K) = G × PSLn(K) and hence G commutes with PSLn(K). By

Lemma 3.3, the centralizer of SLn(K) in GLn(K) is Zn(K). This implies

that G ⊂ Zn(K), a contradiction. Therefore, G ∩ PSLn(K) is a nontriv-

ial normal subgroup of PSLn(K) and by Theorem 1.2(b), G ∩ PSLn(K) =

PSLn(K). Thus, G ⊃ PSLn(K) and G · Zn(K) ⊃ SLn(K). Note that

G ⊃ [G,G] = [G · Zn(K), G · Zn(K)] ⊃ [SLn(K),SLn(K)] = SLn(K). This

proves Theorem 1.2(c) and completes the proof of Theorem 1.2. ���

4. Transposes of Matrices and Their Dieudonné Determinants

Throughout this section, K denotes a division ring as in the previous

sections.

4.1. Transposes

Definition 4.1.

(1) For each m × n-matrix A = (aij) ∈ Matm×n(K), the transpose of A is

the n × m-matrix, denoted by At, in Matn×m(K) whose (i, j)-entry is

aji for all i, j.

(2) Let V = Kn be the standard K-vector space with standard basis e1, . . . ,

en. V has a natural left and right K-vector space structure by

λ(a1, . . . , an) = (λa1, . . . , λan), (a1, . . . , an)λ = (a1λ, . . . , anλ)

for all ai ∈ K and λ ∈ K. Let f : V → V be a (either left or

right) K-linear map. The map f is uniquely determined by the vec-

tors f(e1), . . . , f(en). For each 1 ≤ j ≤ n, write

f(ej) =

n
∑

i=1

aijei =

n
∑

i=1

eiaij, aij ∈ K. (4.1)

Then (aij) is called the representing matrix of f with respect to the basis

e1, . . . , en.
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(3) Suppose V is a finite right K-vector space with basis B = {e1, . . . , en}.

Let f ∈ EndK(V) be aK-linear endomorphism on V . For each 1 ≤ j ≤ n,

write

f(ej) =

n
∑

i=1

eiaij, aij ∈ K. (4.2)

Then (aij) is called the representing matrix of f with respect to the basis

B.

(4) SupposeW is a finite leftK-vector space with basis B = {e1, . . . , en}. Let

f ∈ EndK(V) be a K-linear endomorphism on V . For each 1 ≤ j ≤ n,

write

f(ej) =

n
∑

i=1

aijei, aij ∈ K. (4.3)

Then (aij) is called the representing matrix of f with respect to the basis

B.

When K is a field, the above definitions agree with the usual definitions

in linear algebra.

Lemma 4.2.

(1) If we regard Kn as the right column vector space, and let A = (aij) be

the representing matrix of a K-linear map f with respect to the standard

basis B, then for every vector v = [v1, . . . , vn]
t ∈ Kn, one has

f(v) = Av (4.4)

by the usual matrix multiplication.

(2) If we regard Kn as the left row vector space, and let A = (aij) be the

representing matrix of a K-linear map f with respect to the standard

basis B, then for every vector v = [v1, . . . , vn] ∈ Kn, one has

f(v) = vAt. (4.5)

(3) Let V (resp. W ) be a right (resp. left) vector space over K with a basis

B (resp. B′). Let A = (aij) (resp. B) be the representing matrix of a K-

linear map f (resp. g) with respect to the standard basis B (resp. B′). If

we identify V (resp. W ) with the right column (resp. left row) vector space
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via B (resp. B′). Then then for every vector v = [v1, . . . , vn]
t ∈ Kn = V

and w = [w1, . . . , wn] ∈ Kn = W , one has

f(v) = Av, and g(w) = wBt. (4.6)

Proof. The proofs are elementary and omitted. ���

Remark 4.3. Suppose that K is non-commutative. If A is a nonsingular

matrix in Matn(K), then after doing a sequence of row reductions we obtain

A = E ·D(µ) for some matrix E ∈ En(K) and µ ∈ K×. However, unlike in

the commutative case, the sequence of row reductions of A does not corre-

spond a sequence of column reductions of its transpose At. To be precise,

the multiplication by the elementary matrix T12(µ) on A from the left gives

the row reduction with the first row A1 replaced by A1 + µA2:

(

1 µ

0 1

)(

a b

c d

)

=

(

a+ µc b+ µd

c d

)

.

However, the multiplication by T21(µ) on At from the right gives the column

reduction with the first column C1 replaced by C1 +C2µ (right multiple by

µ):
(

a c

b d

)(

1 0

µ 1

)

=

(

a+ cµ c

b+ dµ d

)

.

Therefore, the transpose of T12(µ)A is not equal to At · T21(µ), a column

reduction of At, unless in the special case that µ commutes with entries of

A. In particular, in general (AB)t 6= BtAt. Below we show a correct relation

for the transpose of the multiplication of matrices.

