INVOLUTIONS IN WEYL GROUPS AND NIL-HECKE ALGEBRAS

GEORGE LUSZTIG 1,a AND DAVID A. VOGAN, JR 1,b

Abstract

In a previous article we have defined an action of the Iwahori-Hecke algebra of a Coxeter group W on a free module with basis indexed by the involutions in W. In this paper we show that the specialization of this action at the parameter 0 has a simple description.

0.1. Let W be a Coxeter group and let S be the set of simple reflections of W; we assume that S is finite. Let $w \mapsto |w|$ be the length function on W. Let H be the Iwahori-Hecke algebra attached to W. Recall that H is the free $\mathbf{Z}[u]$ -module with basis $\{\mathbf{T}_w; w \in W\}$ (u is an indeterminate) with (associative) multiplication characterized by $\mathbf{T}_s\mathbf{T}_w = \mathbf{T}_{sw}$ if $s \in S, w \in W, |sw| = |w| + 1$, $\mathbf{T}_s\mathbf{T}_w = u^2\mathbf{T}_{sw} + (u^2 - 1)\mathbf{T}_w$ if $s \in S, w \in W, |sw| = |w| - 1$.

Let $w \mapsto w^*$ be an automorphism with square 1 of W preserving S and let $\mathbf{I}_* = \{w \in W; w^* = w^{-1}\}$ be the set of "twisted involutions" in W. Let M be the free $\mathbf{Z}[u]$ -module with basis $\{\mathbf{a}_x; x \in \mathbf{I}_*\}$. For any $s \in S$ we define a $\mathbf{Z}[u]$ -linear map $\mathbf{T}_s : M \to M$ by

$$\mathbf{T}_{s}\mathbf{a}_{x} = u\mathbf{a}_{x} + (u+1)\mathbf{a}_{sx} \text{ if } x \in \mathbf{I}_{*}, sx = xs^{*}, |sx| = |x|+1,$$

$$\mathbf{T}_{s}\mathbf{a}_{x} = (u^{2} - u - 1)\mathbf{a}_{x} + (u^{2} - u)\mathbf{a}_{sx} \text{ if } x \in \mathbf{I}_{*}, sx = xs^{*}, |sx| = |x|-1,$$

$$\mathbf{T}_{s}\mathbf{a}_{x} = \mathbf{a}_{sxs^{*}} \text{ if } x \in \mathbf{I}_{*}, sx \neq xs^{*}, |sx| = |x|+1,$$

$$\mathbf{T}_{s}\mathbf{a}_{x} = (u^{2} - 1)\mathbf{a}_{x} + u^{2}\mathbf{a}_{sxs^{*}} \text{ if } x \in \mathbf{I}_{*}, sx \neq xs^{*}, |sx| = |x|-1.$$

Received July 7, 2022.

AMS Subject Classification: 20G99.

Key words and phrases: Weyl group, nil-Hecke algebra, involution.

 GL supported by NSF grant DMS-1855773 and by a Simons Fellowship.

¹Department of Mathematics, M.I.T., Cambridge, MA 02139, USA.

 $[^]a$ E-mail: gyuri@math.mit.edu b E-mail: dav@math.mit.edu

It is known that the maps \mathbf{T}_s define an H-module structure on M. (See [2] for the case where W is a Weyl group or an affine Weyl group and [3] for the general case; the case where W is a Weyl group and u is specialized to 1 was considered earlier in [1].) When u is specialized to 0, H becomes the free \mathbf{Z} -module H_0 with basis $\{T_w; w \in W\}$ with (associative) multiplication characterized by

$$T_s T_w = T_{sw} \text{ if } s \in S, w \in W, |sw| = |w| + 1,$$

$$T_s T_w = -T_w \text{ if } s \in S, w \in W, |sw| = |w| - 1$$

(a nil-Hecke algebra). From these formulas we see that there is a well defined monoid structure $w, w' \mapsto w \cdot w'$ on W such that for any w, w' in W we have

$$T_w T_{w'} = (-1)^{|w| + |w'| + |w \cdot w'|} T_{w \cdot w'}$$

(equality in H_0). In this monoid we have

(a)
$$(w \bullet w')^{-1} = w'^{-1} \bullet w^{-1}$$

(b)
$$(w \bullet w')^* = w^* \bullet w'^*$$
,

for any w, w' in W.

