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Abstract

We examine several functions from the bivariate Pareto distribution and obtain sur-

prising results in regards to almost sure convergence. We look at the usual functions, such

as the sum, the difference, the ratio, the maximum and the minimum as well as the ratio

of the max and the min. What happens here in the nonindependent situation is quite

different from what we have seen before.

1. Introduction

In this paper we observe the bivariate Pareto. The accepted definition

can be traced back to [6]

f(x, y) =
2

(x+ y − 1)3

where both x ≥ 1 and y ≥ 1. For more on this distribution one should read

[4]. Arnold is an expert on the Pareto. We will examine the usual suspects

and the results are not what one would expect. The ratio of exponentials and

Paretos and uniforms and many other sets of independent random variables

did produce an Exact Strong Law. There are many papers on that topic,

just a few are [2], [5], [7], [8] and [9]. In this nonindependent setting that is

not the case. And it turns out that many of the other functions we observe

do have an unusual strong law, even the minimum, which never happened
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in any other setting. The odd thing here is that the ratio doesn’t produce a

strange strong law. It produces a strange Central Limit Theorem.

We need to say that the constant C, used in the proofs denotes a generic

real number that is not necessarily the same in each appearance. It is used

as an upper bound in order to establish the convergence of our various series.

Also, we define lg x = ln(max{e, x}) to avoid dividing by zero.

2. The Sum

This result is not surprising since the marginal density of X is fX(x) =

x−2I(x ≥ 1) and the marginal density of Y is fY (y) = y−2I(y ≥ 1). Each

of these has an Exact Strong Law. So, we will start with this easy example

and move on to more interesting ones. The joint distribution of the sum is

FX+Y (a)=P{X + Y ≤ a}=
∫ a−1

1

∫ a−x

1

2dydx

(x+ y − 1)3
= 1− 2a−3

(a−1)2
. (1)

We could have used the transformation of S = X + Y and W = X, but in

other situations that technique is too messy. However, if one wants to obtain

the density via Jacobians the joint density of S and W is

f(s,w) =
2

(s − 1)3

where 1 ≤ w ≤ s− 1. Thus

f(s) =

∫ s−1

1

2

(s− 1)3
=

2(s − 2)

(s− 1)3

which agrees with (1).

Theorem 1. Let {(Xi, Yi), i ≥ 1} be i.i.d. bivariate Pareto random variables.

Then for α > −2 we have

lim
n→∞

∑n
i=1

(lg i)α

i (Xi + Yi)

(lg n)α+2
=

2

α+ 2
almost surely.

Proof. This follows from Example 2 of [1], since

1− FX+Y (a) = P{X + Y > a} ∼ 2/a

completing this proof. ���
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3. The Difference

Due to symmetry we cannot get an Exact Strong Law for the difference,

but we can obtain a strong law of large numbers. And we can use that to

obtain an Exact Strong Law for the absolute difference.

Theorem 2. Let {(Xi, Yi), i ≥ 1} be i.i.d. bivariate Pareto random variables.

Then for α > −2 we have

lim
n→∞

∑n
i=1

(lg i)α

i (Xi − Yi)

(lg n)α+2
= 0 almost surely.

Proof.. We need to find the distribution function of the difference. Here the

random variable, X − Y can be negative, so there are two cases. If a < 0,

then

FX−Y (a) = P{X − Y ≤ a} =

∫ ∞

1−a

∫ y+a

1

2dxdy

(x+ y − 1)3
=

1

2(1− a)
.

And if a ≥ 0, then

FX−Y (a) = P{X − Y ≤ a} =

∫ ∞

1+a

∫ x−a

1

2dydx

(x+ y − 1)3
=

1

2(1 + a)
.

Hence

FX−Y (a) =

{ 1
2(1−a) , if a < 0

1
2(1+a) , if a ≥ 0.

