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Abstract

In this paper, we investigate the condition full support property (CFS) for the stochas-

tic process St = Rt +
∫ t

0
φsdM

H
s , where MH

s is a mixed fractional Brownian motion, Rt a

continuous adapted process, and (φt) an elementary predictable process. The problem of

the absence of arbitrage for this process is treated.

1. Introduction

The conditional full support(CFS) property which is a mere condition

on asset prices indicating that at any time the asset price path can continue

arbitrarily close to any given path with positive conditional probability, was

introduced by Guasoni et al. (2008, [7]) for the fractional Brownian motion,

the only H-self similar Gaussian precess with stationary increments with

the arbitrary Hurst parameter H ∈ (0, 1). This result was generalized in

Cherny (2008,[3]), who proved that any Brownian moving average satisfies

the (CFS) property with respect to ordinary Brownian motion. In 2009,

Pakkanan [11] established the condition of the desired property for a general

class of stochastic processes. After that, this notion was investigated for

Gaussian processes with stationary increments by Gasbarra (2011,[6]).
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In contrast to the considerable monographs that deal with fractional

Brownian motion at a great expense, we find and see a rarity in those on the

mixed fractional Brownian motion (MFBM) introduced by Patrick Cheridito

(2001,[12]) and defined as a linear combination between the Brownian motion

and the independent fractional Brownian motion of parameter H ∈ (0, 1).

This process (MFBM) is not a semimartingale if H ∈ (0, 12 )
⋃

(12 ,
3
4 ], and it

is not also a Markov process.

The purpose of this work is to study the properties and characteristics

of the conditional full support property for asset prices driven by the Mixed

fractional Brownian motion process.

The plan of this paper is organized as follows. In section 2, we collect

some preliminaries of the consistent price system and the conditional full

support needed to establish our main result. In section 3, we give some

useful basic concepts on the mixed fractional Brownian motion. In section 4,

we supply our main result on the conditional full support for the stochastic

process St = Rt +
∫ t
0 φsdMs, where MH

s is a Mixed fractional Brownian

motion, and we deal with the absence of arbitrage opportunities.

2. Preliminaries

Definition 1. AWiener processBt (standard Brownian Motion) is a stochas-

tic process with the following properties:

1. B0 = 0.

2. Non-overlapping increments are independent: ∀0 ≤ t < T ≤ s < S, the

increments BT −Bt and BS −Bs are independent random variables.

3. ∀ 0 ≤ t < s the increment Bs − Bt is a normal random variable, with

zero mean and variance s− t.

4. w ∈ Ω, the path t → Bt(w) is a continuous function.

Definition 2. For H ∈ (0, 1), a fractional Brownian motion of Hurst param-

eter H is a centered and continuous Gaussian process, denoted by (BH
t )t≥0

with the covariance function

E(BH
t BH

s ) =
1

2
(s2H + t2H− | t− s |2H).
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Remark 1. Trivially, when H = 1
2 , the fBm is the standard Brownian

motion.

2.1. Basic properties of fractional Brownian motion

According to [2], the fractional Brownian motion, BH
t , of Hurst param-

eter H ∈ (0, 1) has the following properties:

- Selfsimilarity: for all a > 0, (BH
at)

d
= (aHBH

t ).

- Stationary increments: for all h > 0, (BH
t+h −BH

h )
d
= BH

t .

- Holder Continuity: For H ∈ (0, 1), the sample paths of fBm are a.s.

Hölder continuous of an order strictly less than H.

- Differentiability: For H ∈ (0, 1), the fBm sample path BH is not differ-

entiable. Indeed, for every t0 ∈ [0,∞],

P

(

lim
t→t0

sup

∣

∣

∣

∣

BH
t −BH

t0

t− t0

∣

∣

∣

∣

= ∞

)

= 1.

- Bounded variation: The fBm is of an unbounded variation, i.e.

sup
ti

∑

i

| BH
ti+1

−BH
ti |= ∞.

- The fBm is not a semimartingale for H 6= 1
2 : the fact that the fBm is not

a semimartingale implies that we are not able to integrate with respect

to it, as we usually do in the classical stochastic calculus. Effectively,

the most general class of integrators are semimartingales.

- Long-range dependence: The fractional Brownian motion BH
t is long-

range dependent for H ∈ (12 , 1).

2.2. Representation of fBm on a finite interval

There are some representations of the fBm as a Wiener integral defined

on an interval, e.g. commonly taken as [0, T ] :

For the representation on the real line, for a one-sided fBm (BH
t )0≤t≤T , we
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have a general formula

BH
t =

∫ t

0
KH(t, s)dBs, t ∈ [0, T ],

where (Bt)0≤t≤T is a one-sided standard Brownian motion.