0.2. When u is specialized to 0, the H-module M becomes the H_0 -module M_0 with **Z**-basis $\{a_w; w \in \mathbf{I}_*\}$ in which for $s \in S$ we have

$$T_s a_x = a_{sx} \text{ if } x \in \mathbf{I}_*, sx = xs^*, |sx| = |x| + 1,$$

$$T_s a_x = a_{sxs^*} \text{ if } x \in \mathbf{I}_*, sx \neq xs^*, |sx| = |x| + 1,$$

$$T_s a_x = -a_x \text{ if } x \in \mathbf{I}_*, |sx| = |x| - 1.$$
(a)

By [3, 4.5] there is a unique function $\phi: \mathbf{I}_* \to \mathbf{N}$ such that $\phi(1) = 0$ and such that for any $s \in S, x \in \mathbf{I}_*$ with |sx| = |x| - 1 we have $\phi(x) = \phi(sx) + 1$ if $sx = xs^*$, $\phi(sxs^*) = \phi(x)$ if $sx \neq xs^*$; moreover we have $|x| = \phi(x) \mod 2$ for all $x \in \mathbf{I}_*$. For $x \in \mathbf{I}_*$ we set $||x|| = (1/2)(|x| + \phi(x)) \in \mathbf{N}$. (See also [5, p.92].)

One of our main observations is that the action of any $T_w, w \in W$ on a basis element $a_x, x \in \mathbf{I}_*$ of M_0 has a simple description in terms of the monoid (W, \bullet) , namely

(b) $T_w a_x = (-1)^{|w|+||x||+||w \bullet x \bullet w^{*-1}||} a_{w \bullet x \bullet w^{*-1}}.$ (Note by 0.1(a),(b), we have $w \bullet x \bullet w^{*-1} \in \mathbf{I}_*$ whenever $x \in \mathbf{I}_*$.) See §1 for a proof.

0.3. In [4] it is shown that there is a unique map $\pi: W \to \mathbf{I}_*$ such that for any $w \in W$ we have $T_w a_1 = \pm a_{\pi(w)}$ in M_0 . This can be deduced also from 0.2(b), which gives a closed formula for π , namely

$$\pi(w) = w \bullet w^{*-1}. \tag{a}$$

By [4, 1.8(c)],

(b) the map $\pi: W \to \mathbf{I}_*$ is surjective.

More generally, let $J \subset S$ be such that the subgroup W_J generated by J is finite. Let w_J be the longest element of W_J . Let J^* be the image of J under *. Let ${}^JW = \{w \in W; |w| = |w_J| + |w_Jw|\}, \ W^{J^*} = \{w \in W; |w| = |w_{J^*}| + |ww_{J^*}|\}, \ {}^JW^{J^*} = {}^JW \cap W^{J^*}.$ The following extension of (b) is verified in §2.

- (c) π restricts to a surjective map $^{J}\pi: {}^{J}W \to \mathbf{I}_{*} \cap {}^{J}W^{J^{*}}$.
- **0.4.** In 2.3 it is shown that when W is an irreducible affine Weyl group then for a suitable J, *, the map in 0.3(c) can be interpreted as a (surjective) map from the set of translations in W to the set of dominant translations in W. This map is bijective if W is of affine type A_1 (see 2.4) but is not injective if W is of affine type A_2 . This map takes any dominant translation to its square. It would be interesting to find a simple formula for this map extending the formulas in 2.4.

1. Proof of 0.2(b)

We prove 0.2(b) by induction on |w|. If w=1 we have $w \cdot x \cdot w^{*-1} = x$ hence the desired result holds. Assume now that $w=s \in S$. If $sx=xs^*, |sx|=|x|+1$, we have $s \cdot x \cdot s^* = (sx) \cdot s^* = x \cdot s^* \cdot s^* = x \cdot s^* = xs^* = sx$ and

$$1 + ||x|| + ||sx|| = 1 + (1/2)(|x| + \phi(x)) + 1/2(|sx| + \phi(sx))$$

= 1 + (1/2)(|x| + \phi(x)) + 1/2(|x| + 1 + \phi(x) + 1) = |x| + \phi(x) + 2 = 0 \text{ mod } 2.

If $sx \neq xs^*$, |sx| = |x| + 1, we have $|sxs^*| = |sx| + 1$ hence $s \bullet x \bullet s^* = (sx) \bullet s^* = sxs^*$ and

$$1 + ||x|| + ||sxs^*|| = 1 + (1/2)(|x| + \phi(x)) + 1/2(|sxs^*| + \phi(sxs^*))$$

$$= 1 + (1/2)(|x| + \phi(x)) + 1/2(|x| + 2 + \phi(x)) = |x| + \phi(x) + 2 = 0 \mod 2.$$

If |sx| = |x| - 1, we have $|xs^*| = |x| - 1$ hence $s \bullet x \bullet s^* = x \bullet s^* = x$ and $1 + ||x|| + ||x|| = 1 \mod 2$ hence the desired result holds.

