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Abstract

We investigate the existence of mild solutions of impulsive fractional stochastic dif-

ferential inclusions driven by sub-fractional Brownian motion SH
Q with infinite delay and

non instantaneous impulses when the linear part is a fractional sectorial operators on sep-

arable Hilbert spaces. We consider the cases when the multivalued map is convex as well

as non convex, a sufficient conditions for the existence are derived with the help of the

multivalued fixed point theory and the measure of noncompactness.

1. Introduction

Differential equations and inclusions with fractional order arise in many

engineering and scientific disciplines as the mathematical modeling of sys-

tems and processes in the fields of physics, mechanic, biology, ecology, aero-

dynamic, polymer rheology and many others. Fractional differential equa-

tions or inclusions also serve as an excellent tool for describing the memory

and genetic properties of different materials and processes. As a consequence

there was an intensive development of the theory of differential equations and
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inclusions of fractional order. One can see the monographs of Abbas et al. [1],

Kilbas et al. [22], Miller and Ross [27], Podlubny [23], Zhou [45], the survey

of Agarwal et al [2] [3] and the references therein. Many articles have been

devoted to the existence of solutions for fractional differential equations and

inclusions, for example, [4] [6] [16] [28] [44]. As for the study of the existence

of mild solutions for fractional differential inclusions, please see [13] [30] [39].

The theory of impulsive differential equations or inclusions has also at-

tracted increasing attention because of its wide applicability in science and

engineering. Impulsive differential inclusions arising from the real world

problems to describe the dynamics of processes in which sudden, discontin-

uous jumps occurs. Such processes are naturally seen in biology, physics,

medical fields, etc. Due to their significance, many authors have been es-

tablished the solvability of impulsive differential inclusions. For the general

theory and applications of such equations we refer the interested reader to

Benchohra et al. [7], Graef et al. [17].

The deterministic systems often fluctuate due to noise, which is random

or at least appears to be so. Therefor, we must move from deterministic

problems to stochastic ones. As the generalization of classic impulsive dif-

ferential and partial differential inclusions, impulsive stochastic differential

and partial differential inclusions have attracted the researchers great inter-

est, and some works have done on the existence results of mild solutions for

these equation (see [24] [31] and references therein). Recently, attempts were

made to combine fractional derivatives and stochastic differential inclusions.

One can see [18] [19] [20] [41] and references therein.

On the other hand, fractional Brownian motion has become an object

of intense study, due to its interesting properties and applications in various

scientific areas including telecommunication, turbulence and finance. The

fractional Brownian motion with Hurst parameter H ∈ (0, 1) is a suitable

generalization of the classical Brownian motion, but exhibits lon-rang depen-

dence, self similarity and which has stationary increments. When H = 1
2 the

fBm coincide with the classical Brownian motion. When H 6= 1
2 , the fBm is

neither a semi-martingale nor a Markov process. For additional details on

the fractional Brownian motion, we refer the reader to [25]. A general theory

for the infinite dimensional stochastic differential equations driven by a frac-

tional Brownian motion has begun to receive attention by various researchers

see e.g., [12][33]. The existence, uniqueness, stability and qualitative analysis
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of the mild solutions of stochastic differential equations driven by fractional

Brownian motion with infinite delay have been studied by many authors (see

[14] and references therein). Recently, Ren et al. [34]proved the existence

and uniqueness of mild solution for a class of impulsive neutral stochastic

functional integro-differential equations with infinite delay driven by stan-

dard cylindrical Wiener process and an independent cylindrical fractional

Brownian motion with Hurst parameter H ∈ (12 , 1) in the Hilbert space.

Boudaoui et al. [10] proved the existence of mild solutions to stochastic im-

pulsive evolution equations with time delay, driven by fractional Brownian

motion and Krasnoselski Schaefer type fixed point theorem. Ren et al. [35]

proved the existence and uniqueness of the integral solution for a class of

non-densely defined impulsive neutral stochastic functional differential equa-

tion driven by an independent cylindrical fractional Brownian motion with

Hurst parameterH ∈ (12 , 1) in the Hilbert space. However, there are very few

contributions regarding the existence of solutions to stochastic differential

inclusions driven by fractional Brownian motion [11] [23]. An existence result

of mild solutions for a first-order impulsive semi-linear stochastic functional

differential inclusions driven by a fractional Brownian motion with infinite

delay has been proved by Boudaoui et al. [11].

To the best of our Knowledge, there is no work reported on the im-

pulsive fractional stochastic differential inclusions driven by sub-fractional

Brownian motion with infinite delay and sectorial operators. Inspired by

the previously mentioned works, in this article, we aim to study this inter-

esting problem. We prove the existence of PC- mild solutions for impulsive

fractional stochastic differential inclusions driven by sub-fractional Brown-

ian motion with infinite delay and non-instantaneous impulses of the form















cDα
t x(t) ∈ Ax(t) + F (t, xt) + g(t)

dSH
Q

dt , t ∈ (si, ti+1], i = 0, 1, . . . , N

x(0) = ϕ ∈ B,
x(t) = Ii(t, xt), t ∈ (ti, si], i = 1, . . . , N

(1)

Where cDα denotes the Caputo fractional derivative operator of order α ∈
(0, 1) with the lower limit zero; x(·) takes its values in the separable Hilbert

spacesH with inner product (·, ·)H and norm ‖ . ‖H; A is a fractional sectorial

operator defined on H; F : J ×H → 2H −{∅} is a multifunction, J := [0, b],

0 = t0 = s0 < t1 ≤ s1 ≤ s2 ≤ t2 < · · · < tN−1 ≤ sN ≤ tN ≤ tN+1 = b
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be prefixed numbers; g : J → L0
Q(K,H), K is another real separable Hilbert

space with inner product (·, ·)K and norm ‖ · ‖K. Here L0
Q(K,H) denotes

the space of all Q-Hilbert-Schmidt operators from K into H and SH
Q is an

Q-sub-fBm with Hurst parameter H ∈ (12 , 1) which will be defined in the

next section. The history xt : (−∞, 0] → H, xt(θ) = x(t+θ) belongs to some

abstract phase B defined axiomatically in Section 2, Ii ∈ C((ti, si] × B,H),

for all i = 1, . . . , N . The initial data {ϕ(t) : −∞ < t ≤ 0} is an F0-adapted

B-valued random variable independent of the sub-fBm with infinite second

moment.

The outline of this paper is as follows. In the Section 2 we introduce

some notations, definitions, preliminary facts about sub-fractional Brownian

motion, the fractional calculus and an auxiliary lemma, which are used in

the next sections. In Section 3, we give the existence of PC-mild solution for

(13) under both convexity and non-convexity conditions on the multi-valued

right-hand side, and when the linear term A is fractional sectorial operator.

2. Preliminaries

In this section, we discuss some basic definitions, notations, theorems,

lemmas and some basic facts about sub-fractional Brownian motion, the

fractional calculus and sectorial operators.

Throughout this paper, the notations (H, ‖ · ‖H, (·, ·)H) and (K, ‖ ·
‖K, (·, ·)K) stand for the separable Hilbert spaces. The notation C(J,H)

stand for the Banach space of continuous functions from J to H with su-

permum norm i.e., ‖ x ‖J= sup
t∈J

‖ x(t) ‖ and L1(J,H) denotes the Ba-

nach space of function x : J → H which are Bochner integrable normed

by ‖ x ‖L1=
∫ b
0 ‖ x(t) ‖ dt, for all x ∈ L1(J,H). A measurable function

x : J → H is Bochner integrable if and only if ‖ x ‖ is Lebesgue integrable.

B(H) is a Banach space of all linear bounded operator from H into itself

with norm ‖ F ‖B(H)= sup {‖ F (x) ‖:‖ x ‖≤ 1}.

Let (Ω,F ,P) be a complete probability space equipped with a normal

filtration {Ft}t≥0 satisfying the usual conditions (i.e., right continuous and

F0 containing all P-null sets).
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Definition 1. The sub-fractional Brownian motion (sub-fBm in short) with

Hurst parameterH∈(0, 1) is a mean zero Gaussian process SH=
{

SH
t : t≥0

}

with S0
H = 0 and the covariance

CH(t, s) = E
[

SH
t SH

s

]

= s2H + t2H − 1

2

[

(s+ t)2H+ | t− s |2H
]

(2)

for all, s, t ≥ 0.

For H = 1
2 , S

H coincides with the standard Brownian motion B. SH

is neither semimartingale nor a Markov process when H 6= 1
2 . The sub-

fBm SH has properties analogous to those of fBm (self-similarity, long-range

dependence, Holder paths), but it does not have stationary increments. More

works for sub-fBm can be found in Bojdecki et al. [8] [9], Tudor [38], Shen

et al. [37].

