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Abstract

In this research, the analytic solution of hybrid fractional differential equation with

non-homogenous Dirichlet boundary conditions in one dimension is established. Since non-

homogenous initial boundary value problem involves hybrid fractional order derivative, it

has classical initial and boundary conditions. By means of separation of variables method

and the inner product defined on L2 [0, l], the solution is constructed in the form of a Fourier

series with respect to the eigenfunctions of a corresponding Sturm-Liouville. Illustrative

example presents the applicability and influence of separation of variables method on

fractional mathematical problems.

1. Introduction

Since mathematical models including fractional derivatives play a vital

role fractional derivatives draw a growing attention of many researchers in

various branches of sciences. Therefore there are many different fractional

derivatives such as Caputo, Riemann-Liouville, Atangana-Baleanu. How-

ever these fractional derivatives do not satisfy most important properties

of ordinary derivative which leads to many difficulties to analyze or obtain

the solution of fractional mathematical models. As a result many scientists

focus on defining new fractional derivatives to cover the setbacks of the de-

fined ones. Moreover the success of mathematical modelling of systems or

processes depends on the fractional derivative, it involves, since the correct
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choice of the fractional derivative allows us to model the real data of systems

or processes accurately.

In order to the define new fractional derivatives, various methods exists

and these ones are classified based on their features and formation such as

non-local fractional derivatives and local fractional derivatives. The constant

proportional Caputo hybrid operator (CPCHO) is a newly defined fractional

derivative which is a combination of the Caputo derivative and the propor-

tional derivative and is defined as:

CPC
0 D

α

t f (t) =
1

Γ (1− α)

∫ t

0

(

K1 (α) f (τ) +K0 (α) f
′ (τ)

)

(t− τ)−α dτ

=K1 (α)
RL
0 I

1−α

t f (t) +K0 (α)
C
0 D

α

t f (t) . (1)

where the functionsK0 andK1 satisfy certain properties in terms of limit [2].

The domain of this operator contains functions f on positive reals such that f

and its derivative f ′ are locally L1 functions. Moreover RL
0 I

α

t and C
0 D

α

t rep-

resent RiemannLiouville integral and Caputo derivative, respectively.Note

that this hybrid fractional operator can be enounced as a linear combina-

tion of the Caputo fractional derivative and the RiemannLiouville fractional

integral.

In this study, we focus on obtaining the solution of following fractional

diffusion equation including various CPCHO by making use of the separation

of variables method (SVM):

CPC
0 D

α

t u (x, t) = γ2uxx (x, t) , (2)

u (0, t) = u0, u (l, t) = u1, (3)

u (x, 0) = f(x) (4)

where 0 < α < 1, 0 ≤ x ≤ l, 0 ≤ t ≤ T, γ ∈ R, u0 and u1 are constants. Here

we use the following forms of the proportional derivatives:

CPC
0 Dα

1
f (t) = (1− α) RL

0 I
1−α

t f (t) + αC
0 D

α

t f (t) , (5)

CPC
0 Dα

2
f (t) =

(

1− α2
)

RL
0 I

1−α

t f (t) + α2C
0 D

α

t f (t) . (6)

From a physical aspect, the intrinsic nature of the physical system can

be reflected to the mathematical model of the system by using fractional

derivatives. Therefore the solution of the fractional mathematical model is
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in excellent agreement with the predictions and experimental measurement

of it. The systems whose behaviour is non-local can be modelled better

by fractional mathematical models and the degree of its non-locality can

be arranged by the order of fractional derivative. In order to analyze the

diffusion in a non-homogenous medium that has memory effects it is better to

analyze the solution of the fractional mathematical model for this diffusion.

As a result in order to model a process, the correct choices of fractional

derivative and its order must be determined.

In this study, hybrid fractional derivative is used to model diffusion

problems as in the case of hybrid fractional derivative, models including

hybrid fractional derivatives gives better results than models including in-

teger order derivatives. In the mathematical modelling of diffusion problem

for different matters such as liquid, gas and temperature, the suitable frac-

tional order α is chosen, since the diffusion coefficient γ2 depends on the

order α of fractional derivative [3]. This mathematical modelling describe

the behaviour of matter in a phase. There are many published work on the

diffusion of various matters in science especially in fluid mechanics and gas

dynamics [14, 1, 5, 6, 15, 7, 8, 9, 10, 11, 12, 13]. From this aspect, analysis of

this problem plays an important role in application. Moreover sub-diffusion

cases for which 0 < α < 1 are under consideration. The solution of the

fractional mathematical model of sub-diffusion cases behaves much slower

than the solution of the integer-order mathematical model unlike fractional

mathematical model for super-diffusion.