Assume now that $w \neq 1$. We can find $s \in S$ such that |sw| = |w| - 1. By the induction hypothesis we have

$$T_{sw}a_x = (-1)^{|sw| + ||x|| + ||(sw) \bullet x \bullet (sw)^{*-1}||} a_{(sw) \bullet x \bullet (sw)^{*-1}} \cdot a_{(sw) \bullet x \bullet (sw)^{*-1}$$

Using the earlier part of the proof we have

$$\begin{split} T_w a_x &= T_s T_{sw} a_x = (-1)^{|sw| + ||x|| + ||(sw) \bullet x \bullet (sw)^{*-1}||} T_s a_{(sw) \bullet x \bullet (sw)^{*-1}} \\ &= (-1)^{|sw| + ||x|| + ||(sw) \bullet x \bullet (sw)^{*-1}||} (-1)^{1 + ||(sw) \bullet x \bullet (sw)^{*-1}|| + ||w \bullet x \bullet w^{*-1}||} \\ a_{s \bullet (sw) \bullet x \bullet (sw)^{*-1} \bullet s^*} \\ &= (-1)^{|w| + ||x|| + ||w \bullet x \bullet w^{*-1}||} a_{w \bullet x \bullet w^{*-1}}. \end{split}$$

This completes the proof of 0.2(b).

2. The map $^J\pi$

- **2.1.** For w_1, w_2 in W we say that w_1 is an initial segment of w_2 if there exist $s_1, s_2, \ldots s_n$ in S and $k \in [0, n]$ such that $w_1 = s_1 s_2 \ldots s_k$, $w_2 = s_1 s_2 \ldots s_n$, $|w_1| = k, |w_2| = n$; we say that w_1 is a final segment of w_2 if w_1^{-1} is an initial segment of w_2^{-1} . We show:
- (a) For w, w' in W, w is an initial segment of $w \bullet w'$ and w' is a final segment of $w \bullet w'$.

We argue by induction on |w'|. If w' = 1 the result is obvious. Assume now that $w' \neq 1$. We can find $s \in S$ such that |w'| = |sw'| + 1. We have $w \cdot w' = w \cdot s \cdot (sw')$. If |ws| = |w| + 1 then $w \cdot w' = (ws) \cdot (sw')$ and by the induction hypothesis ws is an initial segment of $(ws) \cdot (sw') = w \cdot w'$. Since w is an initial segment of w is an initial segment of $w \cdot w'$. If |ws| = |w| - 1 then $w \cdot w' = w \cdot (sw')$ and by the induction hypothesis w is an initial segment of $w \cdot (sw') = w \cdot w'$. This proves the first assertion of (a). The second assertion of (a) follows from the first using 0.1(a).

2.2. We now fix $J \subset S$ as in 0.3. Let $w \in {}^JW$. Then w_J is an initial segment of w and (by 2.1(a)) w is an initial segment of $w \bullet w^{*-1}$ hence w_J is an initial segment of $w \bullet w^{*-1}$ so that $w \bullet w^{*-1} \in {}^JW$. Since $w \bullet w^{*-1} \in {\bf I}_*$, we see that w_{J^*} is a final segment of $w \bullet w^{*-1}$ so that $w \bullet w^{*-1} \in W^{J^*}$. Thus, we have $w \bullet w^{*-1} \in {\bf I}_* \cap {}^JW^{J^*}$. We see that the map ${}^J\pi : {}^JW \to {\bf I}_* \cap {}^JW^{J^*}$ in 0.3(c) is well defined.

We now prove that this map is surjective. Let $x \in \mathbf{I}_* \cap {}^J W^{J^*}$. Let z be the unique element of minimal length in $W_J x W_{J^*}$. Now z^{*-1} is again an element of minimal length in $W_J x W_{J^*}$, so it must be equal to z. Thus, we have $z \in \mathbf{I}_*$. By 0.2(b) we have $T_{W_J} a_z = \pm a_{W_J \bullet z \bullet W_{J^*}}$. Note that

$$w_J \bullet z \bullet w_{J^*} \in W_J x W_{J^*} = W_J z W_{J^*}.$$

By 2.1(a), w_J is an initial segment of $w_J \bullet z \bullet w_{J^*}$ so that

$$w_J \bullet z \bullet w_{J^*} \in {}^J W.$$

Since $w_J \bullet z \bullet w_{J^*} \in \mathbf{I}_*$, we have also $w_J \bullet z \bullet w_{J^*} \in W^{J^*}$ so that $w_J \bullet z \bullet w_{J^*} \in {}^J W^{J^*}$. Thus, $w_J \bullet z \bullet w_{J^*}$ is the element of maximal length in $W_J x W_{J^*}$ so that it must be equal to x and we have $T_{w_J} a_z = \pm a_x$. By 0.2(b) we have $T_e a_1 = \pm a_z$ for some $e \in W$. We then have $\pm a_x = \pm T_{w_J} T_e a_1 = \pm T_w a_1$ where $w = w_J \bullet e$ has w_J as initial segment (see 2.1(a)) so that $w \in {}^J W$. This proves the surjectivity of ${}^J \pi$.