The sub-fractional Brownian motion satisfies the following estimates:

[

(2− 22H−1) ∧ 1
]

| t−s |2H E | SH(t)−SH(s) |26
[

(2− 22H−1) ∧ 1
]

| t−s |2H
(3)

Thus, Kolmogorov’s continuity criterion implies that sub-fBm is holder con-

tinuous of order γ for any γ < H on any finite interval. Therefore, if y is a

stochastic process with Holder continuous trajectories of order β > 1 − H

then the pathwise Riemann-Stieltjes integral
∫ b
0 yt(ω)dS

H(t)(ω) exists for all

b ≥ 0. In particular, if H > 1
2 , the pathwise integral

∫ b
0 f

′

(SH
t )dSH

t exists

for all f ∈ C2(R), and

f(SH
b )− f(0) =

∫ b

0
f

′

(SH
t )dSH

t . (4)

However, whenH< 1
2 the pathwise Riemann-Stieltjes integral

∫ b
0 f

′

(SH
t )dSH

t (ω)

does not exist. For more details, we refer the reader to [37] [42] [43].

Now we aim at introducing the Wiener integral with respect to one

dimensional sub-fBm SH . Fix a time interval [0, b]. We denote by Λ the

linear space of R-valued step functions on [0, b], that is, y ∈ Λ if

y(t) =

n−1
∑

i=1

xi1[ti,ti+1](t),
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Where t ∈ [0, b], xi ∈ R and 0 = t1 < t2 < · · · < tn = b. For y ∈ Λ we define

its Wiener integral with respect to SH as

∫ b

0
y(s)dSH

Q (s) =
n−1
∑

i=1

xi(S
H
ti+1 − SH

ti ).

Let HSH be the canonical Hilbert space associated to the sub-fBm SH . That

is HSH is the cloture of the linear span Λ with respect to the scalar product

(

1[0,t], 1[0,s]
)

H
SH

= CH(t, s).

We know that the covariance of sub-fBm can be written as

E
[

SH
t SH

s

]

=

∫ t

0

∫ s

0
ηH(u, v)dudv = CH(t, s) (5)

where ηH(u, v) = H(2H − 1)
(

| u− v |2H−2 −(u+ v)2H−2
)

.

Equation (5) implies that

(y, z)H
SH

=

∫ t

0

∫ s

0
yuzvηH(u, v)dudv (6)

for any pair step functions y and z on [0, b]. Consider the kernel

KH(t, s) =
21−H√

π

Γ(H − 1
2)

s3/2−H

(
∫ t

0
(x2 − s2)H−3/2ds

)

1[0,t](s) (7)

By Dzhaparidze and Van Zanten [15], we have

CH(t, s) = c2H

∫ t∧s

0
KH(t, u)KH(s, u)du (8)

where

c2H =
Γ(1 + 2H)sin(πH)

π
.

Then, (8) implies that CH(s, t) is non-negative definite. Consider the linear

operator K∗
H : Λ → L2([0, b]) defined by

(K∗
Hy) (s) = cH

∫ r

s
yr

∂KH

∂r
(r, s)dr.



✐

“BN16N21” — 2021/7/14 — 22:17 — page 93 — #7
✐

✐

✐

✐

✐

2021] IMPULSIVE FRACTIONAL STOCHASTIC DIFFERENTIAL INCLUSIONS 93

Using (6) (8) we have

(K∗
Hy,K∗

Hz)L2([0,b]) = c2H

∫ b

0

(
∫ b

s
yr

∂KH

∂r
(r, s)dr

)(
∫ b

s
zu

∂KH

∂u
(u, s)du

)

ds

= c2H

∫ b

0

∫ b

0

(
∫ r∧u

0

∂KH

∂r
(r, s)

∂KH

∂u
(u, s)ds

)

yrzudrdu

= c2H

∫ b

0

∫ b

0

∂2KH

∂r∂u
(u, s)yrzudrdu

= H(2H−1)

∫ b

0

∫ b

0

(

| u−r |2H−2−(u+r)2H−2
)

yrzudrdu

= (y, z)H
SH

. (9)

As a consequence, the operator K∗
H provides an isometry between the

Hilbert space HSH and L2([0, b]). Hence, the process W defined by W (t) :=

SH((K∗
H)−1(1[0,t])) is a Wiener process, and SH has the following Wiener

integral representation:

SH(t) = cH

∫ t

0
KH(t, s)dW (s)

because (K∗
H)(1[0,t])(s) = cHKH(t, s). By [15], we have

W (t) =

∫ t

0
ZH(t, s)dSH(s),

where

ZH(t, s) =
sH−1/2

Γ(3/2 −H)

[

tH−3/2(t2 − s2)1/2−H

− (H − 3/2)

∫ t

s
(x2 − s2)1/2−HxH−3/2dx

]

(1[0,t])(s).

In addition, for any y ∈ HSH ,

∫ b

0
y(s)dSH(s) =

∫ b

0
(K∗

Hy)(t)dW (t)

if and only if K∗
Hy ∈ L2([0, b]).

Also, denoting L2
H

SH
([0, b]) =

{

y ∈ HSH ,K∗
Hy ∈ L2([0, b])

}

. Since H > 1
2 ,
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we have by (9) and Lemma 2.1 of [26],

L2([0, b]) ⊂ L
1
H ([0, b]) ⊂ L2

H
SH ([0,b]). (10)

Lemma 1 ([29]). For y ∈ L
1
H ([0, b]),

H(2H − 1)

∫ b

0

∫ b

0
| yr || yu || u− r |2H−2 drdu ≤ CH ‖ y ‖

L
1
H ([0,b])

,

where CH =
(

H(2H−1)

β(2−2H,H− 1
2
)

)1/2
, with β denoting the beta function.

Next, we are interested in considering a sub-fBm with values in Hilbert

space and giving the definition of the corresponding stochastic integral.

Let L(K,H) denote the space of all bounded linear operators from K

into H with the usual norm ‖ · ‖L(K,H). Let Q ∈ L(K,H) be a non-negative

self-adjoint operator. Denote by L0
Q(K,H) the space of all ξ ∈ L(K,H) such

that ξQ
1
2 is a Hilbert-Schmidt operator. The norm is given by

‖ξ‖2L0
Q
(K,H) = ‖ξQ 1

2‖2HS = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to H. Let {SH
n (t)}n∈N

be a sequence of one-dimensionnal standard sub-fractional Brownian motions

mutually independent on (Ω,F ,P). When one considers the following series:

∞
∑

n=1

SH
n (t)en, t ≥ 0,

where {en}n∈N is a complete orthonormal basis in K this series does not

necessarily converge in the space K. Thus we consider a K-valued stochastic

process SH
Q (t) given formally by the following series:

SH
Q (t) =

∞
∑

n=1

SH
n (t)Q

1
2 en, t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, then this series con-

verge in the space K, that is, we have SH
Q (t) ∈ L2(Ω,K). Then above SH

Q (t)

is well-defined as a K-valued Q-cylindrical sub-fractional Brownian motion
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with covariance operator Q. Let y : [0, b] −→ L0
Q(K,H) such that

∞
∑

n=1

‖K∗
H(yQ

1
2 en)‖L2([0,b];H) < ∞. (11)

Theorem 1. Let y : [0, b] −→ L0
Q(K,H) satisfy (11). Then its stochastic

integral with respect to the sub-fBm SH
Q is defined, for t ≥ 0, as follows

∫ t

0
y(s)dSH

Q (s) :=
∞
∑

n=1

∫ t

0
y(s)Q

1
2 endS

H
n (s) =

∞
∑

n=1

∫ t

0
(K∗(yQ

1
2 en))dW (s).

Notice that if
∞
∑

n=1

‖y(s)Q 1
2 en‖

L
1
H ([0,b];H)

< ∞, (12)

then in particular (11) holds, which follows immediately form (10).

Lemma 2 ([29]). For any y : [0, b] −→ L0
Q(K,H) such that (12) holds, and

for any u, v ∈ [0, b] with u > v,

E
∥

∥

∫ u

v
y(s)dSH

Q (s)
∥

∥

2

H
≤ CH(u− v)2H−1

∞
∑

n=1

∫ u

v
‖y(s)Q 1

2 en‖2Hds.

If, in addition,

∞
∑

n=1

‖y(s)Q 1
2 en‖2H is uniformly convergent for t ∈ [0, b],

then

E
∥

∥

∫ u

v
y(s)dSH

Q (s)
∥

∥

2

H
≤ CH(u− v)2H−1

∫ u

v
‖y(s)‖2L0

Q
(K,H)ds.

In this paper, we suppose that Ft = σ{SH
Q ; 0 ≤ s ≤ t} is the σ-algebra gener-

ated by the K-valued Q-cylindrical sub-fractional Brownian motion, Fb = F
and L2(Ω,Ft,H) be the Hilbert spaces of all Ft-adapted measurable square

integrable random variables with values in H. The notation LF
2 ([0, b];H)

stands for the Hilbert space of all square integrable and Ft-measurable pro-

cesses with the values in H.
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Definition 2. The fractional integral of order α with the lower limit zero

for a function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0, α > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ(·) is the
gamma function, which is defined by Γ(α) =

∫∞

0 tα−1e−tdt.

Definition 3. The Riemann-Liouville fractional derivative of order α > 0

n− 1 < α < n, n ∈ N, is defined as

(R−L)Dα
0+f(t) =

1

Γ(n− α)

( d

dt

)n
∫ t

0
(t− s)n−1−αf(s)ds,

where the function f(t) has absolutely continuous derivative up to order

(n− 1).