4.2. Incompatibility of the Dieudonné determinant with trans-

poses

We give an example showing that ∆(At) = ∆(A) is not true for all

A ∈ Matn(K). This gives a counterexample of [2, Theorem 1.1.4 (ii)], [1,

Theorem 1.2.4 (iii)] and [4, Theorem 3.9].
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Consider the case n = 2, and let K := H be the Hamilton quaternion

algebra over R. Denote by 1, i, j, k the standard basis of H. Recall that

∆

((

a b

c d

))

= ad− aca−1bmod[H×,H×], if a 6= 0.

Let x = ad − aca−1b and y = ad − aba−1c. Since the reduced norm map

N : H× → R× factors through the quotient map H× → H×/[H×,H×], it

suffices to find a, b, c, d ∈ H× such that N(x) 6= N(y), because N(x) 6= N(y)

implies x̄ 6= ȳ . Now take

a = j, b = 1 + i+ j, c = 1 + j − k, d = 1.

Then

x = j − j(1 + j − k)(−j)(1 + i+ j) = −2j,

y = j − j(1 + i+ j)(−j)(1 + j − k) = 2i+ 2k,

and hence N(x) = 4 6= 8 = N(y). Thus, if we put

A :=

(

j 1 + i+ j

1 + j − k 1

)

, then ∆(A) 6= ∆(At).

This gives a desired counterexample.

4.3. The meaning of transposes and multiplicative relations

Let V be a finite right vector space over K. Fix a basis B = {e1, . . . , en}.

Denote by V ∗ = HomK(V,K) the dual vector space. It is a left vector space

with scalar multiplication given by

(µ · f)(v) = µf(v), for f ∈ V ∗, v ∈ V and µ ∈ K.

Let B∗ = {e∗1, . . . , e
∗
n} be the dual basis of V ∗. That is, we have e∗i (ej) =

δij for all i, j. For each K-linear endomorphism f ∈ EndK(V), the dual

f∗ ∈ EndK(V
∗) is given as the pull-back f∗(v∗) of the function v∗ : V → K,

namely, f∗(v∗)(v) = v∗(f(v)) for all v ∈ V .
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We denote the opposite ring of a ring R by (Rop, ◦), where Rop = R as

an abelian group and a ◦ b := ba for a, b ∈ R. Any left R-module M can be

also reviewed as a right Rop-module and vice versa. In particular, the dual

vector space V ∗ can be also regarded as a right vector space over Kop.

Proposition 4.4. Notation being as above, let f ∈ EndK(V) be an endo-

morphism of V , and A the representing matrix of f with respect to the basis

B. Then

(1) The representing matrix of the dual endomorphism f∗ ∈ EndK(V
∗) with

respect to the basis B∗ is equal to At in Matn(K).

(2) If we regard V ∗ as a right vector space over Kop and identify it with

the standard right column vector space (Kop)n using the dual basis B∗.

Then the element f∗ ∈ EndKop(V∗) = Matn(K
op) is equal to At ∈

Matn(K
op) = Matn(K).

Proof. (1) Let B = {e1, . . . , en}, B
∗ = {e∗1, . . . , e

∗
n}, and A = (aij). By

definition, f(ej) = Σn
i=1eiaij. It suffices to show that f∗(e∗j ) = Σn

i=1ajie
∗
i ,

and we just need to check this for evaluating each ek ∈ B:

f∗(e∗j )(ek) = e∗j (f(ek)) = e∗j

(

n
∑

i=1

eiaik

)

=
n
∑

i=1

e∗j (ei)aik

= ajk =

n
∑

i=1

ajie
∗
i (ek).

(2) This is just the reformulation of (1) by writing elements
∑

i aie
∗
i of V ∗

as
∑

i e
∗
i ai and regarding V ∗ as a right Kop-vector space. Namely, we need

to check f∗(e∗j ) = Σn
i=1e

∗
i aji. The computation is the same as (1) and is

omitted. ���

Remark 4.5. Although Matn(K
op) = Matn(K) are the same abelian group,

it is more natural to view the transpose At of a matrix A ∈ Matn(K) as an

element in Matn(K
op) using the meaning of At by Proposition 4.4(2). Then

the transpose will be compatible with the matrix multiplication. On the

other hand, using this interpretation it is more natural to compare ∆(A)

with ∆op(At) rather than with ∆(At), where ∆op : Matn(K
op) → Kop is the

Dieudonné determinant. This explains the incompatibility of the Dieudonné

determinant with transposes.
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Lemma 4.6. We have (AB)t = Bt ◦ At for all matrices A,B ∈ Matn(K).

Proof. Let A and B be the representing matrices in Matn(K) = EndK(K
n)

of endomorphisms f and g on the right column vector space V = Kn, re-

spectively. Then At and Bt are the representing matrices in Matn(K
op) =

EndKop(V∗) of the dual endomorphisms f∗ and g∗, respectively. Then (AB)t

∈ Matn(K
op) is the representing matrix of (fg)∗ = g∗f∗ in EndKop(V∗).