Let BH be a fractional Brownian motion with a parameter H ∈ (0, 1).

According to [8], the fBm admits a representation as a Wiener integral of

the form

BH =

∫ t

0
KH(t, s)dBs, Levy-Hida representation,

where B = (Bt)t∈T is a Wiener process, and KH(t, s) is the kernel

KH(t, s) = dH(t− s)H− 1
2 + sH− 1

2F1

(

t

s

)

,

dH being a constant and

F1(z) = dH

(

1

2
−H

)
∫ z−1

0
θH− 3

2 (1− (θ + 1)H− 1
2 )dθ.

If H > 1
2 , the kernel KH has the simpler expression

KH(t, s) = cHs
1
2
−H

∫ t

s
(u− s)H− 3

2uH− 1
2 du,

where t > s and cH = ( H(H−1)

β(2−2H,H− 1
2
)
)
1
2 . As the process BH is a fBm, then

∫ t∧s

0
KH(t, u)KH (s, u)du = RH(t, s).

Further, the kernel KH satisfies the condition:

∂KH

∂t
(t, s) = dH

(

H −
1

2

)

(
s

t
)
1
2
−H(t− s)H− 3

2 .

2.3. Representations of the fBm on R

According to [8], we present some representations of the fBm as a Wiener
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integral (i.e. w.r.t Brownian motion):

BH
t = C

∫

R

KH(t, u)dBu,

where C is a standardized constant.

- Moving average representation

The FBm can be represented as an integral with respect to a standard

Brownian motion on the whole real line. Let (Bs)s∈R be a standard

Brownian motion. Then

BH
t =

1

C(H)

∫

R

[(t− s)
H− 1

2
+ − (−s)

H− 1
2

+ ]dBs,

where C(H) > 0 an explicit normalizing constant.

- Harmonizable representation

This is another representation which uses the complex-valued Brownian

motion (but the fBm is real-valued). In fact, for a fBm (BH
t )t∈R, we have

BH
t =

1

C1(H)

∫

R

eitx − 1

ix
| x |−(H− 1

2
) dB̃x, t ∈ R,

where (B̃t)t∈R is a complex Brownian measure and

C1(H) =

(

Π

HΓ(2H) sin(HΠ)

)1/2

.

Let us note that the complex Brownian measure on R can be splitted as

B̃ = B1 + iB2 and is such that B1(A) = B1(−A), B2(A) = −B2(−A)

and E(B1(A))
2 = |A|

2 ,∀A ∈ B(R). We also call this representation, the

spectral representation.

3. Condition Full Support and Stochastic Integral

Definition 3. Let F be a separable metric space and µ : B(F ) → [0, 1] be a

Borel probability measure; the support of µ, noted by supp(µ), is the unique

minimal closed set A ⊂ F such that µ(A) = 1.
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Let (Xt)t∈[0,T ] be a continuous stochastic process defined on a complete

probability space (Ω,F ,P), and let F = (Ft)t∈[0,T ] be its natural filtration.

Moreover, let Cx([u, v], I) be the space of function f ∈ C([u, v], I) such

that f(u) = x ∈ I.

As usual, we equip the spaces C([u, v], I) and Cx([u, v], I), x ∈ I, with

the uniform topologies.

Definition 4. [10] We say that the process X has Conditional Full Support

(CFS) with respect to the filtration F, or briefly F-CFS, if

(1) X is adapted to F.

(2) For all t ∈ [0, T ] and P-almost all ω ∈ Ω,

supp(law[(Xu)u∈[t,T ] | Ft](ω)) = CXt(ω)([t, T ], I).

Definition 5 ([10]). Let ε > 0. An ε-consistent price system to X is a pair

(X̃,Q), where Q is a probability measure equivalent to P and X̃ is a Q-

martingale in the filtration F , such that 1
1+ε ≤ X̃i(t)

Xi(t)
≤ 1 + ε, almost surely

for all t ∈ [0, T ] and i = 1, ..., n.

The result on absence of arbitration is presented in the following Theo-

rem:

Theorem 1 ([7]). Let Xt be an R
d
+-valued, continuous adapted process sat-

isfying CFS. Then X admits an ε-consistent pricing system for all ε > 0.