Definition 4. The Caputo derivative of order α > 0 for a function f :

[0,∞) −→ R can be written as

Dαf(t) = Dα

(

f(t)−
n−1
∑

k=1

tk

k!
fk(0)

)

, t > 0, n − 1 < α < n.

Remark 1.

i. If f(t) ∈ Cn[0,∞), then

cDαf(t)=
1

Γ(n− α)

∫ t

0

f (n)(s)

(t−s)α+1−n
ds = In−αfn(t), t>0, n−1<α<n.

ii. The Caputo derivative of a constant is equal to zero.

iii. If f is an abstract function with values in H, then integrals which appear

in Definitions 2 and 3 are taken in Bochners sense.

We assume that the phase space (B, ‖ · ‖B) is a seminoremed linear

space of F0-measurable function mapping (−∞, 0] into H, and satisfying

the following fundamental axioms due to Hale and Kato [21].

i. If x : (−∞, b) → H, b > 0, is continuous on (0, b] and x0 in B, then for

every t ∈ [0, a) the following conditions hold:

(a) xt is in B;
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(b) ‖ x(t) ‖β≤ H̃ ‖ xt ‖B;
(c) ‖ xt ‖B≤ K(t) sup{‖ x(s) ‖β : 0 ≤ s ≤ t} + M(t) ‖ x0 ‖B, where

H̃ ≥ 0 is a constant; K,M : [0,∞) → [0,∞), K is continuous, M is

locally bounded, and H̃, K, M are independent of x(·).

ii. For the function x(·) in i., xt is a B-valued function [0, a).

iii. The space B is complete.

The following result is a consequence of the phase space axioms.

Lemma 3 ([40]). Let x : (−∞, b] → H be an Ft-adapted measurable process

such that the F0-adapted process x0 = ϕ(t) ∈ L0
2(Ω,B) and the restriction

x : J → LF
2 (Ω,B) is continuous, then

‖ xs ‖B≤ MbE ‖ ϕ ‖B +Kb sup
0≤s≤b

E ‖ x(s) ‖B,

where Kb = sup{K(t) : t ∈ J} and Mb = sup{M(t) : t ∈ J}.

We introduce the space PC formed by all Ft-adapted measurable square

integrable H-valued stochastic processes {x(t) : t ∈ [0, b]} such that x is

continuous at t 6= ti, x(tt) = x(t−t ) and x(t+t ) exist for all i = 1, . . . , N . In

this paper, we always assume that PC is endowed with the norm

‖ x ‖PC=

(

sup
0≤t≤b

E ‖ x(t) ‖2
)

1
2

.

Then (PC, ‖ . ‖PC) is a Banach space.

Throughout this paper, we use the notation P(H) for the family of all

nonempty subsets of H. Let use introduce the following notations:

Pcl(H)={Y ∈ P(H) : Y is closed}, Pbd(H)={Y ∈P(H) : Y is bounded},
Pcv(H)={Y ∈ P(H) : Y is convex}, Pcp(H)={Y ∈ P(H) : Y is compact},
conv(Y) (respectively conv(Y)) be the convex hull (respectively, convex

closed hull in H) of a subset Y in H.

A multi-valued map G → P(H) is convex (closed) valued if G(H) is

convex (closed) for all x ∈ H. G is bounded on bounded sets if G(B) =
⋃

x∈B

G(x) is bounded inH for any bounded set B ofH, that is, sup
x∈B

{sup ‖y‖H :

y ∈ G(x)} < ∞.
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G is called upper semicountinuous (u.s.c) on H if, for each x ∈ H, the

set G(x) is nonempty closed subset of H and if, for each open set V of

H containing G(x), there exists an open neighborhood N of x such that

G(N) ⊆ V .

G is said to be completely continuous if G(B) is relatively compact, for

every bounded subset B of H. If the multi-valued map G is completely

countinuous with nonempty compact values, then G is u.s.c, if and only if G
has closed graph i.e. xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).

A multi-valued map G : J → Pbd,cl,cv(H) is measurable if for each x ∈ H,

the function t → D(x,G(t)) is measurable function on J.

If G is a normed space, then the set G1
G = {f ∈ L1([0, b],H) : f(t) ∈

G(t), for a.e.t ∈ [0, b]} is called the set of selections of G.

Definition 5 ([5]). Let {Yn}n∈N≥1 be a sequence of subsets of H. Suppose

there is a compact and convex subset Y ⊂ H such that for any neighbor-

hood N of Y there is an n so that for any m ≥ n : Ym ⊂ N . Then
⋂

N>0

conv(
⋃

n≥N

Yn) ⊂ Y.

Lemma 4 ([5]). Every semicompact sequence in L1([0, b],H) is weakly com-

pact in L1([0, b],H).

Now, we introduce the Hausdorff measure of noncompactness χZ(·) de-
fined by

χZ(B) = inf{ε > 0 : B admits a finite cover by balls of radius ≤ ε in Z}

for any Hilbert space Z.

Some basic properties of χZ(·) are given in the following lemma.

Lemma 5. Let Z be a real Hilbert space and B be a bounded set in Z. Then,

the following properties are satisfied:

i. B is pre-compact if and only if χZ(B) = 0;

ii. χZ(B) = χZ(B) = χZ(convB), where B and convB are the closure and

the convex hull of B, respectively;

iii. χZ(B) ≤ χZ(C) when B ⊆ C;

iv. χZ(B +C) ≤ χZ(B) + χZ(C) where B + C = {x+ y : x ∈ B, y ∈ C};
v. χZ(B ∪C) = max{χZ(B), χZ(C)};
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vi. χZ(λB) ≤| λ | χZ(B) for any λ ∈ R;

vii. If the map φ : D(φ) ⊆ Z → Z ′

is Lipschitz continuous with constant k

then χZ(φB) ≤ kχZ(B) for any bounded subset B ⊆ D(φ), where Z ′

is

another real Hilbert space;

viii. If {Vn}∞n=1 is a decreasing sequence of bounded closed nonempty subset

of Z and lim
n→∞

χZ(Vn) = 0, then
∞
⋂

n=1
Vn is nonempty and compact in Z.

Lemma 6. Let W be a closed convex subset of a Banach space X and R :

W → Pck(X) be a closed multifunction which is X -condensing where X is

a non singular measure of noncompactness defined on subsets of W, then R

has a fixed point.

Lemma 7. Let W be a closed subset of a Banach space X and R : W →
Pk(X) be a closed multifunction which is X -condensing on every bounded

subset of W, where X is a monotone measure of noncompactness defined on

X. if the set of fixed points for R is a bounded subset of X then it is compact.

Lemma 8. Let (X, d) be a complete metric space. If R : X → Pclb(X) is

contraction, then R has a fixed point.

Lemma 9. Let B be a bounded set in Z. Then for every ε > 0 there is a

sequence (xn)n≥1 in B such that

χ(B) ≤ 2χ{xn : n ≥ 1}+ ε.

Lemma 10. Let χC(J,H) be the Hausdorff measure of noncompactness on

C(J,H). If W ⊆ C(J,H) is bounded, then for every t ∈ J ,

χ(W (t)) ≤ χC(J,H)(W )

where W (t) = {x(t) : x ∈ W}. Furthermore, if W is equicontinuous on J,

Then the map t → χ{x(t) : x ∈ W} is continuous on J and

χC(J,H)(W ) = sup
t∈J

χ{x(t) : x ∈ W}.

Lemma 11. Let {fn : n ∈ N} ⊂ Lp(J,H), p ≥ 1 be an integrable bounded

sequence such that χ{fn : n ≥ 1} ≤ γ(t), a.e.t ∈ J , where γ ∈ L1(J,R+).

Then for each ε > 0 there exists a compact Kε ⊆ E, a measurable set Jε ⊂ J ,

with measure less than ε, and a sequence of functions {gεn} ⊆ Lp(J,H), t ∈ J

and ‖ fn(t)− gεn(t) ‖< 2γ(t) + ε, for every n ≥ 1 and every t ∈ J − Jε.
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Next, we are ready to recall some facts of fractional Cauchy problem.

Bajlekova [46] studied the following linear fractional Cauchy problem

{

Dc
αx(t) = Ax(t)

x(0) = x0 ∈ H
(13)

where A is linear closed and D(A) is dense.

Definition 6. A family {Sα(t) : t ≥ 0} ⊂ L(H) is called a solution operator

for (13) if the following conditions are satisfied:

(a) Sα(t)is strongly continuous for t ≥ 0 and Sα(t) = I;

(b) Sα(t)D(A) ⊂ D(A) and ASα(t)x = Sα(t)Ax for x ∈ D(a) and t ≥ 0;

(c) Sα(t)x is a solution of (13) for all x ∈ D(A) and t ≥ 0.

Definition 7. An operator A is said to be belong to eα(M,ω) if the solution

operator Sα(·) of (13) satisfies

‖ Sα(t) ‖L(H)≤ Meωt, t ≥ 0

for some constants M ≥ 1 and ω ≥ 0.

Definition 8. A solution operator Sα(t) of (13) is called analytic if it admits

an analytic extension to a sector Σθ0 = {λ ∈ C − {0} : ‖argλ‖ < θ0} for

some θ0 ∈ (0, π2 ]. An analytic solution operator is said to be of analyticity

type (θ0, ω0) if for each θ < θ0 and ω > ω0 there is an M = M(θ, ω) such

that

‖ Sα(t) ‖L(H)≤ MeωRt, t ∈ Σθ.

