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Abstract

In this paper we establish various limit theorems for the difference in order statistics

from a sample from the Pareto distribution. The underlying density is f(x) = x−2I(x ≥ 1).

We look at both fixed and slowly increasing samples sizes. For our strong and weak laws

of large numbers the first moment will be infinite and for our central limit theorem the

second moment will be infinite. These theorems are quite unusual since the usual moment

conditions do not hold. In order to achieve these results we must attach weights to these

random variables and find these appropriate weights and norming sequences in order to

establish our results.

1. Introduction

We establish various limit theorems for weighted sums of the difference

of order statistics from a sample of mn random variables from a Pareto

distribution. In some cases mn is fixed in others it will grow slowly towards

infinity. In the previous paper [4] we looked at the largest minus the smallest

order statistics from this very distribution. Now we look at any difference.

And we also examine a Central Limit Theorem when we select the second

biggest order statistic. These unusual results occur when we select either of

the two larger order statistics.

These theorems are valuable. The underlying distribution does not pos-

sess a first and hence a second moment. The variance is infinite. So how
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does one measure the spread of these types of random variables. The con-

ventional wisdom is to look at the range and divide it by four. The range

is the largest order statistic minus the smallest order statistic. That’s why

we need to examine the differences of order statistics. But what happens if

we need to throw away outliers? In that setting we may want the difference

between other sets of order statistics and that is precisely what we are doing

in this paper. And we only look at the difficult cases. We need not discuss

the differences of order statistics when the difference has a finite moment.

We may also want to know how long certain equipment will last. If we

have a dozen batteries and the system does fail only after the fifth one dies,

but does grow weaker after the third one is dead, then we want to measure

the difference between the third and fifth order statistics. Also, for married

couples the time between the two deaths does matter. An insurance policy

will only start after the second death. So, the difference matters once again.

The fascination with order statistics from the Pareto distribution and

unusual limit theorems can be traced back to [2]. Next came the examination

of the ratios of order statistics which can be found in [3]. There have been

many extensions by many people, just two recent ones are [9] and [12].

The interest in finding a way to balance sums of random variables that

do not possess a finite expectation with a sequence of constants dates back

to the St. Petersburg game. The partial sum can be considered the winnings

from a game at some point in time, while the sequence of constants would

be the entrance fee at that same point in time. This phenomenon has gone

by the name ”fair games” problem and more recently ”exact strong laws”.

Which is more appropriate when one wants almost sure convergence. Feller,

[7], established a weak law for the St. Peterburg game, see page 252. But

that weak law does not allow almost sure convergence and just like Theorem

6, it allows the the gambler an unfair advantage. The almost sure upper

limit in Feller’s theorem is infinity and the almost sure lower limit is one.

That is certainly not fair for the house. This is why we need to study Exact

Strong Laws, one recent paper on such limit theorems is [8]. Others also

interested in the infinite mean case are [10], [11] and [13]. But there are

many more people who are now examining this odd behaviour.

We need to say that the constant C used in the proofs denotes a generic

real number that is not necessarily the same in each appearance. It is usually

used as an upper bound in order to establish the convergence of our various



✐

“BN16N24” — 2021/7/19 — 10:24 — page 179 — #3
✐

✐

✐

✐

✐

2021] UNUSUAL LIMIT THEOREMS 179

series. And it also can be used as a generic lower bound for a divergence

series. Also, we define lg x = ln(max{e, x}) and lg2 x = lg(lg x), which is not

a logarithm with a base of 2. Likewise lg3 x = lg(lg(lg x)).

2. Preliminary Results

The underlying distribution is the classic Pareto, f(x) = x−2I(x ≥ 1).

We then take n samples of size m from this distribution. We start with

{Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ m} as independent and identically Pareto dis-

tributed random variables. The order statistics are no longer independent

and they are denoted by {Xi(1), . . . ,Xi(m)}, where Xi(1) ≤ Xi(2) ≤ · · · ≤

Xi(m). Next, we observe two order statistics from each sample, Xi(s) and

Xi(t),where 1 ≤ s < t ≤ m and i = 1, 2, . . . n. The two interesting cases are

when t = m or t = m− 1.

From these two random variables we obtain the difference, Di = Xi(t) −

Xi(s). Let

Cstm =
m!