The main goal of this study is to establish the analytic solution of fol-

lowing time fractional differential equations with non-homogenous Dirichlet

boundary and initial condition.

CPC
0 D

α

t u (x, t) = γ2uxx (x, t) , (7)

u (0, t) = u0, u (l, t) = u1, (8)

u (x, 0) = f(x) (9)

where 0 < α < 1, 0 ≤ x ≤ l, 0 ≤ t ≤ T, γ ∈ R, u0 and u1 are constants.

Before investigating the solution of the problem (7)-(9), let us define the

function v (x, t) which homogenizes the boundary conditions (8) as follows:

v (x, t) = u (x, t) +
x

l
(u0 − u1)− u0. (10)
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Via (10), the problem (7)-(9) turns into the following problem (11)-(13).

CPC
0 D

α

t v (x, t) = γ2vxx (x, t) , (11)

v (0, t) = 0, v (l, t) = 0, (12)

v (x, 0) = f (x) +
x

l
(u0 − u1)− u0 (13)

where 0 < α < 1, γ ∈ R, 0 ≤ x ≤ l, 0 ≤ t ≤ T , u0 and u1 are constants.

2. Main Results

The analytic form of the solution for the problem (11)-(13) is established

by employing the well known method SVM.

v (x, t;α) = X(x)T (t;α) (14)

where 0 ≤ x ≤ l, 0 ≤ t ≤ T .

Utilizing (14) in (11) and some arrangement leads to the following:

CPC
0 D

α

t (T (t;α))

T (t;α)
= γ2

X ′′ (x)

X (x)
= −λ2. (15)

Taking the right hand side of equation (15) and related boundary con-

ditions (12) into account the following problem is obtained:

X ′′ (x) + λ2X (x) = 0, (16)

X (0) = X (l) (17)

which has the solution of the following form:

X (x) = erx. (18)

As a result the following characteristic equation is reached:

r2 + λ2 = 0. (19)

Case 1. If λ = 0, the solutions of the equation (19) are two coincident roots

r1 = r2 which cause to the solution of the problem (16)-(17) in the following
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form:

X (x) = k1x+ k2, (20)

The first boundary condition yields

X (0) = k2 = 0 (21)

which leads to the following solution

X (x) = k1x. (22)

Similarly second boundary condition leads to

X (l) = k1l = 0 ⇒ k1 = 0 (23)

which implies that X (x) = 0 which implies that there is not any solution

for λ = 0.

Case 2. If λ > 0, the solutions of the equation (19) are two distinct real roots

r1, r2 which cause to the solution of the problem (16)-(17) in the following

form:

X (x) = c1e
r1x + c2e

r2x. (24)

By making use of the first boundary condition, we have

X (0) = c1 + c2 = 0 ⇒ c1 = −c2 (25)

which leads to the following solution

X (x) = c1 (e
r1x − er2x) . (26)

Similarly second boundary condition leads to

X (l) = c1

(

er1l − er2l
)

= 0. (27)

Since er1l 6= er2l, the equation (27) is satisfied if and only if c1 = 0 = c2

which implies that X (x) = 0 which implies that there is not any solution

for λ > 0.
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Case 3. If λ < 0, the solutions of the equation (19) are two complex roots

which cause to the solution of the problem (16)-(17) in the following form:

X (x) = c1 cos (λx) + c2 sin (λx). (28)

By making use of the first boundary condition we have

X (0) = c1 = 0. (29)

Hence the solution becomes

X (x) = c2 sin (λx), (30)

Similarly last boundary condition leads to

X (l) = c2 sin (λl) = 0 (31)

which implies that

sin (λl) = 0 (32)

which yields the following eigenvalues

λn =
wn

l
, λ1 < λ2 < λ3 < . . . (33)

where wn = nπ satisfy the equation sin (wn) = 0.