Set

eα(ω) :=
⋃

{eα(M,ω) : M ≥ 1} and eα :=
⋃

{eα(ω) : ω ≥ 0},
Aα(θ0, ω0) ={A ∈ eα : A generates an analytic solution operator

Sα of type (θ0, ω0)}.

Lemma 12. If A ∈ Aα(θ0, ω0) then

‖ Sα(t) ‖L(H)≤ Meωt and ‖ Tα(t) ‖L(H)≤ Ceωt(1 + tα−1)

for every t > 0, ω > ω0. So putting
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Ms := sup
0≤t≤b

‖ Sα(t) ‖L(H), MT := sup
0≤t≤b

Ceωt(1 + t1−α).

We get

‖ Sα(t) ‖L(H)≤ Ms, ‖ Tα(t) ‖L(H)≤ tα−1MT (14)

Definition 9. Let A ∈ Aα(θ0, ω0) with θ0 ∈ (0, π2 ] and ω0 ∈ R. A function

x is called a mild solution of (1) if

x(t)=











































































Sα(t)x0+
∫ t
0 Tα(t− s)f(s)ds+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t∈J0

Sα(t)x0+Sα(t− t1)I1(t
−
1 )+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ J1

...

Sα(t)x0+
N
∑

i=1
Sα(t− ti)Ii(x(t

−
i ))+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ JN

(15)

where f ∈ SF (·,x(·)).

SF (·,x(·) is the set of the measurable selections of the multivalued map such

that SF (·,x(·)) = {f ∈ L2(J,H) : f(t) ∈ F (t, x(t))}.

3. Existence of Mild Solution

Theorem 2. Let A ∈ Aα(θ0, ω0) with θ ∈ (0, π2 ] and w0 ∈ R, F : J ×H →
Pcv,cp(H) a multifunction, g : J → L0

Q(K,H) and Ii ∈ C([ti, si]× B,H).

We assume the following conditions:

(H1) For any x ∈ H, the multifunction t → F (t, x) is measurable and for

all t ∈ J , x → F (t, x) is upper semicontinuous.

(H2) There exists a function ϕ ∈ L
1
q (J,R+), q ∈ (0, α) and a nondecreasing

continuous function Θ : R+ → R
+ such that for any x ∈ H

‖ F (t, x) ‖≤ ϕ(t)Θ ‖ x ‖
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(H3)

i) There exist a function β ∈ L
1
q (J,R+), q ∈ (0, α) satisfying

4ηMT ‖ β ‖
L

1
q (J,R+)

< 1, (16)

where η = bα−q

w1−q and w = α−q
1−q .

ii) For every bounded subset Z ⊆ H
X (F (t, Z)) ≤ β(t)X (Z), for a.e. t ∈ J , where X is the Hausdorff

measure of noncompactness in H.

(H4) For g : [0, b] → L0
Q(K,H) we assume the following conditions: for the

complete orthonormal basis {en}n∈N in K, we have:

∞
∑

n=1

‖ gQ
1
2 en ‖L2([0,b],H)< ∞

∞
∑

n=1

‖ g(t)Q
1
2 en ‖H converges uniformly for t ∈ [0, b].

(H5) The function g : J → L0
Q(K,H) satisfies

∫ b

0
‖ g(s) ‖2L0

Q
ds = Λ < ∞.

(H6) For any i = 1, 2, . . . , N , Ii is continuous and there exists a positive

constant hi such that

‖ Ii(t, x) ‖2≤ hi ‖ x ‖2, x ∈ H

Then the problem (1) has a mild solution provided that there is r > 0

such that

3Ms
2
e2ωRbE ‖ x0 ‖2 +

3

α
MT

2
bα
∫ b

0
(b− s)

α−1
2 E ‖ f(s) ‖2 ds

+ 3cHb2H−1
∞
∑

n=1

∫ t

0
‖ Tα(b− s)Q

1
2
en ‖2H ds ≤ r. (17)

Proof. We transform the problem (1) into a fixed point problem, we define
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a multifunction R : PC(J,H) → 2PC(J,H) as follows:

For x ∈ PC(J,H), R(x) is the set of all functions y ∈ R(x) such that

y(t)=











































































Sα(t)x0+

∫ t

0
Tα(t−s)f(s)ds+

∫ t

0
Tα(t−s)g(s)dSH

Q (s), t∈J0

Sα(t)x0 + Sα(t− t1)I1(t
−
1 )+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ J1

...

Sα(t)x0 +
N
∑

i=1
Sα(t− ti)Ii(x(t

−
i ))+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ JN

(18)

where f ∈ S1
F (·,x(·)). By the hypothesis (H1) the values of R are nonempty.

It is clear that any fixed point for R is a mild solution for (1). so our aim

is to show, by using Lemma 7, that R has a fixed point. The proof will be

given in the following steps.

Step 1. We proof that the values of R are closed.

Let x ∈ PC(J,H) and {yn : n ≥ 1} be a sequence in R(x) which is

convergent to y in PC(J,H). Then according to the definition of R, there is

a sequence {fn : n ≥ 1} in S1
F (·,x(·)) such that for any t ∈ Ji, i = 0, 1, . . . , N ,

we have

yn(t)=











































































Sα(t)x0+

∫ t

0
Tα(t−s)fn(s)ds+

∫ t

0
Tα(t−s)g(s)dSH

Q (s), t∈J0

Sα(t)x0 + Sα(t− t1)I1(t
−
1 )+

∫ t

0
Tα(t− s)fn(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ J1

...

Sα(t)x0 +
N
∑

i=1
Sα(t− ti)Ii(x(t

−
i ))+

∫ t

0
Tα(t− s)fn(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ JN

(19)

By the assumption (H2) for every n ≥ 1, and for a.e. t ∈ J
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‖ fn(t) ‖≤ ϕ(t)Θ(‖ x ‖) ≤ ϕ(t)Θ(‖ x ‖PC(J,H))

This show that the set {fn : n ≥ 1} is integrally bounded. Therefore for a.e.

t ∈ J {fn : n ≥ 1} ⊂ F (t, x(t)), the set {fn : n ≥ 1} is relatively compact

in H for a.e.t ∈ J . Moreover, the set {fn : n ≥ 1} is semicompact and then

by Lemma 4 it is weakly compact in L1(J,H). So, without loss of generality

we can assume that fn converges weakly to a function f ∈ L1(J,H). From

Mazur’s lemma, for any j ∈ N there exist a natural number k0(j) > j

and a sequence of nonnegative real numbers λj,k, k = j, . . . , k0(j) such that
k0(j)
∑

k=j

λj,k = 1 and the sequence of convex combinations zj =
k0(j)
∑

k=j

λj,kfk,

j ≥ 1 converges strongly to f in L1(J,H) as j → ∞. so we can suppose

that zj(t) → f(t) for a.e. t ∈ J . Since F takes convex and closed values, we

obtain for a.e. t ∈ J

f(t) ∈
⋂

j≥1

{zk(t) : k ≥ j} ⊆
⋂

j≥1

conv{fk : k > j} ⊂ F (t, x(t)).

Noting that, by (14) for every t, s ∈ J , s ∈ [0, t] and n ≥ 1

‖ Tα(t− s)zn(s) ‖≤ (t− s)α−1MTϕ(s)Θ ‖ x ‖PC(J,H) .

Next taking ỹn(t) =
k(j)
∑

k=j

λjkyk, (19) implies

ỹn(t)=











































































Sα(t)x0+

∫ t

0
Tα(t−s)zn(s)ds+

∫ t

0
Tα(t−s)g(s)dSH

Q (s), t∈J0

Sα(t)x0 + Sα(t− t1)I1(t
−
1 )+

∫ t

0
Tα(t− s)zn(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ J1

...

Sα(t)x0 +
N
∑

i=1
Sα(t− ti)Ii(x(t

−
i ))+

∫ t

0
Tα(t− s)zn(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ JN

(20)

But ỹn(t) → y(t) and z̃n(t) → f(t) for a.e. t ∈ J , therefore, by tending n to
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∞ in (20), we get from the Lebesgue dominated convergence theorem that

for every i = 0, 1, . . . , N .

y(t)=











































































Sα(t)x0+

∫ t

0
Tα(t−s)f(s)ds+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t∈J0

Sα(t)x0 + Sα(t− t1)I1(t
−
1 )+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ J1

...

Sα(t)x0 +
N
∑

i=1
Sα(t− ti)Ii(x(t

−
i ))+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ JN .

(21)

This proves that R(x) is closed.