(s− 1)!(t − s− 1)!(m − t)!

which is the constant term in the joint density of two order statistics. In

order to get the density of Di, we first obtain the joint density of Xi(s) and

Xi(t), which is

f(xs, xt)

=Cstm[F (xs)]
s−1f(xs)[F (xt)− F (xs)]

t−s−1f(xt)[1− F (xt)]
m−t

=Cstm

[

1−
1

xs

]s−1 1

x2s

[(

1−
1

xt

)

−

(

1−
1

xs

)]t−s−1 1

x2t

[

1

xt

]m−t

I(1≤xs≤xt)

=Cstm

[

1−
1

xs

]s−1 1

x2s

[

1

xs
−

1

xt

]t−s−1[ 1

xt

]m−t+2

I(1 ≤ xs ≤ xt).

Next, let w = xs and d = xt −xs. The Jacobian is one and the joint density

of W and Di is

f(w, d) = Cstm

(

1−
1

w

)s−1 dt−s−1

wt−s+1(w + d)m−s+1
I(w ≥ 1)I(d ≥ 0).
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Integrating out the dummy variable, w, we see that the density of Di is

fDi
(d) =Cstmdt−s−1

∫ ∞

1

(

1−
1

w

)s−1 dw

wt−s+1(w + d)m−s+1

=Cstm
dt−s−1

dm−s+1

∫ ∞

1

(

1−
1

w

)s−1 dm−s+1dw

wt−s+1(w + d)m−s+1

∼Cstmdt−m−2

∫ ∞

1

(

1−
1

w

)s−1 dw

wt−s+1

where d ≥ 0. Next, let x = 1/w and use the Beta distribution to find the

limiting distribution of our difference. Using that substitution we have

∫ ∞

1

(

1−
1

w

)s−1 dw

wt−s+1
=

∫ 0

1
(1− x)s−1xt−s+1(−x−2)dx

=

∫ 1

0
(1− x)s−1xt−s−1dx =

Γ(s)Γ(t− s)

Γ(t)
.

Thus

fDi
(d) ∼

Γ(s)Γ(t− s)

Γ(t)
· Cstm · dt−m−2

=
Γ(s)Γ(t− s)

Γ(t)
·

m!

(s− 1)!(t− s− 1)!(m− t)!
· dt−m−2

=
(s− 1)!(t− s− 1)!

(t− 1)!
·

m!

(s− 1)!(t− s− 1)!(m− t)!
· dt−m−2

=
m!

(m− t)!(t− 1)!
· dt−m−2.

which is free of s, but naturally, not free of t nor m. With all that accom-

plished, we can now obtain our strong laws, weak laws and central limit

theorem. When t = m we will have our unusual strong laws and when

t = m− 1 we will have our unusual central limit theorem. When t ≤ m− 2

all our classic limit theorems exist since the second moment of our differences

exist. This paper addresses just the difficult cases.

3. Strong Laws

When the larger of our order statistics is the maximum, then the expectation

of our random variables is infinite. This section establishes strong laws for
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these type of random variables. We start by observing a fixed sample size

with t = m.

Theorem 1. Let {Xi1, . . . ,Xim} be i.i.d. random variables from the Pareto

distribution and set Di = Xi(m) −Xi(si). For any 1 ≤ si ≤ m − 1 and any

α > 0 we have

lim
n→∞

∑n
i=1

(lg i)α−2

i Di

(lg n)α
=

m

α
almost surely .

Proof. Since fD(x) ∼ mx−2, it follows that xP{D > x} ∼ m. By applying

Example 2 from [1] the conclusion follows. ���

As in [4] we examine what happens as the sample size increases at a

particular rate. Here we select our largest order statistic from each sample,

ti = mi, for all i ≥ 1. But the smaller order statistic can be chosen as any

other one within that sample and not necessarily the same each time.

Theorem 2. Let {Xi1, . . . ,Ximi
} be i.i.d. random variables from the Pareto

distribution and set Di = Xi(mi) − Xi(si). For any 1 ≤ si ≤ mi − 1 where

mn ∼ γ(lg n)β, then for γ, β and α+ β + 2 all positive

lim
n→∞

∑n
i=1

(lg i)α

i Di

(lg n)α+β+2
=

γ

α+ β + 2
almost surely .

Proof. Let an = (lg n)α/n, bn = (lg n)α+β+2 and cn = bn/an = n(lg n)β+2.