- **2.3.** In the remainder of this section we assume that W is an irreducible affine Weyl group. Let \mathcal{T} be the (normal) subgroup of W consisting of translations. We fix a proper subset $J \subset S$ such that $W = W_J \mathcal{T}$. Then W_J is finite. We assume that $w \mapsto w^*$ is the unique automorphism $w \mapsto w^*$ of W such that $w^* = w_J w w_J$ for $w \in W_J$ and $t^* = w_J t^{-1} w_J$ for $t \in \mathcal{T}$. This automorphism preserves S and has square 1. We have $J^* = J$ and $J^*W^J \subset \mathbf{I}_*$ (see [3, 8.2]). Let $\mathcal{T}_{dom} = \{t \in \mathcal{T}; |w_J t| = |w_J| + |t|\} = \{t \in \mathcal{T}; w_J t \in J^*W\}$.
- (a) If $t \in \mathcal{T}_{dom}$ we have $|w_J t w_J| = |t|$; hence $|w_J t| = |w_J t w_J| + |w_J|$ and $w_J t = (w_J t w_J) \bullet w_J$.

Indeed, $|w_J t w_J| = |(t^*)^{-1}| = |t^*| = |t|$.

It is known that

(b) if t, t' are in \mathcal{T}_{dom} then $tt' \in \mathcal{T}_{dom}$ and |tt'| = |t| + |t'| hence $t \bullet t' = tt'$ and $w_J \bullet (tt') = w_J tt'$.

From (a) we see that $\{w_J t; t \in \mathcal{T}_{dom}\} \subset {}^J W^J$; in fact this inclusion is an equality. For $t \in \mathcal{T}$ we define $[t] \in {}^J W$ by $W_J t = W_J [t]$; now $t \mapsto [t]$ is a bijection $\mathcal{T} \leftrightarrow {}^J W$. Under this bijection and the bijection $\mathcal{T}_{dom} \leftrightarrow {}^J W^J$, $t \leftrightarrow w_J t$, the map ${}^J \pi : {}^J W \to {}^J W^J$ becomes a map

(c)
$$\pi': \mathcal{T} \to \mathcal{T}_{dom}$$
.

The following result describes explicitly the restriction of π' to \mathcal{T}_{dom} .

(d) For $t \in \mathcal{T}_{dom}$ we have ${}^{J}\pi(w_{J}t) = w_{J}t^{2}$. Hence $\pi'(t) = t^{2}$.

Using (a), (b) and the definitions we have

$$^{J}\pi(w_{J}t) = (w_{J}t) \bullet (w_{J}t)^{*-1} = (w_{J}tw_{J}) \bullet w_{J} \bullet w_{J} \bullet (w_{J}tw_{J})^{*-1}
= (w_{J}tw_{J}) \bullet w_{J} \bullet (w_{J}t^{*-1}w_{J}) = (w_{J}t) \bullet t = w_{J} \bullet t \bullet t = w_{J}t^{2}.$$

This proves (d).

2.4. In the setup of 2.3 we assume that W is of affine type A_1 . We can assume that $S = \{s_1, s_2\}$ and $J = \{s_1\}$; now * is the identity map. We shall write $i_1 i_2 i_3 \ldots$ instead of $s_{i_1} s_{i_2} s_{i_3} \ldots$. Then $A = 21 \in \mathcal{T}_{dom}$ and in fact the elements of \mathcal{T}_{dom} are precisely the powers $A^m, m \in \mathbb{N}$. The elements of ${}^J W$ are 1t, 1t2 with $t \in \mathcal{T}_{dom}$. The elements of ${}^J W^{J^*}$ are 1t with $t \in \mathcal{T}_{dom}$. If $t = A^m, m \in \mathbb{N}$, we have

$$^{J}\pi(1t) = 1A^{2m},$$

 $^{J}\pi(1t2) = 1A^{2m+1}.$

References

- 1. R. Kottwitz, Involutions in Weyl groups, Represent. Th., 4(2000), 1-15.
- G. Lusztig and D. Vogan, Hecke algebras and involutions in Weyl groups, Bull. Inst. Math. Acad. Sinica (N.S.), 7(2012), 323-354.
- 3. G. Lusztig, A bar operator for involutions in a Coxeter group, *Bull. Inst. Math. Acad. Sinica* (N.S.), **7**(2012), 355-404.
- G. Lusztig, An involution based left ideal in the Hecke algebra, Represent. Th., 20(2016), 172-186.
- 5. D. Vogan, Irreducible characters of semisimple Lie groups, $Duke\ Math.\ J.,\ (1979),\ 61-108.$