Step 2. Set B0 = {x ∈ PC(J,H) :‖ x ‖PC≤ r}. Obviously, B0 is a bounded,

closed and convex subset of PC(J,H). We want to prove that R(B0) ⊆ B0.

to show that, let x ∈ B0 and y ∈ R(x). By using (14), (17), (20); (H2) and

Holder’s inequality, we get for t ∈ J0

E ‖y(t)‖2 =E

∥

∥

∥

∥

Sα(t)x0 +

∫ t

0
Tα(t− s)f(s)ds+

∫ t

0
Tα(t− s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

≤ 3E ‖Sα(t)x0‖2 + 3E

∥

∥

∥

∥

∫ t

0
Tα(t− s)f(s)ds

∥

∥

∥

∥

2

+ 3E

∥

∥

∥

∥

∫ t

0
Tα(t− s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

≤ 3M
2
se

2ωRtE ‖ x0 ‖2 +3M
2
T

tα

α

∫ t

0
(t− s)

α−1
2 E ‖ f(s) ‖2 ds

+ 3cH t2H−1
∞
∑

n=1

∫ t

0
‖ Tα(t− s)Q

1
2 en ‖2 ds.

We get for every t ∈ Ji, i = 1, 2, . . . , N

‖ y(t) ‖2PC≤ r < ∞.

Therefore R(B0) ⊆ B0.
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Step 3. Let Z = R(B0). In this step we will show that the set defined as

follows

Z
pJi

= {y∗ ∈ C(J i,H) : y∗(t) = y(t), t ∈ Ji, y
∗(ti) = y(t+i )y ∈ Z}

is equicontinuous for every i = 1, 2, . . . , N .

Let y ∈ Z. Then there is x ∈ B0 with y ∈ R(x). According to the

definition of R, there is f ∈ S1
F (·,x(·)) such that

y(t)=











































































Sα(t)x0+

∫ t

0
Tα(t−s)f(s)ds+

∫ t

0
Tα(t−s)g(s)dSH

Q (s), t∈J0

Sα(t)x0 + Sα(t− t1)I1(t
−
1 )+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ J1

...

Sα(t)x0 +
N
∑

i=1
Sα(t− ti)Ii(x(t

−
i ))+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t ∈ JN .

(22)

We consider the following cases:

Case 1. When i = 0, we consider two points t and t+ δ be two points in J0,

then:

‖y∗(t+ δ)− y∗(t)‖

=
∥

∥

∥
Sα(t+ δ)x0+

∫ t+δ

0
Tα(t+δ−s)f(s)ds+

∫ t+δ

0
Tα(t+δ−s)g(s)dSH

Q (s)

− Sα(t)x0 −
∫ t

0
Tα(t− s)f(s)ds−

∫ t

0
Tα(t− s)g(s)dSH

Q (s)
∥

∥

∥

=
∥

∥

∥
(Sα(t+δ)−Sα(t))x0+

∫ t+δ

0
Tα(t+δ−s)f(s)ds−

∫ t

0
Tα(t−s)f(s)ds

+

∫ t+δ

0
Tα(t+ δ − s)g(s)dSH

Q (s)−
∫ t

0
Tα(t− s)g(s)dSH

Q (s)
∥

∥

∥

=
∥

∥

∥
(Sα(t+ δ)− Sα(t))x0 +

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))f(s)ds
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+

∫ t+δ

t
Tα(t+ δ − s)f(s)ds+

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)

+

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)
∥

∥

∥

≤
∥

∥

∥
(Sα(t+ δ)− Sα(t))x0

∥

∥

∥
+
∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))f(s)ds ‖

+
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

+
∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

+
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)
∥

∥

∥
, (23)

E ‖ y∗(t+ δ)− y∗(t) ‖2

≤3E ‖ (Sα(t+ δ)− Sα(t))x0 ‖2+3E ‖
∫ t

0
(Tα(t+δ−s)−Tα(t−s))f(s)ds ‖2

+ 3E
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

2

+ 3E
∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

2

+ 3E
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)
∥

∥

∥

2
:= 3(G1 +G2 +G3 +G4 +G5).

Where

G1 = E ‖ (Sα(t+ δ)− Sα(t))x0 ‖2,

G2 = E ‖
∫ t

0
(Tα(t+ δ − s)− Tα(t− s))f(s)ds ‖2,

G3 = E ‖
∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s) ‖2,

G4 = E ‖
∫ t+δ

t
Tα(t+ δ − s)f(s)ds ‖2,

G5 = E ‖
∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s) ‖2 .

We only need to check Gi → 0 as δ → 0 for every i = 1, 2, 3, 4, 5.
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For G1 we have

G1 = E ‖ Sα(t+ δ) − Sα(t))x0 ‖2

≤‖ Sα(t+ δ)− Sα(t) ‖2 E ‖ x0 ‖2

≤‖ Sα(t+ δ)− Sα(t) ‖2 r
1
2 .

sup
0≤t≤b

E ‖ Sα(t+ δ)− Sα(t))x0 ‖2≤ sup
0≤t≤b

‖ Sα(t+ δ)− Sα(t) ‖ r
1
2

‖ (Sα(t+ δ)− Sα(t))x0 ‖2PC≤ sup
0≤t≤b

‖ Sα(t+ δ)− Sα(t) ‖ r
1
2

lim
δ→0

‖ (Sα(t+ δ) − Sα(t))x0 ‖2PC≤ lim
δ→0

sup
0≤t≤b

‖ Sα(t+ δ) − Sα(t) ‖ r
1
2 = 0.

uniformly for x ∈ B0.

For G2, we apply the Lebesgue dominated convergence theorem to get

G2 = E ‖
∫ t

0
(Tα(t+ δ − s)− Tα(t− s))f(s)ds ‖2

≤ E

(
∫ t

0
‖ (Tα(t+ δ − s)− Tα(t− s)) ‖‖ f(s) ‖ ds

)2

sup
0≤t≤b

G2 ≤ sup
0≤t≤b

E

(
∫ t

0
‖ (Tα(t+ δ − s)− Tα(t− s)) ‖‖ f(s) ‖ ds

)2

lim
δ→0

sup
0≤t≤b

G2 ≤ lim
δ→0

sup
0≤t≤b

E

(
∫ t

0
‖(Tα(t+δ−s)−Tα(t−s))‖‖f(s)‖ ds

)2

=0.

For G3 we use holder’s inequality we obtain

∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

=
∥

∥

∥

∫ t

0
Tα(t+ δ − s)g(s)dSH

Q (s)−
∫ t

0
Tα(t− s)g(s)dSH

Q (s)
∥

∥

∥

≤
∥

∥

∥

∫ t

0
Tα(t+ δ − s)g(s)dSH

Q (s)
∥

∥

∥
+
∥

∥

∥

∫ t

0
Tα(t− s)g(s)dSH

Q (s)
∥

∥

∥

≤ sup
0≤t≤b

Tα(t+ δ − s)
∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥
+ sup

0≤t≤b
Tα(t− s)

∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥

≤(t+ δ − s)α−1MT

∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥
+M

T
(t− s)α−1

∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥
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∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

2

≤2(t+δ−s)2(α−1)M
2
T

∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥

2
+2M

2
T (t−s)2(α−1)

∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥

2

E
∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

2

≤2(t+ δ − s)2(α−1)M
2
TE
∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥

2

+ 2M
2
T (t− s)2(α−1)E

∥

∥

∥

∫ t

0
g(s)dSH

Q (s)
∥

∥

∥

2

≤2(t+ δ − s)2(α−1)M
2
T cHt2H−1

∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds

+ 2M
2
T (t− s)2(α−1)cHt2H−1

∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds

sup
0≤t≤b

E
∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

2

≤ sup
0≤t≤b

[

2(t+ δ − s)2(α−1)M
2
T cHt2H−1

∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds

+ 2M
2
T (t− s)2(α−1)cH

∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds

]

(

sup
0≤t≤b

E
∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

2
)

1
2

≤
(

sup
0≤t≤b

[2(t+ δ − s)2(α−1)M
2
T cHt2H−1

∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds

+ 2M
2
T (t− s)2(α−1)cHt2H−1

∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds]

)
1
2

.

lim
δ→0

(

sup
0≤t≤b

E
∥

∥

∥

∫ t

0
(Tα(t+ δ − s)− Tα(t− s))g(s)dSH

Q (s)
∥

∥

∥

2
)

1
2

≤2(t− s)α−1c
1
2
H t

2H−1
2

(
∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds

)

1
2

.

∥

∥

∥

∫ t

0
[Tα(t+ δ − s)− Tα(t− s)]g(s)dSH

Q (s)
∥

∥

∥

PC
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≤2(t− s)α−1c
1
2
H t

2H−1
2

(
∫ t

0

∥

∥

∥
g(s)

∥

∥

∥

2

L0
Q
(K,H)

ds

)

1
2

.

For G4, by the Holder’s inequality we have

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

≤
∫ t+δ

t

∥

∥

∥
Tα(t+ δ − s)

∥

∥

∥

∥

∥

∥
f(s)

∥

∥

∥
ds

≤
∫ t+δ

t
(t+ δ − s)α−1MT

∥

∥

∥
f(s)

∥

∥

∥
ds

≤ MT

∫ t+δ

t
(t+ δ − s)α−1

∥

∥

∥
f(s)

∥

∥

∥
ds

≤ MT

(
∫ t+δ

t
(t+ δ − s)(α−1)pds

)

1
p
(
∫ t+δ

t

∥

∥

∥
f(s)

∥

∥

∥

q
ds

)

1
q

≤ MT

(
∫ t+δ

t
(t+ δ − s)

(α−1)q
q−1 ds

)

q−1
q
(
∫ t+δ

t

∥

∥

∥
ϕq(s)

∥

∥

∥
Θp
∥

∥

∥
x
∥

∥

∥
ds

)

1
p

≤ MT

(
∫ t+δ

t
(t+ δ − s)

α−1
q−1 ds

)q−1

Θ
∥

∥

∥
x
∥

∥

∥

(
∫ t+δ

t

∥

∥

∥
ϕq(s)

∥

∥

∥
ds

)

1
q

≤ MT

(

δω

ω

)q−1

Θ
∥

∥

∥
x
∥

∥

∥

∥

∥

∥
ϕ
∥

∥

∥

L
1
q (J,R+)

.