As a result the solution is obtained as follows:

Xn (x) = c2 sin
(

wn

(x

l

))

, n = 1, 2, 3, . . . (34)

The second equation in (15) for eigenvalue λn yields the ordinary differ-

ential equation below:

CPC
0 D

α

t (T (t;α))

T (t;α)
= −γ2λ2

n (35)

which yields the following solution [2]

Tn (t;α) = E1
α,1, 1

(

−γ2λ2
n

K0 (α)
tα,

−K1 (α)

K0 (α)
t

)

, n = 0, 1, 2, 3, . . . (36)
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where a bivariate Mittag-Leffler function E
(γ)
α, β, κ (x, y) proposed by Özarslan

and Kürt [4], is represented in double power series as follows:

E
(γ)
α,β, κ (x, y) =

∞
∑

r=0

∞
∑

s=0

(γ)r+s

Γ (α+ r) Γ (β + κs)

xr

r!

yκs

s!
,

α, β, γ ∈ C, Re(α), Re(β), Re(κ) > 0.

The solution for every eigenvalue λn is constructed as

vn (x, t;α)=Xn (x)Tn (t;α)=E
1
α,1, 1

(

−γ2λ2
n

K0 (α)
tα,

−K1 (α)

K0 (α)
t

)

sin
(

wn

(x

l

))

,

n = 0, 1, 2, 3, . . . (37)

which leads to the following general solution

v (x, t;α) =

∞
∑

n=0

An sin
(

wn

(x

l

))

E1
α,1, 1

(

−γ2λ2
n

K0 (α)
tα,

−K1 (α)

K0 (α)
t

)

. (38)

Note that it satisfies boundary condition and fractional differential equa-

tion.

The coefficients of general solution are established by taking the following

initial condition into account:

v (x, 0) = f (x) +
x

l
(u0 − u1)− u0 =

∞
∑

n=0

An sin
(

wn

(x

l

))

. (39)

The coefficients An for n = 0, 1, 2, 3, . . . determined by the help of inner

product defined on L2[0, l]:

An =
2

l

[

∫ l

0
sin

(

kπx

l

)

f(x)dx+ (u0 − u1)

∫ l

0
sin

(

kπx

l

)

x

l
dx

− u0

∫ l

0
sin

(

kπx

l

)

dx
]

. (40)

Substituting (40) in (38) leads to the solution of the problem (11)-(13).

By making use of (10) and this solution, we obtain the general solution of
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the problem (7)-(9).

3. Illustrative Example

Let the following mathematical problem be considered:

ut(x, t) = uxx(x, t),

u (0, t) = 1, u (2, t) = 1

u (x, 0) = − sin (πx) + 1 (41)

whose solution is given in the following form:

u (x, t) = − sin (πx)e−π2t + 1 (42)

where 0 ≤ x ≤ 2, 0 ≤ t ≤ T .

Now the following time fractional form of above problem is taken in hand:

CPC
0 D

α

t u (x, t) = uxx (x, t) , (43)

u (0, t) = 1, u (2, t) = 1, (44)

u (x, 0) = − sin (πx) + 1 (45)

where 0 < α < 1, 0 ≤ x ≤ 2, 0 ≤ t ≤ T .

To make the boundary conditions (44) homogenous, we apply the transfor-

mation

v (x, t) = u (x, t)− 1 (46)

to the above problem which leads to the following fractional heat-like prob-

lem

CPC
0 D

α

t v (x, t) = vxx (x, t) , (47)

v (0, t) = 0, v (2, t) = 0, (48)

v (x, 0) = − sin (πx) (49)

where 0 < α < 1, 0 ≤ x ≤ 2, 0 ≤ t ≤ T .

The method SVM yields the following equations:

CPC
0 D

α

t (T (t;α))

T (t;α)
=

X ′′ (x)

X (x)
= −λ2. (50)
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Taking the right hand side of equation (50) and related boundary con-

ditions (48) into account the following problem is obtained:

X ′′ (x) + λ2X (x) = 0, (51)

X (0) = X (2) = 0. (52)

The representation of the solution for the eigenvalue problem (51)-(52)

is obtained as

Xn (x) = sin
(nπx

2

)

, n = 1, 2, 3, . . . (53)

The second equation in (50) for every eigenvalue λn yields the following

equation:

CPC
0 D

α

t (T (t;α))

T (t;α)
= −λ2 (54)

which has the following solution

Tn (t;α) = E1
α,1, 1





−
(

n2π2

4

)

K0 (α)
tα,

−K1 (α)

K0 (α)
t



 , n = 0, 1, 2, 3, . . . (55)

For each eigenvalue λn, we obtain the following solution:

vn (x, t;α) = E1
α,1, 1





−
(

n2π2

4

)

K0 (α)
tα,

−K1 (α)

K0 (α)
t



 sin
(nπx

2

)

, n = 0, 1, 2, 3, . . .