We use the partition

1

bn

n
∑

i=1

aiDi =
1

bn

n
∑

i=1

ai
[

DiI(|Di| ≤ ci)− EDiI(|Di| ≤ ci)
]

+
1

bn

n
∑

i=1

aiDiI(|Di| > ci)

+
1

bn

n
∑

i=1

aiEDiI(|Di| ≤ ci).

The first term vanishes almost surely by the Khintchine-Kolmogorov
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182 ANDRÉ ADLER [June

Convergence Theorem, see page 113 of [6], and Kronecker’s lemma since

∞
∑

n=1

1

c2n
ED2

nI(|Dn| ≤ cn) < C

∞
∑

n=1

1

c2n

∫ cn

1
mndx

< C
∞
∑

n=1

mn

cn
< C

∞
∑

n=1

1

n(lg n)2
< ∞.

The second term vanishes, with probability one, by the Borel-Cantelli

lemma since

∞
∑

n=1

P{|Dn| > cn} < C

∞
∑

n=1

∫ ∞

cn

mndx

x2
= C

∞
∑

n=1

mn

cn
< ∞.

Thus, our almost sure limit follows from the last term in our partition

∑n
i=1 aiEDiI(|Di| ≤ ci)

bn
∼

∑n
i=1

(lg i)α

i

∫ ci
1

midx
x

(lg n)α+β+2

=

∑n
i=1

(lg i)α

i mi lg ci

(lg n)α+β+2

∼
γ
∑n

i=1
(lg i)α+β+1

i

(lg n)α+β+2

→
γ

α+ β + 2

which concludes this proof. ���

We continue to shrink, both our weights and our norming sequence to

show there are many exact strong laws in this setting.

Theorem 3. Let {Xi1, . . . ,Ximi
} be i.i.d. random variables from the Pareto

distribution and set Di = Xi(mi) − Xi(si). For any 1 ≤ si ≤ mi − 1 where

mn ∼ γ(lg n)β, then for γ and β both positive

lim
n→∞

∑n
i=1

1
i(lg i)β+2Di

lg2 n
= γ almost surely .

Proof. Let an = 1/(n(lg n)β+2), bn = lg2 n and cn = bn/an = n(lg n)β+2 lg2 n.
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Again, we use the partition

1

bn

n
∑

i=1

aiDi =
1

bn

n
∑

i=1

ai
[

DiI(|Di| ≤ ci)− EDiI(|Di| ≤ ci)
]

+
1

bn

n
∑

i=1

aiDiI(|Di| > ci)

+
1

bn

n
∑

i=1

aiEDiI(|Di| ≤ ci).

The first term vanishes almost surely by the Khintchine-Kolmogorov

Convergence Theorem and Kronecker’s lemma since

∞
∑

n=1

1

c2n
ED2

nI(|Dn| ≤ cn) < C

∞
∑

n=1

1

c2n

∫ cn

1
mndx

< C

∞
∑

n=1

mn

cn
< C

∞
∑

n=1

1

n(lg n)2 lg2 n
< ∞.

The second term vanishes, with probability one, by the Borel-Cantelli

lemma since

∞
∑

n=1

P{|Dn| > cn} < C

∞
∑

n=1

∫ ∞

cn

mndx

x2
= C

∞
∑

n=1

mn

cn
< ∞.

Thus, our almost sure limit follows from the last term in our partition

∑n
i=1 aiEDiI(|Di| ≤ ci)

bn
∼

∑n
i=1

1
i(lg i)β+2

∫ ci
1

midx
x

lg2 n

=

∑n
i=1

1
i(lg i)β+2mi lg ci

lg2 n

∼
γ
∑n

i=1
1

i(lg i)β+2 (lg i)
β lg i

lg2 n

=
γ
∑n

i=1
1

i lg i

lg2 n

→ γ

which concludes this proof. ���
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We can continue to get smaller and smaller weights and norming se-

quences. We conclude with one such result.

Theorem 4. Let {Xi1, . . . ,Ximi
} be i.i.d. random variables from the Pareto

distribution and set Di = Xi(mi) − Xi(si). For any 1 ≤ si ≤ mi − 1 where

mn ∼ γ(lg n)β, then for γ and β both positive

lim
n→∞

∑n
i=1

1
i(lg i)β+2 lg2 i

Di

lg3 n
= γ almost surely .