Where ω =
(

α−1
q−1

)

q + 1

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥
≤ MT

(

δω

ω

)q−1

Θ
∥

∥

∥
x
∥

∥

∥

∥

∥

∥
ϕ
∥

∥

∥

L
1
q (J,R+)

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

2
≤ M

2
T

(

δω

ω

)2(q−1)

Θ2
∥

∥

∥
x
∥

∥

∥

∥

∥

∥
ϕ
∥

∥

∥

2

L
1
q (J,R+)

E
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

2
≤ M

2
T

(

δω

ω

)2(q−1)

E

(

Θ2
∥

∥

∥
x
∥

∥

∥

∥

∥

∥
ϕ
∥

∥

∥

2

L
1
q (J,R+)

)

sup
0≤t≤b

E
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

2

≤ sup
0≤t≤b

M
2
T

(

δω

ω

)2(q−1)

E

(

Θ2
∥

∥

∥
x
∥

∥

∥

∥

∥

∥
ϕ
∥

∥

∥

2

L
1
q (J,R+)

)



✐

“BN16N21” — 2021/7/14 — 22:17 — page 111 — #25
✐

✐

✐

✐

✐

2021] IMPULSIVE FRACTIONAL STOCHASTIC DIFFERENTIAL INCLUSIONS 111

(

sup
0≤t≤b

E
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

2
)

1
2

≤
(

sup
0≤t≤b

M
2
T

)
1
2 (δω

ω

)q−1

E
1
2

(

Θ2
∥

∥

∥
x
∥

∥

∥

∥

∥

∥
ϕ
∥

∥

∥

2

L
1
q (J,R+)

)

lim
δ→0

(

sup
0≤t≤b

E
∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)f(s)ds

∥

∥

∥

2
)

1
2

≤ 0.

For G5 we have

∥

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

≤ sup
0≤t≤b

Tα(t+ δ − s)

∥

∥

∥

∥

∫ t+δ

t
g(s)dSH

Q (s)

∥

∥

∥

∥

∥

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

≤ sup
0≤t≤b

Tα(t+ δ − s)

∥

∥

∥

∥

∫ t+δ

t
g(s)dSH

Q (s)

∥

∥

∥

∥

∥

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

≤
(

sup
0≤t≤b

Tα(t+ δ − s)

)2 ∥
∥

∥

∥

∫ t+δ

t
g(s)dSH

Q (s)

∥

∥

∥

∥

2

E

∥

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

≤
(

sup
0≤t≤b

Tα(t+ δ − s)

)2

E

∥

∥

∥

∥

∫ t+δ

t
g(s)dSH

Q (s)

∥

∥

∥

∥

2

≤ M22H(t+ δ − s)2H−1

∫ t+δ

t
‖ g(s) ‖2L0

Q
(K,H) ds.

sup
0≤t≤b

E

∥

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

≤ M22Hδ2H−1

∫ t+δ

t
‖g(s)‖2L0

Q
(K,H) ds

(

sup
0≤t≤b

E

∥

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

2
)

1
2

≤ M
√
2Hδ

2H−1
2

(
∫ t+δ

t
‖g(s)‖2L0

Q
(K,H) ds

)

1
2

.
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lim
δ→0

(

sup
0≤t≤b

E

∥

∥

∥

∥

∫ t+δ

t
Tα(t+ δ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

2
)

1
2

≤ 0.

Case 2. For i ∈ {1, 2, . . . , N}, let t, t + δ be two points in Ji. According to

the definition of R, we have

‖ y∗(t+ δ) − y∗(t) ‖=‖ y(t+ δ)− y(t) ‖ .

‖ y(t+ δ)− y(t) ‖=
∥

∥

∥
Sα(t+ δ)x0 +

N
∑

i=1

Sα(t+ δ − ti)Ii(x(t
−
i ))

+

∫ t+δ

0
Tα(t+ δ − s)f(s)ds+

∫ t+δ

0
Tα(t+ δ − s)g(s)dSH

Q (s)

− Sα(t)x0 −
N
∑

i=1

Sα(t− ti)Ii(x(t
−
i ))

−
∫ t

0
Tα(t− s)f(s)ds−

∫ t

0
Tα(t− s)g(s)dSH

Q (s)
∥

∥

∥
.

‖ y(t+ δ)− y(t) ‖ ≤
∥

∥

∥
(Sα(t+ δ)− Sα(t)) x0

∥

∥

∥

+

i
∑

k=1

∥

∥Sα(t+ δ − tk)Ik(x(t
−
k ))− Sα(t− tk)Ik(x(t

−
k ))
∥

∥

+

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)f(s)ds−

∫ t

0
Tα(t− s)f(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)g(s)dSH

Q (s)−
∫ t

0
Tα(t− s)g(s)dSH

Q (s)

∥

∥

∥

∥

‖ y(t+ δ)− y(t) ‖2 ≤ 3 ‖ (Sα(t+ δ) − Sα(t)) x0 ‖2

+ 3
i
∑

k=1

∥

∥Sα(t+ δ − tk)Ik(x(t
−
k ))− Sα(t− tk)Ik(x(t

−
k ))
∥

∥

2

+ 3

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)f(s)ds−

∫ t

0
Tα(t− s)f(s)ds

∥

∥

∥

∥

2

+ 3

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)g(s)dSH

Q (s)−
∫ t

0
Tα(t− s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

.

E ‖ y(t+ δ)− y(t) ‖2 ≤ 3E ‖ (Sα(t+ δ)− Sα(t)) x0 ‖2

+ 3E

i
∑

k=1

∥

∥Sα(t+ δ − tk)Jk(x(t
−
k ))− Sα(t− tk)Ik(x(t

−
k ))
∥

∥

2
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+ 3E

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)f(s)ds−

∫ t

0
Tα(t− s)f(s)ds

∥

∥

∥

∥

2

+ 3E

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)g(s)dSH

Q (s)−
∫ t

0
Tα(t− s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

.

sup
0≤t≤b

E ‖ y(t+ δ)− y(t) ‖2

≤ 3 sup
0≤t≤b

E ‖ (Sα(t+ δ)− Sα(t)) x0 ‖2

+ 3 sup
0≤t≤b

E

i
∑

k=1

∥

∥Sα(t+ δ − tk)Jk(x(t
−
k ))− Sα(t− tk)Ik(x(t

−
k ))
∥

∥

2

+ 3 sup
0≤t≤b

E

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)f(s)ds−

∫ t

0
Tα(t− s)f(s)ds

∥

∥

∥

∥

2

+ 3 sup
0≤t≤b

E

∥

∥

∥

∥

∫ t+δ

0
Tα(t+ δ − s)g(s)dSH

Q (s)−
∫ t

0
Tα(t− s)g(s)dSH

Q (s)

∥

∥

∥

∥

2

.

As in the first case we get

lim
δ→0

‖ y(t+ δ) − y(t) ‖PC= 0.

Case 3. When t = ti, i = 1, 2, . . . , N , let λ > 0 be such that ti + λ ∈ Ji and

σ > 0 such that ti < σ < ti + δ ≤ ti+1, then we have

‖ y∗(ti + δ)− y∗(ti) ‖PC= lim
σ→t+i

‖ y(ti + δ)− y(σ) ‖PC .

According to the definition of R we get

‖ y(ti + δ)− y(σ) ‖=
∥

∥

∥
Sα(ti + δ)x0 +

N
∑

k=1

Sα(ti + δ − tk)Ik(x(t
−
k ))

+

∫ ti+δ

0
Tα(ti + δ − s)f(s)ds+

∫ ti+δ

0
Tα(ti + δ − s)g(s)dSH

Q (s)

− Sα(σ)x0 −
N
∑

k=1

Sα(σ − tk)Ik(x(t
−
k ))−

∫ σ

0
Tα(σ − s)f(s)ds

−
∫ t

0
Tα(σ − s)g(s)dSH

Q (s)
∥

∥

∥
.
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‖ y(ti + δ)− y(σ) ‖≤‖ (Sα(ti + δ)− Sα(σ)) x0 ‖

+

∥

∥

∥

∥

∥

N
∑

k=1

(Sα(ti + δ − tk)− Sα(σ − tk)) Ik(x(t
−
k ))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ ti+δ

0
Tα(ti + δ − s)f(s)ds−

∫ σ

0
Tα(σ − s)f(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ ti+δ

0
Tα(ti + δ − s)g(s)dSH

Q (s)−
∫ σ

0
Tα(σ − s)g(s)dSH

Q (s)

∥

∥

∥

∥

.