Next, we present some results about CFS for the Brownian motion:

Zt := Rt +

∫ t

0
φsdBs, t ∈ [0, T ],

where R is a continuous process, the integrator B is a Brownian motion, and

the integrand φ satisfies some varying assumptions. We take into consider-

ation two cases:

1. Independent integrands and Brownian integrators.

Theorem 2 ([7]). Let us define

Zt := Rt +

∫ t

0
φsdBs, t ∈ [0, T ].
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Suppose that

(1) (Rt)t∈[0,T ] is a continuous process,

(2) (φt)t∈[0,T ] is a measurable process s.t.
∫ T
0 φ2

sds < ∞ a.s,

(3) (Bt)t∈[0,T ] is a standard Brownian motion independent of R and φ.

If we have,

meas(t ∈ [0, T ] : φt = 0) = 0 P− a.s, (meas : Lebesgue measure),

then Z has CFS.

2. Progressive integrands and Brownian integrators.

Let’s note that the assumption about independence between B and

(R,φ) cannot be dispensed with, in general, without imposing additional

conditions. Namely, if,

Rt = 1;φt := eBt−
1
2
t; t ∈ [0, T ],

then Z = φ = ξ(B), the Doleans exponential of B, which is strictly positive,

does not have CFS, if the process is considered in R.

Theorem 3 ([7]). Suppose that

(1) (Xt)t∈[0,T ] is a continuous process,

(2) R and φ are progressive [0, T ]× C([0, T ])2 → R,

(3) ε is a random variable,

(4) and Ft = σε,Xs, Bs : s ∈ [0, t], t ∈ [0, T ].

If W is an Ft ∈ [0, T ]-Brownian motion and

(1) E[eλ
∫ T
0 φ−2

s ds] < ∞ for all λ > 0,

(2) E[e2
∫ T
0 φ−2

s h2sds] < ∞, and

(3)
∫ T
0 φ2

sds ≤ K̄ a.s for some constant K̄ ∈ (0,∞),

then the process

Zt = ε+

∫ t

0
Rsds+

∫ t

0
φsdBs, t ∈ [0, T ]

has CFS.
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4. Mixed fractional Brownian motion

The mixed fractional Brownian motion of parameter H is a stochastic

process that has been introduced by [12], used in mathematical finance, in

the modelling of some arbitrage-free and complete markets. In this part, we

present some stochastic properties of this process.

It is well-known that the fractional Brownian motion of Hurst parameter

H ∈]0; 1[ is a centered Gaussian process BH = BH
t , t ≥ 0, defined on a

probability space (Ω,F ,P), with the covariance function

E(BH
t BH

s ) =
1

2
(s2H + t2H− | t− s |2H).

If H = 1/2, BH is the ordinary Brownian motion denoted by B = Bt, t ≥ 0.

Let us take a and b as two real constants such that (a, b) 6= (0, 0).

Definition 6. A mixed fractional Brownian motion (MFBM) of parameters

a, b, and H is a process MH = MH
t (a, b); t ≥ 0 = MH

t ; t ≥ 0, defined on the

probability space (Ω,F ,P) by

∀t ∈ R+ MH
t = MH

t (a, b) = aBt + bBH
t ,

where the two processes (BH
t )t∈R+ and (Bt)t∈R+ are independent.

According to [10], the mixed fractional Brownian motion (MH
t (a, b))t∈R+

has the following properties:

- MH is a centered Gaussian process.

- For all t ∈ R+, E((MH
t (a, b))2) = a2t+ b2t2H .

- ∀s ∈ R+, ∀t ∈ R+,

Cov(MH
t (a, b),MH

s (a, b)) = a2(t ∧ s) +
1

2
[b2(t2H + s2H− | t− s |2H)],

where t ∧ s = 1/2(t+ s− | t− s |).

- The increments of the MFBM are stationary.

- For all H ∈]0; 1[\{1/2}, a ∈ R and b ∈ R\{0}, (MH
t (a, b))t∈R+ is not a

Markovian process.
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- For any h > 0,MH
ht (a, b) , MH

t (ah1/2, bhH). This property is called the

mixed-self-similarity.

- For all a ∈ R and b ∈ R\{0}, the increments of (MH
t (a, b))t∈R+ are

long-range dependent if and only if H > 1/2.

- ∀ s ∈ R+,∀t ∈ R+,∀h ∈ R+, 0 < h ≤ t − s, the correlation coefficient

ρ(MH
t+h −MH

t ,MH
s+h −MH

s ) is given as

ρ(MH
t+h −MH

t ,MH
s+h −MH

s )

=
b2

2(a2h+ b2h2H)

[

(t− s+ h)2H − 2(t− s)2H + (t− s− h)2H
]

.