So, the limit is zero by Theorem 2 of [1]. ���

We did obtain a strong law of large numbers, but the limit wasn’t inter-

esting since the two tails were equal. However, if we look at |X − Y |, then
we have an Exact Strong Law.

Theorem 3. Let {(Xi, Yi), i ≥ 1} be i.i.d. bivariate Pareto random variables.

Then for α > −2 we have

lim
n→∞

∑n
i=1

(lg i)α

i |Xi − Yi|
(lg n)α+2

=
1

α+ 2
almost surely.
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Proof. In order to obtain the distribution function for |X − Y | we use

1− F|X−Y |(a) = P{|X − Y | > a} = P{X − Y > a}+ P{X − Y < −a}

= 1− FX−Y (a) + FX−Y (−a) =
1

1 + a
∼ 1

a
.

So, using Example 2 from [1] the conclusion follows. ���

4. Order Statistics

The results here are somewhat surprising. One would expect an Exact

Strong Law for the maximum, but not the minimum.

Theorem 4. Let {(Xi, Yi), i ≥ 1} be i.i.d. bivariate Pareto random variables.

Then for α > −2 we have

lim
n→∞

∑n
i=1

(lg i)α

i max{Xi, Yi}
(lg n)α+2

=
3

2(α+ 2)
almost surely.

Proof. For all a ≥ 1

Fmax{X,Y }(a) = P{X ≤ a, Y ≤ a} =

∫ a

1

∫ a

1

2dydx

(x+ y − 1)3
= 1− 3a− 2

a(2a− 1)
.

Hence

1− Fmax{X,Y }(a) ∼
3

2a
.

Once again using Example 2 from [1] the conclusion follows. ���

Theorem 5. Let {(Xi, Yi), i ≥ 1} be i.i.d. bivariate Pareto random variables.

Then for α > −2 we have

lim
n→∞

∑n
i=1

(lg i)α

i min{Xi, Yi}
(lg n)α+2

=
1

2(α + 2)
almost surely.

Proof. For all a ≥ 1

1− Fmin{X,Y }(a) = P{X > a, Y > a} =

∫ ∞

a

∫ ∞

a

2dydx

(x+ y − 1)3
=

1

2a− 1
.



2021] THE BIVARIATE PARETO DISTRIBUTION 83

Hence

1− Fmin{X,Y }(a) ∼
1

2a
.

Once again using Example 2 from [1] the conclusion follows. ���

There is also an unusual limit theorem for the ratio of these two statis-

tics. What is surprising is that this random variable does have a first, but

not a second moment. This and the usual ratio will be covered in the last

section.

5. Ratios and the Central Limit Theorem

This is the most surprising of all. When we examined ratios of indepen-

dent Paretos or uniforms or even exponentials random variables, we always

had an Exact Strong Law. This was extended in [5]. That does not happen

in the bivariate Pareto setting. Here the classic strong law holds, but in this

situation we do obtain an unusual Central Limit Theorem, quite reminiscent

of [2]. We will use Theorem 4 from [3].

There are three conditions that we need to meet in order to apply that

theorem. The first one is that

G(a) =

∫ a

0
2tP{|W | > t}dt (2)

is slowly varying. The other two are

G

(

Bn

min1≤i≤nai

)

∼ G

(

Bn

max1≤i≤nai

)

(3)

and for all ǫ > 0

n
∑

i=1

P{|W | > ǫBn/ai} = o(1) (4)

where ai are our weights, Bn is our norming sequence and W is our ran-

dom variable of interest. The norming sequence is derived from B2
n ∼

nG(Bn). We examine the limiting behaviour of both W = Y/X and W =

max{X,Y }/min{X,Y }.



84 ANDRÉ ADLER [March

Theorem 6. Let {(Xi, Yi), i ≥ 1} be i.i.d. bivariate Pareto random variables.

If α < 1/2, then
∑n

i=1(lg i)
α
[

Yi

Xi

− 3
2

]

√
n lg n

d→ N(0, 1).