Arguing as in the first case we can see that

lim
δ→0,σ→t+i

‖ y(ti + δ)− y(σ) ‖= 0 (24)

From the inequalities (23)−(24) we conclude that Z
pJi

is equicontinuous for

every i = 1, 2, . . . ,m.

Now for every n ≥ 1, the set Bn = convR(Bn−1). From step 1, Bn

is a nonempty, closed and convex subset of PC(J,H). Moreover B1 =

convR(B0) ⊆ B0. Also B2 = convR(B1) ⊆ convR(B0) ⊆ B1 by induc-

tion the sequence (Bn), n ≥ 1 is decreasing sequence of nonempty, closed

and bounded subsets of PC(J,H).

We need only to show that the subset B =
∞
⋂

n=1
Bn is nonempty and

compact in PC(J,H). by Lemma 5, it is enough to show that

lim
n→∞

χPC(Bn) = 0. (25)

where χPC is the Hausdorff measure of noncompactness on PC(J,H) defined

in Section 2. In the next step we prove the equation (25).

Step 4. Let n ≥ 1 be a fixed natural number and ε > 0. In view of

Lemma 9, there exists a sequence (yk)k≥1 in R(Bn−1) such that

χPC(Bn) = χPCR(Bn−1) ≤ 2χk {yk : k ≥ 1}+ ε.

From the definition of χPC , the above inequality becomes

χPC(Bn) ≤ 2 max
i=0,1,...,N

χi(SpJi
) + ε (26)
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Where S = {yk : k ≥ 1} and χi is the Hausdorff measure of noncompactness

on C(J i,H). As we have done in the previous step, we can show that BnpJi
,

i = 0, 1, . . . , N is equicontinuous. Then, by applying Lemma 11 we get:

χi(SpJi
) = sup

t∈Ji

χ(S(t)),

where χ is the Hausdorff measure of noncompactness on Z. Therefore, by

using the nonsingularity of χ, the inequality (26) becomes

χPC(Bn) ≤ 2 max
i=0,1,...,N

[

sup
t∈J i

χ(S(t))

]

+ ε = 2 sup
t∈J

χ(S(t))

=2 sup
t∈J

χ {yk(t) : k ≥ 1}+ ε. (27)

Now, since yk ∈ R(Bn−1), k ≥ 1 there exists xk ∈ Bn−1 such that yk ∈
R(xk), k ≥ 1. By recalling the definition of R for every k ≥ 1 there is

fk ∈ S1
F (·,xk(·))

such that for every t ∈ J

χ {yk(t) : k≥1}≤































































χ {Sα(t)x0}+ χ
{

∫ t
0 Tα(t− s)fk(s)ds : k ≥ 1

}

+χ
{

∫ t
0 Tα(t− s)gk(s)dS

H
Q (s) : k ≥ 1

}

, t ∈ J0

...

χ {Sα(t)x0}+
N
∑

p=1
χ
{

Sα(t−tp)Ip(x(t
−
p )) : k>1

}

+χ
{

∫ t
0 Tα(t− s)fk(s)ds : k ≥ 1

}

+χ
{

∫ t
0 Tα(t− s)gk(s)dS

H
Q (s) : k ≥ 1

}

, t ∈ JN

(28)

Hence, for every t ∈ J we have

χ{Sα(t)x0 : k ≥ 1} = 0. (29)

Moreover for every p = 1, 2, . . . , N and every t ∈ J

χ{Sα(t− tp)(Ip(xk(t
−
p ))) : k ≥ 1} = 0. (30)

In order to be able to estimate

χ
{

∫ t

0
Tα(t− s)fk(s)ds : k ≥ 1

}

.
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We can see that from (H3) it holds that for a.e. t ∈ J

χ{fk(t) : k ≥ 1} ≤ χ{F (t, xk(t)) : k ≥ 1}
≤ β(t)χ{xk(t) : k ≥ 1}
≤ β(t)χ(Bn−1(t))

≤ β(t)χPC(Bn−1(t)) = γ(t).

Furthermore, for any k ≥ 1, by (H2), for almost t ∈ J , we have ‖ fk(t) ‖≤
ϕ(t)Θ(r). Consequently, fk ∈ L

1
q (J,H), k ≥ 1. Note that γ ∈ L

1
q (J,R+).

Then from Lemma 11, there exists a compact set Kε ⊆ H and a measurable

set Jε ⊂ J . With a measure less than ε, and a sequence of functions {gεk} ⊂
L

1
q (J,H) such that for every s ∈ J , {gεk(s) : k ≥ 1} ⊆ Kε, and ‖ fk(s) −

gεk(s) ‖≤ 2γ(s) + ε, for every k ≥ 1 and every s ∈ J
′

ε = J − Jε, then using

Minkowski’s inequality, we get

∥

∥

∥

∫

J ′

ε

Tα(t−s)(fk(s)−gεk(s))ds
∥

∥

∥
≤ MT η

[

∫

J ′

ε

(2γ(s) + ε)
1
q ds

]q

≤ MT η ‖ 2γ(s) + ε ‖
L

1
q (J,R+)

≤ MT η

[

‖ 2γ(s) ‖
L

1
q (J,R+)

+ ‖ ε ‖
L

1
q (J,R+)

]

≤ MT η

[

‖ 2γ(s) ‖
L

1
q (J,R+)

+2 ‖ ε ‖
L

1
q (J,R+)

]

≤ 2MT η

[

‖ γ(s) ‖
L

1
q (J,R+)

+

(
∫

J
ε

1
q ds

)q]

≤ 2MT η

[

‖ γ(s) ‖
L

1
q (J,R+)

+εbq
]

≤ 2MT η

[

‖ βχPC(Bn−1) ‖
L

1
q (J,R+)

+εbq
]

≤ 2MT η

[

χPC(Bn−1) ‖ β ‖
L

1
q (J,R+)

+εbq
]

.

Finally we get:

∥

∥

∥

∥

∫

J ′

ε

Tα(t− s)(fk(s)− gεk(s))ds

∥

∥

∥

∥

≤ 2MT η

[

χPC(Bn−1) ‖ β ‖
L

1
q (J,R+)

+εbq
]

(31)
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By Holder’s inequality, we have:

∥

∥

∥

∫

Jε

Tα(t−s)fk(s)ds
∥

∥

∥
≤
∫

Jε

‖ Tα(t− s) ‖‖ fk(s) ‖ ds

≤
(
∫

Jε

‖ Tα(t− s) ‖
1
p ds

)p(∫

Jε

‖ fk(s) ‖
1
q ds

)q

≤
(

(t−s)
α
p

)p
(

M
1
p

T

)p(∫

Jε

ds

)p(∫

Jε

‖ fk(s) ‖
1
q ds

)q

≤ ηMT

(
∫

Jε

(Θ(r)ϕ(s))
1
q ds

)q

≤ ηMTΘ(r)

(
∫

Jε

ϕ
1
q (s)ds

)q

.

Consequently we get

∥

∥

∥

∫

Jε

Tα(t− s)fk(s)ds
∥

∥

∥
≤ ηMTΘ(r)

(
∫

Jε

ϕ
1
q (s)ds

)q

(32)

So by (31) (32), we derive

χ

{
∫ t

0
Tα(t− s)fk(s)ds : k ≥ 1

}

≤χ

{

∫

J ′

ε

Tα(t− s)fk(s)ds : k ≥ 1

}

+χ

{
∫

Jε

Tα(t− s)fk(s)ds : k ≥ 1

}

≤χ

{

∫

J ′

ε

Tα(t− s) (fk(s)− gεk(s)) ds : k ≥ 1

}

+ χ

{

∫

J ′

ε

Tα(t− s)gεk(s)ds : k ≥ 1

}

+ χ

{
∫

Jε

Tα(t− s)fk(s)ds : k ≥ 1

}

≤2MT η

[

χPC(Bn−1) ‖ β ‖
L

1
q (J,R+)

+εbq
]

+ ηMTΘ(r)

(
∫

Jε

ϕ
1
q (s)ds

)q

.

By taking into account that ε is arbitrary, we get for all t ∈ J

χ

{
∫ t

0
Tα(t− s)fk(s)ds : k ≥ 1

}

≤ 2MT ηχPC(Bn−1) ‖ β ‖
L

1
q (J,R+)

.
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In order to estimate

χ

{
∫ t

0
Tα(t− s)gk(s)dS

H
Q : k ≥ 1

}

.

We use Lemma 2 in order to calculate the following majoration:

E
∥

∥

∥

∫ t

0
Tα(t−s)gk(s)dS

H
Q (s)

∥

∥

∥

2

H
≤cHt2H−1

∞
∑

n=1

∫ t

0
‖ Tα(t−s)gk(s)Q

1
2 en ‖2H ds

sup
0≤t≤b

E
∥

∥

∥

∫ t

0
Tα(t− s)gk(s)dS

H
Q (s)

∥

∥

∥

2

H

≤ cH t2H−1
∞
∑

n=1

∫ b

0
‖ Tα(t− s)gk(s)Q

1
2 en ‖2H ds

∥

∥

∥

∫ t

0
Tα(t−s)gk(s)dS

H
Q (s)

∥

∥

∥

2

PC
≤cH t2H−1

∞
∑

n=1

∫ b

0
‖ Tα(t−s)gk(s)Q

1
2 en ‖2H ds.