Proof. Let an = 1/(n(lg n)β+2 lg2 n), bn = lg3 n and cn = bn/an =

n(lg n)β+2 lg2 n lg3 n. Once again, we use the partition

1

bn

n
∑

i=1

aiDi =
1

bn

n
∑

i=1

ai
[

DiI(|Di| ≤ ci)− EDiI(|Di| ≤ ci)
]

+
1

bn

n
∑

i=1

aiDiI(|Di| > ci)

+
1

bn

n
∑

i=1

aiEDiI(|Di| ≤ ci).

The first term vanishes almost surely by the Khintchine-Kolmogorov

Convergence Theorem and Kronecker’s lemma since

∞
∑

n=1

1

c2n
ED2

nI(|Dn| ≤ cn) < C
∞
∑

n=1

1

c2n

∫ cn

1
mndx

< C

∞
∑

n=1

mn

cn
< C

∞
∑

n=1

1

n(lg n)2 lg2 n lg3 n
< ∞.

The second term vanishes, with probability one, by the Borel-Cantelli

lemma since

∞
∑

n=1

P{|Dn| > cn} < C
∞
∑

n=1

∫ ∞

cn

mndx

x2
= C

∞
∑

n=1

mn

cn
< ∞.
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Thus, our almost sure limit follows from the last term in our partition

∑n
i=1 aiEDiI(|Di| ≤ ci)

bn
∼

∑n
i=1

1
i(lg i)β+2 lg2 i

∫ ci
1

midx
x

lg3 n

=

∑n
i=1

1
i(lg i)β+2 lg2 i

mi lg ci

lg3 n

∼
γ
∑n

i=1
1

i(lg i)β+2 lg2 i
(lg i)β lg i

lg3 n

=
γ
∑n

i=1
1

i lg i lg2 i

lg3 n

→ γ

which concludes this proof. ���

4. Weak Laws and One Sided Strong Laws

We saw in the last section that it was sufficient for the weights to be of the

form an = 1/n. And we can increase them by a slowly varying function,

such as the logarithm, but no more than that. In this section we show that

it is necessary for our weights to be of this form in order to have an Exact

Strong Law.

Theorem 5. Let {Xi1, . . . ,Ximi
} be i.i.d. random variables from the Pareto

distribution and set Di = Xi(mi) − Xi(si), where 1 ≤ si ≤ mi − 1, with

mn ∼ γ(lg n)β. If α > −1, γ > 0 and β > 0, then for any slowly varying

function L(x)
∑n

i=1 L(i)i
αDi

L(n)(lg n)β+1nα+1

P
→

γ

α+ 1
.

Proof. Let ai = L(i)iα and bn = L(n)(lg n)β+1nα+1. We will use the Weak

Law from page 356 of [6]. Let ǫ > 0

n
∑

i=1

P{aiDi/bn > ǫ} < C
n
∑

i=1

∫ ∞

ǫbn/ai

midx

x2
< C

n
∑

i=1

miai
bn

<
C
∑n

i=1(lg i)
βL(i)iα

L(n)(lg n)β+1nα+1
<

CL(n)(lg n)βnα+1

L(n)(lg n)β+1nα+1
=

C

lg n
→0.
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As for the variance term, we have

n
∑

i=1

V

[

aiDi

bn
I

(∣

∣

∣

∣

aiDi

bn

∣

∣

∣

∣

< 1

)

]

< C

n
∑

i=1

(

a2i
b2n

)
∫ bn/ai

0
midx < C

n
∑

i=1

miai
bn

→ 0

once again.

Next, we must compute the expectation from that theorem

n
∑

i=1

E

[

aiDi

bn
I

(
∣

∣

∣

∣

aiDi

bn

∣

∣

∣

∣

< 1

)

]

∼ b−1
n

n
∑

i=1

ai

∫ bn/ai

1

midx

x

= b−1
n

n
∑

i=1

miai lg(bn/ai) = b−1
n

n
∑

i=1

miai lg(bn)− b−1
n

n
∑

i=1

miai lg(ai).