(56)

and hence Superposition Principle leads to the following sum:

v (x, t;α) =

∞
∑

n=0

An sin
(nπx

2

)

E1
α,1, 1





−
(

n2π2

4

)

K0 (α)
tα,

−K1 (α)

K0 (α)
t



. (57)

Utilizing the L2[0, 2] inner product and initial condition (45) allow us to

determine the coefficients An as follows:

v (x, 0) =

∞
∑

n=0

An sin
(nπx

2

)

. (58)
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The coefficients An for n = 0, 1, 2, 3, . . . are determined by the help of

the inner product as follows:

An = −

∫ 2

0
sin (πx) sin

(nπx

2

)

dx. (59)

For n 6= 2, An = 0. n = 2 we get

A2 =−

∫ 2

0
sin2 (πx)dx = −

∫ 2

0

(

1

2
−

cos (2πx)

2

)

dx

=−

(

x

2
−

sin (2πx)

4

)∣

∣

∣

∣

x=2

x=0

= −1. (60)

Thus

v (x, t;α) = − sin (πx)E1
α,1, 1

(

−π2

K0 (α)
tα,

−K1 (α)

K0 (α)
t

)

. (61)

By making use of (46) and the solution (61), we obtain the general

solution of the problem (43)-(45) as follows:

u (x, t;α) = − sin (πx)E1
α,1, 1

(

−π2

K0 (α)
tα,

−K1 (α)

K0 (α)
t

)

+ 1. (62)

The accuracy of the obtained solution is checked by substituting α = 1

into (62) which leads to the solution of the problem (41).

Particularly solution of the problem (43)-(45) have the following form for

the specific functions K0 and K1:

Case 1: For K0 (α) = α,K1 (α) = 1− α, the solution becomes

u (x, t;α) = − sin (πx)E1
α,1, 1

(

−π2

α
tα,

α− 1

α
t

)

+ 1. (63)

Case 2: For K0 (α) = α2,K1 (α) = 1− α2, the solution becomes

u (x, t;α) = − sin (πx)E1
α,1, 1

(

−π2

α2
tα,

α2 − 1

α2
t

)

+ 1. (64)

The graphics of solutions for Case 1, Case 2 and Problem (41) in 2D are

given in Fig. 1-4 for various values of α.
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Figure 1: The graphics of solutions for Example for different functions K0 (α) and
K1 (α) in 2D at x = 0.1 and for α = 0.9.
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Figure 2: The graphics of solutions for Example for different functions K0 (α) and
K1 (α) in 2D at x = 0.1 and for α = 0.95.
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Figure 3: The graphics of solutions for Example for different functions K0 (α) and
K1 (α) in 2D at x = 0.1 and for α = 0.98.
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Figure 4: The graphics of solutions for Example for different functions K0 (α) and
K1 (α) in 2D at x = 0.1 and for α = 1.
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4. Conclusion

The solution of the mathematical problem with hybrid time fractional

derivative is constructed by the method SVM in terms of bivariate Mittag-

Leffler function. Besides the accuracy of the solution is tested by taking

α = 1 in the solution which leads to the solution of the mathematical problem

with ordinary derivative. As a result the illustrative example indicates that

the method SVM plays an influence role in the construction of mathematical

problems including fractional derivatives.

Based on the analytic solution, we reach the conclusion that diffusion

processes decays with time until initial condition is reached when α is less

than a certain value of α for Case 1 but diffusion processes decays with

time for all values of α between 0 and 1 for Case 2. As α tends to 0, the

rate of decaying increases. This implies that in the mathematical model for

diffusion of the matter which has small diffusion rate the value of α must be

close to 0. This model can account for various diffusion processes of various

methods.
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