For all a ∈ R and b ∈ R\{0}, the increments of (MH
t (a, b))t∈R+ are

positively correlated if 1/2 < H < 1, uncorrelated if H = 1/2, and

negatively correlated if 0 < H < 1/2.

- For all T > 0 and γ < 1/2 ∧ H, the MFBM has a modification which

sample paths have a Hölder-continuity, with order γ, on the interval

[0, T ].

- For all α ∈]0, 1/2∧H[, the sample paths of the MFBM are almost surely

α-differentiable at every t0 ≥ 0, and

∀t0 ≥ 0, P{dαMH
t0 = 0} = 1.

- For all α ∈]1/2 ∧ H; 1[, the sample paths of the MFBM are nowhere

α-differentiable, almost surely.

5. Main Result

The main goal of this work is to present conditions that imply the con-

ditional full support (CFS) property, introduced by [7], for the stochastic

process:

St = Rt +

∫ t

0
φsdM

H
s ,

where MH
s is a mixed fractional Brownian motion.

Our main result is given in the following Theorem.
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Theorem 4. Let us consider the process

St = Rt +

∫ t

0
φsdM

H
s ,

where

• (Rt)t∈[0,T ] is a continuous adapted process,

• (φt)t∈[0,T ] is an elementary predictable s.t.
∫ T
0 φ2

sds < ∞ a.s.,

• (MH
t )t∈[0,T ] is a mixed fractional Brownian motion independent of R and

φ.

If we have

meas(t ∈ [0, T ] : φt = 0) = 0, P − a.s.(meas : Lebesgue measure),

then S has CFS.

Proof. As the mixed fractional Brownian motion is a Gaussian process, then

for the proof of our theorem, we can follow the same steps of Proposition

4.2 given in [7].

Let

S(t) =

∫ t

0
φsdM

H
s .

It is sufficient to prove that the conditional law P (S|[v,T ]
| Fv) has full sup-

port on CSv
([v, µ],R) almost surely. Then, it will be enough to show this

property on an interval, where φ is constant with respect to time (and thus

continuous). Therefore, we can take T small enough such that φ has the

form φ(t) = ζ on [v, T ], where ζ 6= 0 and it is Fv-measurable.

In our paper, we have (MH
t )t∈[0,T ] is a mixed fractional Brownian mo-

tion, then

MH
t = MH

t (a, b) = aBt + bBH
t .

Without loss of generality, we can study the property of CFS for the

mfBm for a = b = 1; we have

S(t) =

∫ t

0
φsdM

H
s
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=

∫ t

0
φsd[B

H
s +Bs] (BH

s and Bs are independent)

=

∫ t

0
φsdB

H
s +

∫ t

0
φsdBs.

Remark 2. The independence does not concern the components of the

Gaussian process SH but it concerns the couple (BH , B).

Next, we have to prove that

S(t) =

∫ t

v
φsKH(t, s)dBs +

∫ t

v
φsdBs

has full support on C0([v, T ],R).

Theorem 3 in [5] states that the topological support of a continuous

Gaussian process is equal to the norm closure of its reproducing kernel

Hilbert space.

In our case, the support of S(t) is

H :=

{

f ∈ C0([v, T ],R) : f(t) =

∫ t

v
φ(s)KH(t, s)g(s)ds +

∫ t

v
φ(s)g(s)ds,

for some g ∈ L2[v,T]

}

.

Thus, it is sufficient to show that H is norm-dense in C0([v, T ],R).

To ensure this condition, we define the Liouville fractional integral op-

erator for any f ∈ L1[a, b] and α > 0,

(Iαa−g)(t) :=
1

Γ(α)

∫ t

a
g(s)(t− s)α−1ds, a ≤ t ≤ b,

and represent the kernel operator KH for the fractional Brownian motion:

(KHg)(t) :=

∫ t

0
KH(t, s)g(s)ds, t ∈ [0, T ].

We can treat this problem following these two cases:
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1. Case H < 1
2 . Let

(

KH(gφ)
)

(t) := ζ

∫ t

v
KH(t, s)g(s)ds, g ∈ L2[0, T ], t ∈ [0, T ].

Using Theorem 2.1 in [5], we have

(

KH(gφ)
)

= I2H0+
(

s
1
2 I

1
2
−H

0+

(

sH− 1
2 (gφ)(s)

)

)

.

For any v, the argument needs to be split into two steps:

Step 1. We rely on the following Lemma:

Lemma 1 ([7]). If g ∈ C0[v, T ], then L1g ∈ C0([v, T ], where

(L1g)(t) = (I
1
2
−H

0+
(sH− 1

2 g(s)))(t).