In an other hand we have:

∞
∑

n=1

∫ b

0
‖ Tα(t−s)gk(s)Q

1
2 en ‖2H ds ≤

∞
∑

n=1

∫ b

0
‖ Tα(t−s) ‖2‖ gk(s)Q

1
2 en ‖2H ds

≤
∞
∑

n=1

‖ gk(s)Q
1
2 en ‖2H

∫ b

0
‖ Tα(t−s) ‖2 ds

≤ M
2
T

b2α−1

2α− 1

∞
∑

n=1

‖ gk(s)Q
1
2 en ‖2H ,

and we know that
∞
∑

n=1

‖ gk(s)Q
1
2 en ‖2H< ∞

So we have

‖
∫ t

0
Tα(t− s)gk(s)dS

H
Q (s) ‖PC≤ cH

b2H+2α−2

2α− 1
M

2
TK.

where

K =

∞
∑

n=1

‖ gk(s)Q
1
2 en ‖2H< ∞
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Then for every t ∈ J

χ

{
∫ b

0
Tα(t− s)g(s)dSH

Q (s) : k ≥ 1

}

≤ 0,

χ {yk(t) : k ≥ 1} ≤ 2MT ηχPC(Bn−1) ‖ β ‖
L

1
q (J,R+)

.

The inequality (27) and the fact that ε is arbitrary, imply

χPC(Bn) ≤ 2

[

2MT ηχPC(Bn−1) ‖ β ‖
L

1
q (J,R+)

]

.

By the previous steps (1,2,3,4) we find that:

0 ≤ χPC(Bn) ≤
(

4MT η ‖ β ‖
L

1
q (J,R+)

)n−1

χPC(B1)

Since this inequality is true for every n ∈ N, by (16) and by tending n → ∞,

we obtain

lim
n→∞

χPC(Bn) = 0.

Step 5. In this step, we will apply Lemma 5. The goal is to prove that the

set B =
∞
⋂

n=1
Bn is a nonempty and compact subset of PC(J,H). Moreover

for every Bn being bounded, closed and convex, B is also bounded closed

and convex. Let us check that R(B) ⊆ B. Indeed, R(B) ⊆ R(Bn) ⊆

convR(Bn) = Bn+1.

For every n ≥ 1, therefore R(B) ⊂
∞
⋂

n=2
Bn. On the other hand Bn ⊂ B1 for

every n ≥ 1. So,

R(B) ⊂
∞
⋂

n=2

Bn =

∞
⋂

n=1

Bn = B

Step 6. In this step we show that the graph of the multi-valued function

RpB : B → 2B is closed. We consider a sequence {xn}n≥1 inH with xn → x

in H and let yn ∈ R(xn) with yn → y in PC(J,H). we will show that

y ∈ R(x). By recalling the definition of R, there is fn ∈ S1
F (·,xn(·))

for any
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n ≥ 1, such that

yn(t)=











































































Sα(t)x0+

∫ t

0
Tα(t−s)fn(s)ds+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t∈J0

Sα(t)x0+Sα(t− t1)I1(t
−
1 )+

∫ t

0
Tα(t− s)f(s)ds

+

∫ t

0
Tα(t− s)g(s)dSH

Q (s), t∈J1

...

Sα(t)x0+
i
∑

k=0

Sα(t−tk)Ik(x(t
−
k ))+

∫ t

0
Tα(t−s)fn(s)ds

+

∫ t

0
Tα(t−s)g(s)dSH

Q (s), t∈Ji, 1≤ i≤N

(33)

Observe that for every n ≥ 1 and for a.e. t ∈ J

‖ fn(t) ‖≤ ϕ(t)Θ(‖ xn(t) ‖) ≤ ϕ(t)Θ(r)

This show that the set {{fn : n ≥ 1} is integrably bounded. In addition, the

set {{fn(t) : n ≥ 1} is relatively compact for a.e. t ∈ J by the assumption

(H3) and the convergence of {xn}n≥1, imply that

χ{fn(t) : n ≥ 1} ≤ χ{F (t, xn) : n ≥ 1} ≤ β(t)χ{xn(t) : n ≥ 1},

then χ{fn(t) : n ≥ 1} = 0.

So the sequence {fn}n≥1} is semi-compact, hence by Lemma 4 it is

weakly compact in L1(J,H). So without loss of generality we can assume

that fn converges weakly to a function L1(J,H). From Mazur’s lemma,

for every j ∈ N there exist a natural number k0(j) > j and a sequence

of nonnegative real numbers λj,k, k = j, . . . , k0(j) such that
k0(j)
∑

k=j

λj,k = 1

and the sequence of convex combinations zj =
k0(j)
∑

k=j

λj,kfk, j ≥ 1 converges

strongly to f in L1(J,H) as j → ∞. So we may suppose that zj(t) → f(t)

for a.e.t ∈ J .

Let t be such that F (t, ·) is upper semicontinuous. Then, for any neigh-

borhood U of F (t, ·), there is a natural number n0 ∈ N so that for any n ≥ n0

we have F (t, xn(t)) ⊆ U .
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Because the values of F are convex and compact, Definition 5 tells us

that
⋂

j≥1

conv

(

⋃

n≥j

F (t, xn(t))

)

⊆ F (t, x(t)).

As in step 1, from Mazur’s theorem, there is a sequence {zn : n ≥ 1} of

convex combinations of fn such that for a.e.t ∈ J

f(t) ∈
⋂

j≥1

{zn(t) : n ≥ j} ⊆
⋂

j≥1

conv{{fn(t) : n ≥ j}

and zn converges strongly to f ∈ L1(J,H). then, for a.e. t ∈ J

f(t) ∈
⋂

j≥1

{zn(t) : n ≥ j} ⊆
⋂

j≥1

conv{{fn(t) : n ≥ j}

⊆
⋂

j≥1

conv

(

⋃

n≥j

F (t, xn(t))

)

⊆ F (t, x(t)).

Then, by the continuity of g, Sα, Tα, Ik(k = 1, 2, . . . , N) and by the same

arguments used in step 1, we get from relation (33) that

y(t)=



























































Sα(t)x0+

∫ t

0
(t− s)α−1Tα(t− s)f(s)ds

+

∫ t

0
(t− s)α−1Tα(t− s)g(s)dSH

Q (s), t ∈ J0

...

Sα(t)x0+
i
∑

k=0

Sα(t−tk)Ik(x(t
−
k ))+

∫ t

0
(t−s)α−1Tα(t−s)f(s)ds

+

∫ t

0
(t− s)α−1Tα(t− s)g(s)dSH

Q (s), t ∈ Ji, 1 ≤ i ≤ N

(34)

Therefore, y ∈ R(x). This show that the graph of R is closed.

As a result of the step 1-5 the multivalued RpB : B → 2B is closed and

χPC-condensing, with nonempty convex compact values. By applying the

fixed point theorem and Lemma 6 there exist x ∈ B such that x ∈ R(x).

Then x is a PC-mild solution for the problem (1). ���
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4. Example

We consider the differential stochastic inclusion of the form






























cD
1
2
t y(t, z) ∈ ∆y(t, z) + F (t, yt) + g(t)

dSH
Q

dt t ∈ [0, 1], z ∈ [0, π]

y(t, 0) = y(t, π) = 0,

y(τ, z) = ϕ(τ, z)(τ, z) ∈ [0, 1] × [0, π]

y(t, z) =
∫ t
0 ηi(t− s)y(s, z)ds.

Where ηi : R −→ R is continuous.

We take H = L2[0, 1] Hilbert spaces endowed with the norm ‖ · ‖ and

g : J −→ L0
Q(H,H), where L0

Q(H,H) be the space of all operators Q Hilbert

Schmidt.

Now we define the operator A = ∆.

D(A) = {u ∈ C2+λ[0, π] : u(0) = π and u(π) = 0}

it is easy to see that the operator A is sectorial.

Now we suppose that fi : [0, 1] ×H −→ H

i f1, f2 are measurable and upper semi continuous.

ii f1, f2 are increasing functions

iii fi(t) < ϕ(t)Θ ‖ x ‖, i = 1, 2

Then we can transform the problem as follows















cDα
t x(t) ∈ Ax(t) + F (t, xt) + g(t)

dSH
Q

dt , t ∈ (si, ti+1], i = 0, 1, . . . , N

x(0) = ϕ ∈ B,
x(t) = Ii(t, xt), t ∈ (ti, si], i = 1, . . . , N.

From our assumptions on (i)−(ii) it follows that the multivalued function

satisfy the conditions (H1)− (H2).

All the assumptions in Theorem (3.1) are satisfied so our inclusion has

a mild solution.
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5. Conclusion

In this paper we prove the existence of mild solution of impulsive frac-

tional stochastic differential inclusion driven by Sub-fractional Brownian mo-

tion with infinite delay and sectorial operators. By using fixed point theory

and Hausdorff measure of noncompactness, we investigated the stochastic

differential inclusions, finally we have presented an example to illustrate the

applicability of the new results.
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