It’s interesting that both of these terms are equally important

b−1
n

n
∑

i=1

miai lg(bn) ∼
γ
∑n

i=1(lg i)
βL(i)iα

[

lg(L(n))+(β+1) lg2 n+(α+1) lg n
]

L(n)(lg n)β+1nα+1

∼
γ(α+ 1)

∑n
i=1(lg i)

βL(i)iα lg n

L(n)(lg n)β+1nα+1

∼
γ(α+ 1)

[

(lg n)βL(n)
(

nα+1

α+1

)]

lg n

L(n)(lg n)β+1nα+1
= γ

and the other term is

b−1
n

n
∑

i=1

miai lg(ai) ∼
γ
∑n

i=1(lg i)
βL(i)iα

[

lg(L(i)) + α lg i
]

L(n)(lg n)β+1nα+1

∼
αγ

∑n
i=1(lg i)

β+1L(i)iα

L(n)(lg n)β+1nα+1

∼
αγ

[

(lg n)β+1L(n)
(

nα+1

α+1

)]

L(n)(lg n)β+1nα+1

=
αγ

α+ 1
.

Combining these two terms, we see that our limit is

γ −
αγ

α+ 1
=

γ

α+ 1

which concludes this proof. ���
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In this setting we cannot get an Exact Strong Law. The almost sure

lower limit agrees with our Weak Law, but the almost sure upper limit is

infinity. This is precisely what happens with the famous St Petersburg game.

Theorem 6. Let {Xi1, . . . ,Ximi
} be i.i.d. random variables from the Pareto

distribution and set Di = Xi(mi) − Xi(si), where 1 ≤ si ≤ mi − 1, with

mn ∼ γ(lg n)β. If α > −1, γ > 0 and β > 0, then for any slowly varying

function L(x)

lim inf
n→∞

∑n
i=1 L(i)i

αDi

L(n)(lg n)β+1nα+1
=

γ

α+ 1
almost surely

and

lim sup
n→∞

∑n
i=1 L(i)i

αDi

L(n)(lg n)β+1nα+1
=∞ almost surely .

Proof. In this proof we set an = L(n)nα, bn = L(n)(lg n)β+1nα+1, cn =

bn/an = n(lg n)β+1 and we now introduce a new sequence hn = cn/(lg2 n)
2 =

n(lg n)β+1/(lg2 n)
2.

Since we have convergence in probability from Theorem 5, we can claim

that

lim inf
n→∞

∑n
i=1 L(i)i

αDi

L(n)(lg n)β+1nα+1
≤

γ

α+ 1
almost surely.

Hence we need to prove that

lim inf
n→∞

∑n
i=1 L(i)i

αDi

L(n)(lg n)β+1nα+1
≥

γ

α+ 1
almost surely.

This is where the sequence hn comes into play. Clearly

b−1
n

n
∑

i=1

aiDi ≥ b−1
n

n
∑

i=1

aiDiI(0 ≤ Di ≤ hi)

= b−1
n

n
∑

i=1

ai
[

DiI(0 ≤ Di ≤ hi)− E
(

DiI(0 ≤ Di ≤ hi)
)]

+ b−1
n

n
∑

i=1

aiE
(

DiI(0 ≤ Di ≤ hi)
)

.

The first term vanishes almost surely by the Khintchine-Kolmogorov Con-
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vergence Theorem and Kronecker’s lemma since

∞
∑

n=1

1

c2n
ED2

nI(0≤Dn≤hn) < C

∞
∑

n=1

1

c2n

∫ hn

0
mndx

= C
∞
∑

n=1

mnhn
c2n

<C
∞
∑

n=1

(lg n)βn(lg n)β+1/(lg2 n)
2

(

n(lg n)β+1
)2

= C

∞
∑

n=1

1

n lg n(lg2 n)
2
< ∞.

And the limit of the second term is

b−1
n

n
∑

i=1

aiE
(

DiI(0≤Di≤hi)
)

∼ b−1
n

n
∑

i=1

ai

∫ hi

1

midx

x
= b−1

n

n
∑

i=1

aimi lg(hi)

∼

∑n
i=1L(i)i

αγ(lg i)β
[

lg i+(β+1) lg2 i−2 lg3 i
]

L(n)(lg n)β+1nα+1

∼
γ
∑n

i=1 L(i)i
α(lg i)β+1

L(n)(lg n)β+1nα+1

∼
γL(n)

(

nα+1

α+1

)

(lg n)β+1

L(n)(lg n)β+1nα+1

=
γ

α+ 1
.

Thus showing that the almost sure lower limit is indeed γ/(α + 1).