Moreover, L1 : C0[v, T ] −→ C0[v, T ] is continuous and has a dense range

(with respect to the uniform norm).

As we have ϕ ∈ C0[v, T ], then L1ϕφ ∈ C0([v, T ]), where

(L1ϕφ)(t) = (I
1
2
−H

0+
(sH− 1

2 (gφ)(s)))(t).

Let as recall the identity for a, b > 0,

∫ t

0
(t− u)a−1ub−1du = C(a, b)ta+b−1,

where C(a, b) 6= 0 is a constant.

And define, for a fixed α > 0 :

ϕ(s) :=
(s− v)α

ζsH− 1
2

.

Then, we obtain, for t ∈ [v, T ]

(L1ϕφ)(t) =
ζ

Γ(12 −H)

∫ t

v
(t− s)−H− 1

2ϕ(s)sH− 1
2ds+

∫ t

v
ζϕ(s)ds
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=
1

Γ(12 −H)

∫ t

v
(t− s)−H− 1

2 (s− v)αds +

∫ t

v
(s− v)αds

≤

∫ t−v

0
uα(t− v − u)−H− 1

2du+

∫ t−v

0
uαdu

= C(
1

2
−H,α+ 1)(t− v)α−H+ 1

2 + C(1, α + 1)(t− v)α+1.

By varying α, we find that (t − v)n ∈ Im(L1) for n ≥ 1 and the Stone-

Weierstrass theorem guarantees that Im(L1) is dense in C0[v, T ].

Step 2. For this step, the following lemma is needed :

Lemma 2 ([10]). If g ∈ C0[v, T ], then L2g ∈ C0([v, T ], where

(L2g)(t) = (I2H0+ (s
1
2
−Hg(s)))(t),

and L2 : C0[v, T ] −→ C0[v, T ] is continuous and has a dense range.

Since the restriction ofKH to C0[v, T ] is exactly L2◦L1, we may conclude

that KH : C0[v, T ] −→ C0[v, T ] has a dense range and, a fortiori, H is norm-

dense in C0[v, T ].

2. Case H ≥ 1
2 .

Following [5], we have the following representation:

KH(gφ) = I10+(s
H− 1

2 I
H− 1

2

0+
(s

1
2
−H(gφ))).

Then, for the proof, two steps are considered

Step 1. We have g ∈ C0[v, T ], then L3gφ ∈ C0([v, T ], where

(L3(gφ))(t) = ζ(I10+(s
H− 1

2 g(s)))(t).

Moreover, L1 : C0[v, T ] −→ C0[v, T ] is continuous and has a dense range

(with respect to the uniform norm), where C(a, b) 6= 0 is a constant.

Define, for a fixed α > 0,

g(s) :=
(s − v)α

ζs
1
2
−H

,
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Then, we obtain, for t ∈ [v, T ],

(L3gφ) =
ζ

Γ(H − 1
2)

∫ t

v
(t− s)H− 3

2 g(s)s
1
2
−Hds+

∫ t

v
ζg(s)ds

=
1

Γ(H − 1
2)

∫ t

v
(t− s)H− 3

2 (s− v)αds+

∫ t

v
(s− v)αds

≤

∫ t−v

0
uα(t− v − u)H− 3

2 du+

∫ t−v

0
uαdu

= C(H −
1

2
, α+ 1)(t− v)α+H− 1

2 + C(1, α + 1)(t− v)α+1.

By varying α, we find that (t− v)n ∈ Im(L3), for n ≥ 1, and the Stone-

Weierstrass theorem guarantees that Im(L3) is dense in C0[v, T ].

Step 2. We have g ∈ C0[v, T ], then L4gφ ∈ C0([v, T ], where

(L4(gφ)(t) = ζ(I10+(s
H− 1

2 (gφ)(s)))(t),

and L4 : C0[v, T ] −→ C0[v, T ] is continuous and has a dense range in C0[v, T ].

Since the restriction ofKH to C0[v, T ] is exactly L4◦L3, we may conclude

that KH : C0[v, T ] −→ C0[v, T ] has a dense range and, a fortiori, H is norm-

dense in C0[v, T ].

Then we can check that there exists the property of CFS for the process

(St) and there are the consistent price systems. ���

6. Conclusion

This article deals the absence of the arbitration opportunity by using

the conditional full support property applied to processes with irregular tra-

jectories such as the mixed fractional Brownian motion. As a perspective,

we can study this property for Lévy fractional Brownian motion and mixed

fractional Brownian motion on which the processes BH
t and Bt are depen-

dent.
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