Therefore, (AB)t = Bt ◦At.

We also give a direct elementary proof of this lemma. Write A = (aij)

and B = (bjk) with aij , bjk ∈ K. Then the (i, k)-entry cik of AB is

cik =

n
∑

j=1

aijbjk.

The (i, k)-entry dik of the matrix Bt ◦At is

dik =

n
∑

j=1

bji ◦ akj =
∑

j=1

akjbji = cki. ���

4.4. Relation of the Dieudonné determinant with transposes

Denote by ∆op : Matn(K
op) → Kop the Dieudonné determinant. Let

ϕ : Matn(K ) → Matn(K
op) be the map A 7→ At. Then one has ϕ(AB) =

ϕ(B)◦ϕ(A), that is, ϕ is an anti-isomorphism by Lemma 4.6. Note that the

identity map id : K → Kop induces a natural identification id : K
∼

−→ Kop.

Proposition 4.7. We have ∆(A) = ∆op(At) for every A ∈ Matn(K). That

is, the following diagram

(4.7)

commutes.

Proof. Let A ∈ Matn(K). If A is singular, then the columns of A are

right linearly dependent, which means that the rows of At are left linearly
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dependent, i.e. At is singular. Thus, in this case ∆(A) = 0 = ∆op(At).

Assume that A is nonsingular. Then A = ED(µ) with E ∈ En(K) and

µ ∈ K×. We have

∆(A) = µ = ∆op(D(µ)t ◦Et) = ∆op(At). ���

Note that it is not clear whether A is nonsingular if and only if At is

nonsingular, when viewed as a matrix in Matn(K).

4.5. Relation with the reduced norm maps

Let D be central simple division algebra over a field F . Let Nrn :

GLn(D) → F× be the reduced norm map (restricted to GLn(D)) from

Matn(D) to F . When D is commutative, that is, D = F , the map Nrn
is nothing but the determinant map and is also equal to the Dieudonné de-

terminant ∆n. The reduced norm Nr1 = NrD/F : D× → F× induces a group

homomorphism denoted again by NrD/F : D×/[D×,D×] → F×. Composing

with the Dieudonné determinant ∆n, we obtain a group homomorphism:

NrD/F ◦∆n : GLn(D) → F×. (4.8)

Lemma 4.8. We have NrD/F ◦∆n = Nrn.

Proof. It is clear that the map Nrn is characterized by the conditions that

Nrn(E) = 1 for E ∈ En(K) and Nrn(D(µ)) = NrD/F (µ) for µ ∈ D×. It is

easy to check that the group homomorphism NrD/F ◦∆n satisfies these two

conditions. Therefore, NrD/F ◦∆n = Nrn. ���

Usually it is not easy to compute the group D×/[D×,D×], the target

group of the Dieudonné determinant. Therefore, if the reduced norm map

NrD/F is injective, then the Dieudonné determinant is determined by the

reduced norm map Nrn. In particular, we can describe the Dieudonné de-

terminant as a function by the reduced norm as the function from GLn(D)

to F×. For this direction, we have the following result due to Shianghaw

Wang [17].

Theorem 4.9 (Wang). If either F is a number field, or the index of D over

F , that is,
√

[D : F ], is square-free, then the reduced norm map NrD/F :

D×/[D×,D×] → F× is injective.
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In particular, if D is a quaternion algebra, then the reduced norm map

NrD/F is injective and one can describe the Dieudonné determinant by Nrn.

In [16], Van Praag shows that if B is a Hermitian matrix of degree n with

coefficients in D then the Dieudonné determinant of B has a representative

that is a polynomial, independent of n, in the diagonal elements of B and the

reduced norms of elements of the subring of D generated by the elements of

B. From this he derives that the reduced norm of the Dieudonn determinant

of every n×n-matrix A with coefficients in D is a polynomial in the reduced

norms of elements of the subring of D generated by the entries of A and

their conjugates. We refer to [16] for more details.

Let D be a quaternion division F -algebra and ∗ the canonical involution.

For each A = (aij) ∈ Matn(D) denote by A∗ = (bij) the matrix with (i, j)-

entries bij = a∗ji. Then we have (AB)∗ = B∗A∗.

Lemma 4.10. We have ∆n(A) = ∆n(A
∗) for all A ∈ Matn(D).

Proof. It is clear that A is nonsingular if and only if A∗ is nonsingular.

Therefore ∆n(A) = ∆n(A
∗) = 0 if A is singular. If A is nonsingular, then

A = E · D(µ) for some E ∈ En(D) and µ ∈ D×. Then ∆n(A) = µ̄ =

∆(D(µ)∗E∗) = ∆n(A
∗). ���
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