Proof. We need to find the distribution of Y/X. If 0 ≤ a < 1, then

FY/X(a) = P{Y ≤ aX} =

∫ ∞

1/a

∫ ax

1

2dydx

(x+ y − 1)3
=

a2

a+ 1

and if a ≥ 1, then

1− FY/X(a) = P{Y > aX} =

∫ ∞

a

∫ y/a

1

2dxdy

(x+ y − 1)3
=

1

a(a+ 1)

so, the density of this random variable is

fY/X(a) =















0, if a < 0
a(a+2)
(a+1)2 , if 0 ≤ a < 1
2a+1

a2(a+1)2
, if a ≥ 1

and its expectation is 3/2. Using (2) we have

G(a) =

∫ a

0
2tP{Y/X > t}dt ∼

∫ a

1

2dt

t+ 1
∼ 2 lg a.

One solution of B2
n ∼ nG(Bn) is Bn =

√
n lg n. Equation (3) holds with

ai = (lg i)α. Finally, we establish (4). Let ǫ > 0

n
∑

i=1

P{Y/X > ǫBn/ai} < C

n
∑

i=1

∫ ∞

ǫBn/ai

dt

t3

<
C
∑n

i=1 a
2
i

B2
n

=
C
∑n

i=1(lg i)
2α

n lg n
→ 0

since α < 1/2, concluding this proof. ���

We finish with a central limit theorem for the ratio of our two order

statistics. One would expect an Exact Strong Law here since both the min-

imum and maximum produced one, but that does not happens with this

distribution.



2021] THE BIVARIATE PARETO DISTRIBUTION 85

Theorem 7. Let {(Xi, Yi), i ≥ 1} be i.i.d. bivariate Pareto random variables.

If α < 1/2, then

∑n
i=1(lg i)

α
[max{Xi,Yi}

min{Xi,Yi}
− (1 + 2 lg 2)

]

√
2n lg n

d→ N(0, 1).

Proof. Set W = max{X,Y }/min{X,Y } and let a ≥ 1, then

1− FW (a) = P{Y > aX}+ P{Y ≤ X/a}

=

∫ ∞

a

∫ y/a

1

2dxdy

(x+ y − 1)3
+

∫ ∞

a

∫ x/a

1

2dydx

(x+ y − 1)3

= 2

∫ ∞

a

∫ y/a

1

2dxdy

(x+ y − 1)3
=

2

a(a+ 1)
.

The density is

fW (a) =
2(2a+ 1)

a2(a+ 1)2

where a ≥ 1 and

G(a) =

∫ a

0
2tP{W > t}dt =

∫ a

1

4dt

t+ 1
∼ 4 lg a.

A solution of B2
n ∼ nG(Bn) is Bn =

√
2n lg n. Once again (3) holds with

ai = (lg i)α. Let ǫ > 0

n
∑

i=1

P{W > ǫBn/ai} < C
n
∑

i=1

∫ ∞

ǫBn/ai

dt

t3

<
C
∑n

i=1 a
2
i

B2
n

=
C
∑n

i=1(lg i)
2α

2n lg n
→ 0

since α < 1/2. Finally, the expectation is

E(W ) =

∫ ∞

1

2(2t + 1)dt

t(t+ 1)2
= 1 + 2 lg 2

which concludes this proof. ���
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6. The Product

The one function that doesn’t produce a strange limit theorem is the

product. Here P{XY > a} is equal to

1−P{XY ≤ a} = 1−
∫ a

1

∫ a/x

1

2dydx

(x+ y − 1)3
=

1

a
+

∫ a

1

(

x+
a

x
−1

)2

dx ∼ π

4
√
a
.

This grows too fast to achieve an Exact Strong Law. So the product fails to

give an unusual limit theorem, but all the other classic functions of X and

Y do allow us to obtain new results.
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