The upper limit is easier. Here, we use C in the opposite direction, since

we want this series to diverge. Let M be any positive real number, then

∞
∑

n=1

P

{

anDn

bn
> M

}

> C

∞
∑

n=1

∫ ∞

Mcn

mndx

x2

> C
∞
∑

n=1

mn

cn

> C

∞
∑

n=1

(lg n)β

n(lg n)β+1

= C
∞
∑

n=1

1

n lg n
= ∞.
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Thus

lim sup
n→∞

∑n
i=1 aiDi

bn
≥ lim sup

n→∞

anDn

bn
= ∞ almost surely

which concludes this proof. ���

5. Central Limit Theorem

Finally we look at the case where E(Di) < ∞, but E(D2
i ) = ∞. This

happens whenever we look at the second largest order statistic. Hence we

conclude with a Central Limit Theorem for a fixed sample size, where t =

m−1, while once again the other order statistic can be anything smaller than

Xi(m−1). The only issue here, is in order to compute our centering in this

Central Limit Theorem one must know which Xi(si) we are choosing within

each of our samples and also we would have to know the precise density

of Di, not just its tail behaviour. To make the sequence {Di, i = 1 . . . n}

i.i.d. we would need to select the same smaller order statistic each time.

We are only doing that to apply Theorem 4 from [5]. Without any doubt

one can still obtain a Central Limit Theorem for nonidentically distributed

differences of order statistics just as well.

There are three conditions that we need to meet in order to apply that

theorem. One is trivial, it’s that x2P{Di > x} is slowly varying. The other

two are

G

(

Bn

min1≤i≤n ai

)

∼ G

(

Bn

max1≤i≤n ai

)

(1)

and for all ǫ > 0

n
∑

i=1

P{Di > ǫBn/ai} = o(1) (2)

where once again ai are our weights, but now Bn is our norming sequence.

The function G(x) is either ED2
i I(Di ≤ x) or

∫ x
0 2tP{Di > t}dt. In both

cases one can see that since

P{Di > x} ∼
m(m− 1)

2x2
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we have

G(x) ∼ m(m− 1) lg x.

The formula for Bn is quite restrictive. It is B2
n ∼ nG(Bn), which for

us is B2
n ∼ m(m − 1)n lg(Bn), which allows us to choose as our norming

sequence

Bn =

√

(

m

2

)

n lg n.

For simplicity we will let ai = (lg i)α, which makes (1) trivial. But in order

to satisfy (2) we will have to set α to be less than one-half.

Theorem 7. Let {Xi1, . . . ,Xim} be i.i.d. random variables from the Pareto

distribution and set Di = Xi(m−1) −Xi(s), where 1 ≤ s ≤ m− 2. If α < 1/2,

then
∑n

i=1(lg i)
α
[

Di −
m(m−s−1)

m−s

]

√

(m
2

)

n lg n

d
→ N(0, 1).

Proof. Since fDi
(x) ∼ m(m − 1)x−3, it follows that x2P{D > x} ∼

m(m − 1)/2. Thus G(x) ∼ m(m − 1) lg x. That makes both sides of

(1) asymptotically the same. Both G( Bn

min1≤i≤n ai
) and G( Bn

max1≤i≤n ai
) are

approximately (lg n)/2. The more restrictive condition is (2), which is
∑n

i=1(lg i)
2α = o(n lg n), which holds whenever α < 1/2.

The centering sequence from [5] is

An =

n
∑

i=1

(lg i)αE(Di).

SinceD = X(m−1)−X(s), in order, pun intended, to obtain the expectation of

D it will be easier to obtain the expectation of our individual order statistics

and then subtract. The density of the kth order statistic from our Pareto is

fX(k)
(x) =

m!

(k − 1)!(m − k)!

(

1−
1

x

)k−1(1

x

)m−k+2

I(x ≥ 1).
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Thus, by letting u = 1/x, we have

E(X(k)) =
m!

(k − 1)!(m − k)!

∫ ∞

1

(

1−
1

x

)k−1(1

x

)m−k+1

dx

=
m!

(k − 1)!(m − k)!

∫ 1

0
(1− u)k−1um−k−1du

=
m!

(k − 1)!(m − k)!
·
Γ(k)Γ(m− k)

Γ(m)

=
m

m− k
.

This allows us to conclude that

E(D) = E(X(m−1))− E(X(s)) = m−
m

m− s
=

m(m− s− 1)

m− s
.

Then by applying Theorem 4 from [5] the conclusion follows. ���

And once again, it should be mentioned that whenever t ≤ m− 2, both

the first two moments of our random variables exist. Thus the classic strong

laws, weak laws and central limit theorems all hold.
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